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Abstract

The reliable estimation of the Lagrangian stress tensor from an image sequence is
a challenging problem in mechanical engineering. Since this tensor involves first order
motion derivatives, it appears tempting to estimate the optical flow field with a highly
accurate variational model and compute its derivatives afterwards. In this paper we ex-
plain why this idea is inappropriate due to lower order smoothness assumptions and the
ill-posedness of differentiation. As a remedy, we propose a variational framework that
performs higher order regularisation of the optical flow field and directly computes the
Lagrangian stress tensor from the image measurements. Due to its recursive structure,
this framework is very generic. It can incorporate smoothness assumptions of arbitrary
high order and allows to compute derivatives of any desired order in a stable way. With
a biaxial tensile experiment with an elastomer we demonstrate that our novel approach
gives substantially better results for the Lagrangian stress tensor than computing deriva-
tives of the optical flow field. Moreover, it also outperforms a frequently used commer-
cial software that marks the state-of-the-art for Lagrangian stress tensor computation.

1 Introduction

Estimating higher order motion information from an image sequence is a problem that has
hardly been addressed in the computer vision community so far. Nevertheless, it can be very
important in practical applications. An example is the computation of the Lagrangian strain
tensor. This tensor plays a fundamental role in mechanical engineering where it is used to
derive properties of materials. Since it involves first order derivatives of the motion field,
it extracts second order derivative information from an image sequence. Developing robust
methods for this task is challenging.
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Most computer vision research on motion in image sequences focuses on optical flow.
Since the optical flow field describes displacements between subsequent frames of an image
sequence, it is based on first order derivative information. In the last three decades numerous
methods have been developed and an evaluation of the more recent approaches can be found
at the Middlebury webpage http://vision.middlebury.edu/flow/. Many of the
best performing methods use variational models or related discrete approaches. They obtain
the optical flow field as a minimiser of an energy functional that consists of two terms: a
data term that models constancy assumptions, and a smoothness term that regularises the
flow field and interpolates at those locations where the data term does not provide sufficient
information.

Thus, if one is interested in computing the Lagrangian strain tensor, an obvious idea
would be to estimate the optical flow field with a modern variational method and to differ-
entiate the result numerically. In general, however, the result will not be satisfying for two
reasons: Firstly, most smoothness terms in the optical flow functional penalise large values
of first order derivatives of the flow field. This encourages flat or piecewise flat optical flow
fields. Hence, the derivatives are biased towards zero and more complex motion information
cannot be extracted in a reliable way [16]. The second problem arises from the numerical
differentiation of the result: Since differentiation is a classical ill-posed problem, it would
also benefit from regularisation within a variational framework [3].

Our Contribution. The goal of our paper is to address both problems simultaneously:
On the one hand, we design a variational model that provides higher order regularisation
of the optical flow field. On the other hand, we compute the motion derivatives directly
within our energy functional. Thus, there is no need to postprocess the optical flow by
numerical differentiation in order to obtain the Lagrangian stress tensor. Last but not least,
our framework is very generic: Due to its recursive structure, it is straightforward to include
smoothness terms of arbitrary order and to have direct access to motion derivatives of any
desired order.

Related Work. Bredies et al. [4] and Trobin et al. [16] have found that higher order
smoothness assumptions can improve the results of variational approaches. Furthermore,
Corpetti et al. [7] and Alvarez et al. [2] have shown that it is possible to estimate more than
just the motion itself by a variational optical flow method: They also extracted information
based on first order motion derivatives. Corpetti et al. restrict themselves to estimating only
the divergence and the curl of the motion whereas we can estimate motion derivatives of
arbitrary order. Alvarez et al. estimate first order motion derivatives by means of a modified
data term. Their method requires to construct and to minimise an energy in every point of
the image space. It relies on a initial guess for the motion in order to converge. In our
method we can use directly well-established optical flow data terms. Furthermore, we can
estimate motion derivatives of arbitrary order, do not need a specific initial guess, and only
have to minimise one single energy functional. Both the approaches of Corpetti et al. and
Alvarez et al. use second order smoothness assumptions, while our model is designed to
allow smoothness terms of arbitrary order.

