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Abstract. In this work, we analyze three different registration algo-
rithms: Chamfer distance matching, the well-known iterated closest points
(ICP) and an optic flow based registration. Their pairwise combination
is investigated in the context of silhouette based pose estimation. It turns
out that Chamfer matching and ICP used in combination do not only
perform fairly well with small offset, but also deal with large offset sig-
nificantly better than the other combinations. We show that by applying
different optimized search strategies, the computational cost can be re-
duced by a factor eight. We further demonstrate the robustness of our
method against simultaneous translation and rotation.

1 Introduction

Shape registration is an important technique in computer vision. It is present in
many applications, such as image segmentation, object recognition and classifi-
cation, motion tracking or image retrieval. The task of shape registration is to
establish point-to-point correspondences between two images [1]. In the context
of this paper, by registration or matching we mean to estimate the geometric
transformation between the reference image and the 3D target object.

As a classic method for solving correspondence problems in computer vision,
shape matching has been intensively studied in recent years, see e.g. [2, 3]. A
survey is available in [4]. A very popular shape matching algorithm is the iter-
ated closest points (ICP) algorithm [5], which uses explicit representations like
points and curves. Some variants of the ICP algorithm were evaluated in [6]
by comparing each stage of the algorithms and their speed of convergence. An-
other popular approach is to use optic flow which has been an intensive research
field for decades, because of its capability for image sequence analysis. Horn
and Schunck presented in [7] a global method to build dense flow field using
variational framework. A performance evaluation of many well-known optic flow
methods is available in [8]. The Chamfer distance matching algorithm was pro-
posed by Barrow et al. [9]. It has the nice property of being able to deal with large
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offsets, efficient and easy to implement. Borgefors [10, 11] improved the Chamfer
matching by using a more reasonable confidence measure and embedding the
basic algorithm into a resolution pyramid, which has reduced the computational
cost significantly. A recent application was presented in [12], where Gavrila used
a multi-feature hierarchical algorithm to match N templates simultaneously and
demonstrated the application in traffic sign detection. We will explain these reg-
istration algorithms with more details in Section 2.

In most work, a performance analysis with respect to complexity or stability,
especially for diverse registration methods as compared here (ICP, optic flow,
Chamfer) is still missing. Therefore, the main contribution of this work is to
individually analyse these approaches and to evaluate their performance in all
possible combinations for different rigid motions. We further investigate different
variants for Chamfer matching to improve the speed without degradation in
performance. As test scenario we concentrate on 2D-3D pose estimation. By Pose

we refer to the definition in [13] as “the transformation needed to map an object
model from its own inherent coordinate system into agreement with the sensory
data”. In general, the task of pose estimation is to find this transformation. In
the scope of this paper, we restrict the transformation to a rigid body motion.
Much work on pose estimation has been done in different abstraction level of
geometric descriptors (see [14] for detailed overviews).

In this work, we extend the joint pose estimation algorithm in [15] by embed-
ding the Chamfer distance matching, to be able to deal with large movements.
Section 2 summarizes the three used registration methods. The experimental
setup is discussed in Section 3. Performance of the presented approaches is eval-
uated in Section 4. This paper is concluded with a brief summary in Section 5.

2 Registration Algorithms

2.1 Registration with ICP

The iterated closest points algorithm was introduced by Besl and McKay [5]. It
is a method for aligning 3D models based on geometry, widely used for regis-
tering outputs of 3D scanners. ICP starts with two point clouds and an initial
guess for their relative rigid body transformation. The basic idea is to refine this
transformation and to minimize the error by iterating the following steps:

1. Give a good assumption of the initial relative pose of the object model to
the reference image.

2. Find the closest points, which results in pairs of corresponding points.
3. Calculate the transformation such that an error metric is minimized [6].
4. Go to Step 2.

In [16], Zhang proposed an improved ICP algorithm to determine the corre-
spondence set between the image contour and the 3D object pose, where he used
a K-dimensional tree to partition the point sets, which reduced the computa-
tional cost of registering large image data significantly. In [15], this ICP variant
was applied for a pose tracking system, in order to find the point correspondences
between the image silhouette and the 3D contour.
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2.2 Registration with Level Set Functions and Optic Flow

The level set method was originally introduced by Dervieux and Thomasset [17]
in 1979 and became popular by a paper of Osher and Sethian [18] in 1988. Since
the level set method could easily integrate further constraints like 2D or 3D shape
prior, it has been very popular in image segmentation in recent years. In [19],
Brox et al. introduced a segmentation algorithm integrating color, texture and
motion information, where the nonlinear diffusion was used for feature extraction
and the level set approach was applied for the total energy minimization.

