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Abstract. Recently a new class of generalised diffusion filters catledosis fil-
ters has been proposed. Osmosis models are useful for anafrtasks in visual
computing. In this paper, we show that these filters are adseficial outside
image processing and computer graphics: We exploit theifasthe construc-
tion of better numerical schemes for hyperbolic partidiedéntial equations that
model physical transport phenomena.

Our novel osmosis-based algorithm is constructed as atem-sredictor-corrector
method. The predictor scheme is given by a Markov chain mofdesmosis that
captures the hyperbolic transport in its advection termd&sign, it also incorpo-
rates a discrete diffusion process. The correspondingsteen easily be identi-
fied within the osmosis model. In the corrector step, we sgbt stabilised ver-
sion of this discrete diffusion. We show that the resultisgosis-based method
gives correct, highly accurate resolutions of shock wawstf in both linear and
nonlinear test cases. Our work is an example for the usefsilokvisual comput-
ing ideas in numerical analysis.

Key words: diffusion filtering, osmosis, diffusion-advection, drdtffusion, hy-
perbolic conservation laws, finite difference methodsdjater-corrector schemes,
stabilised inverse diffusion

1 Introduction

Hyperbolic differential equations (HDEs) model physicawe propagation and trans-
port processes. An important feature of solutions to suctigbaifferential equations

(PDEs) is the formation of discontinuities, also called &t® In image processing
shocks correspond to edges. Therefore, it seems natutaltheepts from the numeri-
cal approximation of HDEs can be useful for constructingite filters that deal with

the sharpening or evolution of edges. Rudin and Osher [1824 kxploited this idea to
define edge-enhancing processes. They use the same metlaris HDEs to model

so-called shock filters. When dealing with noisy images,aften aims at preserving or
enhancing edges, while in homogeneous image regions a kimgahould take place.
Corresponding to this idea, combinations of shock filtetthwwiean curvature motion
[3] or with nonlinear diffusion [4] have been developed. &lthe concept of stabilised
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inverse diffusion (SID) has inspired interesting develepis, both in a linear [5, 6] and
a nonlinear setting [7-9]. In particular, concepts from tluenerics of HDEs such as
suitable combinations of one-sided differences have bpplieal to stabilise discretisa-
tions of inverse diffusion [5, 9]. Similar ideas from the necs of HDEs dealing with
an improved shock resolution have also been used for offfteacomputations [10].

While the influence of ideas from the numerics of HDEs on thkl f&d image
processing is undeniable, up to now there are not many whétsise techniques from
image analysis for improving numerical methods for HDEs[1t—13] higher order
discretisations of HDESs that give a sharp shock resolutigrsbffer from oscillations
are combined with anisotropic diffusion filtering. Thereismtropic diffusion is used to
smooth oscillations without destroying the shocks. As terahtive procedure, one may
employ a classic first-order scheme featuring diffusiversrto capture the hyperbolic
transport. Then, in a second step, the artificial blurring ba removed by linear or
nonlinear SID. This methodology is actually older than thB-8pproach in image
processing, and it is called flux-corrected transport (FZ%). Modern variations of it
have been developed for applications in image processhgl[d] and the numerics of
HDEs [18].

Our Contribution. The discussion above shows that so far only diffusion ornsee
diffusion processes have been used to correct numerigatdarn schemes for HDEs.
The goal of the present paper is to propose a novel congiruefipredictor-corrector
schemes for HDEs that introduces a different mechanismhiBoeind, we make use
of the recently introduced class of osmosis filters for Visaenputing problems [19].
They can be regarded as nonsymmetric generalisation afstbff filters that involve
a hyperbolic advection term which allows numerous apgbeatbeyond classic diffu-
sion filtering. In contrast to all previous works, we do notreat the numerical errors
of a classic HDE scheme by a diffusion filter, but we employttigperbolic term of the
osmosis process for predicting the hyperbolic transpatiéHDE. The Markov chain
model corresponding to osmosis filters also includes asidfucomponent. In the con-
text of HDEs, this is a reasonable feature, since it is webfvn that numerical schemes
must incorporate a diffusive mechanism to approximateineal shocks at the correct
position, cf. [20]. However, since this diffusion also Hwhocks, we supplement in
a corrector step SID to counter this undesired diffusion.aAsenefit of the osmosis
model, we can do this in a straight forward fashion on a coteplaliscrete basis; see
[16] for a similar use of this technique. In linear and noeln test cases, we com-
pare our method to a classic second-order MUSCL-Hancocknsel{21, 22] which
gives typical results for solvers in the field of HDEs. Howewghile the MUSCL-
Hancock scheme has a similar predictor-corrector formauaproposed method, our
approach is substantially easier to implement and much eféiogent. We confirm that
our osmosis-based algorithm is not only competitive in ifytd the MUSCL-Hancock
scheme, it even gives much sharper approximations at shocks