Organisation of the Paper. In Section 2 we review a baseline variational approach that
solves the classical optical flow problem and serves as starting point for our novel framework.
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Furthermore, we discuss why its smoothness term renders this approach unsuitable for de-
riving higher order motion information such as Lagrangian strain tensor. Then we introduce
in Section 3 our generic approach that extends this baseline approach. In particular, we con-
struct methods that can directly estimate motion derivatives up to second order. In Section 4,
we give a short overview of our implementation. Section 5 evaluates the performance of
our method by applying it to a biaxial tensile experiment that is known for producing com-
plex motions. Our paper is concluded with a summary and an outline of future research in
Section 6.

2 Classical Optical Flow Problem
Before we can discuss variational methods for computing motion derivatives in image se-
quences, we first have to understand how a classical variational approach for optical flow
estimation works and what are its limitations for our task. This is the goal of the present
section.

2.1 Our Baseline Variational Model
Assume we are given grey-valued images fk : Ω→ [0,255] where Ω ⊂ R2 is a rectangular
image domain, and the index k describes the frame in the sequence. We want to estimate the
displacement field (optical flow) u = (u1,u2)

> : Ω→ R2 between two consecutive frames
f1 and f2 of this sequence, such that x+ u(x) is the new position of an object in f2 that
was originally located at position x in frame f1. In the following, we will often omit the
parameters of functions for the sake of brevity. So we will write u instead of u(x) if the
meaning is clear from the context.

A variational optical flow approach obtains u as the minimiser of an energy

E(u) =
∫

Ω

(D(u)+αS(u)) dx (1)

where D is a data term and S represents the smoothness term that is weighted by α > 0.
As we are expecting outliers and illumination changes in the data, we use the data term

proposed by Bruhn and Weickert [5]:

D(u) := ψ

(
| f2(x+u)− f1(x)|2

)
+ψ

(
‖∇ f2(x+u)−∇ f1(x)‖2

)
(2)

where ψ(s2) :=
√

s2 + ε2 represents the regularised L1-norm. The regularisation parameter ε

ensures differentiability in 0 and is set to 0.1 in this work. The first part of this term models
the idea that the grey value remains constant over time. The second one represents the
assumption that the spatial image gradient stays constant, which makes the approach more
robust against illumination changes. The usage of the non-quadratic penaliser ψ provides
some robustness against outliers. Additionally, the separate penalisation of both assumptions
allows also solutions where only one assumption is fulfilled.

Unfortunately the data may be unreliable in some regions, e.g. due to flat structures,
which requires the usage of a smoothness assumption. As we do not expect any discontinu-
ities in the motion, we use the classical smoothness term of Horn and Schunck [10]:

S(u) :=
2

∑
i=1
‖∇ui‖2 (3)
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This term models the idea that the first order derivatives of u vanish, which implies that the
motion is assumed to be constant in space. In the following, we will refer to terms that rep-
resent the idea that the n-th order derivatives should vanish as n-th order smoothness terms.
Furthermore, we will say that u has n-th order smoothness if it results from a variational
model with such a term.

2.2 Euler–Langrange Equations and Boundary Conditions
In order to find a minimiser of our functional (1), we may solve the associated Euler-
Lagrange equations. These are equations that a minimiser must necessarily fulfill [9]. In
our case, we obtain two equations:

0 = ∂u1D(u)−α ∆u1, (4)
0 = ∂u2D(u)−α ∆u2 (5)

where

∂u1D(u) = ψ
′(G2) ·GFx1 +ψ

′(G2
x1
+G2

x2
) · (Gx1Fx1x1 +Gx2Fx2x1), (6)

∂u2D(u) = ψ
′(G2) ·GFx2 +ψ

′(G2
x1
+G2

x2
) · (Gx1Fx1x2 +Gx2Fx2x2) (7)

with the abbreviations F := f2(u+x) and G := f2(x+u)− f1(x).
Moreover, the Euler-Lagrange formalism also involves conditions that specify what hap-

pens at the boundaries of Ω. It gives so-called homogeneous Neumann boundary conditions
that model a reflecting situation:

n>∇ui = 0 for i ∈ {1,2} (8)

where n represents the outer surface normal at the boundary of Ω.

