
Hardware-Accelerated Algorithms
in Visual Computing

Dissertation zur Erlangung des Grades des

Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

vorgelegt von

Pascal Gwosdek

Saarbrücken

2011

ii

Tag des Kolloquiums: 11.07.2012

Dekan: Prof. Dr. Mark Groves

Prüfungsausschuss: Prof. Dr. Thorsten Herfet
Universität des Saarlandes (Vorsitz)

Prof. Dr. Joachim Weickert
Universität des Saarlandes (1. Gutachter)

Prof. Dr. Horst Bischof
Technische Universität Graz (2. Gutachter)

Dr. Christian Schmaltz
Universität des Saarlandes

iii

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit
selbständig und ohne Benutzung anderer als der angegebenen Hilfsmittel
angefertigt habe. Die aus anderen Quellen oder indirekt übernommenen
Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet. Die
Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähn-
licher Form in einem Verfahren zur Erlangung eines akademischen Grades
vorgelegt.

Saarbrücken, 11.07.2012

Veröffentlichungs- und Übereinstimmungserklärung

Ich übertrage der Saarländischen Universitäts- und Landesbibliothek
(SULB) das Recht, diese Arbeit in elektronischer und gedruckter Form
zugänglich zu machen. Ich bestätige, dass die hierzu übermittelte elek-
tronische Version der Arbeit mit der genehmigten Originalfassung in Form
und Inhalt übereinstimmt.

Saarbrücken, 11.07.2012

Contents

Contents v

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 4
1.3 Outline . 4

2 CUDA 7
2.1 Graphics Processing Units 7

2.1.1 Performance . 8
2.1.2 The GPU as a Coprocessor 8
2.1.3 Memory Model . 10

2.2 CUDA Programming Model 12
2.2.1 General Concepts . 12
2.2.2 Textures . 14
2.2.3 Atomic Operations 16
2.2.4 Algorithmic Optimisation Techniques 17

2.3 Runtime Measurement . 18

3 Homogeneous Diffusion 21
3.1 Motivation . 21
3.2 Introduction to Homogeneous Diffusion 22
3.3 Classical Numerics . 23

3.3.1 Explicit Linear Diffusion 23
3.3.2 Implicit Linear Diffusion 25
3.3.3 Spatial Convolution 26
3.3.4 Multiplication in the Frequency Domain 29
3.3.5 Recursive Filtering 30
3.3.6 Iterated Box Filtering 35

3.4 Numerical Improvements . 40
3.4.1 Box Filtering with Correction 40

v

vi CONTENTS

3.4.2 Extended Box Filtering 42
3.5 Efficient GPU-Based Algorithms 46

3.5.1 Explicit Linear Diffusion 46
3.5.2 Implicit Linear Diffusion 47
3.5.3 Spatial Convolution 48
3.5.4 Multiplication in the Frequency Domain 50
3.5.5 Recursive Filtering 52
3.5.6 Iterated (Extended) Box Filtering 53

3.6 Experiments . 56
3.6.1 Ground Truth . 57
3.6.2 Parameter Configuration 60
3.6.3 Quality Comparison 76
3.6.4 Runtime . 80

3.7 Summary . 88

4 Anisotropic diffusion 91
4.1 Motivation . 91
4.2 Edge and Coherence Enhancing Diffusion 93
4.3 Fast Explicit Diffusion . 95
4.4 Implementation on a GPU 98
4.5 Experiments . 99

4.5.1 Visual Comparison 99
4.5.2 Runtime Scaling on Image Size 101
4.5.3 Runtime Scaling on Stopping Time 103
4.5.4 Runtime Comparison to CPU 105

4.6 Summary . 107

5 PDE-Based Image Inpainting 109
5.1 Motivation . 109
5.2 Image Inpainting . 111
5.3 Cascadic FED . 112
5.4 GPU-Based Algorithm . 114

5.4.1 FED . 115
5.4.2 Resampling . 115

5.5 Experiments . 117
5.5.1 Quality and Parameters 117
5.5.2 Runtime . 119

5.6 Application: Realtime Video Inpainting 124
5.6.1 Scenario . 124
5.6.2 Semantic and Analytic Image Compression 124
5.6.3 Implementation . 125

CONTENTS vii

5.6.4 Examples . 127
5.6.5 Efficiency . 128

5.7 Conclusion . 131

6 Optic Flow 133
6.1 Introduction . 133
6.2 Variational Optic Flow . 136

6.2.1 Complementary Optic Flow 137
6.2.2 Energy Minimisation via the

Euler-Lagrange Framework 140
6.2.3 Warping . 141

6.3 Numerical Solution . 143
6.3.1 Fast Explicit Diffusion 143
6.3.2 Fast Jacobi . 146
6.3.3 Cascadic Application 148

6.4 Implementation on the GPU 149
6.5 Experiments . 151

6.5.1 Quality . 151
6.5.2 Runtime . 161

6.6 Interactive Real-Time Application 166
6.7 Summary and Conclusion 167

7 Halftoning 171
7.1 Motivation . 171
7.2 Point-Based Halftoning . 175

7.2.1 Rendering . 178
7.2.2 Sampling . 180
7.2.3 Sampling + Rendering = Halftoning? 182

7.3 Electrostatic Halftoning . 184
7.3.1 Repulsion . 185
7.3.2 Attraction . 187
7.3.3 Towards an Iterative Scheme 188

7.4 Modifications and Extensions 191
7.4.1 Dithering . 192
7.4.2 Point Size Adjustment 194
7.4.3 Grey Value Correction 195
7.4.4 Jittering for Stippling 198
7.4.5 Edge Enhancement 200
7.4.6 Colour Halftoning . 201
7.4.7 Second Order Screening 206
7.4.8 Multi-Class Sampling 210

viii CONTENTS

7.5 Direct Summation Algorithm 214
7.5.1 Attraction . 215
7.5.2 Repulsion . 218
7.5.3 Transporting Particles 220
7.5.4 Additional Features 221

7.6 Fast Summation Algorithm 222
7.6.1 Repulsion by Fast Summation 224
7.6.2 Non-Equispaced Fast Fourier Transform 228
7.6.3 Near-Field Evaluation 232
7.6.4 Attraction . 235

7.7 Experiments . 236
7.7.1 Examples . 236
7.7.2 Evaluation of Quality 237
7.7.3 Modifications and Extensions 251
7.7.4 Runtime . 292
7.7.5 Quality-Based Runtime for Fast Summation 299
7.7.6 CUDA Performance Profiling 299

7.8 Summary . 302

8 Summary and Outlook 305
8.1 Overview . 305
8.2 Conclusions . 308
8.3 Future Work . 309

A Proofs 313
A.1 Linear Diffusion . 313
A.2 Halftoning . 319

Bibliography 329

Short Abstract

This thesis presents new parallel algorithms which accelerate computer vi-
sion methods by the use of graphics processors (GPUs) and evaluates them
with respect to their speed, scalability, and the quality of their results. It
covers the fields of homogeneous and anisotropic diffusion processes, diffu-
sion image inpainting, optic flow, and halftoning.

