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Abstract. The census transform is becoming increasingly popular in
the context of optic flow computation in image sequences. Since it is
invariant under monotonically increasing grey value transformations, it
forms the basis of an illumination-robust constancy assumption. How-
ever, its underlying mathematical concepts have not been studied so far.
The goal of our paper is to provide this missing theoretical foundation.
We study the continuous limit of the inherently discrete census transform
and embed it into a variational setting. Our analysis shows two surprising
results: The census-based technique enforces matchings of extrema, and
it induces an anisotropy in the data term by acting along level lines. Last
but not least, we establish links to the widely-used gradient constancy
assumption and present experiments that confirm our findings.
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1 Introduction

In 1994, Zabih and Woodfill have proposed the so-called census transform [1].
It computes for every pixel a binary string (census signature) by comparing its
grey value with the grey values in its neighbourhood. In particular, the signature
encodes whether the neighbours are smaller than the reference pixel or not. For
a 3×3 neighbourhood, the census signature has length 8 and can be represented
efficiently via a single byte.

The census transform is becoming increasingly important: It provides an
illumination-robust constancy assumption for solving correspondence problems
in computer vision, e.g. computation of the displacement field (optic flow) in
image sequences. The census signatures are by construction morphologically in-
variant, i.e. invariant under global monotonically increasing grey level rescalings.
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This can be an important advantage in modern applications such as driver assis-
tant systems. Stein [2] uses the census signatures in an efficient feature matching
approach. A hash table-based indexing scheme provides flow estimates in real-
time and is well-suited for large displacements. Müller et al. [3] as well as Mo-
hamed and Mertsching [4] exploit these sparse feature matches to handle large
displacements and to recover image details lost in a coarse-to-fine minimisation
technique, respectively. Furthermore, Müller et al. [5] embed the census trans-
form as a data term into a variational optic flow framework. Tests in real-world
scenarios show the desired morphological invariance of the resulting dense flow
fields. Also in the context of stereo estimation, Ranftl et al. [6] have demonstrated
the usefulness of the census-transform under challenging lightning conditions.

In spite of its increasing popularity, however, the theoretical understanding
of the successful census transform is still rather limited.

Our Contributions. The goal of our paper is to provide a thorough theoretical
foundation of the census transform. Our contributions are threefold:

(i) We regard differences to neighbours as approximations of directional deriva-
tives and study the continuous limit where all possible angles are taken into
account.

(ii) We develop this concept into a constancy assumption, and we embed it as
data term in a variational model for optic flow computation.

(iii) Most importantly, we analyse the energy functional and its minimisation in
order to obtain a novel interpretation of census-based optic flow. We will
see that this interpretation reveals many clever properties of the census
transform which have not been used in other optic flow formulations.

We want to stress that the focus of our work is not on developing new competitive
high-end optic flow methods: We are interested in a mathematical underpinning
of census-based approaches. Once their properties are well-understood, these
ideas can easily be embedded in any highly sophisticated optic flow method that
ranks favourably in the Middlebury benchmark [7].

Related Work. Since 1994, the census idea has appeared under several names
in the literature: Ojala et al. [8] developed almost the same concept indepen-
dently but interpreted the resulting descriptor as a binary number (local binary
patterns). Later, Calonder et al. [9] revisited this idea by introducing the feature
point descriptor BRIEF.

There is also a long tradition of designing methods for illumination-robust
optic flow computation. Inspired by Uras et al. [10], Brox et al. [11] achieve ro-
bustness w.r.t. additive brightness changes by considering the image gradients
in addition to the intensity values. Chambolle and Pock [12] follow a different
strategy to tackle these additive illumination changes and estimate the additive
component explicitly. Another idea by Mileva et al. [13] is to make use of photo-
metric invariants to design illumination-robust flow methods for colour images.
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Paper Organisation. Starting with a continuous interpretation of the census
transform, Section 2 presents our census-based variational optic flow method.
The energy formulation and its minimisation yield new insights into census-based
approaches. These results are presented in Section 3. After having sketched our
numerical algorithm in Section 4, we evaluate the proposed method in Section 5.
Finally, Section 6 concludes the paper with a summary and an outlook.

2 Census-Based Variational Optic Flow

In this section, we introduce our census-based optic flow method. To this end,
we start with a formal definition of the original census transform and derive the
corresponding constancy assumption in a continuous manner. This provides the
basis of our energy functional and is the starting point of our analysis.