The original idea of level set formulation is to define a smooth function
Φ : Ω 7→ R, which represents a contour Γ in R

n as the set where Φ(x) = 0,
bounding an open region Ω. Then the level set function Φ for defining the image
region has the following properties: Φ(x) > 0 if x ∈ Ω1, Φ(x) < 0 if x ∈ Ω2,
and Φ(x) = 0 if x ∈ Γ , where Ω1 represents the object and Ω2 represents
the background. The zero-level line is the searched boundary between the two
regions. This formulation has several advantages. It is invariant under topological
changes of the regions, which makes it very convenient to handle occlusion. It can
also be easily extended, e.g. by having further constraints like shape prior [20].

For the task of matching, the object contour C is formulated with the level
set function introduced in [21]:

Φ(x) =







D(x,C) for x inside C

−D(x,C) for x outside C

0 for x ∈ C

where D(x,C) denotes the Euclidean distance of x ∈ Ω to the closest point x̃

on the contour C. Obviously this level set formulation is invariant under rigid
body motion.

For matching the distance transformed images, instead of the straightforward
distance measure d(Φ1, Φ2) =

∫

Ω
(Φ1(x) − Φ2(x))2dx, it is suggested in [21] to

find the optimized transformation which minimizes the energy functional:

E(τ) =

∫

Ω

(Φ1(x) − Φ2(τx))2 + α(|∇u|2 + |∇v|2)dx (1)

where τx = x+w(x) and w(x) := (u(x), v(x))⊤ is the displacement vector. α is
a regularization parameter for penalizing the smoothness. Minimization of the
functional yields the estimation of the shape deformation field w, which comes
down to an optic flow estimation problem. In the context of pose estimation,
optic flow was computed between the distance transform of the image contour
and the distance transform of the projected model contour, so as to get addi-
tional correspondences of 2D points in successive images. This improves the 3D
registration.

2.3 Registration with Chamfer Distance Matching

Barrow et al. [9] proposed the Chamfer matching algorithm in 1977. The algo-
rithm compares two images: the input image and the so-called template image.
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The goal is to find the best fit of edge points between them. It has several ad-
vantages, such as the ability to handle noisy or distorted images. With a linear
complexity to the number of the corresponding points, the algorithm is very fast.
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Fig. 1. The transformed template is superimposed on the distance transformed image.
The distance measure is evaluated by the r.m.s. average of the pixel values that are
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Assume an input image and a template image are given. Both of them are
binary and pre-segmented. The images contain feature points and non-feature
points. Here one does not care what exactly the specific feature is, one just sep-
arates the features from non-features. Some distance transformation (DT) [10]
is applied on these images, usually the Euclidean distance transform or its ap-
proximation [11]. The transformed template is placed over the transformed input
image, as is illustrated in Figure 1. This superimposition gives the possibility
to measure the correspondences between the contours. Values of the pixels on
the transformed input image, which the transformed template (also regarded as
polygon in [11]) hits, measure exactly how the image differs from the template.
To evaluate the matching, one just needs to consider this array, whose elements
represent distance to the nearest feature point. The distance measurement has
been improved over the last several decades. In the original Chamfer matching,
the arithmetic average was chosen for the matching measure (so-called Cham-

fer distance): D = 1

n

∑n

i=1
vi, where n is the number of points in the polygon.

In [11], Borgefors has chosen the root mean square average (r.m.s. for short):

D = 1

d

√

1

n

∑n

i=1
v2

i
, where d is the unit distance in the distance transform.

(Note: in Figure 1, d = 3.)

In [10], a comparison of four different average measurements was presented:
median, arithmetic average, r.m.s., and maximum. After careful investigation, it
was observed that r.m.s. generated the fewest local minima that disturbed the
algorithm, therefore resulting in a more accurate convergence.
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3 Application: Silhouette Based 2D-3D Pose Estimation

The three used registration algorithms are tested in the context of silhouette
based pose estimation. In the joint system, 3D objects (a non-convex teapot
model is used in the experiments) are projected onto the image plane by a
multi-view setup. The projection matrices are predefined. The images which are
captured by a calibrated camera system, are processed by using an image seg-
mentation algorithm. This procedure gives the silhouette of the considered ob-
ject. The correspondence estimation between the initial pose and the segmented
object silhouette is achieved by using the registration algorithms: CM [9, 11],
ICP [16], OF [22] and their combinations. The resulting point correspondences
are used to generate the new pose and the updated pose is once again projected.
Then the new generated contour proceeds as shape prior to the segmentation
procedure. The iteration between pose estimation and contour segmentation is
repeated several times. Finally the estimated pose is used for the next frame.
The whole process is illustrated in Figure 2.

3D Model

Projection onto
the image plane

Shape Prior
2D Contour

Updated Pose
Next Frame

3D Object

Object image

Segmentation

Object Silhouette

Camera system
Capture by

Matcher (ICP & OF & CM)

Pose Estimation

Fig. 2. Flow Chart of the silhouette based pose estimation algorithm.