In this turn, it compares different solvers for homogeneous diffusion
and presents a novel ‘extended’ box filter. Moreover, it suggests to use
the fast explicit diffusion scheme (FED) as an efficient and flexible solver
for nonlinear and in particular for anisotropic parabolic diffusion problems
on graphics hardware. For elliptic diffusion-like processes, it recommends
to use cascadic FED or Fast Jacobi schemes. The presented optic flow
algorithm represents one of the fastest yet very accurate techniques. Finally,
it presents a novel halftoning scheme which yields state-of-the-art results
for many applications in image processing and computer graphics.

ix

Kurzzusammenfassung

Diese Arbeit präsentiert neue parallele Algorithmen zur Beschleunigung
von Methoden in der Bildinformatik mittels Grafikprozessoren (GPUs), und
evaluiert diese im Hinblick auf Geschwindigkeit, Skalierungsverhalten, und
Qualität der Resultate. Sie behandelt dabei die Gebiete der homogenen und
anisotropen Diffusionsprozesse, Inpainting (Bildvervollständigung) mittels
Diffusion, die Bestimmung des optischen Flusses, sowie Halbtonverfahren.

Dabei werden verschiedene Löser für homogene Diffusion verglichen und
ein neuer ‘erweiterter’ Mittelwertfilter präsentiert. Ferner wird vorgeschla-
gen, das schnelle explizite Diffusionsschema (FED) als effizienten und flex-
iblen Löser für parabolische nichtlineare und speziell anisotrope Diffusion-
sprozesse auf Grafikprozessoren einzusetzen. Für elliptische diffusionsartige
Prozesse wird hingegen empfohlen, kaskadierte FED- oder schnelle Jacobi-
Verfahren einzusetzen. Der vorgestellte Algorithmus zur Berechnung des
optischen Flusses stellt eines der schnellsten und dennoch äußerst genauen
Verfahren dar. Schließlich wird ein neues Halbtonverfahren präsentiert, das
in vielen Bereichen der Bildverarbeitung und Computergrafik Ergebnisse
produziert, die den Stand der Technik repräsentieren.

xi

Abstract

This thesis describes the acceleration of computer vision methods by the
use of graphics processors (GPUs). Besides the design and the optimisation
of efficient parallel algorithms, it particularly covers the evaluation with
respect to their speed, scalability, and the quality of their results.

On the one hand, this thesis deals with techniques which are based on
partial differential equations (PDEs). This includes homogeneous and non-
linear, potentially anisotropic diffusion processes, their elliptic extension to
diffusion-driven image inpainting methods, as well as the determination of
motion information in image sequences, the so-called optic flow. On the
other hand, this thesis also covers the transformation of images into binary
halftones, i.e. exclusively black and white images. For all of these meth-
ods, it presents GPU-based algorithms which solve the respective task in a
fraction of the time required by a conventional desktop processor (CPU).

Moreover, this thesis also focusses on the central question about the
magnitudes by which techniques from the various fields of visual computing
can be accelerated by GPUs. To this end, it describes the implementation
of different numerical approaches on this architecture and compares them
to each other.

Homogeneous diffusion is implemented by explicit and implicit solvers
for discrete diffusion problems, as well as by methods that are based on
frequency filters. This includes the convolution with a discrete Gaussian
kernel, multiplications in the frequency domain, recursive filters, and iter-
ated box filters. As a part of the latter group, this thesis also presents a
novel ‘extended’ box filter. This new filter performs well on CPUs, but it
cannot reach the performance of the recursive filter on GPUs.

In the field of non-linear, potentially anisotropic diffusion processes,
this work follows the recently published ‘fast explicit diffusion scheme’
(FED) [GWB10], and introduces it as an efficient parallel solver for GPUs
and other massively parallel platforms. Its superior performance compared
to traditional explicit and implicit schemes carries over to GPUs. This is
shown for the example of edge and coherence enhancing diffusion [Wei11a].

A similar numerical scheme based on FED is well suited to fill in missing

xiii

xiv

image information by means of anisotropic or homogeneous diffusion image
inpainting schemes. For further increasing the convergence behaviour, a
uni-directional multigrid method is employed [GWB10].

The concepts presented in the context of the previously treated PDEs
are extended to a modern model for motion estimation. Although this tech-
nique belongs to the most complex visual computing methods in terms of
its algorithmic structure, the presented FED-based algorithm enjoys enor-
mous speedups over the CPU. At the time of publication, the international
Middlebury benchmark [BSL+11] listed this algorithm on the 6th rank with
respect to accuracy, where it represents the fastest method among the top
10. By the application of a ‘Fast Jacobi’ scheme (FJ) [Wei11b], its perfor-
mance is increased even further.

Finally, this thesis also presents a novel halftoning method based on elec-
trostatic particle models, which has many applications also in the field of
importance sampling. The algorithmic solution of this problem requires too
much time on conventional platforms, such that its applicability would nor-
mally be limited. However, the presented efficient GPU-based algorithms
for this purpose result in a tremendous speedup. Among those is the first
GPU-based ‘fast summation’ technique that sets up on non-equispaced fast
Fourier transforms (NFFTs). It causes a runtime which opens doors for ex-
tensive research in this field: In order to demonstrate the versatility of the
method, this thesis presents many adaptations and application examples.
This includes a dithering method, an improvement of saturated regions in
point-based halftones, multichannel halftoning, a support of points with
different sizes, and an importance sampling technique that allows differ-
ent primitives in different sizes. In many of these application areas, these
methods yield state-of-the-art results.

