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Abstract. On the one hand, anisotropic diffusion is a well-established
concept that has improved numerous computer vision approaches by per-
mitting direction-dependent smoothing. On the other hand, recent ap-
plications have uncovered the importance of second order regularisation.
The goal of this work is to combine the benefits of both worlds. To this
end, we propose a second order regulariser that allows to penalise both
jumps and kinks in a direction-dependent way. We start with an isotropic
coupling model, and systematically introduce anisotropic concepts from
first order approaches. We demonstrate the benefits of our model by
experiments, and apply it to improve an existing focus fusion method.

1 Introduction

Second order regularisation has become a powerful tool in a number of appli-
cations. For example, it is well-suited for the estimation of depth maps, be-
cause many real-world scenes are composed of piecewise planar surfaces. In a
variational context, there are three popular approaches to model such a sec-
ond order smoothness assumption: (i) The most intuitive one is to directly
penalise second order derivatives, e.g. the Laplacian or the entries of the Hes-
sian [6, 8, 16, 18, 28, 30]. However, this direct approach only allows to model dis-
continuities in the second derivative that correspond to kinks in the solution.
It does not give access to the first derivative which is required to model jumps.
(ii) Thus, researchers came up with indirect higher order regularisation tech-
niques; see e.g. [4, 13, 15] and related infimal convolution approaches [5]. Such
indirect approaches can be interpreted in the sense of a coupling model that,
in the second order case, consists of two terms: One term couples the gradient
of the unknown with some auxiliary vector field, while the other one enforces
smoothness of this vector field. Contrary to a direct second order penalisation,
such coupling models allow to treat both jumps and kinks in the solution ex-
plicitly. (iii) A related idea is to locally parameterise the unknown by an affine
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function, and to optimise for the introduced parameters with a suitable smooth-
ness constraint; see e.g. [21]. However, this does not allow such an explicit access
to jumps and kinks [30].

Concerning first order regularisation, several approaches have demonstrated
the benefits of incorporating anisotropy in the smoothness term; see e.g. [3,
12, 19, 24, 29, 34]. Thus, it seems to be a fruitful idea to also apply anisotropic
concepts in second order regularisation. For instance, Lenzen et al. [16] incorpo-
rate directional information into a direct second order approach. Unfortunately,
as discussed, such a direct approach constrains the degree of freedom in the
modelling. Also the nonlocal coupling model of Ranftl et al. [26] can be seen as
related. However, in this work we aim at a fully local model that allows a natural
definition of the anisotropy in terms of image and depth derivatives. In this way,
we can provide a natural transition from anisotropic first to anisotropic second
order approaches. In a local framework, Ranftl et al. [27] and Ferstl et al. [9]
propose a coupling model that incorporates directional image information, but
the anisotropy is restricted to the coupling term. To summarise, first steps to
include anisotropy into second order models have been done. However, existing
approaches do not exploit successful anisotropic ideas to the full extent.

Contributions. The goal of our work is to systematically incorporate well-
established anisotropic ideas from first order approaches into second order cou-
pling models. We make maximal use of directional information by introducing
anisotropy both into the coupling as well as into the smoothness term. In addi-
tion, we propose a joint image- and depth-driven technique that allows a different
amount of coupling and smoothing along and across image structures. Contrary
to previous work, we apply a direction-dependent penalisation that is important
for good inpainting results. Last but not least, we demonstrate the performance
of our anisotropic second order technique in the context of focus fusion.

Paper Organisation. Starting with a discussion of related work, we present
our variational framework for focus fusion in Section 2. In Section 3, we introduce
our anisotropic second order regulariser and explain the minimisation of the full
model in Section 4. We evaluate our approach and compare it to related baseline
methods in Section 5. Section 6 illustrates the performance of our method on
focus fusion. Finally, we summarise our work and give an outlook in Section 7.

2 Variational Model for Focus Fusion

Especially in macro photography, a typical problem is the limited depth of field of
common cameras. Due to this, it is often not possible to capture a single entirely
sharp image. A common remedy is to take several photographs while varying
the focal plane. In this context, focus fusion describes the task of combining
the acquired image stack to an all-in-focus composite that is sharp everywhere.
Most previous focus fusion approaches rely on (multi-scale) transformations of
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the input images and combine them in the particular transform domain; see
e.g. [1,10,17,22,25]. However, this may introduce undesirable artefacts. Inspired
by [14, 20], Boshtayeva et al. [3] recently demonstrated that it is preferable to
approach focus fusion by regularising the underlying depth map. Afterwards, the
fusion of the focal stack images to the all-in-focus image is done in a straightfor-
ward way by combining the pixels from the input images that correspond to the
computed depth values. Related to this method are so-called depth from defocus
approaches that also compute a sharp image in combination with a depth map;
see e.g. [23]. However, they are computationally more demanding and require
more assumptions such as the knowledge of the point spread function of the
acquisition system. Hence, we do not consider them here.