2.3 Suitability for Computing the Lagrangian Strain Tensor
Methods for solving the optical flow problem compute motion u between two images. In
some applications, however, information based on motion derivatives is needed as well. The
Lagrangian strain tensor is an example for such information. It is defined as [12]

E =
(

e11 e12
e12 e22

)
:=

1
2

((
∇u+ I

)>(
∇u+ I

)
− I
)

(9)

where I is the identity matrix, and ∇u denotes the displacement gradient:

∇u :=
(

∂x1u1 ∂x2u1
∂x1u2 ∂x2u2

)
. (10)

In mechanical engineering, this tensor provides an important tool to derive properties of an
observed material that undergoes a deformation. It describes how a motion differs locally
from a rigid body motion. Later on, we are especially interested in the entry e22. This is the
strain in x2-direction that describes how line elements parallel to the x2-axis changed their
length during the motion with respect to their initial length. A positive value indicates that a
stretching has occured whereas a negative one indicates a compression.
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Let us now discuss if the optical flow field that minimises our energy functional (1) is
suitable for computing this tensor. Here we are facing a problem: We remember that we are
using the first order smoothness term (3) in our approach, which represents the idea that the
entries of ∇u should vanish. By considering the formula in (9), we find that this implies that
the entries of the strain tensor should also vanish. So in practice, we can expect that using the
derivatives of our solution u for computing E will lead to strain components that are biased
towards zero.

This shows that the results of our baseline optical flow approach may not be suitable for
deriving higher order motion information such as the strain tensor. Furthermore, Trobin et
al. [16] observed that a first order smoothness term can lead to bad results for u itself if the
true motion has a higher order smoothness.

Therefore, we conclude that we have to find variational approaches that, on the one hand,
are able to directly estimate higher order motion derivatives, and that, on the other hand, use
a higher order smoothness term in order to cope with complex motions.

3 Extended Optical Flow Problem
Let us now extend our baseline optical flow method in such a way that higher order smooth-
ness is modelled and also motion derivatives are computed.

3.1 Extended Variational Model
As before, we consider the two frames f1 and f2 of our image sequence f . We now want to
find a set Λn of n tensor-valued functions. It consists of the displacement field u = (u1,u2)
and its derivatives up to order n−1. Let us illustrate this idea by investigating a few examples
for Λn: The case n = 1 leads to Λ1 = {u}, which is actually the classical optical problem.
For n = 2, we have Λ2 = {u,A} where A = [ai j]2×2 : Ω→R2×2 contains the four first order
derivatives of u. By using n = 3, we get Λ3 = {u,A,B}where the new B = [bi jk]2×2×2 : Ω→
R2×2×2 represents the eight second order derivatives of u. As a convention, we will have in
the following that i, j,k ∈ {1,2}.

Let us now consider suitable energy functionals for estimating Λn. Clearly, for n = 1 we
can just use our previous baseline approach:

E1(u) =
∫

Ω

(
D(u)+α1

2

∑
i=1
‖∇ui‖2

︸ ︷︷ ︸
=:S1(u)

)
dx. (11)

In order to model the problem for n= 2, however, we also have to estimate A, i.e. the first
order derivatives of u. This requires to modify our approach in (11). Instead of assuming that
the first order derivatives of u vanish, we require that they should be similar to the entries of
A, which in turn should have a first order smoothness. To this end, we replace the first order
smoothness term S1(u) in (11) by a new expression that leads to the energy

E2(u,A) =
∫

Ω

(
D(u)+α1

( 2

∑
i, j=1

(
ai j−∂x j ui

)2

︸ ︷︷ ︸
=:M1(u,A)

+α2

2

∑
i, j=1
‖∇ai j‖2

︸ ︷︷ ︸
=:S2(A)

))
dx (12)
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We see that A must fulfill the similarity term M1, which causes it to contain estimates of the
first order derivatives of u. Variants of such a similarity term can also be found in the work
of Corpetti et al. [7]. Furthermore, we notice that the first order derivatives of A are expected
to vanish, which is expressed by the smoothness assumption S1. Finally, we see that u has
to satisfy the data term D(u) and the new term M1(u,A). The latter term guarantees that the
derivatives of u gain first order smoothness due to their similarity to the entries of A. This
causes u itself to have second order smoothness. Thus, we observe that our new expression
solves two problems simultaneously: On the one hand, it allows us to directly estimate the
first order derivatives of u. On the other hand we have modelled a second order smoothness
assumption for u.