Zusammenfassung

Diese Arbeit befasst sich mit der Beschleunigung von Methoden der Bild-
informatik unter der Verwendung von Grafikprozessoren (GPUs). Neben
dem Entwurf und der Optimierung von effizienten parallelen Algorithmen
steht vor allem auch deren Evaluation in Hinblick auf ihre Geschwindigkeit,
Skalierbarkeit und die Qualiät der Ergebnisse im Vordergrund.

Auf der einen Seite behandelt diese Arbeit dabei Verfahren, die auf par-
tiellen Differenzialgleichungen (PDEs) beruhen. Darunter fallen homogene
sowie nichtlineare und potenziell anisotrope Diffusionsgleichungen, deren
elliptische Erweiterung auf diffusionsgetriebene Inpainting-Modelle, sowie
die Berechnung von Bewegungsinformationen in Bildsequenzen, dem soge-
nannten optischen Fluss. Daneben befasst sich diese Arbeit auch mit der
Transformation von Bildern in binäre, d.h. ausschließlich schwarz-weiße,
Halbtongrafiken. Für all diese Aufgaben werden GPU-basierende Algorith-
men vorgestellt, die das gegebene Problem in einem Bruchteil der Zeit lösen,
die ein gewöhnlicher Prozessor (CPU) dafür benötigt.

Im Fokus dieser Arbeit steht aber auch die zentrale Fragestellung, in
welchem Umfang Methoden aus verschiedenen Teilbereichen der Bildinfor-
matik mittels GPUs überhaupt beschleunigt werden können. Dazu wer-
den verschiedene numerische Verfahren auf dieser Plattform umgesetzt und
gegeneinander verglichen.

Für die homogene Diffusion kommen dabei neben expliziten und im-
pliziten Lösern für diskrete Diffusionsprobleme auch Verfahren zum Einsatz,
die auf Frequenzfiltern beruhen. Neben Faltungen mit einem diskretisierten
Gaußkern werden Multiplikationen im Frequenzraum, rekursive Filter,
sowie iterierte Mittelwertfilter angewendet. Im Rahmen der letzteren
Gruppe stellt die Arbeit auch einen neuen ‘erweiterten’ Mittelwertfilter vor,
der sich zwar auf traditionellen Architekturen als vorteilhaft erweist, jedoch
auf GPUs nicht an die Leistung eines rekursiven Filters heranreicht.

Im Bereich der nichtlinearen, potenziell anisotropen Diffusionsprozesse
orientiert sich die Arbeit am kürzlich vorgestellten ‘schnellen expliziten
Diffusionsverfahren’ (FED) [GWB10], und führt es als effizienten par-
allelen Löser auf Grafikkarten und anderen massivparallelen Plattfor-

xv

xvi

men ein. Die vorteilhafte Geschwindigkeit gegenüber herkömmlichen ex-
pliziten und impliziten Schemata lässt sich dadurch mit nur geringem
Aufwand auch auf GPUs übertragen. Dies wird am Beispiel der kanten-
und kohärenzverstärkenden Diffusion [Wei11a] vorgeführt.

Eine ähnliche auf FED basierende Numerik eignet sich auch her-
vorragend für die Vervollständigung fehlender Bildinformationen mit-
tels anisotroper oder homogener Diffusion. Hier wird zur zusätzlichen
Steigerung der Konvergenz ein unidirektionales Mehrgitterverfahren einge-
setzt [GWB10].

Die im Rahmen der bisher behandelten PDEs vorgestellten Konzepte
werden schließlich auf ein modernes Modell zur Bewegungsschätzung er-
weitert. Obwohl dieses hinsichtlich der algorithmischen Struktur zu den
komplexeren Verfahren der Bildinformatik gehört, erreicht der auf FED
basierte Algorithmus enorme Beschleunigungen gegenüber der CPU. Zum
Zeitpunkt der Veröffentlichung listete der Middlebury-Benchmark [BSL+11]
das Verfahren auf Rang 6 im Bezug auf die Genauigkeit, wo es die schnellste
Methode unter den Top 10 stellte. Diese Leistung wird durch den Einsatz
eines ‘schnellen Jacobi-Verfahrens’ (FJ) [Wei11b] sogar noch erhöht.

Schließlich präsentiert diese Arbeit auch ein neues, auf elektrostatischen
Partikelmodellen beruhendes Halbtonverfahren vor, das auch vielfältige
Anwendung im Bereich der adaptiven Abtastung hat. Die algorithmische
Lösung dieses Problems benötigt zu viel Zeit auf gewöhnlichen Plattformen,
sodass die Anwendung des Verfahrens normalerweise stark eingeschränkt
wäre. In dieser Arbeit werden jedoch schnelle Algorithmen vorgestellt, die
die Laufzeit drastisch senken. Darunter ist auch das erste GPU-basierte
Verfahren zur ’schnellen Summierung’, welches auf schnelle Fouriertrans-
formationen für ungleichmäßig verteilte Datenpunkte (NFFT) zurückgreift.
Die neu gewonnene Geschwindigkeit erlaubt eine umfangreiche Forschung
auf dem Gebiet: Als Beispiele für die Vielfältigkeit des Verfahrens stellt
die Arbeit eine gitterbasierte Halbtonmethode, eine Verbesserung stark
gesättigter Bildbereiche in punktbasierten Halbtonbildern, Mehrkanal-
Halbtonverfahren, eine Unterstützung verschiedener Punktgrößen, sowie ein
adaptives Abtastverfahren mit unterschiedlichen Geometrieelementen un-
terschiedlicher Größe vor. Viele dieser Auskopplungen repräsentieren den
aktuellen Stand der Technik.

Acknowledgements

During my work on this project, I enjoyed the support of many people
without whom this thesis would never have become reality. I would like
to take this chance to express my thanks to everybody who contributed to
this success.

My thanks go to Prof. Dr. Joachim Weickert for supplying the idea
for this exciting project, for supervising my thesis, and for giving me the
opportunity to work in his group. I also wish to express my gratitude to the
cluster of excellence ‘Multimodal Computing and Interaction’ who enabled
me to pursue this project by funding my work. Furthermore, I like to thank
Prof. Dr. Horst Bischof for agreeing to become an external reviewer.

I owe my special thanks to my friends Sven Grewenig, Markus Main-
berger, Christian Schmaltz, and Henning Zimmer, who spent many days
and nights on the proofreading of this thesis. Without their appreciated
help, their day-and-night support, and their instant replies on e-mails, I
could not even hope to have reached my submission deadline.

