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Abstract. Gaussian convolution is of fundamental importance in linear
scale-space theory and in numerous applications. We introduce iterated
extended box filtering as an efficient and highly accurate way to compute
Gaussian convolution. Extended box filtering approximates a continuous
box filter of arbitrary non-integer standard deviation. It provides a much
better approximation to Gaussian convolution than conventional iterated
box filtering. Moreover, it retains the efficiency benefits of iterated box
filtering where the runtime is a linear function of the image size and does
not depend on the standard deviation of the Gaussian. In a detailed
mathematical analysis, we establish the fundamental properties of our
approach and deduce its error bounds. An experimental evaluation shows
the advantages of our method over classical implementations of Gaussian
convolution in the spatial and the Fourier domain.
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1 Introduction

Convolution with a Gaussian is one of the most widely used linear filter opera-
tions in signal and image processing. It forms the backbone of Gaussian scale-
space theory [4,9,13] which has been introduced in Japanese and English papers
of Iijima [8] long before it became popular in the western world by Witkin’s
work [16]. The strong regularisation properties of Gaussian convolution render
the filtered signal infinitely times differentiable and stabilise the numerical eval-
uation of higher order derivatives. Gaussian convolution is inevitable for the
detection of edges [2,11] and interest points [6,10] that play a central role in
computer vision. The rapid decay properties of the Gaussian both in the spatial
and the Fourier domain and the fact that it is the only filter that is rotationally
invariant and separable under convolution make Gaussian convolution a perfect
low-pass filter in linear systems theory.
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Many applications require an accurate and efficient implementation of Gaus-
sian convolution in order to ensure the high quality of the results, to meet runtime
requirements, or even to guarantee convergence. However, this can be challeng-
ing: It comes down to a convolution of the input signal with a kernel function
with infinite support. The m-dimensional Gaussian kernel

Kσ(x) =
1

(2πσ2)
m
2

exp

(
− |x|

2

2 · σ2

)
(1)

of standard deviation σ has a characteristic ‘bell curve’ shape which drops off
rapidly towards ±∞. This is why in practice one often applies a discrete convo-
lution with a sampled and renormalised kernel that is cut off at n · σ. However,
this method becomes inefficient for large σ, as the number of operations grows
linearly in the number of samples of both the signal and the kernel. A more
efficient alternative for those cases is the computation as a point-wise multipli-
cation in the frequency domain [1]. To this end, a Fourier transform is applied
to both the kernel and the signal, the multiplication is performed, and the result
is transformed back into the spatial domain. Since the Gaussian kernel in the
frequency domain can immediately be evaluated, this method reduces to two
fast Fourier transforms, and one point-wise multiplication.

Although these spatial and Fourier-based implementations are the most pop-
ular algorithms for Gaussian convolution, and their trade-offs are well investi-
gated [5], there are also further alternatives: Approximations with recursive fil-
ters [3,17] offer a runtime behaviour that scales linearly in the number of pixels.
However, these filters require a special boundary treatment and a higher imple-
mentational effort than other methods which poses additional challenges [14].
Since Gaussian scale-space is equivalent to evolving the image under a homo-
geneous diffusion problem, one can also implement Gaussian convolution with
efficient numerical methods for partial differential equations, e.g. with implicit
finite difference schemes [7]. Unfortunately, this requires the fast solution of lin-
ear systems of equations which is also a nontrivial task. Gaussian convolution
can also be approximated by discrete convolution with binomial kernels. They
have a finite support and offer some interesting properties from an implemen-
tational viewpoint, but do not allow to approximate Gaussians with arbitrary
standard deviations. This can constitute a drawback in scale-space applications
which aim at representations at arbitrary scales.

A simple but extremely fast discrete approximation of Gaussian smoothing
can be achieved by convolution with iterated box filters [15]. A box filter uses
a normalised kernel with identical coefficients within its finite support. By the
central limit theorem, a sufficiently high number of iterations with a box filter
approximates a Gaussian arbitrarily well. However, this has the same drawback
as convolution with binomial kernels: It introduces a quantisation to the range
of standard deviations that can be approximated.

In our paper we address this problem. We advocate a modification of the
box filter that is based on a new discretisation of the continuous box kernel. In
particular, we concentrate on establishing important properties of the resulting
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extended box filter: It combines the simplicity and algorithmic efficiency of the
conventional box filter with a good approximation of theoretic properties of
Gaussian filtering. In an experimental evaluation, we show that the extended
box filter approximates the Gaussian filter significantly better than a classical
box filter and offers advantages over spatial and Fourier-based approximations of
Gaussian convolution. Moreover, our method introduces only marginal runtime
overheads over classical box filtering.