In order to make the recursive structure of this generic framework more explicit, let us
now present the model for n = 3: Here we additionally have to find an estimate of B that
contains the second order derivatives of u. We can accomplish this by finding the estimates
of the first order derivatives of A. This motivates us to repeat the previous procedure: We
replace S2(A) in (12) by a new expression. It consists of a similarity term between B and the
derivatives of A, and a first order smoothness term for B. This gives

E3(u,A,B) =
∫

Ω

(
D(u)+α1

( M1(u,A)︷ ︸︸ ︷
2

∑
i, j=1

(ai j−∂x j ui)
2+

α2

( 2

∑
i, j,k=1

(
bi jk−∂xk ai j

)2

︸ ︷︷ ︸
:=M2(A,B)

+ α3

2

∑
i, j,k=1

‖∇bi jk‖2

︸ ︷︷ ︸
:=S3(B)

)))
dx. (13)

Here the term S3(B) guarantees that B has first order smoothness. Moreover, M2(A,B)
causes B to contain estimates of the first order derivatives of A. This implies that A will have
second order smoothness. Finally, M1(u,A) ensures third order smoothness for u.

It is evident how one can continue this recursion to solve the extended optical flow prob-
lem for arbitrary orders n. Thus, we have established a generic framework for modelling
higher order smoothness assumptions for the optical flow field, and for the stable estimation
of higher order motion derivatives. This is exactly what we wanted.

3.2 Euler–Langrange Equations and Boundary Conditions
Since we have to minimise the energy functionals of our framework, let us now state the
associated Euler-Lagrange equations and their corresponding boundary conditions. For the
sake of brevity we restrict ourselves to the energy (13) that arises for n = 3: It contains all
types of equations and conditions that appear for functionals with n > 1.

We observe that u = (u1,u2) appears in the data term D(u) and in the similarity term
M1(u,A). This leads to two Euler-Lagrange equations (one for u1, one for u2):

0 = ∂uiD(u)+α1
(
∂x1ai1 +∂x2ai2−∆ui

)
for i ∈ {1,2}. (14)

The component A is involved in the two similarity terms M1(u,A) and M2(A,B), which
gives rise to four equations:

0 = ai j−∂x j ui +α
(
∂x1bi j1 +∂x2bi j2−∆ai j

)
for i, j ∈ {1,2}. (15)
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Next we turn to B: It participates in the similarity term M2(A,B) and in the smoothness term
S3(B). This creates eight Euler-Lagrange equations:

0 = bi jk−∂xk ai j−α∆bi jk for i, j,k ∈ {1,2}. (16)

Finally we treat the boundary conditions. Here we can identify two different types:

n>∇bi jk = 0 for i, j,k ∈ {1,2}, (17)

n>
(

bi j1−∂x1ai j
bi j2−∂x2ai j

)
= 0 for i, j ∈ {1,2}, (18)

n>
(

ai1−∂x1ui
ai2−∂x2ui

)
= 0 for i ∈ {1,2}. (19)

Equation (17) represents the first type of boundary conditions. It originates from the first
order smoothness term S3(B). The second type appears in (18) and (19). It emerges from
the similarity terms M1(u,A) and M2(A,B), respectively.

4 Discretisation and Implementation
Since our image data are digital, we have to find discrete versions of our Euler-Lagrange
equations and their boundary conditions. To this end we apply classical finite difference
methods; see e.g. [11] for an introduction to this field of numerical analysis. Since our data
term (2) is a nonquadratic function of the flow field u, this discretisation process leads to
a nonlinear system of equations. We solve it iteratively with a variant of the Gauss-Seidel
algorithm in which we have frozen the nonlinear coefficients; see also [5, 7, 8]. Furthermore,
we perform an incremental computation of the displacement parts u1 and u2 in order to
handle large motions in a better way. This is known as warping and requires the linearisation
of the data term and embedding the solving process into a multiresolution framework [13].
For the experiment below, our unoptimised ANSI C implementation on a single core of
an Intel Core i7-3770 CPU requires about 1 minute for n = 1, 30 minutes for n = 2, 100
minutes for n = 3, and 210 minutes for n = 4 to analyse an image pair with 225× 246
pixels. We expect that substantial speed-ups can be achieved with parallel algorithms for
GPU implemetations, if this becomes necessary.

5 Experimental Evaluation
To evaluate our generic variational framework for the extraction of motion derivatives such
as the Lagrangian strain tensor, we first have to design a suitable experiment. It should
involve a motion that is sufficiently complex to justify the usage of higher order smoothness
terms and where the strain tensor is of interest.