The work of Boshtayeva et al. [3] motivates us to apply focus fusion as testbed
for our novel anisotropic second order regularisation technique. More specifically,
we start with an initial depth map d that is computed in the same way as in [3]:
Based on some sharpness measure we determine the image where a pixel is in-
focus. Then, we interpret the corresponding focal plane distance as depth value.
This depth map d is equipped with a sparse confidence function w that indicates
meaningful depth values. Next, we jointly regularise and fill-in the initial depth
with the following variational approach:

E(u) =
1

2

∫
Ω

w(x) · Ψ
((
u(x)− d(x)

)2)
dx + α ·R(u) , (1)

where Ω⊂R2 describes the rectangular image domain, and α is a positive reg-
ularisation parameter. Furthermore, we apply the penalisation function Ψ(s2)=√
s2 + ε2 with ε>0 to handle outliers in the input. The regularisation term R(u)

provides smooth depth maps and fills in missing information. We propose and
discuss different choices of R(u) in Section 3.

3 Coupling Model for Second Order Regularisation

3.1 Isotropic Coupling Model

Compared to direct implementations of higher order regularisation, coupled for-
mulations as in [4, 13] offer several advantages: First they do not require the
explicit estimation and implementation of higher order derivatives. Second and
even more importantly, they allow to individually model discontinuities for each
derivative order. This is not possible with direct higher order models. Hence, we
base our anisotropic second order regulariser on the following isotropic coupling
model that replaces a direct second order smoothness term of u by

RI(u) = inf
v

{
1

2

∫
Ω

(
Ψ
(
|∇u− v|2

)
+ β · Ψ

(
|Jv|2F

))
dx

}
, (2)

where Ψ(s2)=
√
s2 + ε2 is a subquadratic function with a small positive constant

ε, | · | denotes the Euclidean norm, and | · |F the Frobenius norm. Furthermore,
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the vector field v=(v1, v2)T can be seen as an approximation of the gradient ∇u,
and Jv is the Jacobian of this vector field. Since the first term in (2) inherently
couples ∇u to v, we refer to it as coupling term. The second term provides
smoothness of the vector field v. Hence, we refer to it as smoothness term. Here,
the parameter β>0 allows to steer the importance of both terms.

Let us discuss the meaning and interplay of both terms: With the nonlinear
function Ψ , the smoothness term implements a first order penalisation of v that
favours piecewise constant vector fields. For didactic reasons, let us first assume
a hard coupling such that v is identical to ∇u. Then, piecewise constant v are
equivalent to piecewise constant first order derivatives of u. This way, one can
see that the smoothness term is responsible for modelling kinks in the solution.
With that in mind, let us now consider the behaviour of the nonlinear coupling
term. With ε → 0, it allows sparse deviations of the vector field v from the
gradient of u, i.e. sparse peaks of the coupling term energy. Regarding v as an
approximation of ∇v, this shows that the coupling term allows to model peaks in
the first derivative of u which correspond to jumps in the solution. Summing up,
the discussed coupling model provides direct access to both jumps and kinks of
the unknown function u by the coupling and smoothness term, respectively. For
small ε, the coupling model in (2) resembles total generalised variation (TGV)
of second order [4]. In many image processing and computer vision applications,
such isotropic coupling models have led to high quality results. However, they
do not make use of any directional information which is important for a variety
of applications such as the one that we consider in this work.