Our paper is structured as follows. In Section 2, we first recapitulate the basic
notations and definitions of conventional box filtering. Thereafter, we present
our new method in Section 3. After an experimental evaluation in Section 4, we
conclude with a summary in Section 5.

2 Conventional Box Filtering

Box filters are usually defined in a purely discrete context. However, in order
to derive a new discretisation in this paper, we start with a short review of a
continuous definition:

Definition 1. A continuous box filter BΛ with a real-valued length Λ ∈ R+ :=
{a ∈ R : a > 0} is a convolution

(BΛ ∗ f)(x) :=

∞∫
−∞

BΛ(x− y) · f(y) dy (2)

of a signal f with a box kernel

BΛ(x) :=

{
1
Λ , x ∈ (−λ, λ)

0, else
(3)

for x ∈ R and Λ = 2λ.

In the literature, one usually finds the continuous length Λ being rounded to
the closest odd integer L [15]:

Definition 2. A discrete box filter BL of length L = h(2l + 1), l ∈ N0, and
sampled at an equidistant grid of spacing h > 0 is a convolution

(BL ∗ f)(hk) :=
∑
m∈Z

BL(h(k −m)) · f(hm) (4)

of a signal f with a discrete box kernel

BL(hk) :=

{
h
L , −l 6 k 6 l
0, else

(5)

for k ∈ Z.
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Fig. 1. Visualisation of box kernels. Top: Continuous box kernel BΛ (dotted) and its
conventional discrete approximation BL. Bottom: Corresponding discrete extended
box kernel EΛ.

An illustration of this construction is depicted in Figure 1. Note that we
introduce an arbitrary grid spacing h, and couple the length L to a multiple of
this distance. For h → 0, BL thus approaches BΛ (cf. Definition 1). If we set
h = 1, we obtain the formulation in [15].

On discrete data, it can be implemented very efficiently in an iterative ‘sliding
window’ manner, i.e.

(BL ∗ f)i = (BL ∗ f)i−1 +
h

L
(fi+l − fi−l−1) , (6)

with (·)k or fk denoting the discrete value at sampling point hk. After the
initialisation of the first sample, the method needs one multiplication and two
additions per pixel and dimension, independent of the size of the kernel. Thus,
it enjoys a linear complexity in time.

A d-fold convolution of the kernel with the signal approximates a Gaussian
convolution. This removes artefacts that arise from the piecewise linearity of the
box kernel, as well as from the lack of a rotational invariance property in the
multi-dimensional case. The resulting operation is equivalent to the convolution
with a Cd−1-continuous kernel BdL of variance σ2(BdL) [15]:

σ2(BdL) = d
L2 − 1

12
. (7)

Note that this formula only allows a discrete set of standard deviations to be
chosen. In the literature, it is suggested to handle this problem by a series of box
filters of different length [15]. Unfortunately, this idea does not solve the problem:
By practical considerations, d is typically chosen from the range {3, 4, 5}, such
that the distance between admissible σ cannot be reduced arbitrarily. Moreover,
the kernel resulting from a convolution of box kernels with different lengths does
not fulfil the continuity properties mentioned above.



Theoretical Foundations of Gaussian Convolution by Extended Box Filtering 5

In contrast to this suggestion, we are now going to derive a better discreti-
sation of the continuous formulation which does not have this problem by con-
struction. Still, it possesses all advantages of the discrete box filter.

3 Extended Box Filter

Our goal is now to find a better discretisation EΛ of the continuous box filter
BΛ than is given by the conventional discrete approximation BL. In doing so,
we focus in particular on the following criteria:

1. EΛ must be continuous over Λ to allow kernels with arbitrary variance.
2. For Λ = L ∈ Nodd, it must equal the discrete box filter BL of length L.
3. For h→ 0, it must approach the continuous case, i.e. lim

h→0
σ2(EΛ) = σ2(BΛ).