Moreover, I want to thank all current, former, associated, and visiting
members of the MIA group. The great atmosphere and the many activities
we enjoyed together were a beautiful experience. In particular, I would
like to express my thanks to Marcus Hargarter and Ellen Wintringer who
solved many of my problems, often without me even noticing it. Their
constant effort was a relaxing relief. I also thank all my colleagues who
were always there to discuss interesting ideas, some of which finally led
to exciting publications. In particular, I would like to mention Christian
Schmaltz, Sven Grewenig, Markus Mainberger, Andrés Bruhn, and Henning
Zimmer. It is amazing to see how team spirit turns into great things.

Last but not least, I wish to thank my family and friends who supported
me in all situations, and in particular within the recent stormy days. Many
people stood beside me and helped out whenever they could. While it
is impossible to name them all, I would like to say a big thank you to
my parents Jörg and Silvia Gwosdek, to Lena Gwosdek and Alex Maida,
Michael Bauer, Marcus Hargarter, Markus Mainberger, Martin Grochulla,
and Sven Grewenig.

xvii

Chapter 1
Introduction

The world is changing very fast.
Big will not beat small anymore.

It will be the fast beating the slow.

Rupert Murdoch

1.1 Motivation

Visual computing comprises some of the most exciting topics in computer
science. All subjects in this field are in one or the other way concerned
with the human visual system, and by this they create and promote an
intuitive interface between computers and our real world: Image processing
targets at the automatic improvement, modification, or simplification of
images. Computer vision enables machines to understand a depicted scene,
and to extract and categorise advanced features such as motion, structure,
or material properties. Computer graphics reverts this process by creating
realistic images out of abstract descriptions of a scene.

Techniques from all of these fields are omnipresent in our everyday lives,
and with the development of highly accurate models their influence is still
rising. Machines take over parts of our work, and accelerate this process
by being less flexible, but much faster and reliable. We trust in computer
vision systems to detect defects in materials, to help us steer our cars, or
to warn us from sudden situations of danger. We entrust our own health
to image processing, since it can detect diseases or anomalies, or help the
surgeon during complicated operations.

The tremendous improvements in visual computing are one of the rea-

1

2 CHAPTER 1. INTRODUCTION

sons for the high standards of safety, medical care, economical productivity,
and consumer technology we enjoy nowadays. However, the rising needs in
many of these fields also lead to a severe bottleneck. More accurate meth-
ods require in general a higher computational workload. This challenge
can be mastered by supplying better numerical schemes, more compute re-
sources, or by investing more time. For many applications, the latter option
is inapplicable because certain time constraints hold. As a consequence, we
observe a vivid research in the development of new numerical schemes and
efficient algorithms.

If this performance is still not sufficient to solve all arising problems in
the desired time, we have two choices. The most defensive yet not satisfying
solution is the reduction of the problem size or algorithmic complexity. This
yields less accurate results, which are nevertheless often accepted as a nec-
essary compromise. However, there is also a second option which promises
to provide the original quality in a higher runtime: special hardware.

In the last decade, graphics devices advanced to a popular coprocessor
for applications in visual computing. On the one hand, this is motivated
by their high availability and low prices. Today, it can be assumed that ev-
ery modern desktop computer is equipped with a powerful programmable
graphics card which is often underutilised. On the other hand, graphics
cards are designed for a high data throughput and massively parallel oper-
ations — which exactly matches the profile of many modern visual comput-
ing algorithms. Moreover, the development of graphics processors (GPUs)
enjoyed a rapid progress in the last few years. Modern GPUs are almost
one order of magnitude faster than standard CPUs[NVi11b], which promises
a performance that normally only applied to expensive high-performance
compute clusters or custom-built hardware.

As a consequence, there is a variety of works in the literature that use
GPUs to accelerate visual computing applications. The first approaches in
general purpose computing on GPUs (GPGPU) were still closely related
to the original orientation of GPUs on graphics processing [CN93, WE98].
Although the purpose of these works still was the visualisation of complex
data on a graphics device, they already exploited the high performance of
dedicated texturing circuits and programmable shaders to accelerate the
processing of 3-D datasets.

Soon, this tight binding between computations and visualisation was
released in favour of using the GPU as a real numerical co-processor for
matrix-valued computations [RS01, Göd05]. This traditional GPGPU idea
was based on a few general concepts to encode a mathematical problem
in image buffers and blending operations. After being processed in the
OpenGL or DirectX pipelines of the graphics device, the resulting im-

1.1. MOTIVATION 3

age could be re-interpreted to the sought solution. This gave rise to
the development of libraries which provide an abstraction layer to the
programmer, and offer visual computing primitives as high-level func-
tions [FMA05, BS08, AHAS08]. By doing so, they hide the complicated
and time-consuming re-coding and execution stages from the programmer.

In the following years, graphics card manufacturers officially started to
support GPGPU, and developed high-level languages for an easier and faster
access to the CPU [Hen07, NVi11b, Khr10, Adv11]. The accompanying
simplification to the design process caused a massive number of new GPU-
based parallel computer vision algorithms and a rising competition in this
field. Besides many standalone algorithms for specific applications, there
are also high-level visual computing libraries that use the high-level CUDA
API by NVidia [NVi11b] to accelerate their computations [Cor11, Ope11],
as well as loose collections of algorithms and libraries for complex vision
applications [PBH+11].

The work presented in this thesis pursues similar objectives, but its
ambitions are much higher: Many other works are focussed on obtaining
real-time performance with algorithms that already possess near-realtime
performance on traditional architectures. This is driven by their direct
applicability in large-scale processes, and is often endorsed and co-financed
by industry. Such efforts lead very often to extremely fast algorithms which
may sometimes even be implemented in dedicated hardware. However, since
these algorithms are tailored towards a good runtime performance, they do
often not yield state-of-the-art results.

Our motivation in this thesis is slightly different. While we are also
interested in an optimal runtime, we intentionally place this demand behind
the requirement of a high quality of the results. We base our efficient GPU-
based algorithms on some of the most accurate models in their fields. Hence,
our work also explores the limits that arise for the fast solution of complex
problems in visual computing. To this end, we also obtain an overview map
of expectations we can put into the hardware-accelerated solution of other,
potentially more complex tasks.