3.2 Extracting Directional Information

As for instance demonstrated by Nagel and Enkelmann [19] in the context of
optic flow estimation, it is highly beneficial to use the structure of a given input
image to regularise the unknown flow in an anisotropic way. This allows to apply
a different kind of smoothing along and across image structures. In this work,
we extend this successful concept from first to second order regularisation, and
in particular to the discussed coupling model. To this end, let us first determine
a way to identify the structures of an image or more specifically the directions
across and along them. Let f denote a given guidance image. In the case of
focus fusion we take the evolving all-in-focus image as guidance. Then, we cal-
culate those directions r1 and r2 as the normalised eigenvectors of the structure
tensor [11]

Gρ ∗
(
∇(Gσ ∗ f)∇(Gσ ∗ f)T

)
, (3)

where ∗ describes a convolution, and Gσ and Gρ are Gaussians with standard
deviation σ and ρ, respectively. The computed eigenvectors form an orthonormal
system where the vector r1, which belongs to the dominant eigenvalue, points
across image structures and r2 along them.
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3.3 Anisotropic Modification of Coupling Term

Let us now incorporate this directional information into the isotropic coupling
model. To this end, we first consider the isotropic coupling term from (2):

CI(u,v) = Ψ
(
|∇u− v|2

)
= Ψ

( 2∑
`=1

(
eT` (∇u− v)

)2)
, (4)

where e1 = (1, 0)T and e2 = (0, 1)T. This reformulation of the coupling term in
terms of the unit vectors e1 and e2 allows to incorporate the directional in-
formation as follows: First, we exchange e1 and e2 in Equation (4) with the
eigenvectors r1 and r2 of the structure tensor. Second, we penalise both di-
rectional components differently to introduce an anisotropic behaviour, i.e. we
exchange the position of the penalisation function Ψ and the summation

∑2
`=1.

This results in the anisotropic coupling term

CA(u,v) =

2∑
`=1

Ψ`

((
rT` (∇u− v)

)2)
. (5)

Here, we apply different penalisation functions Ψ` along and across image struc-
tures. This allows for instance to enforce a full coupling along edges by setting
the corresponding Ψ2(s2) = s2, and to relax the coupling constraint in the or-
thogonal direction with Ψ1(s2)=2ε

√
s2 + ε2 such that Ψ ′

1(s2) is the Charbonnier
diffusivity [7]. To analyse the introduced anisotropy in a better way, let us take
a look at the resulting gradient descent of (5) w.r.t. u and v:

∂tu = div
(
D(∇u− v)

)
, (6)

∂tv = D(∇u− v) , (7)

where div is the divergence operator, and ∂t denotes an artificial time deriva-
tive to model an evolution of u and v, respectively. Equation (6) describes an
evolution that occurs within gradient domain methods. However, here the tensor

D =

2∑
`=1

Ψ ′
`

((
rT` (∇u− v)

)2) · r`rT` (8)

steers this process in an anisotropic way. Moreover, this equation shows a nice
feature of our model: When fixing the coupling variable v to 0, our second order
coupling model comes down to a first order anisotropic diffusion process on the
unknown u; see e.g. Weickert [31] and references therein. Please note that for
v=0 the smoothness term vanishes since in this trivial case |Jv|2F is equal to 0.
The right hand side of Equation (7) is a reaction term that models the similarity
of v and ∇u. Here, this similarity is enforced along edges (r2) while it is relaxed
across them (r1). This becomes obvious by considering the tensor D in (8) that
adapts the amount of similarity in a directional dependent way. This is achieved
by a solution-driven scaling of the eigenvalues of D, where its eigenvectors are
given by r1 and r2.
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3.4 Anisotropic Modification of Smoothness Term

Let us now introduce anisotropy into the smoothness term in a similar way. To
this end, we first rewrite it by means of the unit vectors e1 and e2:

SI(v) = Ψ
(
|Jv|2F

)
= Ψ

( 2∑
`=1

2∑
k=1

(
eTkJv e`

)2)
, (9)

where the term eTkJv e` can be seen as an equivalent of the second order direc-
tional derivative ∂eke`

u=eTkHu e` with Hu representing the Hessian of u. Our
goal is to penalise this term differently along and across image structures. Hence,
similarly to the anisotropic modification of the coupling term, we modify Equa-
tion (9) by exchanging e1 and e2 with r1 and r2, and swapping the positions of

the penalisation function Ψ and the summation
∑2
`=1:

SA(v) =

2∑
`=1

Ψ`

( 2∑
k=1

(
rTkJv r`

)2)
, (10)

where we again apply different penalisations Ψ` in both directions. Also here, let
us shed light on the introduced anisotropy by analysing the associated gradient
descent of (10):

∂tv = div(Jv T ) =

(
div(T ∇v1)

div(T ∇v2)

)
, (11)

where div applies the standard divergence operator div to the rows of a matrix-
valued function (common definition), and thus yields a column vector with two
components. Equation (11) can be seen as an anisotropic diffusion of the coupling
variable v. Here the diffusion tensor

T =

2∑
`=1

Ψ ′
`

( 2∑
k=1

(
rTkJv r`

)2) · r`rT` (12)

describes this anisotropic behaviour: We smooth the coupling variable v differ-
ently across and along image structures, where the amount of smoothness is
determined by the eigenvalues of T .

