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Abstract

In this paper, we evaluate the applicability of the
Cell Processor built into the Sony Playstation 3 for
variational optical flow computation. This is done
by the example of the combined-local-global (CLG)
method, a recent variational technique that requires
to solve large and sparse linear systems of equa-
tions. Starting from efficient numerical algorithms
for sequential architectures, we successively de-
velop specifically adapted parallel variants for the
Cell Processor. This includes the design of suitable
numerical algorithms, the consideration of the spe-
cific memory and processor layout as well as the ex-
ploitation of instruction level parallelism (SIMD).
The obtained results show that our parallelisation
efforts pay off: With more than 170 dense flow
fields of size 316×252 per second we achieve frame
rates far beyond real-time.

1 Introduction

One of the main challenges in computer vision is the
automatic extraction of motion information from
image sequences. Without any prior knowledge
about the captured scene, one often not only wants
to purely identify movements in a scene, but also
likes to know in which direction an object is trav-
elling, and at which velocity. Usually, the position
and egomotion of the camera is unknown, such that
only relative motion of objects with respect to the
camera can be traced. The displacements between
corresponding pixels in subsequent frames are then
formulated in terms of a dense vector field, the
optical flow.

Many qualitatively valuable algorithms to esti-
mate these vector fields are based on variational
methods. Such approaches compute the optical flow

as minimiser of a global energy functional. Vari-
ational methods include classical techniques such
as the ones of Horn and Schunck [13] and Nagel
and Enkelmann [19] as well as recent high accuracy
methods such as the combined local-global tech-
nique (CLG) of Bruhn et al. [7] and the level set
approach of Amiaz and Kiryati [1]. While offering
dense flow fields of high quality, variational meth-
ods require to solve large linear or nonlinear sys-
tems of equations. This in turn makes them less
appealing for real-time applications, since the asso-
ciated computational workload is high.

In the past, several numerical techniques have
been investigated to accelerate such algorithms.
Among them are fast iterative solvers based on
the Successive Over-Relaxation (SOR) idea [23],
preconditioned conjugate gradient methods [20]
as well as uni- and bidirectional multigrid tech-
niques [3, 4]. For smaller image sizes, some of
these methods are already suited to compute flow
fields on standard PCs in realtime [5].

However, as soon as a higher resolution is re-
quired or the algorithms are embedded into more
complex application frameworks, the guaranteed
performance does often not suffice to ensure real-
time behaviour for the entire system as well. Mod-
ern parallel processor architectures promise a rem-
edy to this problem: By providing many cores, they
allow to distribute the workload on many shoul-
ders and thus to improve the performance. In this
context, Mitsukami and Tadamura [18], Zach et
al. [24], as well as Grossauer and Thoman [12]
have demonstrated that optical flow algorithms can
even be efficiently computed in parallel using cur-
rent graphics hardware. Moreover, Kalmoun et al.
[9] have recently developed implementations of op-
tical flow techniques for massively parallel com-
puter clusters.
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Another increasingly popular parallel comput-
ing platform is given by Sony’s Playstation 3. It
is nowadays one of the cheapest parallel comput-
ers available on the market, and is simultaneously
prospecting impressive speedups in comparison to
traditional architectures. The Cell Broadband En-
gine, a novel processor designed for the application
in this device, has already been used to solve many
scientific problems: Besides rather simple tasks
such as matrix multiplications [8] and fast Fourier
transformations [22], recently also more sophisti-
cated algorithms like raytracing [2], video compres-
sion based on partial differential equations [16], and
physical simulations for the Stokes equation [10]
have been successfully implemented. Since they
aim for the efficient solution of large systems of
equations, the latter two approaches are closest in
spirit to our work presented in this paper.

To the best of our knowledge the computation of
dense optical flow fields with variational methods
on a Playstation 3 has not been considered so far in
the literature. The goal of our paper is thus to eval-
uate the applicability of the parallel architecture of
this device. To this end, we propose two approaches
to adapt optical flow algorithms to the new architec-
ture and show that these solutions are indeed capa-
ble to speed up the process significantly: For images
of size 316× 252, up to 170 dense optic flow fields
per second can be computed.