In the first part of this thesis, we review those image processing and
computer vision techniques that are based on partial differential equations
(PDEs). They have a good reputation for their high quality and flexibil-
ity, but nevertheless people frequently abstain from using them for real-
world applications. Often, PDE-based algorithms are brought into disre-
pute wholesale for being too slow to solve a particular task, or people simply
do not feel experienced enough to design a PDE-based algorithm for a new
problem. In the following chapters, we are going to see that PDEs can
lead to fast and accurate solutions for many problems. Moreover, we learn

4 CHAPTER 1. INTRODUCTION

that the additional challenge of designing a GPU-based algorithm can be
extremely simplified if we adhere to a few very simple strategies.

The second part of this thesis is then concerned with a new physical
model for the binarisation of image, the so-called halftoning. While the
algorithmic complexity for this method is even higher than for many PDEs,
we are also going to see that GPUs can yield significant speedups over
traditional architectures. This advantage promotes and opens the novel
method to a high number of exciting applications, where it yields state-of-
the-art results.

1.2 Goals

The goals of this thesis are the development of efficient GPU-based al-
gorithms for the most important problems in visual computing, and the
investigation of their scaling behaviour on massively parallel architectures.
Our new GPU-based algorithms shall not only provide a similar quality as
established methods on the CPU in a much shorter time. They shall also
explore the general limitations and pitfalls which occur in the development
of such algorithms.

Our algorithms are supposed to present efficient approaches to general
concepts rather than solutions for specific problems. By this, they allow
universal insights on the parallelisation gain of typical visual computing
problems, and allow an easy adaptation to new, potentially more complex,
tasks. In particular, we are interested in efficient numerical and algorithmic
schemes which are suited to solve these problems efficiently on GPUs. Even
if hardware changes, it is likely that these general strategies do not lose their
relevance.

1.3 Outline

This thesis is organised as follows. We continue with a short introduc-
tion into GPU programming in Chapter 2. Following this technical review
of the underlying architecture, we focus on the area of PDE-based image
processing and computer vision. In Chapter 3, we are concerned with ho-
mogeneous diffusion which is represented by one of the simplest PDEs.
We compare many different numerical solutions of this problem, and show
that they possess fundamentally different runtimes on the GPU. Chapter 4
then examines parabolic anisotropic diffusion processes. We employ the
recently proposed FED scheme by Grewenig et al. [GWB10] as an efficient

1.3. OUTLINE 5

and well-parallelisable solver for arbitrary diffusion-like processes on GPUs.
In Chapter 5, we see that similar ideas carry over to the elliptic setting, and
propose a parallel algorithm for PDE-based image inpainting. This concept
is further generalised in Chapter 6, where we present an efficient GPU-
based solver for variational optic flow. In this context, we also develop
an algorithm based on the FJ scheme by Weickert [Wei11b] which seems
to be even better suited for elliptic processes than FED. After this chap-
ter, we leave the area of PDE-based visual computing models. Chapter 7
presents a novel technique for halftoning and sampling that has many appli-
cations in image processing and computer graphics. This technique yields
state-of-the-art results for many applications, but the CPU-based method
is inherently slow. Our new efficient algorithms yield results in a much
smaller runtime. We use this advantage to extend the method to a broad
range of applications. The core of this thesis then closes with a summary
in Chapter 8. It is supplemented by a collection of proofs in Appendix A,
by an academic résumeé, and by a list of bibliographic references.

Chapter 2
CUDA

The utopist sees the paradise.
The realist sees the paradise with the snake.

Friedrich Hebbel

2.1 Graphics Processing Units

Graphics Processing Units (GPUs) are made for the efficient processing
of large vector-based data sets. Thanks to an optimised hardware layout,
modern GPUs are able to process thousands of elements of such vectors in
parallel. However, this specialised hardware design also implies that the
use of GPUs requires programming concepts which differ fundamentally to
those that are commonly applied on traditional hardware. Hence, all al-
gorithms that should be accelerated by GPUs must be re-designed on the
whole. This design process calls for a profound knowledge of the underlying
architecture and possible race conditions that can occur in the massively
parallel setting. These requirements, and the lack of a comfortable de-
velopment environment, make the design and optimisation of GPU-aided
algorithms a highly challenging task.

In this chapter, we briefly review the characteristics of modern GPUs,
and compare them to the corresponding properties of classical CPU archi-
tectures. We discuss the consequences on the layout of algorithms, and
point out differences and similarities to sequential concepts, as well as to
traditional parallelisation concepts. To this end, we follow closely the offi-
cial documentation for GPUs manufactured by NVidia [NVi11b], but many
of the described ideas directly carry over to other brands and models. This

7

8 CHAPTER 2. CUDA

holds in particular because we are primarily interested in the impact of
architectural characteristics on algorithms in the field of visual computing.

2.1.1 Performance

In the last decade, graphics cards enjoyed a boost in performance. When
the first programmable graphics cards were published in 2003, their perfor-
mance was lower than 5.0 ·1010 single precision floating point operations per
second (Flops/s) [NVi11b]. In contrast, a modern NVidia GeForce GTX 580
published in 2011 provides more than 1.5 ·1012 Flops/s. This corresponds
to a speedup of more than 30 over a period of less than 10 years. However,
this rapid development also causes 30 times more data to be processed in
a certain time interval. As a consequence, also the memory bandwidth was
increased tremendously within this period. While old devices from 2003
have a memory throughput of less than 20 GB/s, modern graphics cards
almost reach 200 GB/s and possess an elaborate caching hierarchy.

Although the values for both measures are less than one order of magni-
tude above those for modern desktop architectures [NVi11b], it is a common
belief in the community that GPUs are generally capable of speedups by
2–3 orders of magnitude [SSG+08, LKC+10]. While this rumour was fre-
quently used as a marketing argument by GPU manufacturers, there are
also counter-statements from CPU producing companies. They expect av-
erage speedups by a factor 2.5 [LKC+10].

The truth is that the parallelisation speedup depends on the structure
and size of the problem, as well as on the optimisation state of the CPU-
based and GPU-based algorithms to be compared. In the following chap-
ters, we see several GPU algorithms for visual computing tasks. While some
of them only yield accelerations by less than a factor 10, others improve the
performance on the CPU by more than 100. We are also going to see that
different numerical solutions of a problem scale differently on a GPU than
on a CPU. Hence, different ideas can lead to an optimal algorithm on a par-
ticular architecture. This reduced comparability of approaches complicates
the determination of a valid speedup even further.