Paper Organisation.In Section 2, we briefly review diffusion filtering and its gen
eralisation to osmosis filters. Then we show in Section 3 liouse osmosis models to
design novel predictor-corrector schemes for a fundanhelaiss of HDES, namely hy-
perbolic conservation laws. In Section 4, we present nurakeixperiments. The paper
is finished with a conclusion in Section 5.
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2 Diffusion Filters and Osmosis

Diffusion filters. Let a continuous-scale 1-D signa(z, ¢) be given where we associate
x andt with space and time. The diffusion PDE with positive difftssi functiong(z, t)
readsin 1D as

Oru = 0y (g Ozu) . (1)

It has to be supplemented with an initial conditiefr, 0) := f(x), and in case of a
bounded domain also with boundary conditions.

In a discrete setting, we use a spatial mesh widémd define the pixel locatian;
byz; := (i—1/2)hfori € {1,..., N}. Analogously, we introduce a time discretisation
tr. = k7, so that we obtain a discrete sigmi‘l ~ u(x;,tx). Then a standard finite
difference discretisation of (1) is given by the expliciheme

k+1 : k k k_ ok
ubtt — b _ 1 g Uiy — Ui g uy —uy_y @
T h i+1/2 h i—1/2 h

wheregfﬂ/2 denotes the diffusivity between the computational cetlad: + 1.
Using the mesh ratio := ;5, our scheme can be rewritten as

k+1 _ Kk k k k k k k k k
;T = U = TG ol — T oty TG Ui H T e (3)

It is convenient to express this as a matrix-vector multgtion of the formu*+1 =
Q"u*, whereQ" is an(N x N)-matrix with entries

1 - 7’91(21/2 - T9§’+1/2 (J=1)
o T gy @
’ T9it+1/2 (J=i+1)
0 (else).

Let us briefly review some important properties of the ma@i cf. [23]. Obviously,
the matrix is symmetric. Stability of the iterative scherBedan be shown if the entries
of Q¥ are nonnegative. Since the diffusivity is positive, all-dfhgonals contain non-
negative entries, leaving only the diagonal entries wittpgraper clarification. There-
fore, for all diagonal entries it must hold that

qzk,i =1 _Tgf—l/z _ng]‘€+1/2 > 0. 5)

This implies a stability condition on the time step size
In order to implement homogeneous Neumann boundary conddi,« = 0, we mod-
ify the entries fory} ; andg}; 5 such that

qlf,l = 1_T9§/2 and QJP(/,N = 1_7"91?/—1/2- (6)

This can be interpreted as setting the missing tegﬁ;; and gj’”;,H/Q to 0. It should
be mentioned that it is also possible to implement Diriclletindary conditions or
periodic boundary conditions.
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Fig. 1. Diffusion process visualised in terms of a Markov chain nlode

Furthermore, it holds that the sums over all entries in eadimen of Q* equal 1.
By the symmetry of* this also holds for the row sums. Both properties have arceffe
on the evolution of the process: The unit column sums impdygreservation of the
average grey value. With the unit row sums it is possible tweia discrete maximum-
minimum principle. Moreover, in [23] it is shown that the éwion converges to a
constant steady state that is identical to the average @ieg of the initial signal. Let
us stress that the properties of the discrete minimum-maxisprinciple and the trivial
steady state solution are consequences of the symme@y efhich implies that unit
column sums are equivalent to unit row sums.

We can also express diffusion using Markov chains. Markairchare described
in terms of stochastic matrices that incorporate transiimbabilities [24]. A stochas-
tic matrix is a matrix with only nonnegative entries and watumn sums. By taking
into account the positivity of the diffusivity and choosiagnesh ratio- such that (5)
is satisfied for alli, we can ensure that the matid}* contains only nonnegative en-
tries. Moreover, all column sums ateThus,Q¥ is a stochastic matrix, and the entries
qﬁj > 0 can be interpreted as transition probabilities. In the Muar&hain setting it
is convenient to use a graph-based representation of ttusidii model. It is given in
Figure 1.