3.5 Anisotropic Coupling Model

With the proposed coupling (5) and smoothness term (10), our fully anisotropic
coupled regulariser is given by

RA(u) = inf
v

{
1

2

∫
Ω

(
CA(u,v) + β · SA(v)

)
dx

}
. (13)

As in the isotropic case (2), the coupling term CA(u,v) is responsible for handling
jumps whereas the smoothness term SA(v) is responsible for handling kinks.
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Table 1. Overview of regularisers covered by our model. Note that D and T degenerate
to the identity matrix I if Ψ`(s

2)=s2 and g`(s
2)=1, `∈{1, 2}.

regularisation model v D T

(FI) first order isotropic fixed to 0 I I

(FA) first order anisotropic fixed to 0 Eq. (8) Eq. (12)

(CI) coupled isotropic optimised I I

(CA) coupled anisotropic optimised Eq. (8) Eq. (12)

However, contrary to the isotropic model our new anisotropic model now effec-
tively incorporates directional information to steer this coupling and smoothing.

Furthermore, for scenarios where jumps or kinks of the unknown function
highly correlate with edges of the guidance image, it is beneficial to include also
the strength of an image edge in addition to its direction. To this end, we scale
both summands of the coupling term (5) and of the smoothness term (10) with
g`
(
(rT`∇fσ)2

)
, where g`(s

2) is a decreasing function with g`(0) = 1, and fσ =
Gσ∗f a smoothed version of the guidance image f . This further reduces coupling
and smoothing across image edges while enforcing it along them. Referring to
Section 3.3 and 3.4, this solely causes an additional scaling of the eigenvalues of
the tensors D and T in Equation (8) and (12). In Table 1 we summarise different
regularisation terms that result from our model with specific parameter choices.
We will evaluate those regularisers in Section 5.

4 Minimisation

Minimising the convex energy (1) with the proposed convex regularisation term
comes down to solving the following system of Euler-Lagrange equations:

δuM(u)− α · div(D(∇u− v)) = 0 , (14)

D(v −∇u)− β · div(Jv T ) = 0 , (15)

where

δuM(u) = w(x) · Ψ ′
((
u(x)− d(x)

)2) · (u(x)− d(x)
)

(16)

is the functional derivative of the data term in (1) w.r.t. u. With n as outer nor-
mal vector on the image boundary ∂Ω, the corresponding boundary conditions
read (∇u− v)TDn = 0 and Jv Tn = 0.

We discretise the Euler-Lagrange equations (14) and (15) on a uniform rect-
angular grid, and approximate the derivatives at intermediate grid points. Ac-
cordingly, we appropriately discretise the divergence expressions with the ap-
proach of Weickert et al. [33] using the parameters α= 0.4 and γ= 1. Further-
more, we apply a lagged nonlinearity method where we solve the occurring linear
systems of equations with a so-called Fast Jacobi solver [32].
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guidance image ground truth depth noisy sparse and noisy

1st order isotropic
(2.85)

1st order anisotropic
(1.96)

coupled isotropic
(2.60)

coupled anisotropic
(0.44)

Fig. 1. Synthetic experiment. Top: Guidance image, ground truth depth map, noisy
version, sparse and noisy version that serves as input depth map. Bottom: Computed
depth maps. We state the root mean square error between the computed and the
ground truth depth map in brackets under the corresponding results (×10−2).

5 Evaluation

In this section we evaluate the proposed regularisation model and compare it to
the baseline methods from Table 1. To this end, we consider a synthetic data set
where ground truth is available. Figure 1 (top) depicts the input guidance image,
the ground truth depth map that consists of two segments with a linear slope
in vertical direction, a noisy depth map, and a sparse version of it. The last one
serves as input for our evaluation. More specifically, we generate the input depth
map d in the following way: First we add Gaussian noise of standard deviation
0.1 to the ground truth depth map, where the initial depth values range from
0 to 1. Next we randomly select 10% of this noisy version to obtain the final
sparse and noisy input depth map.