To this end, we decompose Λ into an integer part and a real-valued remainder:

Λ = h(2l + 1 + 2α) = L+ 2hα (8)

such that 0 6 α < 1 and l ∈ N0. With this formalism, we are now able to set up
an ‘extended’ variant of the discrete box filter:

Definition 3. An extended box filter EΛ with a real-valued length Λ ∈ R+ and
discretised on a uniform grid of spacing h > 0 is a convolution

(EΛ ∗ f)(hk) :=
∑
m∈Z

EΛ(h(k −m)) · f(hm) (9)

of a signal f with an extended box kernel

EΛ(hk) :=


h
Λ , −l 6 k 6 l
hw, k ∈ {−(l + 1), l + 1}
0, else

(10)

with

l :=

⌊
Λ

2h
− 1

2

⌋
, w :=

1

2

(
1

h
− 2l + 1

Λ

)
, (11)

and k ∈ Z. bxc denotes the so-called floor function, which computes the largest
integer not greater than x ∈ R.

Both constraints in (11) are necessary in order to ensure that all weights
sum up to 1. A visualisation of the extended box kernel (10) is depicted in
Figure 1. It is immediately clear that our new filter preserves many advantages
of the original box filter. It is separable in space, and an efficient ‘sliding-window’
implementation is still possible and beneficial: Apart from the first value in a row,
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only four additions and two multiplications are needed per pixel and dimension
(since both weighting factors are constants):

(EΛ ∗ f)i = (EΛ ∗ f)i−1 +
( h
Λ
− hw

)
(fi+l − fi−l−1)

+ hw (fi+l+1 − fi−l−2) . (12)

This means, the computational complexity of a box filtering step is in O(n)
in the number of pixels, and is thus in particular independent of the length of
the chosen box kernel. Let us now discuss some mathematical properties of our
construction. First of all, we immediately see that w depends proportionally on
α (cf. Figure 1):

w =
1

2h

(
1− (2l + 1)h

Λ

)
=

1

2h

(
1− Λ− 2αh

Λ

)
=

1

2h
· 2αh

Λ
=

α

Λ
. (13)

Using this equivalence, we can formulate the variance of EΛ by considering the
components of Λ only. Like for the conventional box filter, we regard the more
general case for a convolution kernel that corresponds to a d-fold application of
a single extended box kernel EΛ:

Theorem 1. The variance σ2(EdΛ) of a d-fold iterated extended box kernel is
given by

σ2(EdΛ) =
dh3

3Λ

(
2l3 + 3l2 + l + 6α(l + 1)2

)
. (14)

Proof. By symmetry considerations, we see that the expectation value of EΛ is
zero. For the variance σ2(EΛ) of one (non-iterated) box kernel, it follows

σ2(EΛ) =

l+1∑
k=−(l+1)

EΛ(hk) · (hk − 0)2

=

l∑
k=−l

h

Λ
(hk)2 + hw (−(hl + h))

2
+ hw(hl + h)2

=
2h3

Λ

l∑
k=1

k2 + 2h3w(l + 1)2

(13)
=

h3

3Λ

(
2l3 + 3l2 + l + 6α(l + 1)2

)
.

From probability theory, we obtain the variance σ2(EdΛ) for the iterated extended
box kernel as the sum of single variances. This concludes the proof. �

For h = 1 and Λ = 2l + 1 ∈ Nodd, i.e. α = 0, this is just a generalisation of
Equation (7). This means that the extended box filter falls back to the notion
of the conventional box filter in these cases:
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Theorem 2. The extended box kernel EΛ constitutes a generalisation of the
discrete box kernel BL for the case h = 1, i.e. EL = BL for L ∈ Nodd and

∀L ∈ Nodd : lim
Λ→L+

σ2(EdΛ) = σ2(BdL) and lim
Λ→(L+2)−

σ2(EdΛ) = σ2(BdL+2). (15)

Proof. It is clear that EL = BL for L ∈ Nodd, because in this case we get α = 0
and w = 0. Thus, it immediately follows that lim

Λ→L+
σ2(EdΛ) = σ2(BdL). So, it

remains to show the case Λ → (L + 2)−, for which we first consider a single
extended box kernel EΛ:

lim
Λ→(L+2)−

σ2(EΛ) = lim
Λ→(L+2)−

1

3Λ

(
2l3 + 3l2 + l + 3(Λ− L)(l + 1)2

)
=

1

3(L+ 2)
(2l3 + 9l2 + 13l + 6)

=
1

3(2l + 3)
(2l + 3)(l2 + 3l + 2)

=
(L+ 2)2 − 1

12
,

where we have used that α = Λ−L
2 and L = 2l + 1. It follows immediately that

lim
Λ→(L+2)−

σ2(EdΛ) = σ2(BdΛ).