Osmosis as a generalisation of diffusion filtersfFollowing [19] let us now con-
sider a nonsymmetric extension of diffusion that is callsthosis. To this end, we
assume that we have semi-permeable membranes betweeardgjxels. An osmosis
process permits selective transport of particles suchtiegtansition probabilities may
be different, depending on the orientation. For exampletiiinsition probability from
pixel i to pixel: + 1 may differ from the transition probability from pixék- 1 to pixel
1. In the Markov model, this leads to the loss of the symmetrthingraph in Figure
1. This is achieved by allowing different diffusivities iiifiérent orientation. Such ori-
ented diffusivities are calledsmoticities The forward osmoticity from pixelto: + 1
at time level is denoted b)g;"f/Q, while g;’f , Is the backward osmoticity from pixel
i+ 1 toi. We choose these osmoticities such that the normalisatindition

+,k -k _
912 T 91 = 2 (7)

is fulfilled for all 7; cf. [19]. Since osmoticities are also supposed to be nostiney we
conclude that in this case their range ig(in2].
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Fig. 2. Osmosis process visualised in terms of a Markov chain model.

In Figure 2 we see a graph-based representation of osmdsgsné&w process is
expressed by the scheme

k1 _ ok otk ok —k Lk —k ok kR
Uy = Uy T9iv1/2%i T9i—1/2%i Jr7"57141/2“1'-‘-1 + T9i—1/2%i—1 8)

“outflow” “inflow”

This can be rewritten in matrix-vector notatiati*! = PFu* with a matrix PF :=
(pﬁj) with

—k iy o
L=rg;, 21 — 7”9::‘-1/2 (G =1
k s
P = rg:_—1/2 (j=i-1) )
ij - —k .
"9iv1/2 G=i+1)
0 (else).

Homogeneous Neumann boundary conditions are implementseltting the osmotic-
ities in the boundary locations, /, andx 1 /2 t0 0.

Let us comment on the structure Bf*. As in the case witlQ*, the system matrix
(9) is a stochastic matrix if is chosen such that the diagonal entries?df are non-
negative. Sincd”* has unit column sums, it follows that osmosis preserveswbege
grey value:

1 N 1 N N 1 N N 1 N
Nzufﬂ - szpgjug = NZ(Zp;ﬁj) uk = Nzuf. (10)
=1 3 ] ] ] j=1

——

However, P* is not symmetric. Thus, unit row sums cannot be guarantes #on-
sequence, a discrete maximum-minimum principle does ridt bat the nonnegativity
of P* still implies that a nonnegative initial signal remains negative after filter-
ing. More importantly, the lack of symmetry allows that osisacan lead to nontrivial
steady states. This interesting property is analysed iaildat[19], where it is also
exploited for many applications.

As provenin [19], the scheme (8) with normalisation cordit{7) approximates on
a fixed, given mesh of siziethe 1-D osmosis PDE

+ . —
o + 0, (%u) — uu (11)
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Fig. 3. Seamless image cloning with osmosis (with permission fro@)[ From left to right:(a)
Original painting of Euler(b) Original drawing of Lagrange (with to-be-cloned face stidy.
(c) Direct cloning on top of Euler’s headd) Cloning with osmosis image editing. See [19] for
more details.

whereg™ andg ™~ are continuous-scale representations of the osmoticRIBES of this
type are calleédvection-diffusion equatiorts drift-diffusion equations.

It is straight forward to extend osmosis to higher dimensiand colour images;
see [19] for details. In [19] it is also shown that osmosisstitates a versatile frame-
work for many visual computing problems such as clusterétaga integration, focus
fusion, exposure blending, image editing, shadow remaval,compact image repre-
sentation. Fig. 3 illustrates this. Let us now explore a nppliaation field for osmosis
that goes beyond visual computing tasks: the construcfibetber numerical schemes
for hyperbolic conservation laws.

3 0Osmosis Schemes for HDEs

Hyperbolic conservation laws.We aim at constructing numerical approximations of
HDEs that can be written as

du + 0z(p(u)) = 0. (12)

Such equations are callégperbolic conservation laws (HCLS)his is a fundamental
class of PDEs with many applications in science and endimg§25]. The design of
numerical schemes for HCLs can easily be transferred tor giecific HDEs. The
function¢ in (12) is calledflux function Its properties, like e.g. linearity or convexity,
are important for the features one can expect from solutidraich PDEs. We will
write ¢ in the format of a velocity times the underlying density ftiog, i.e.¢(u) = au,
wherea := a(u) may be nonlinear. This is a very basic choice in the field of HCL
naturally arising in many settings [25].

Comparing the differential formula for osmosis (11) witle theneral form of HCLs
(12), one can immediately identify the flyX«) and the corresponding flux within the
osmosis advection term

o(u) = T—I—u. (13)
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In addition, there is the diffusion terf.,u. The general idea we pursue in the following
is to determine useful expressions for andg—, so that we can capture the hyperbolic
transport by the osmosis model.