Figure 1 (bottom) shows the resulting depth maps that are computed with
first order isotropic (FI), first order anisotropic (FA), coupled isotropic (CI), and
coupled anisotropic (CA) regularisation; cf. Table 1. For each approach the reg-
ularisation parameters α and β are optimised w.r.t. the root mean square error
(RMSE). These resulting RMSEs between the ground truth and the computed
depth maps are listed right below the corresponding results in Figure 1. First,
this experiment demonstrates that incorporating directional information from
the guidance image is highly beneficial. Both first and coupled anisotropic regu-
larisers outperform their isotropic counterparts. With anisotropic regularisation
the edges of the computed depth maps are desirably sharp, while the isotropic
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Table 2. Mean square error (MSE) between computed and ground truth image.

Forster et al. [10] Agarwala et al. [1] Aguet et al. [2] Boshtayeva et al. [3] our

152.12 135.97 113.73 3.47 3.08

variants cannot provide this quality. Second, the assumption of piecewise affine
functions is much more suited than assuming piecewise constant depth maps in
this case. Accordingly, both second order coupling models yield better results
than their corresponding first order variants. It is clearly visible that the latter
ones lead to piecewise constant patches, which is not desirable in the consid-
ered scenario. Last but not least, the proposed coupled anisotropic regulariser
provides the best results, both visually and in terms of the RMSE.

6 Application to Focus Fusion

In this section, we demonstrate the performance of our technique with the appli-
cation to focus fusion. To this end, we first consider a synthetic data set from [3].
It contains a ground truth all-in-focus image that allows a comparison in terms
of the mean square error (MSE). Figure 2 (top left) depicts one of thirteen focal
stack images and the confidence map w from [3]. In Figure 2 (bottom), we com-
pare the initial depth d, the result of Boshtayeva et al. [3], and our computed
depth to the ground truth. We see that both approaches are able to improve
the initial depth map effectively. However, our depth map shows less staircase
artefacts than the first order smoothness approach of Boshtayeva et al., and is
closer to the ground truth. Also our fused image resembles the ground truth all-
in-focus image; cf. Figure 2 (top right). This is underlined by Table 2, where we
compare our result in terms of the MSE between the fused image and its ground
truth. Using the initial depth map to fuse the images gives an error of 10.55.
This is improved by [3] to obtain a MSE of 3.47. Exchanging their first order
regularisation technique by our novel anisotropic second order approach yields
an improvement with a MSE of 3.08. The comparison to further state-of-the-art
approaches shows the usefulness of our technique for the task of focus fusion.

In Figure 3, we demonstrate the quality of our approach by an additional
real-world experiment with a focus set of an insect. Since no ground truth is
available, we have to restrict ourselves to a visual comparison. To this end, we
depict one unsharp input image of the focal stack and the resulting fused images
obtained with the approach of Boshtayeva et al. [3], and our method. Especially
the zooms in the bottom illustrate that our fused image contains less errors and
more small scale details than the first order approach of Boshtayeva et al. [3].

7 Conclusions

On the one hand, it is known that anisotropic techniques allow to obtain re-
sults of highest quality when using first order regularisation. On the other hand,
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one input image confidence map fused image ground truth image

initial depth Boshtayeva et al. [3] computed depth ground truth depth

Fig. 2. Synthetic set from [3]. Top: One of the thirteen unsharp input images, confi-
dence map, our fused image, and ground truth image. Bottom: Rendered depth maps.

recent developments have rendered higher order regularisation very attractive.
In this paper, we build a bridge between both approaches and systematically
combine such anisotropic ideas and higher order regularisation. As a result, our
novel anisotropic second order regulariser allows to steer the preferred direction
of jumps and kinks based on image structures. To achieve this, we have intro-
duced a direction-dependent behaviour both in the coupling and the smoothness
term. We have experimentally shown that this yields superior results compared
to first order anisotropic and second order isotropic approaches. Moreover, we
have demonstrated the usefulness of the proposed regularisation technique for
the task of focus fusion. In this regard, we plan to show the benefits of our novel
anisotropic second order smoothness term for further computer vision applica-
tions such as stereo or optic flow computation in future work.

Acknowledgments. Our research has been partially funded by the Deutsche
Forschungsgemeinschaft (DFG) through a Gottfried Wilhelm Leibniz Prize for
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