Our paper is organised as follows. In Section 2,
we give a short review of the CLG method and dis-
cuss the obtained linear system of equations that
has to be solved. For this task we then present two
parallel implementations in Sections 3 and 4: one
based on a red-black SOR variant and another one
that makes use of a highly efficient full multigrid
scheme. Both algorithms are evaluated in Section 5
with respect to their performance and scalability. A
summary in Section 6 concludes this paper.

2 The CLG Method

In order to investigate the applicability of Sony’s
Playstation 3 for variational optical flow computa-
tion, we have focused on the implementation of the
linear variant of the combined local-global (CLG)
method of Bruhn et al. [5, 7]. Combining the dense
flow fields of the global Horn/Schunck method [13]
with the noise robustness of the local Lucas/Kanade
technique [17], this approach offers a good tradeoff

between accuracy and computational complexity.
Moreover, like other recent variational techniques
this method requires the solution of a large sparse
linear (or nonlinear) system of equations. Thus, par-
allel implementations of the CLG method can be
expected to reliably predict potential speedups for
other variational algorithms being ported to the ar-
chitecture of the Cell processor as well.

2.1 Variational Model

Let f(x, y, t) be a grey value image sequence,
where (x, y) denotes the location within a rectan-
gular image domain and t is the time. Moreover,
let fσ(x, y, t) = Kσ ∗ f(x, y, t) be the spatially
presmoothed counterpart of f obtained by a convo-
lution with a Gaussian Kσ of standard deviation σ.

Then the linear 2-D CLG method computes the
optical flow w(x, y) = (u(x, y), v(x, y), 1)> as
minimiser of the energy functional [7]

E(u, v) = ED(u, v) + α ES(u, v) (1)

with data and smoothness term

ED(u, v) =

Z
Ω

“
w>Jρ(∇fσ) w

”
dx dy, (2)

ES(u, v) =

Z
Ω

`
|∇u|2 + |∇v|2

´
dx dy. (3)

Here, ∇u = (ux, uy)> represents the spatial flow
gradient, ∇fσ = (fσx, fσy, fσt)

> stands for the
spatiotemporal image gradient and

Jρ(∇fσ) := Kρ ∗
“
∇fσ ∇f>σ

”
(4)

denotes the entry-wise spatially convolved mo-
tion tensor for the linearised grey value constancy
assumption [6].

While the integration scale ρ of the motion ten-
sor mainly affects the robustness under noise, the
weight α > 0 serves as a regularisation parameter
that steers the degree of smoothness of the solution.

2.2 Minimisation and Discretisation

In order to minimise the energy functional in (1), we
have to solve the associated Euler-Lagrange equa-
tions [11]. They are given by

0 = ∆u− 1

α
(Jρ11 u+ Jρ12 v + Jρ13) , (5)

0 = ∆v − 1

α
(Jρ12 u+ Jρ22 v + Jρ23) , (6)



with reflecting Neumann boundary conditions

0 = n>∇u and 0 = n>∇v . (7)

Here, n denotes the normal vector perpendicular to
the image boundary, and Jρnm is n,m-th compo-
nent of the convolved motion tensor Jρ (∇fσ).

Since these equations have to be solved numeri-
cally, we discretise them on a grid of size Nx×Ny
with cell spacing hx×hy . Thereby input frames
and flow field components are sampled at the grid
points (i, j) with 1≤ i≤Nx and 1≤j≤Ny . While
the spatial derivatives for setting up the discrete
motion tensor entries [Jρnm ]i,j are approximated
by a fourth-order finite difference scheme evaluated
between the frames, the temporal derivatives are
computed using a simple two point stencil. If we
denote the four-neighbourhood of a pixel (i, j) in
direction of axis l by Nl(i, j), we are finally in the
position to write down the discrete variant of the
Euler-Lagrange equations in (5)-(6). They read

0 = [Jρ11 ]i,j ui,j + [Jρ12 ]i,j vi,j + [Jρ13 ]i,j

− α
X

l∈{x,y}

X
(̃i,j̃)∈Nl(i,j)

uĩ,j̃ − ui,j
h2
l

, (8)

0 = [Jρ12 ]i,j ui,j + [Jρ22 ]i,j vi,j + [Jρ23 ]i,j

− α
X

l∈{x,y}

X
(̃i,j̃)∈Nl(i,j)

vĩ,j̃ − vi,j
h2
l

, (9)

for i = 1, ..., Nx and j = 1, ..., Ny which actually
forms a linear system of equations with respect to
the 2NxNy unknowns ui,j and vi,j .