Selection of the osmoticitiesFor the general construction of osmosis-based algo-
rithms, we stick for simplicity to the 1-D situation. The rhetlology can be extended
to the 2-D case in a straight forward fashion.

In order to approximate the fluX(u) = a(u)u of the hyperbolic transport contained
in (11), we choose as osmoaoticities

hak hak
+k i+1/2 -k i+1/2
Yix1ye = 1+ — and 9ii12 = 1 - — (14)

with velocitieS(zi?’H/2 defined at pixel borders. This setting makes the osmotisprart

identical to the desired formatu)u. Let us discuss two examples.

— Example 1: Osmoticities for linear advection.
The linear advection equation

ou + adyu = 0 (15)

is a standard example of HDEs, defined ¥ia) := au with o € R. In order to
approximate (15), we set all velocitie$+1/2 to the same value.

— Example 2: Osmoticities for Burgers’ equation.
Burgers’ equation is a classic test case for nonlinear HDEs:

Ou + 0, (% u2) = 0, ie. p(u) = %uQ. (16)

Rewriting the flux in the formap(u) = a(u) u leads to the discrete expression

ko ok
1 ug + ugyy

k ko k —
Ajy1/2 = a(ug,uiy,) = 5 B (17)

after approximating the densiqﬁl/2 at the border between pixelandi + 1 by
averaging.

Subtracting the diffusion. Our osmosis scheme contains the diffusive tékmpu
which leads to an additional smoothing of the signal. In otdecompensate for this
effect, we apply a method similar to the fully discrete SIBpsin [17].

If we use our definitions O&iiil/Q from (14) within the osmaosis filter (8) and carry
out further computations, we obtain

k k k k
koo T ok Wi tur Uyt Uy
U; = U A Ait1/2 9 Ai_1/2 9

(4)
+ o (uf —2uf +ub ). (18)

(B)
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The term (A) corresponds to the update formula of an exgidieme for discretising
the hyperbolic transport, while (B) is a discretisation dirae step performed with
linear diffusion. It should be noted that (18) varies frome #tandard Lax-Friedrichs
scheme by controlling the diffusive part (B) with the sanmedistep size as the trans-
port term (A), see also [25-27].

Let us now subtract the effect of the latter by performing B Step in the same
style as in [16, 17]. This gives the total, corrected result

k “k k k
%‘H = U Cpp TGy (19)

Whereci?jd/2 denote the fluxes of the stabilised inverse diffusion:

k . ~k o~k k - ~k\ o~k ~k
Cit1/2 ‘= minmod (Uz —Ui_15 Mit1y/2 (uz‘+1 - Uz) y Ujpo — Uz‘+1) (20)
with the minmod function

max(a,b,c) if a>0andb>0andc >0

minmod(a, b, ¢) := { min(a,b,¢) ifa <0andb < 0andec <0 (21)
0 else
Thereby,ngﬁrl , = r is the antidiffusion coefficient, as identified in (B). Thehet

arguments of the minmod function serve as stabilisers.

The complete algorithm.Now we can summarise our method in a nutshell.

Osmosis-based Method for Approximatingd;u + 9. (¢(u)) = 0.
Step 1:Determine the velocity function for a given flux function
o(u) = a(u)u.
Step 2: Compute the osmoaticities according to (14).
Step 3:Perform one predictor step by applying the osmosis scheB8)e (1
Step 4:Perform the corrector step (19).
Step 5:Repeat steps 2 to 4 until the stopping time is reached.

4 Numerical Experiments

We illustrate the quality of our osmosis-based algorithitinseveral standard examples
from the field of HDEs. Thereby, we focus our attention on tiacks that are the most
interesting features of hyperbolic PDEs.

For comparison with standard methods for HDEs, we employgarskorder high-
resolution MUSCL-Hancock method [21, 22]. This classicmoetgives typical results
for high-resolution solvers in this field.

Linear advection in 1D. In our first experiment we consider the linear advection
equation (15) withv = 1 and periodic boundary conditions. We apply it for transipgyt
a box-like initial signal

(1 (10 < = < 30)
f(z) = {0 (else). (22)



Novel Schemes for Hyperbolic PDEs Using Osmosis Filtemnfisual Computing 9

Linear Advection Experiment at t=100 Linear Advection Experiment at t=100 (Close-up)

wegoanog MUSCL-Hancock —— j j j MUSCL-Hancock ——
%\ novel scheme --x--- 1 et e novel scheme. ---x--- ]
H true solution - % true solution -

W T ‘fx*x*

0.8 08+

06 06 L
04 F 04 -

02k 0.2

LW
50 60 70 80 90 100 110 80 85 90 95 100

Fig. 4. Linear advection experimer(@) Left: Results at = 60. (b) Right: Close-up on the right
edge of the signal.