2.1.2 The GPU as a Coprocessor

GPUs are designed as numerical coprocessors in CPU-based desktop com-
puters. Although this concept stems from the traditional role of the graphics
card as an auxiliary device, it is today also defined by the layout of this
architecture. The high number of parallel resources does not allow each

2.1. GRAPHICS PROCESSING UNITS 9

unit to maintain its individual control flow. Both the die area and the
communication overhead would significantly exceed the admissible limits.

Instead, it is required that each element of the vector-based input data
can be processed by the same operation simultaneously. Moreover, the
control flow must be sufficiently simple. Due to the lack of a call stack,
all GPU-programs, called kernels, must consist of only one function. This
means that function calls including recursion are impossible on a GPU.

However, this limitation is less restrictive as it seems at first glance,
because complex control flow patterns can much more efficiently be executed
by the sequential CPU. This leads to a programming model in which the
coarse-scale program flow is decoupled from the data flow:

• Programs are executed on the CPU. This allows to be as flexible as in
the fully sequential case. Besides potentially recursive, hierarchic, and
highly conditional control flow patterns, this flexibility also involves a
free access to all resources such as the command line, the hard disk,
and special devices.

• The GPU is only employed for specific data-parallel tasks, which are
performed very efficiently on this architecture. The CPU explicitly
calls each of these GPU kernels, and waits for them to finish. Once
this happens, the GPU goes idle until the next kernel is called.

In visual computing, this splitting leads to an intuitive design principle.
Given a working CPU-based program, all image-based operations are ex-
changed by efficient GPU kernels. Figuratively spoken, this affects all lo-
cations in the program source code in which a 2-D pixel index is gradually
incremented, such that some operations are performed on either an image
or an intermediate solution. Examples for such cases are the application of
a solver to a linear system of equations, point-wise operations on an image,
the scaling or translation of images, or the convolution of two images.

Due to this close cooperation of CPU and GPU, we avoid misleading
terms such as GPU algorithm which are frequently found in the literature.
Instead, we refer to GPU-based or GPU-aided algorithms to underline the
heterogeneous nature of this setup. Speedups occurring in such cases are
not only related to the high theoretical compute power of GPUs, but also
to a smart splitting of the algorithm into two partitions, each of which can
efficiently be processed on exactly one of the two architectures.

10 CHAPTER 2. CUDA

CPU RAM

L2

L1

CPU

GPU RAM

L2

L1

GPU

Shared

Tex

Reg Reg

Atomics
(slow, thread-safe)

Upload
Download

Controls

RAM access
(slow)

PCIe bus
(very slow)

Figure 2.1: Simplified model of the CUDA memory hierarchy and host interac-
tion on a recent NVidia graphics card.

2.1.3 Memory Model

Because of this separation, the designer of an algorithm must choose ap-
propriate memory locations to store data. Both the CPU and the GPU
are equipped with individual physical memories (RAM) and with caches.
Figure 2.1 shows an abstract model of the different memories and their
connections, assuming a recent graphics device by NVidia. It does not ex-
actly reflect the actual hardware layout, but it serves as a good picture to
have in mind when it comes to the different types of memory and their
interconnection.

Note that two types of memory access are particularly expensive. Read-
ing data from the RAM always involves significant memory latencies in the
order of several hundreds of clock cycles. However, the transfer of data
between the RAMs of the CPU and the GPU even takes much longer, usu-
ally up to several milliseconds per megabyte. This is because data must be
transferred via the PCIe bus which does not provide the necessary band-
width.

To reduce this transfer time, it is the challenge for the programmer to
keep data in one memory as long as possible. Unless the overall memory
requirements of a program exceed the physical limits, this paradigm is easy
to fulfil. In context of visual computing, we are interested in the processing
of large images. Once they are uploaded to the graphics RAM, there is
usually no need to download large data blocks back to CPU memory before
the complete program (with all kernels) finishes:

• The CPU-sided algorithm is only interested in control information

2.1. GRAPHICS PROCESSING UNITS 11

which affects the program flow of the program. Such data includes
the dimensions of the image, numerical parameters such as the itera-
tion number or recursion depth, and casual scalar feedback such as a
convergence state of the program.

• In contrast, the GPU requires all vector-based inputs and interme-
diate solutions. In addition, it casually requires scalar parameters
such as individual time step widths, thresholds, the current size of
the problem to solve, or the number of iterations to perform.

Scalar parameters can conveniently be transferred to the GPU by passing
them as arguments to the kernel function. The inverse direction, down-
loading scalar data from the GPU, works similar to the download of vector-
valued data. Note that such a step usually not only involves to retrieve this
information, but also to create a scalar out of large vector-based data. This
reduction operation is discussed in more detail in Section 2.2.4.

Threads can directly address the GPU RAM, also called global memory,
and exchange data with it. Since such accesses are not thread-safe, all
threads must ensure that their operations do not interfere. Often, this
constraint leads to laminar data access patterns where threads in a row
read and write subsequent memory cells. As a side effect, such ‘coherent’
accesses are also more efficient than single reads and writes in a buffer.

On recent graphics cards, this ‘standard’ type of global memory inter-
action is buffered by a hierarchy of L1 and L2 caches. Similar to their
counterparts on traditional architectures, these caches are mostly hidden
to the programmer, but help to reduce read and write latencies. The L1
caching policy can partially by configured from CPU side.

These fully managed caches are complemented by a user-controlled
scratchpad, the so-called shared memory. Its name is related to the fact
that a group of threads share this joint partition of fast on-chip memory.
Within such a group of threads that we further detail on in the next section,
threads can use shared memory for a quick exchange of information.

In addition to these read-and-write caches, GPUs also offer a hardware
managed read-only cache which directly communicates with global memory.
This texture cache is optimised towards 2-D access, and will be discussed
in more detail in Section 2.2.2. In case of a cache hit, requests are similarly
fast as if they are issued to shared memory.

Finally, there is also a possibility to enforce thread-safe writes. These
atomic operations are not very efficient, but sometimes inevitable. We
discuss them in more detail in Section 2.2.3.

12 CHAPTER 2. CUDA

2.2 CUDA Programming Model

As a convenient way to write general-purpose applications for graphics
cards, NVidia introduced a high-level programming model and API, called
Compute-Unified Device Architecture (CUDA) [NVi11b]. While traditional
GPGPU programs were required to rewrite a problem as a sequence of
graphics operations [Göd05], this new programming model allows to for-
mulate vector- and matrix-based operations in a high-level programming
language which extends the C/C++ standards. Similar concepts are also
implemented in the APP interface by AMD [Adv11], which sets up on the
platform-independent programming standard OpenCL [Khr10].