Our experimental setting is shown in Figure 1. It depicts two frames of a biaxial tensile
experiment with an elastomer. The material sample is stretched along the x1- and x2-axis.
Such experiments provide useful tools in mechanical engineering to accurately inspect the
behaviour of a material [15]. Furthermore, Promma et al. [14] have found that the displace-
ment gradient ∇u associated with such a motion shows a non-constant behaviour in space,
which implies that the motion is sufficiently complex for our needs. We use the two areas
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Figure 1: (a) Left: Two frames of the biaxial tensile experiment with the areas of interest
colored in purple. (b) Right: Enlarged versions of the respective areas of interest.

n = 1 n = 2 n = 3 n = 4 Vic-2D

u2

e22

Figure 2: Comparison between our variational approach with different orders n (using αi =
2000) and the commercial software Vic-2D. The top row shows the optical flow component
u2, and the bottom row depicts the Lagrangian strain tensor component e22. For n = 1, the
result for e22 has been obtained by numerical differentiation of u2.

of interest in Figure 1 as our images f1 and f2 and solve the extended optical flow problem.
Since these pictures are taken from a real-world experiment, no ground truth is available. In
order to assess the correctness of our results, we use the results of the commercial software
Vic-2D as a reference solution. This specialised software belongs to the leading tools for
evaluating data of such experiments. It is based on sophisticated digital image correlation
techniques [1].

The results of our experiment are visualised in Figure 2 where we analyse both the op-
tical flow component u2 in x2 direction and the Lagrangian strain tensor component e22 in
x2 direction. As model orders n we have used values between 1 and 4. Interestingly all ap-
proaches give visually very similar results for the optical flow component u2, while differing
substantially in the outcome for the Lagrangian strain tensor component e22. This shows
that the reliable estimation of motion derivatives is substantially more difficult than a clas-
sical optical flow problem, confirming one more time the ill-posedness of differentiation.
In particular, we also see that a visually smooth flow field does by no means guarantee a
qualitatively useful Lagrangian strain tensor field.

Thus, let us now have a closer look at the results for the strain tensor component e22. For
n = 1, we have computed it via a numerical differentiation of the optical flow by means of
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central differences of second order. Thus, this result shows the naive approach that combines
a variational optical flow method with a postprocessing by differentiation. As expected the
outcome is very noisy and differs a lot from the reference solution of Vic-2D.

For n≥ 2, we obtain results that are directly computed within our novel variational frame-
work. Using the order n = 2 gives a very flat strain value that seems to be almost constant.
This can be explained as the effect of n = 2 that leads to a variational approach with a second
order smoothness term. It encourages ∇u to be constant in space. The substantial differences
to Vic-2D shows that we rather observe artifacts of our model than real physical phenomena.
Thus, our result for e22 can not be regarded as correct for n = 2.

With higher orders for n the result comes closer to the reference solution. Interestingly
even n = 3 is not sufficient to give a satisfactory strain estimate, which may be explained by
the relatively complex motion structure in our experiment. However, increasing n to 4 finally
yields a strain tensor field that shows the desired non-constant behaviour in space and has a
similar structure as the reference solution. Furthermore, the symmetry of the result for e22
corresponds to the observations made by Chen et al. [6]. Thus, we conclude that this time
our result can be regarded as correct. Moreover, it even ourperforms the outcome of Vic-2D
in terms of its impressive robustness under noise.

6 Conclusions
In our paper we have introduced a generic variational framework for the stable estimation of
motion derivatives in image sequences. Due to its recursive model structure, it can be ex-
tended to arbitrary high orders in a straightforward way. As an example application we have
focused on the computation of the Lagrangian strain tensor which is an important problem in
mechanical engineering. Here we have shown that our framework can give state-of-the-art
results.

For computer vision researchers it may appear surprising that fourth order variational
models are needed to give the desired results: Most models that are used so far are of
first order and only a few of second order. Our research shows that it is both computa-
tionally feasable and practically rewarding to go to higher orders. While we have focused on
quadratic smoothness terms, it is no problem to replace them by their nonquadratic or even
anisotropic counterparts. This is studied in our ongoing research.

For mechanical engineers our results have demonstrated that computer vision ideas can
substantially improve measurement technology. Moreover, a stable evaluation of even higher
order derivatives than the ones that are covered by classical theories is no longer an illusion.
This may give novel insights in the behaviour of materials and even fertilise new theories.
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