2.1 Census Transform

Let in a discrete setting gi,j denote the grey values of an image. Then, every

digit of the census signature in pixel (i, j)
>

is computed as

H ( gi+d1,j+d2 − gi,j ) , (1)

where (i+ d1, j + d2)
>

is a neighbouring pixel, and H : R → {0, 1} denotes the
Heaviside step function

H (z) :=

{
0 if z < 0

1 if z ≥ 0
. (2)

2.2 Census-Based Constancy Assumption

Let us now transfer the census transform to the continuous setting and derive
the associated constancy assumption. For this purpose, the three-dimensional
function f (x, y, t) represents a spatio-temporal image sequence, where (x, y)

>

describes the location within the rectangular image domainΩ ⊂ R2 and t ∈ [0, T ]
denotes the time.

The argument of the step function in Equation (1) approximates a directional
derivative. Consequently, one census digit can be interpreted as the discrete
version of

H
(
∂eϕf (x, y, t)

)
, (3)

where the directional derivative operator ∂eϕ only acts on the spatial domain.

Here, the unit vector eϕ := (cosϕ, sinϕ)
>

specifies the direction.

We now derive the constancy assumption that corresponding points (x, y, t)
>

and (x+ u, y + v, t+ 1)
>

in two consecutive frames have identical census signa-
tures. In our notation, the functions u, v : Ω → R represent the sought optic
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Fig. 1. Different approximations Hε (z) of the Heaviside step function (left) and corre-
sponding derivatives H ′ε (z) (right). Smaller choices of ε lead to closer approximations
of the original sharp step function.

flow. With the abbreviations x := (x, y, t)
>

and w := (u, v, 1)
>

, the constancy
assumption of the census signature implies

H
(
∂eϕf (x + w)

)
− H

(
∂eϕf (x)

) !
= 0 ∀ ϕ ∈ [0, 2π) . (4)

In order to embed this constraint as a data term in an energy functional, we
consider a linearised version of it. To this end, we replace the Heaviside step
function H by the smooth approximation

Hε (z) :=
1

2

(
1 +

z√
z2 + ε2

)
, (5)

with a small positive regularisation parameter ε > ε0 > 0 (cf. Figure 1). The
numerical parameter ε0 ensures that ε is also in the limit strictly larger than 0.
Otherwise, the linearisation becomes invalid and the resulting data term would
not be suitable for a typical variational optic flow framework [14].

Assuming small flow components u and v as well as a small change of the
directional derivative ∂eϕf (x) in time, we propose a twofold linearisation of the

regularised version of constraint (4). For this purpose, let ∇3 := (∂x, ∂y, ∂t)
>

denote the spatio-temporal gradient and

H ′ε (z) =
ε2

2 (z2 + ε2)
3/2

(6)

the derivative of Hε (z). At first, we linearise ∂eϕf (x + w) around x and obtain

Hε

(
∂eϕf(x) + w>∇3

(
∂eϕf(x)

))
− Hε

(
∂eϕf (x)

) !
= 0 . (7)

In the second step, the first Hε term in (7) is linearised around ∂eϕf (x):

H ′ε
(
∂eϕf(x)

)
·w>∇3

(
∂eϕf(x)

) !
= 0 . (8)
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2.3 Energy Formulation and Minimisation

Now, we embed the derived constancy assumption into a variational framework.
To this end, let ∇ :=∇2 :=(∂x, ∂y)

>
denote the spatial gradient operator. Fur-

thermore, let α>0 be a regularisation parameter that allows to steer the impact
of the data and smoothness term, respectively. Then, an energy incorporating
the proposed linearised constancy assumption is given by

E (w) :=

∫
Ω

(M (f,w) + α · S (w)) dx , (9)

with the census-based data term

M (f,w) :=
1

π

∫ 2π

0

H ′ε
2 (
∂eϕf

)
·
(
w>∇3

(
∂eϕf

))2
dϕ (10)

and the quadratic smoothness term

S (w) := |∇u|2 + |∇v|2 . (11)

For the sake of clarity, we omit the argument x of the functions f , u, and v.
Following the calculus of variations, the minimiser of the energy in Equation (9)
w.r.t. u and v has to fulfil the Euler-Lagrange equations

1

π

∫ 2π

0

H ′ε
2 (
∂eϕf

)
· ∂eϕfx ·w>∇3

(
∂eϕf

)
dϕ − α ∆u = 0 , (12)

1

π

∫ 2π

0

H ′ε
2 (
∂eϕf

)
· ∂eϕfy ·w>∇3

(
∂eϕf

)
dϕ − α ∆v = 0 , (13)

with reflecting Neumann boundary conditions n>∇u = 0 and n>∇v = 0. Here,
n denotes the outer normal vector to the boundary of Ω.