2.3 Implementation

For solving this linear system of equations, we de-
velopped two parallel implementations that are dis-
cussed in detail in the following two sections. They
are specifically tailored for the Cell Broadband En-
gine processor built into the Playstation 3 video
console. This multi-core processor features, besides
a general-purpose core, eight ‘synergistic’ special-
purpose units, the SPUs, which are natively operat-
ing on a bandwidth of 128 bits. They own combined
data and instruction caches, each 256 kB of size,
which can be used for fast working copies of the
problem residing in RAM. These Local Stores need
to be explicitly filled and synchronised to the shared
memory using dedicated DMA operations [15].

This new hardware setup is challenging: It re-
quires a proper synchronisation among the cores,
the design of an efficient distribution strategy of
algorithmic needs to the SPUs, an evolved DMA
scheduling, and an optimisation that exploits the in-
struction level parallelism in terms of SIMD vec-
tors. Only then the full potential of the Cell proces-
sor can be exploited.

3 Red-Black SOR Solver

As a first algorithm for parallelisation, we
consider the Successive Over-Relaxation (SOR)
method [23]. It is an extrapolation variant of the
classical Gauß-Seidel solver that significantly ac-
celerates the convergence. The corresponding up-
date rule for pixel (i, j) from iteration step k to k+1
is given by equations (10)-(11). Here, ω ∈ (0, 2)
is the overrelaxation weight that strongly influences
the convergence speed, andN−l (i, j) andN+

l (i, j)
are the neighbours of pixel (i, j) in direction of axis
l that have already been updated or must still be up-
dated in the current iteration step, respectively.

To distribute the computational load to different
cores, the domain needs to be suitably decomposed.
One common approach well-known in the literature
is the so-called red-black reordering scheme: The
image domain Ω is hereby split into a checkerboard
pattern of ‘red’ and ‘black’ pixels, which are then
processed in a colour-wise manner. In the case of
discretisations that involve only the four direct
neighbours – such as in our case – this strategy of-
fers a particular advantage: ‘Red’ elements only de-
pend on a ‘black’ neighbourhood and vice versa. As
a consequence, each colour can be handled fully in
parallel. However, after one colour is entirely pro-
cessed involving multiple cores, those need to be
synchronised with each other to re-establish depen-
dencies between differently coloured elements.

Figure 1: Red-black decomposition and reordering.



uk+1
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+ ω
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vk+1
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(ĩ,j̃)∈Nl(i,j)

1
h2

l

3.1 Data Structures and Caching

On the Cell processor, we particularly split the rect-
angular image domain into stripes of comparable
width, and each of these stripes is processed by ex-
actly one SPU. A region thereby owns a composi-
tion of inner and outer boundaries, whereof the first
class refers to transitions between stripes, and lat-
ter are just those coinciding with image boundaries.
Both types need a different treatment, namely are
inner ones to be protected with one synchronisation
step for any neighboring stripe pair, colour and it-
eration step, and outer boundaries are just to be up-
dated according to their role in the global problem.

We furthermore make the red-black reordering
explicit by agglomerating equally coloured ele-
ments to large memory blocks, thereby conforming
the data to SIMD operations (cf. Figure 1). Since
many solver iterations are usually needed to let the
solution converge and scalar operations are much
more expensive than vector-valued ones, this step
amortises well. Meanwhile, working on reordered
data turns out to be rather hindering during the setup
of the equation system: Derivative approximations
and presmoothing convolutions are by concept best
suited for ordered data, though only little optimisa-
tion with respect to instruction level parallelism can
be applied this way. Therefore, the equation system
is first set up based on a canonical ordering, then
shuffled with respect to the red-black scheme, pro-
cessed by several solver iterations, and finally back-
transformed into the initial representation. DMA
transfers between RAM and Local Store can thus be
performed on larger data chunks, and thereby bene-
fit from faster memory accesses.