In the following section, the performance of ICP, optic flow as well as the
Chamfer matching are evaluated. By simultaneous usage of correspondences from
different registration algorithms, their combinations are also analyzed.
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4 Experiments and Evaluation

4.1 Convergence analysis of plain 3D translations

In this section, three different registration algorithms (ICP, Optic flow, and
Chamfer) are compared in terms of silhouette based pose estimation. A teapot
model is used for the experiments. We use a similar experimental setup as de-
scribed in [21]. The model silhouette is moved in 3D to be far from the object
contour in the images. To this end, we compute the contour and the pose in the
first frame as usual, then we disturb the initial pose by translation and rotation.

In the first experiment, we analyze the accuracy and stability of the three
registration algorithms with respect to the same initial movements in translation.
Figure 3 shows certain frames taken from a stereo image sequences of the teapot.
The teapot is captured from the left and right cameras. Initially the pose of the
teapot is disturbed in the area of [-15,15] cm along the x, y, and z axes. Random
samples of translational disturbances are generated in this interval. We test
the performance of registration methods for correspondence estimation. When
the difference between the estimated pose and the correct pose is within some
predefined threshold, it is regarded as converged.

Fig. 3. Some frames from a stereo image sequences (400 frames). The first column is
the initial translated image. The estimated pose is shown in the second column, which
has not converged. The third column is the initialization of another translated image,
where the corresponding converged result is shown in the last column. Top row: left
view. Bottom row: right view.

In the left column of Figure 4, we show the correspondence clouds of 400
random samples of translational disturbances in [-15, 15] cm by invoking ICP,
optic flow and Chamfer matching respectively. Blue stars denote the cases where
the registration method succeeds in converging back to the correct pose, while
red crosses denote the unconverged cases. Regarding that ICP becomes unstable
when the initial pose is disturbed too much (as shown in the top left image),
Chamfer matching is much better at dealing with large movements in translation.
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In the bottom left image, it is shown that, with an initial movement of as large
as [-15, 15] cm, a very wide area has converged.

For this reason, we expand the correspondences near the spout of the teapot
in a nearly converged frame, in order to tell the different properties between
these matchers. They are visualized in Figure 6. The small line segments be-
tween the contour points and estimated corresponding points are sketched. They
are generated by optic flow, ICP, and Chamfer matching respectively. One can
see that, in the middle image the line segment is perpendicular to the object
silhouette, i.e. the object is still moving towards its exact location and has not
yet converged. Therefore we conclude that ICP is good at dealing with tiny off-
sets and improving the pose result subtly. While the object in the right image
has already converged, so that Chamfer matching at this stage would not give
further improvement any more. Therefore we are motivated to augment the ca-
pability of Chamfer matching with ICP and to demonstrate they are actually
complementary to each other.

In the second experiment, we evaluate the performance of different combina-
tion of registration algorithms at dealing with large movements in translation.
These algorithms can easily be combined in the sense of adding up their re-
spective estimated point correspondences. The right column of Figure 4 shows
the correspondence clouds applying certain combination of ICP, optic flow and
Chamfer matching. Table 1 shows the convergence rates of all the three different
matchers and their combinations. The combination of ICP and CM gives the best
result. 95.3% of the random instances have converged with an initial movement
of [-15, 15] cm. After further experiments, we observed that, even with movement
of [-25, 25] cm, about 60% convergence rate could be achieved by applying CM
and ICP simultaneously. Table 2 shows the decreasing convergence rate with the
increasing movement from [-15, 15] cm till [-25, 25] cm.

Table 1. Comparison of convergence rates (of the correspondence clouds from Fig. 4).

Matcher Convergence Rate (translation)

ICP 30.6%
OF 46.2%
CM 51.3%

ICP + OF 47.3%
CM + ICP 95.3%
CM + OF 81.8%

ICP + OF + CM 81.5%

4.2 Variants for Chamfer matching

In the Chamfer distance matching algorithm, we define an operation called
Co-convolve, which takes two matrices and goes through the larger-size matrix
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by superimposing the smaller-size matrix at all possible locations. The bound-
ary area is filled with zero if necessary. The whole image has been involved in
the Co-convolution process. Large images slow down the algorithm. In our setup
(2 × 2.33 GHz AMD Opteron processor, C++ code, image size: 376 × 284) we
achieved 11 frames per hour. The slow convergence is partly due to the unessen-
tial regions within the image, which also deteriorates the convergence rate. One
way to speed up the method is to omit the construction of the boundary pix-
els of the template image, namely just to convolve its central part. Then the
observed speed is four times as fast as before, but meanwhile the convergence
rate decreases enormously. Therefore a new stopping criterion is implemented.
A local search (as illustrated in Figure 5) is performed during Co-convolution
and is forced to stop when the best matching location is not improved during
five consecutive circulations. This has shown to increase the speed dramatically.
The algorithm has a speed of 70 frames per hour while invoking only Chamfer
matching in the image registration part. The combination of Chamfer matching
and ICP gives again the best result.