This shows that EdΛ is a consistent generalisation of BdL with respect to Λ. �

Now that we have shown that the extended box filter extends the previ-
ous discrete definition, we want to show that it is a good discretisation of the
continuous box filter we are about to approximate:

Theorem 3. The extended box kernel EΛ is a suitable discretisation of a box
kernel BΛ in the continuous domain, i.e. for d-fold application,

1. its variance approximates the continuous analogue arbitrarily well:

lim
h→0

σ2(EdΛ) = σ2(BdΛ), and (16)

2. the order of consistency is O(h2).

Proof. We can deduce an approximation of the continuous setting by computing
the limit of σ2(EdΛ) for the grid spacing h → 0. Since we are interested in the
order of consistency, we must consider the variance in (14) and rewrite it:

σ2(EdΛ) =
(2hl)3

12Λ
+ dh

(2hl)2

4Λ
+ dh2

2hl

6Λ
+ 2dh3

α

Λ
(l2 + 2l + 1)

= d
(2hl)3

12Λ
+ dh(1 + 2α)

(2hl)2

4Λ
+ dh2(1 + 12α)

2hl

6Λ
+ dh3

2α

Λ
.
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Input: Signal u0, standard deviation σ, iterations d.
Output: Signal ud := EdΛ ∗ u0

l ← largest integer such that σ2(BdL) ≤ σ2 (by (7))

α ← (2l + 1)
l(l + 1)− 3σ2

d

6(σ
2

d
− (l + 1)2)

(by σ2(EdΛ) ≤ σ2, (8), and (14))

w ← α

2l + 1 + 2α
, ŵ ← 1− α

2l + 1 + 2α
(by (8) and (13))

For all j ∈ {1, . . . , d}
Compute uj[0] (for the first pixel)
For all i > 0
Compute uj[i] ← uj[i-1] + w · (uj−1[i+l+1] - uj−1[i-l-2])

+ ŵ · (uj−1[i+l ] - uj−1[i-l-1])

Fig. 2. Algorithm for 1-D extended box filtering. Boundaries can be handled on-the-fly.

Now we replace 2hl by Λ− (1 + 2α)h and get for the first three terms:

d
(Λ− (1 + 2α)h)3

12Λ
=

dΛ2

12
− dh

4
(1 + 2α)Λ+

dh2

4
(1 + 2α)2 +O(h3),

dh(1 + 2α)
(Λ− (1 + 2α)h)2

4Λ
=

dh

4
(1 + 2α)Λ− dh2

2
(1 + 2α)2 +O(h3),

dh2(1 + 12α)
Λ− (1 + 2α)h

6Λ
=

dh2

6
(1 + 12α) +O(h3).

Finally, this yields

σ2(EdΛ) =
dΛ2

12
− h2 · d

12

(
12α2 − 12α+ 1

)
+O(h3).

Thus, the consistency order is O(h2) and we can state that

lim
h→0

σ2(EdΛ) = d
Λ2

12
= d

Λ
2∫

−Λ2

1

Λ
· x2dx = d

∞∫
−∞

BΛ(x)x2dx = σ2(BdΛ).

�

4 Experiments

In order to investigate the properties of the extended box filter on real data,
we have implemented the algorithm for application on images. Technically, this
means we are dealing with 2-D images f ∈ Ω ⊂ R2, and assume reflecting
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a. b. c.

d. e. f.

Fig. 3. Visual quality for Boat, 512 × 512 pixels. a: Original, b: conventional and c:
extended box filtering with d = 3, σ = 5.0, d: Discrete Gaussian filtering with σ = 5.0
(truncated at 10σ), and e,f: differences of b and c to d, respectively, scaled by a factor
10 to increase visibility. 50% grey means the error is zero.

boundary conditions to preserve the average grey value. Using the separability of
the kernel, we apply a ‘sliding window’ technique in both directions (cf. Figure 2).
This operation is highly parallel, and can thus be significantly accelerated by the
streaming SIMD extension mechanism (SSE) of modern desktop processors, by
use of all CPU cores, and by graphics processors.

4.1 Qualitative Gain

Our aim in designing the extended box filter is to propose a fast but accurate
way to perform Gaussian convolution for arbitrary standard deviations. Conse-
quently, we are interested in the accuracy of the proposed method.