An additional concept to hide the memory la-
tency is a technique called double buffering [14],
which is also intensively used in our algorithm:
DMA operations are primarily handled by the mem-
ory flow controller, while the SPU itself can still be
working on independent data sets. Instead of work-
ing on a single instance of a local copy, one hence
considers two versions, whereof one is synchro-
nised with the RAM while the other is held valid
for the algorithm and vice versa.

By using ring buffers with more than two vector-
valued elements, this concept can be generalised for
applications involving a whole neighbourhood to be
supplied to the algorithm: Several adjacent vectors
are hereby kept valid, while one or more vectors in
the background are involved in DMA operations.
Whenever the algorithm needs to access one new
vector, the buffer is rotated. This concept often rep-
resents a good compromise between a low cache
load and less redundant RAM accesses, and is thus
frequently applied in our algorithm.

3.2 Algorithmic Optimisations

Due to their native bandwidth of 128 bits, SPUs
are particularly suited to process SIMD vectors,
and scalar code fragments are comparably expen-
sive. Thanks to the reordered data structure, in-
struction level parallelism can easily be established
for the solver iterations. In fact, even the reorder-
ing steps themselves can be formulated in a SIMD
based manner, thereby gaining an additional factor
of 1.78 compared to a variant only involving mem-
ory level parallelism.



In contrast, the setup of the equation system as
well as the optional presmoothing and integration
steps require more attention, since they are dom-
inated by convolutions. Those are separable, and
the instruction level parallelisation options vary de-
pending on whether the direction of the convolution
matches the direction of the elements in memory or
not: Along the memory direction, a high number of
expensive misaligned vector loads would be neces-
sary, which are in general much slower than a sim-
ple scalar notation. In the perpendicular direction,
however, blocks of adjacent memory are computa-
tionally independent and thus fully parallelisable.

Latter approach requires a special treatment of
outer boundaries: Since branching is very expen-
sive, it often pays off to pad the major memory
direction sufficiently, to process all elements in
parallel regardless of their role, and to later cor-
rect boundary values on a scalar basis. This way,
no branching is introduced at the boundaries at
all, which accelerates the program noticeably: The
branch misprediction penalty is with 18 to 19 cycles
rather high and dynamic branch prediction is not
supported on the hardware [14]. Hence, about as
much latency would in the average case be expected
for every processed line, instead of about three cy-
cles in our implementation.

Furthermore, a high padding of the inner matrix
dimension in the cached working copy is worth-
while to significantly reduce pipeline latencies: The
SPUs own two pipelines, one of which is exclu-
sively used for load and store operations, and one
for arithmetics [14]. By explicitly encoding several
operations in parallel performing a loop unrolling
strategy, bubbles in the pipeline can be reduced to
a minimum. On padded datasets, we can eventu-
ally again formulate this algorithm without any in-
troduction of branching.

Since only one kernel can be run on an SPU at a
time, and loading a new kernel to the device is ex-
pensive, we created one monolithic SPU kernel per
core. It is started once at the beginning of the com-
putations, and is instantly charged with new prob-
lem sets whenever a new pair of frames is available.

4 Full Multigrid Solver

The second algorithm that we consider for paral-
lelisation is the so called Full Multigrid algorithm.
Representing one of the most powerful classes of

numerical solvers for linear and nonlinear systems
of equations, these methods enjoy great popularity
in computer vision. In [5, 6], Bruhn et al. have
demonstrated that such techniques allow to com-
pute the optical flow of an image sequence in real-
time, while recently Grossauer and Thoman ported
these methods on a graphics processing unit to ac-
celerate them even further [12]. In the following,
we present our own Full Multigrid implementation
that is specifically tailored for the Cell processor. It
is based on the sequential algorithm in [5].

4.1 Algorithmic Sketch

In order to understand the arithmetic operations in-
volved, let us start by a short sketch of the main
strategy of multigrid algorithms. These methods try
to overcome the slow attenuation of low-frequent
errors by classical iterative solvers, by using a so-
phisticated error correction strategy. Its main idea
can be summarised in four steps [4, 21]:

1) Perform η1 presmoothing relaxation steps with
a basic iterative solver (e.g. Gauß-Seidel).