3 Interpretation

To analyse the presented census-based data term in Equation (10), we exploit
the symmetry of the integrand w.r.t. π and the equivalence ∂eϕf = e>ϕ∇f for
differentiable functions f :

M (f,w) =
2

π

∫ π

0

H ′ε
2 (

e>ϕ∇f
)
·
(
w>∇3

(
e>ϕ∇f

))2
dϕ . (14)

Further algebraic rearrangements allow to isolate the census tensor C:

M (f,w) =
2

π

∫ π

0

H ′ε
2 (

e>ϕ∇f
)
·
(
e>ϕ

(
w>∇3fx
w>∇3fy

))2

dϕ (15)

=

(
w>∇3fx
w>∇3fy

)>
· 2

π

∫ π

0

H ′ε
2 (

e>ϕ∇f
)
eϕe

>
ϕ dϕ︸ ︷︷ ︸

=:C

·
(
w>∇3fx
w>∇3fy

)
. (16)
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A thorough analysis of this symmetric tensor C ∈ R2×2 has already been per-
formed by Weickert in the context of anisotropic diffusion filtering [15]. Here, we
review the results that are relevant for us: Let (r, ψ)> denote the polar coordi-
nates of ∇f 6=0. Then, Weickert has shown that the first and second eigenvector
of C are parallel and perpendicular to isolines of f , respectively. They read

v‖ (ψ) =

(
− sinψ
cosψ

)
and v⊥ (ψ) =

(
cosψ
sinψ

)
, (17)

and the corresponding eigenvalues are

λ‖ (r) =
4

π

∫ π
2

0

H ′ε
2

(r cosϕ) · sin2 ϕdϕ , (18)

λ⊥ (r) =
4

π

∫ π
2

0

H ′ε
2

(r cosϕ) · cos2 ϕdϕ . (19)

Let us now substitute the census tensor C in (16) by its eigendecomposition

C = λ‖(r) · v‖(ψ)v>‖ (ψ) + λ⊥(r) · v⊥(ψ)v>⊥(ψ) . (20)

Thus, we obtain

M(f,w) = λ‖(r) ·
(
v>‖ (ψ)

(
w>∇3fx
w>∇3fy

))2

+ λ⊥(r) ·
(
v>⊥(ψ)

(
w>∇3fx
w>∇3fy

))2

,

(21)
where the original data term is explicitly split into two perpendicular constraints.
In particular, this can be understood as a projection of the linearised gradient
constancy assumption along and across isolines of f . Moreover, both terms are
weighted with the corresponding eigenvalues λ‖ (r) and λ⊥ (r).

3.1 Anisotropic Data Term

Based on the formulation in Equation (21), the following two paragraphs discuss
the behaviour of the data term at different image regions:

Vanishing Gradient. At extrema and homogeneous regions, where |∇f | van-
ishes (r → 0), the eigenvalues of the census tensor C fulfil

lim
r→0

λ‖(r) = lim
r→0

4

π

∫ π
2

0

H ′ε
2
(r cosϕ) · sin2 ϕdϕ = H ′ε

2
(0) · 4

π

∫ π
2

0

sin2 ϕdϕ︸ ︷︷ ︸
=1

(22)

and accordingly

lim
r→0

λ⊥(r) = lim
r→0

4

π

∫ π
2

0

H ′ε
2
(r cosϕ) · cos2 ϕdϕ = H ′ε

2
(0) · 4

π

∫ π
2

0

cos2 ϕdϕ︸ ︷︷ ︸
=1

. (23)
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Revisiting Equation (6), we see that H ′ε
2

(0) = 1
4ε2 . Hence, both eigenvalues λ‖

and λ⊥ exceed all bounds for close approximations of the Heaviside function.
This means that the gradient constancy is assumed parallel as well as perpen-
dicular to isolines of the image (cf. Equation (21)).