Since the graphics card we use in our experiments is produced by NVidia,
we formulate all algorithms with respect to the CUDA API. This design
promises the best occupancy of the available hardware resources, while it
preserves its generality with respect to devices from other vendors: All
parallel processing APIs for graphics cards use similar concepts both in
software and in hardware, such that the algorithms we write can be ported
to other platforms without difficulties.

Maybe even more important than the chosen API is the native instruc-
tion set of the used hardware. NVidia distinguishes their different hardware
versions by an abstract release number, the compute capability, which con-
sists of a combination of a major and a minor index. For our applications,
we can often ignore the minor number and focus on the differences in the
major index. Besides the aforementioned caches, the 2.x Fermi series of
NVidia graphics cards also introduces additional features. This allows for
runtime improvements, but also for an application to problems that cannot
be solved with cards that only support compute capability 1.x. We come
back to this detail later in this chapter. For our experiments, we use a
modern NVidia GeForce GTX 480 which supports compute capability 2.0.

2.2.1 General Concepts

In CUDA, a parallel GPU kernel consists of a grid of independent threads.
Although this grid can have either 1, 2, or 3 dimensions, computer vision
applications often naturally impose a 2-D thread grid. In such setup, each
thread computes the result for exactly one pixel. This massively parallel
programming concept is visualised in Figure 2.2.

It has a direct influence on the way how CUDA kernels are written.
Instead of a domain decomposition into larger chunks such as it is common
in CPU multi-threading, a CUDA kernel is conceptually centred around
the needs for one arbitrary pixel. This is similar to the single instruction

2.2. CUDA PROGRAMMING MODEL 13

Block ThreadBunch

Image

domain

Figure 2.2: CUDA thread hierarchy. Threads are organised in blocks, which
are again organised in bunches. Each thread handles exactly one pixel from the
image domain.

multiple data (SIMD) mechanism of modern CPU architectures. Whenever
special cases must be handled, only those threads for which a condition
holds are active. All other threads are idle until the special case handling
is finished. As a consequence, branching should be avoided wherever this is
possible.

A user-specified number of threads is organised in one CUDA block. Such
blocks are an algorithmic unit which corresponds to a group of threads that
are simultaneously hold in memory, and that are executed on one physical
core of the device. In general, it is safe to assume that threads of one block
are executed in parallel, although they are factually processed in warps
of 16 threads per clock cycle. The latter detail is important for special
optimisations, such as the one described in Section 2.2.4.

Threads within one block share common resources such as the shared
memory, and can use this scratchpad to communicate with each other.
Beyond the boundary of blocks, communication can only happen via slow
global memory operations. This is because different blocks are not necessar-
ily executed at the same time, but can also be scheduled sequentially onto
the same core. The decision about which GPU core handles which block is
up to the run-time scheduler and cannot be influenced by the programmer.
The size of each block can be chosen and optimised manually, but must be

14 CHAPTER 2. CUDA

constant per kernel call. It is limited by the physical resources a CUDA
core provides. Besides the 48 kB of shared memory on recent devices, this
also affects the number of registers.

The number of blocks that are necessary to process a task depends on
their size. In general, we must make sure that the discrete domain of the
underlying input image is densely tessellated by blocks, where potential
overlaps at the image boundaries are tacitly accepted. Regarding these
surplus pixels, note that a different treatment of ‘inner’ and ‘outer’ threads
would introduce significant overheads due to branching. This can be avoided
if all pixels are first processed as if they were inside the image domain.
Erroneously written values can then efficiently be reset or invalidated in a
second step, or during write-back to global memory.

For technical reasons, the CUDA scheduler can only handle a certain
device-dependent number of blocks at the same time. This value is al-
ways much higher than the number of physical resources, such that a good
occupancy can be guaranteed. However, it sometimes does not suffice to
tessellate a full input image. In these cases, the same kernel must be started
several times with different sets of blocks. We refer to each of this sets as
one bunch.

This hierarchic structure of CUDA primitives has consequences on the
layout of CUDA kernels. The position of a thread in the grid from Figure 2.2
determines the memory offset at which it is supposed to read and write data
in global memory. This address must be computed manually, typically as
the first step in a kernel. While the thread and block offsets are directly
accessible as built-in variables (threadIdx and blockIdx), the bunch offset
must be given as a parameter from CPU side. With these variables, the x
coordinate of a thread can be computed as

int x = (bunch_x * number_blocks_per_bunch + blockIdx.x)

* number_threads_per_block + threadIdx.x;

where the variables bunch_x, number_blocks_per_bunch, and
number_threads_per_block are specified by the user. The offset in
y direction follows straightforwardly, and the overall offset in linear
memory is (in row-first ordering) given by

int offset = y * nx + x;

where nx determines the width of the 2-D buffer in pixels.

2.2.2 Textures

A very powerful concept in GPU programming covers so-called textures.
It stems from the original aim of graphics cards to support hardware-

2.2. CUDA PROGRAMMING MODEL 15

accelerated rasterisation of 3-D scenes. In such pipelines, textures refer
to 2-D bitmaps which are placed onto 3-D objects. To accelerate the re-
trieval and visualisation of such information, graphics cards offer special
circuits and caches. They store 2-D information in a coherent way. On
a cache miss, a whole 2-D neighbourhood of the pixel in charge is loaded
from global memory. Note that this behaviour is fundamentally different
to classical caches, which only support 1-D cache lines.

This performance can also be exploited in CUDA. From a programmer’s
point of view, a CUDA texture is a special read-only reference to global
memory which is automatically cached by the 2-D aware texture caches. In
this context, it is not even necessary to access data in the same laminar
structure as imposed by Figure 2.2, but it is instead possible to access ran-
dom values from the whole image domain. These properties make textures
a convenient interface to be used in stencil-based operations, as well as in
applications which cannot guarantee a laminar memory access.

Moreover, many other features of the original graphics processing
pipeline are also supported in CUDA. This includes:

• An optional interpolation of texture data. Texture values can be
requested between grid points. Depending on the chosen interpolation
scheme, either the next neighbour, or a bi-linear interpolation between
the surrounding grid points is returned. Since these operations take
place in a dedicated circuit, they are as fast as a plain memory read.