2) Solve residual equation system on coarser grid
to obtain correction. This requires intergrid
transfer operators (restriction/prolongation).

3) Correct fine grid solution by the computed
coarse grid error.

4) Perform η2 presmoothing relaxation steps with
a basic iterative solver (e.g. Gauß-Seidel).

In general, such a two-grid cycle is applied in
a hierarchical/recursive way to improve the perfor-
mance. The Full Multigrid solver extends this strat-
egy by an additional coarse-to-fine strategy. Start-
ing from a very coarse representation, the original
problem is successively refined. Thereby solutions
from coarser grids serve as initialisations for finer
ones. For a more detailed algorithmic description of
this numerical scheme applied to the CLG method
we refer to [5]. For our purpose, it is sufficient to
note that we use the Gauß-Seidel technique with
η1 =η2 =1 as basic solver, make one recursive call
per level (V-Cycle) and apply area-based resam-
pling to transfer the data between the grids. In the
following we will denote this method by V (1, 1).



4.2 Parallel Setup

In this context, a decomposition of the image do-
main like pursued for the Red-Black SOR method
(cf. Subsection 3.1) is nontrivial, since several
grids of different dimensions need to be consid-
ered. However, a similar spatial distribution on all
grids is likely to fail, because the synchronisation
related overhead amortises well on fine grids, but
becomes serious on coarser scales. On the other
hand, it is also not advisable to reduce the number
of cores processing the problem while working on
coarser grids, since computing resources are mean-
while dissipated.

Instead, we can turn the rather low number of
parallel cores the Playstation 3 provides to an ad-
vantage: Since typically, longer input streams are
provided to the system, consecutive pairs of frames
can be sent to single SPUs. Those process them in-
dividually, but locally optimised for the hardware.

At the cost of a higher latency, this parallelisation
technique performs at least as well as a potential
decomposition scheme, since over arbitrary time
intervals, the same number of frames can be pro-
cessed. Moreover, SPU kernels are allowed to run
asynchronously, which reduces access bursts on the
Memory Interface Controller and the Element In-
terconnect Bus and thus enhances the performance
significantly.

4.3 Data Structures and Caching

Though an explicit memory reordering like pur-
sued in the SOR setting would still be benefi-
cial to accelerate Gauß-Seidel pre- and postrelax-
ations, the structure of the algorithm counteracts
this scheme: Such reordered datasets cannot be im-
mediately transferred to different grid sizes, since
potential mappings like the one proposed by Trot-
tenberg et al. [21] are not colour-preserving. In-
deed, it turns out that optimisations with respect to
the relaxation steps instantly cause a higher effort
to perform grid transitions, such that a canonically
ordered grid seems to be the best solution.

By a strict separation of cache-related and
arithmetics-oriented instructions, we yield smaller
kernel binaries and thus a higher flexibility with
respect to the data partition in the shared Local
Store, and are furthermore able to easily design
more complex and thus efficient cache management
algorithms: Predicting the next requests of the re-

spective modules of the algorithm, dedicated func-
tions fetch vectors early enough to have a valid copy
cached when the requests actually occur, and make
hence active use of ring buffers not to lose time due
to memory latencies. Thereby, they automatically
reuse cached vectors when they are needed a second
time, and treat boundaries correctly while still min-
imising the amount of data requested from RAM.

4.4 Algorithmic Efficiency

Based on the canonically ordered grid, Gauß-Seidel
steps, like they are used for pre- and postrelaxation
and for the computation of the residual, are most ef-
ficiently written in a fully-sequential manner: The
memory access patterns generated this way are bet-
ter suited to the way the Local Store is organised,
and thereby reduce DMA synchronisations to RAM
to a minimum.

On the other hand, the remaining modules of the
algorithm allow for a higher degree of instruction
level parallelism: Restriction and prolongation op-
erators are realised by area-based resampling [5]
and thus separable. The same holds for the convo-
lutions involved in the image presmoothing as well
as in the local integration of the motion tensor. In
particular, this means that perpendicular to the di-
rection of operation, the elements involved in these
schemes are pairwise independent.

This observation allows not only for loop un-
rolling approaches to minimise pipeline latencies,
but coinciding with the major memory direction,
independent values are residing in adjacent mem-
ory cells, such that at least in this direction, the full
SIMD width can be used. Like for the SOR solver, a
sufficiently high padding of the image domain elim-
inates branches in the algorithm, and thus allows for
highly efficient code.