The occurring second order image derivatives ∂eϕfx and ∂eϕfy in the Euler-
Lagrange Equations (12) and (13) behave differently in local extrema and homo-
geneous image regions. Consequently, our analysis of the constancy assumption
has to differentiate these two cases:

Local Extrema. Here, the first order derivatives vanish, but the second order
derivatives are in general non-zero. Since the reaction parts are weighted with
the factor 1

4ε2 , they dominate the diffusion terms entirely for small ε.
This reveals a surprising property of the discussed census-based model: The

constancy assumption implicitly enforces a strong reliance on the local extrema,
which contributes to the observed morphological invariance. On the one hand
the positions of the minima and maxima remain constant under monotonically
increasing grey level rescalings, and on the other hand the property ∇f =0 at
the extrema is not violated under those illumination changes. Thus, the imposed
constancy assumption of the gradient holds here in all directions.

Homogeneous Regions. In contrast, the second order image derivatives ∇fx and
∇fy go to 0 in homogeneous regions. As a result, the terms

∂eϕfx = e>ϕ∇fx (24)

as well as
∂eϕfy = e>ϕ∇fy (25)

in the reaction parts of the Euler-Lagrange equations vanish. Hence, the solu-
tion at those regions is solely determined by filling-in the information from the
neighbouring pixels:

∆u = 0 , (26)

∆v = 0 . (27)

High Contrast Edges. The previous paragraph was concerned with image
regions where r → 0. Let us now shed light on the opposite case (r →∞), which
corresponds to high contrast edges of the image. Considering the eigenvalues of
the census tensor C shows the strong anisotropic behaviour in those regions:

lim
r→∞

λ‖ (r)

λ⊥ (r)
= ∞ . (28)

This ratio of the eigenvalues has already been analysed by Weickert for a family
of monotonically decreasing functions including H ′ε

2
(z) [15].

Considering Equation (21), we see that the constancy of the gradient entries is
here strongly imposed along isolines of f . In contrast, the constancy assumption
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across isolines is weighted down. This anisotropy is, besides the reliance on the
local extrema, another reason for the morphological invariance of census-based
methods. Under monotonically increasing grey level rescalings, the positions of
the isophotes are invariant and additionally the directional derivatives along
these isophotes remain zero. In other words, the gradient constancy assumption
is valid in this direction.

3.2 Relation to the Gradient Constancy Assumption

Let us now illustrate the connection between the presented census-based con-
stancy assumption and the widely-used gradient constancy assumption [10, 11].
The data term of the linearised gradient constancy assumption reads

(
w>∇fx

)2
+
(
w>∇fy

)2
=

(
w>∇3fx
w>∇3fy

)>
I

(
w>∇3fx
w>∇3fy

)
, (29)

where I denotes the 2×2 identity matrix. This formulation inherently decouples
the constancy assumptions of the gradient entries fx and fy. Comparing the data
terms (16) and (29), we observe that the reason for the increased robustness of
census-based methods (compared to gradient constancy) is hidden in the census
tensor C. This confirms our findings from Section 3.1: Coupling the constancy
assumptions of fx and fy by C, or rather by its eigenvectors v‖(ψ) and v⊥(ψ),
induces an anisotropic behaviour which effects the proposed invariance.

Replacing the regularised step function Hε in Equation (16) by the identity
function, the matrix C comes down to

2

π

∫ π

0

1 · eϕe>ϕ dϕ =
2

π

∫ π

0

(
cos2 ϕ cosϕ sinϕ

sinϕ cosϕ sin2 ϕ

)
dϕ =

2

π

(
π
2 0
0 π

2

)
= I . (30)

The resulting data term coincides with the gradient constancy assumption in
Equation (29). Consequently, the census-based method may be regarded as a
censorisation of the gradient constancy. On the one hand, this censorisation
decreases the amount of extracted image information due to the binary quan-
tisation of the directional derivative values. On the other hand, however, the
induced anisotropy increases the robustness under illumination changes. While
the original gradient constancy assumption is solely invariant w.r.t. global addi-
tive illumination changes, the censored gradient constancy assumption provides
an invariance against any kind of monotonically increasing grey level rescalings.