2-D nonlinear problem, MUSCL solution at t=1000 2-D nonlinear problem, MUSCL solution at t=1000 (Close-up)
0.6

MUSCL-Hancock ——
novel scheme ------
true solution -

MUSCL-Hancock ——
novel scheme ------
05|  tuesolution -

-0.1 L L L 01 L L L L L
0 50 100 150 200 140 145 150 155 160

Fig. 5. Burgers’ Equation(a) Left: Results at = 250. (b) Right: Close-up on the right edge of
the signal.

As numerical parameters we chodSe= 200, h := 1, andr := 0.25. In Figure 4 we
show a snapshot taken afet0 time steps of numerical solutions computed by our new
scheme and the reference method, together with the exatiosolWe observe that our
osmosis method gives much sharper discontinuities thaMth®CL-Hancock scheme
and comes closer to the exact solution.

Nonlinear Burgers’ equation in 1D. Now we consider the Burgers’ equation (16)
under the same parameter settings and the same initialtmonds in the first test.
By the nonlinear evolution, the box signal is shifted to tlght. The discontinuity at
the right hand side of the box travels as a shock while theofake signal is gradually
shifted, transforming the box into a ramp. Figure 5 showsitherical solutions dt=
250 for our osmosis-based scheme as well as for the MUSCL-Hé&riogalementation,
together with the exact solution. Both methods give redsienapproximations in this
test case.

Nonlinear 2D experiment. As already mentioned, extending osmosis to 2D is
straight forward: One only has to define osmoticities as pseg in (14) forz- and
y-direction. Note that our resulting scheme is rotationadisariant w.r.t. the diffusion
part, since this is given in 2D by the isotropic Laplace opmarH 9]. The 2-D MUSCL-
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2-D nonlinear problem, MUSCL solution at t=250 2-D nonlinear problem, novel scheme solution at t=250

0 38
B I 55— o
90

0755
30

B 5—s - -

90150

2-D nonlinear problem, MUSCL solution at t=250 2-D nonlinear problem, novel scheme solution at t=250

Fig. 6. Steady-state result for the 2-D teseft: MUSCL-Hancock schemeRight: Osmosis
schemeTop row: Top-down view.Bottom row: Different angle, showing the shock region in
detail.

Hancock scheme is presumably comparable in this respetisess information from
a diamond-shaped stencil of 13 nodes [21, 22].

For our 2-D experiment we consider the nonlinear problemmffbl] where the steady
state is sought. It combines Burgers’ equation with linereation by choosing the
flux function¢(u) = 2u? in z-direction, andy)(u) = w in y-direction. As initial state
on our domairj0, 100] x [0, 100] we take

1.5 (x=1)
) = :?.&E +15 Ez - 12) ) 23)
0 (elsa.

These values also define non-zero Dirichlet boundary cmmditon three borders of
our domain. On the remaining border {a= 100) we impose homogeneous Neumann
boundary conditions. We implement the process in a strdminard way using the
osmaoticities for Burgers’ equation and linear advection-irandy-direction, respec-
tively. The problem is discretised on a grid of siiZ# x 100, and the numerical steady
state obtained at = 250 is depicted in Fig. 6. In the smooth regions, our method
performs comparable to the MUSCL-Hancock scheme, but waimbt much sharper
shock resolution.
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5 Conclusion

We have developed a novel class of schemes for approximidtig. They combine
recently developed osmosis filters for resolving transpittt a stabilised inverse dif-
fusion step. We have shown the strength of our approach $oivieg solutions with
shocks, which are important features in the fields of hyp@riifferential equations.

Quite frequently, new results in visual computing benebinirthe use of modern
techniques from numerical analysis. Our work is an exampiaffertilisation in the
inverse direction. Note that the key for obtaining the ressim our paper is the use of a
very recent technique from visual computing. However, wadlioonly propose a novel
construction of numerical schemes for HDEs, we also intceda new application of
osmosis filters. Therefore, this paper is an example for gedullinteraction of visual
computing ideas and numerical analysis. In our future woekwill investigate if also
other modern PDE-based methods from image analysis candaewith benefit in
numerical analysis.

Acknowledgments. The authors gratefully acknowledge the funding given by the
Deutsche Forschungsgemeinschi{®EG), grant We2602/8-1.
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