5 Results

In the following, we evaluate the runtime perfor-
mance of the two implemented methods with re-
spect to different criteria, and compare them to
a sequential implementation on a Pentium 4 with
3.2GHz. The measurements given for the follow-
ing experiments represent the achieved number of
frames per second (FPS). This provides an intuitive
measure for real world applications. The times are



Figure 2: Visual quality of computed flow fields. Top Row: Frames 1 and 2 of the Flying Penguin sequence
(316 × 252). Bottom Row: Flow field for the CLG method (σ = 0.30, ρ = 0.55, α = 1000) using 100
Red-Black SOR iterations, and Full Multigrid with one V(1,1)-cycle per level, respectively. The magnitude
of each displacement is encoded by brightness, the direction by colour (as shown at the boundaries).

always measured over the whole algorithm, includ-
ing the equation system setup, optional presmooth-
ing, parallelisation and hardware related expenses
as well as the iterative solver. Because only six
out of eight SPUs are available on the Playstation 3,
we consider this setup as a maximal configuration.
However, the Cell processor is also marketed on
special boards on which all eight cores are access-
able, such that even higher speedups are to be ex-
pected in such scenarios.

5.1 Red-Black SOR

In our first experiment, we evaluate the runtime of
the parallel Red-Black SOR implementation against
a sequential reference setup on the Pentium 4 with
3.2 GHz, and analyse the scaling of the algorithm
over varying SPU counts. In an ideal setting, the
processed number of frames should be linearly cor-
related to the number of cores involved, such that
the total performance only depends on local optimi-

sations on the single cores.
Table 1 shows the obtained scaling behaviour.

With six SPUs, and frames rates of up to 25 dense
flow fields per second for images of size 315×252,
we are able to achieve realtime performance, and
beat the sequential implementation by a factor of
5.2. Meanwhile, this experiment also reveals an at-
tenuation of the performance for a higher number
of cores as can be seen from Figure 3. This atten-
uation is related to the relatively small partitions of
data processed by one SPU in between two consec-
utive synchronisation steps, and to bus contentions
on the memory flow controller.

In our second experiment, we are interested in the
performance of the Red-Black SOR algorithm over
varying frame sizes. To make justified statements
about this behaviour when applying presmoothing,
we scale the variances according to the edge length
ratio of the considered images, such that we use
(σ, ρ) = (0.075, 0.1375), (0.15, 0.275), (0.3, 0.5)
and (0.6, 1.1) for frames of 79× 63, 158× 126,



Table 1: Scaling behaviour of our Red-Black SOR implementation with 100 iterations for an increasing
number of SPUs. Performance is measured in flow fields per second and refers to images of size 316×252.

Number of SPUs
Red-Black SOR 1 2 3 4 5 6

CLG (σ = 0.00, ρ = 0.00) 6.29 12.06 17.57 20.19 24.07 24.76
CLG (σ = 0.30, ρ = 0.55) 4.08 7.71 10.98 13.04 15.36 15.61

Table 2: Performance of the Red-Black SOR implementation with six SPUs for different frame sizes.

Frame Size
Red-Black SOR 79 × 63 158 × 126 316 × 252 632 × 504

CLG (σ = 0.00, ρ = 0.00) 160.84 85.66 24.76 5.97
CLG (σ = 0.30, ρ = 0.55) 133.91 62.34 15.61 3.16

316×252, and 632×504 pixels, respectively.
The obtained frame rates are listed in Table 2.

Though the maximal computable problem size is
restricted by the rather poor RAM equipment of
the Playstation 3 and related swapping processes
for larger problems, our method seems to scale
very well over different frame sizes and does
not show preferences towards particularly large or
small problems.