4 Implementation

For the ease of implementation, we cast the linearised constancy assumption
from (8) into the versatile motion tensor framework by Bruhn [16]. To this end,
we exploit the equivalence

H ′ε
(
∂eϕf

)
·w>∇3

(
∂eϕf

)
= w>∇3Hε

(
∂eϕf

)
. (31)
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Furthermore, we approximate the periodic integral in Equation (10) by the Rie-
mann sum and finally obtain

M (f,w) = w>

(
2

N

N−1∑
n=0

∇3Hε

(
∂eϕn f

)
·∇>3 Hε

(
∂eϕn f

))
w , (32)

where N denotes the number of considered neighbours and ϕn :=2π n
N . Choosing

e.g. N = 8, the direct neighbours of each pixel are used to compute the census
signatures. Generally, we assume the images to be sampled on a regular grid
with horizontal and vertical grid sizes h1 and h2, respectively. Accordingly, the
directional derivative ∂eϕn f at pixel (i, j)

>
is approximated via the two point

stencil [
∂eϕn f

]
i,j

=
[f ]i+d1,j+d2 − [f ]i,j√

(h1d1)
2

+ (h2d2)
2
, (33)

where the vector d :=(d1, d2)
> 6=0 represents, especially for diagonal neighbours,

a scaled version of eϕn (cf. Section 2.1). All other spatial and temporal derivatives
are computed by means of standard finite differences.

The resulting discrete versions of the Euler-Lagrange Equations (12) and (13)
create a sparse linear system of equations, which we solve iteratively using a
variant of the Gauß-Seidel method, namely successive over-relaxation [17].

5 Evaluation

Our experiments have been performed on the commonly available test image
sequence New Marble1. We subjected the grey values g ∈ [0, 255] of the second
input image to the monotonically increasing transformation

gout = 255 ·
(
m · gin + a

255

)γ
, (34)

where the constant a represents additive changes, m > 0 multiplicative changes
and γ > 0 is used for gamma corrections.

The parameter ε of the regularised step function should be adapted to the
noise level and is here fixed to 0.1. Furthermore, the input images are pre-
smoothed with a Gaussian of standard deviation 0.8 and the census signatures
are determined on a 3×3 neighbourhood (N=8).

Figure 2 demonstrates the increased robustness of the census-based method
compared to the gradient constancy assumption. In the absence of artificial il-
lumination changes (first column), the gradient constancy provides a better av-
erage angular error (AAE) [18]. It extracts more information form the input
images. The resulting flow fields for additive changes (second column) are unal-
tered due to the inherent invariance of both methods. In contrast, the gradient
constancy assumption is not invariant under multiplicative rescalings and gamma

1 available from http://i21www.ira.uka.de/image_sequences
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Fig. 2. Visual comparison of the gradient constancy assumption (second row, α=430)
and its censored version (third row, α=7) under illumination changes. The second input
image (first row) is manipulated by different grey level rescalings (cf. Equation (34)).

corrections (third and fourth column), while the censored version provides an in-
creased robustness. The absolute invariance is lost due to the presmoothing and
ε being unequal to zero.

In addition, the plots in Figure 3 confirm these observations. The gradient
constancy is not able to compensate for the multiplicative changes and gamma
corrections. Contrary, the census-based approach provides the proposed robust-
ness. However, this increase of robustness is associated with a loss of accuracy
in the presence of small illumination changes.

6 Conclusions and Future Work

We have seen that interpreting the census transform in the continuous limit
and embedding it into a variational framework reveals unexpected insights. The
presented census-based technique shows two key properties: the strong reliance
on local extrema as well as the restriction of the gradient constancy assumption
along level lines. These advanced features are efficiently realised by a very simple
binary transform. They exploit the morphological invariance of the gradient
direction in a clever way and yield the observed robustness under illumination
changes. This builds the basis for the success of the census transform in the
context of correspondence problems.
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Fig. 3. Comparison of the gradient constancy assumption and its censored version
under global multiplicative illumination changes (left) and gamma corrections (right).
The parameter setting can be found in Figure 2.

These promising insights motivate us to investigate also generalisations of
the census transform that involve higher order constancy assumptions, e.g. con-
stancy of the Hessian. The key properties of the census transform are of course
not restricted to optic flow models. They have already proven to be equally ben-
eficial for other computer vision tasks such as stereo reconstruction [6] or face
detection [19].

Our findings confirm the general usefulness of studying continuous limits
of inherently discrete morphological transforms. Other examples include e.g.
continuous reinterpretations of median filters in terms of mean curvature motion
[20] and morphological amoebae as self-snakes [21].
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