To evaluate the accuracy, we use the well-known Boat test image from the
USC SIPI database (cf. Figure 3a), and convolve it with discrete box kernels.
These results are then compared to a ground truth obtained by a convolution
with a discretised Gaussian kernel that has been truncated at 10σ and renor-
malised. Please note that this ground truth is also subject to discretisation arte-
facts and may not exactly reflect the desired solution. A more complicated al-
ternative to this implementation has been proposed in [12], but this variant also
suffers from similar truncation problems. Finally, let us note that we chose the
Boat test image as a good representative for many real-world examples, since it
contains many different frequencies and both homogeneous and textured regions.
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Fig. 4. Plot of the mean square error to discrete Gaussian convolution on Boat, 512×
512 pixels, depending on σ and d. a: Conventional box filter. b: Extended box filter.

In the first part of our experiment, we use conventional box kernels and
a varying number of iterations d, and compare these results to the reference
solution. Instead of focussing on one specific standard deviation σ, we evaluate
many different values. As an error measure for equivalence, we use the mean
square error (MSE) given by

MSE(a, b) =
1

N

N∑
i=1

(ai − bi)2, (17)

where N describes the number of pixels. The results for this experiment are
given in Figure 4a. For large σ, we see that a box filter of order d = 5 is already
sufficient to approximate the Gaussian very well. However, one also realises that
small standard deviations cannot be represented well at all. This effect is caused
by the integer length of the box kernel, and re-occurs for larger d and larger σ
for similar reasons.

In the second part, we repeated the same experiment with the proposed
kernel. This is shown in Figure 4b. Compared to the conventional box filter, the
novel approach attenuates errors much stronger. For any σ, an order of d = 5
yields almost identical results to Gaussian filtering. This justifies our model as
a qualitatively equal alternative.

To conclude this experiment, we compare the visual quality of both ap-
proaches. Figure 3 depicts a sample output of both methods under a standard
deviation σ = 5.0, and further shows the desired result as given by Gaussian
convolution. Albeit the visual quality differences are relatively low, the differ-
ence images show that our extended box filter performs much better than the
conventional box filtering.

4.2 Runtime

In the last experiment, we are interested in the tradeoff between the accuracy
and the runtime of extended box filtering compared to other techniques. To this
end, we convolve the Boat test image using a discrete Gaussian truncated at 3σ,
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Table 1. CPU runtime t in milliseconds vs. mean square error (MSE) between the
result and the ground truth for different techniques on Boat (512× 512 pixels).

σ = 0.5 σ = 5.0 σ = 25.0
MSE t MSE t MSE t

Truncated Gaussian 0.000 8 0.001 45 0.007 148
FFT-based 1.032 148 0.000 148 0.000 148
Conventional box 9.580 0 1.400 26 0.154 27
Extended box 0.030 41 0.051 43 0.098 43

an FFT-based approach, a conventional, and an extended box filter (both with
d = 5). Runtimes were acquired on a single-core 3.2 GHz Pentium 4 with 2MB
L2 cache and 2 GB RAM.

Table 1 shows the results of this experiment. The truncated Gaussian con-
vinces for small standard deviations, but scales linearly in σ such that this
method becomes infeasible for large σ. Although the runtime of all remaining
methods is independent from the standard deviation, box filters have a clear
advantage if we consider larger images: While they only scale linearly in the
number of pixels n, the FFT-based methods have a complexity of O(n log(n)).
In return, the FFT-based approach offers a much better approximation quality
for large σ. In this context, the extended box filter is a good tradeoff between
classical box filtering and the FFT-based approaches: It provides a convincing
approximation quality for all standard deviations at a slightly higher runtime
than a classical box filter.

5 Summary

In view of the omnipresence of Gaussian convolution in scale-space theory and
its numerous applications in image processing and computer vision, it is surpris-
ing that one can still come up with novel algorithms that are extremely simple
and offer a number of advantages. In our paper we have shown that a small
modification of classical box filtering leads to an extended box filter which can
be iterated in order to approximate Gaussian convolution with high accuracy
and high efficiency. In contrast to classical box filtering, it does not suffer from
the restriction that only a distinct set of standard deviations of the Gaussian
are allowed. Although the main focus of our paper is on establishing the essen-
tial mathematical properties of extended box filtering, we have also presented
experiments that illustrate the advantages over spatial and Fourier-based imple-
mentations of Gaussian convolution. In our ongoing research we will perform a
more extensive evaluation with a large number of alternative implementations,
taking also into account the potential of modern parallel hardware such as GPUs.
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