Figure 2 (c) shows the computed flow field for
the Playstation 3 sequence of size 316 × 252 with
parameters σ = 0.3 and ρ= 0.55. As one can see,
the estimated motion looks reasonable. In this con-
text, one should note that since the present parallel
implementation entirely follows the linear 2-D CLG
model, its results are equivalent to those achieved in
the sequential algorithm from [5]. For the popular
Yosemite sequence without clouds we achieve for
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CLG(σ = 0.00, ρ = 0.00)

CLG(σ = 0.30, ρ = 0.55)Red-Black SOR

Figure 3: Scaling behaviour of the Red-Black-SOR
implementation with 100 iterations for an increas-
ing number of SPUs (images of size 316× 252).

instance the same average angular error of 2.63◦.

5.2 Full Multigrid

For the Full Multigrid method, we repeat the exper-
iments performed with the SOR solver, and again
compare the achieved results to a sequential solu-
tion. As before, our first experiment is dedicated
to the scaling behaviour of the algorithm for an in-
creasing number of SPUs. As one can see from
Table 3 as well as from Figure 4, the novel con-
cept indeed pays off, and our method scales almost
perfectly linear over an increased number of cores.
This is, because the algorithm is both no longer af-
fected by synchronisation-related stalls, and more-
over related to the lax timing of memory requests,
which automatically schedule in the least conflict-
ing way. Compared to the sequential solution, we
achieve a speedup by a factor of 5.3. In particu-
lar are bus contentions diminished as well, since the
single SPU kernels can run asynchronous to each
other, such that DMA requests are issued sequen-
tially and thus do not interfere.

In our second experiment, we again evaluate the
development of the frame rate for different image
sizes. This time, the maximal image size to fit
entirely into RAM is even more constrained than
for Red-Black SOR, since six independent prob-
lems need to be simultaneously held in the memory.
However, for the maximum frame size of 316×252,
we achieve an excellent average performance of up
to 170.15 FPS, which is far beyond realtime. This
way, we are even able to outperform fast algorithms



Table 3: Scaling behaviour of our Full Multigrid algorithm with 1 V(1,1)-cycle per level for an increasing
number of SPUs. Performance is measured in flow fields per second and refers to images of size 316×252.

Number of SPUs
Full Multigrid 1 2 3 4 5 6

CLG (σ = 0.00, ρ = 0.00) 30.46 60.29 89.65 118.65 144.85 170.15
CLG (σ = 0.30, ρ = 0.55) 19.89 39.59 58.12 76.17 93.99 112.71

Table 4: Performance of the Full Multigrid implementation with six SPUs for different frame sizes.

Frame Size
Full Multigrid 79 × 63 158 × 126 316 × 252

CLG (σ = 0.00, ρ = 0.00) 1572.14 495.48 170.15
CLG (σ = 0.30, ρ = 0.55) 1198.06 417.52 112.71

running on graphics cards, like the one proposed
by Zach et al. [24], by more than a factor of five.
Since our algorithm is not constrained to be run on
a Playstation 3, an even higher performance can be
achieved when it is executed in setups with all eight
SPUs available. The scaling behaviour over differ-
ent frame sizes even promises realtime performance
for frames of about 1024 × 768 pixels, if enough
memory space can be granted to the algorithm.

The computed flow field for the Playstation 3 se-
quence is depicted in Figure 2 (d). Despite the much
higher frame rate, there are no visual differences
to the result of the Red-Black SOR method. This
is confirmed by checking our algorithm once again
with the Yosemite sequence without clouds. Not
surprisingly, we achieve also this time an average
angular error of 2.63◦ as stated in [5].
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Figure 4: Scaling behaviour of our Full Multigrid
implementation with 1 V(1,1)-cycle per level for an
increasing number of SPUs (image size 316×252).

6 Summary

In this paper, we have presented two parallel high
performance algorithms for the optical flow prob-
lem running on the Cell processor of a Playstation 3.
Combining smart memory layouts, highly efficient
numerics and optimisations to the hardware, we
yield speedups of about a factor of 5.3 compared
to traditional hardware. In terms of frame rates,
this equals an astonishing performance of up to 170
dense flow fields per second on image sequences of
size 316× 252.

This shows that optical flow methods relying on
highly efficient numerics can even be accelerated
further, if recent hardware is effectively exploited
for parallelisation. Significant speedups can also
be expected for models with nonquadratic penalisa-
tion. This however is subject of ongoing work. We
hope that our paper will motivate more computer vi-
sion researchers to exploit the fascinating potential
of the Cell processor.
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