Table 2. Convergence rates of applying CM and ICP simultaneously with different
initial movements.

Matcher ±15cm ±17.5cm ±20cm ±22.5cm ±25cm

CM + ICP 95.3% 84% 78% 69.6% 63.2%

Table 3. Comparison of convergence rates of the original Chamfer matching algorithm;
its simplified version, which only convolves the central part; an improved version with
more accurate stopping criterion; and the version with another search strategy. All the
percent numbers stand for the convergence rates.

±7.5cm ±15cm ±10cm (& ICP) ±15cm (& ICP) speed

CM(original) 88.8% 47.9% > 95% 94.8% 11 f/h

CM(central part) 56.8% 27.8% 56.7% 39.9% 40 f/h

CM(new stopping) 87.8% 51.3% 98.8% 95.3% 70 f/h

CM(new search) 79.3% 48.5% 94.5% 77.8% 80 f/h

As an alternative, another search strategy for Chamfer matching has been
implemented. The method starts from the initial location as usual, which is
considered as seed. Then the eight neighbors of the seed are evaluated. The best
matching location among the seed and its eight neighbors is regarded as the
new seed. If this best matching location is the seed itself, the search is forced to
stop. By this means, the search is always progressing towards the best matching
direction and makes it even faster. It has a speed of about 80 frames per hour.
Table 3 compares the speed, convergence rate of applying CM alone and that of
applying CM and ICP together among these four different cases.
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Fig. 4. With random disturbance in the area of [-15, 15] cm in all three dimensions.
The left column is the convergence performance of solely using ICP, Optic Flow and
CM respectively. The right column is the convergence performance of invoking combi-
nation of ICP and OF, combination of CM and ICP, and combination of CM and OF
respectively. See text for more details. This figure is best viewed in color.

Initial Location

Fig. 5. Illustration of the local search during Co-convolution.
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Fig. 6. The spout of the teapot from the right view of a nearly converged frame. From

left to right: OF, ICP and Chamfer Matching respectively.

4.3 Combined rotations and translations

Whereas in the above experiments only translational movements are analyzed,
we now switch to simultaneous rotations and translations. In addition to the ini-
tial movements in translation, movements in rotation around the x, y, and z axes
are performed. For each image registration algorithm and their combinations,
we evaluate the performance dealing with simultaneous translation and rota-
tion. The convergence rate of each instance of the matching algorithms is shown
in a separate diagram in Figure 7 respectively. For each instance, 20 distinct
initializations (all possible transformations by combining movements in transla-
tion {±7.5, ±10, ±12.5, ±15, ±17.5 (cm)} and movements in rotation {±5, ±10,
±15, ±20 (degrees)}) are investigated in the experiments, where the individual
results are connected with lines. x-coordinates are scaled by 2, since we actually
have movements in the whole interval, e.g. ±15cm represents [-15, 15] cm. From
the surfaces constructed by these segments, we can see in a concrete situation,
which combination of the matchers performs best.

Generally, the single ICP algorithm performs quite well at dealing with both
translations and rotations. However, the accuracy is deteriorating with increasing
movements. Combined with optic flow algorithm, the precision of ICP decreases
less rapidly. Obviously the combination of ICP and Chamfer matching improves
the stability and convergence behavior of the pose estimation algorithm signifi-
cantly. A convergence rate of over 60% can be achieved even when the pose of
the object model is disturbed in the area of [-17.5, 17.5] cm along the axes and
[-20, 20] degrees around the axes.

5 Conclusions

In this work we individually analyze three registration methods (Chamfer, ICP
and optic flow) and respective combinations in their performance for 2D-3D pose
estimation. The experiments reveal, that the methods have different advantages
and shortcomings, but can efficiently be combined to gain a registration algo-
rithm which can handle large displacements in reasonable time and accuracy.
After optimizing, our proposed joint algorithm works in 70 to 80 frames per
hour on a standard PC, which increased the efficiency by factor 7, compared to
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the original implementation. The evaluation results also reveal, that it is not al-
ways advantageous to combine in a naive way all available registration methods
(here ICP, Chamfer and OF). Instead, reasonable combination of registration
methods which compensate for each other’s drawbacks (here Chamfer and ICP)
can be much better for both performance and convergence.
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Fig. 7. From left to right, from top to bottom: convergence rates of CM; ICP;
CM+ICP; ICP+OF; and CM+ICP+OF respectively. The x-,y- and z-coordinates are
initial movement in translation, initial movement in rotation and convergence rate in
percent respectively. This figure is best viewed in color.
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