• Automatic boundary handling. Textures can be requested outside
their defined domain. Depending on the configuration, such load can
return the closest boundary value, or the value from a periodic contin-
uation of the image. Note that the first type is equivalent to assuming
reflecting boundary conditions on a 1-pixel wide stripe. On graphics
cards with compute capability 2.x, this set of options is extended by
the emulation of a true mirroring with periodic continuation, as well
as by the continuation with zeroes. These options correspond exactly
to the concepts of Neumann and Dirichlet boundary conditions as
they appear in visual computing applications.

• An optional normalisation of coordinates. Instead of addressing
textures with their true number of grid points, both the width and
the height are normalised to 1. This can be interesting for applications
in which the underlying sampling rate is not necessarily bound to a
predefined grid, such as it is for a convolution kernel. Combined with
the bi-linear interpolation from above, the kernel can be dynamically

16 CHAPTER 2. CUDA

discretised in an arbitrary precision without the requirement to change
the corresponding convolution function.

In the following chapter, we discuss many examples where the 2-D aware
caches and the additional features help to speed up an algorithm signifi-
cantly. This holds in particular if we perform stencil-based operations on
the image, or if we process spare elements such as it is shown in Figure 2.2.
In both cases, there is no need to pad or mirror the input, as the texturing
unit handles these boundary situations automatically.

2.2.3 Atomic Operations

As it turns out, the laminar global memory access and the random read by
textures does not suffice to efficiently formulate arbitrary algorithms. As
a simple counter-example, assume a kernel that is given one address per
pixel, and that is supposed to manipulate the addressed pixel in a buffer.
The resulting memory pattern describes a random, potentially conflicting
write access to single pixels in the image domain. Because such operations
usually do not adhere to regular memory patterns, it is very hard to predict
and handle conflicts. Nevertheless, such tasks are wide-spread in visual
computing, such as for forward warping in context of optic flow [RFSB10],
or as one step during the computation of non-equispaced Fourier transforms
(see Section 7.6.2 for details).

For such applications, CUDA supports atomic functions. They are guar-
anteed to be thread-safe, and allow the manipulation of randomly addressed
memory cells in global memory. While the first atomics were introduced
with the compute capability 1.1, the instruction set supported in compute
capability 2.0 also includes an atomic accumulation of single precision float-
ing point values. The latter function is the one which we most frequently
need in context of our algorithms.

One of the most frequently used operations in visual computing is the
atomic addition, i.e. to increment the value in a certain memory cell by
a user-specified value. Other functions describe the atomic exchange of a
value, or (in case of integer arguments) the update with the minimum or
maximum of the residing value and the given one.

To this end, an programmer often sees atomics as an ‘inverse’ of a tex-
ture. While the latter supports read access to random pixels, atomic func-
tions grant write access to those locations. However, they are much more
expensive and can lead to sequentialisation if a resource is unavailable due
to mutual access.

2.2. CUDA PROGRAMMING MODEL 17

2.2.4 Algorithmic Optimisation Techniques

Besides these hardware concepts, there are also a number of algorithmic
tricks which are frequently appearing in context of GPU programming. Be-
cause these ideas belong to the standard design principles, we do in general
not discuss them in detail when they appear in context of our algorithms,
but refer to official sources such as the programming manual [NVi11b].
However, because two of these runtime-critical techniques are fundamental
to many of our algorithms, we briefly sketch their basic ideas.

Optimisation of Shared Memory Access

Shared memory is very fast. If it is addressed in the right way, reads and
writes to shared memory are as efficient as the corresponding operations
on registers [NVi11b]. In order to understand how we can achieve this
performance, we must briefly review the way how this storage is accessed.

For a high bandwidth, shared memory is organised into 16 groups, so-
called banks. Elements of a vector are always addressed by a round-robin
assignment of banks: The first element is addressed by the first bank, the
second element by the second, until the 17th element is then again residing
in the first bank. If we recall that there is never more than one warp with
16 threads active at a time, 16 banks suffice to handle all shared memory
operations simultaneously. However, this holds only if all banks serve only
one memory cell at a time. If several threads access different memory cells
that all fall into the same bank, these can only be served sequentially and
the program slows down. This situation is called a bank conflict. Note that
it is possible that several threads access the same item within one bank.
This broadcast operation is bank-conflict-free.

Reduction

One important concept that suffers particularly from bank conflicts is the
reduction of data. Because this programming pattern occurs frequently in
our algorithms, let us briefly review its basic idea [Har11]. Reduction is
necessary when matrix-valued values residing on a grid shall be used to
compute a single scalar which must be given back to the CPU. Prominent
examples for such values are the convergence state of a problem, the min-
imum or maximum of a data set, or the sum over all elements. It is clear
that a sequential processing of the whole buffer is no option, because this
process would in general exceed the runtime requirements. On the other
hand, the value can also not be obtained by a fully parallel process, because
a joint writing to the same memory cell causes another sequentialisation.

18 CHAPTER 2. CUDA

�a

1 2 3 4 1 2 3 4

! !

! ! ! !

�b

1 2 3 4 1 2 3 4

Figure 2.3: Reduction, a. with bank conflicts, and b. without bank conflicts.

Instead, we first perform a parallel reduction of all values within one
block and store one value per block back to global memory. This process
can be iterated until it ends up with a scalar. For the essential operation,
the reduction within the block, we must pay attention to bank conflicts.

Figure 2.3 shows this issue on a simplified example with four banks which
are indicated by numbers. Let us assume that each thread first loads the
left operand, and in a second step the right one. For the counter-example
in part a. where each element is merged with its right neighbour, this leads
to bank conflicts: Both on bank 1 and on bank 3, we request two different
values at a time, such that this request takes double the time as necessary.
The same issue repeats in case of the right operand. Note that the very
last merge is conflict-free, because there is only one thread left which is
sequential by design.

The planar strategy shown in part b. is bank conflict free, because all
threads read from different banks at a given time. As it turns out, this
performance can further be boosted by standard concepts such as loop un-
rolling. These techniques are also applied in our algorithms where possible.
A good overview about them is given in [Har11].

2.3 Runtime Measurement

When we discuss novel algorithms in the following chapters, we are fre-
quently in the situation that we require reliable runtime benchmarks of our
algorithms. Besides principle stumbling blocks that arise from the archi-
tecture itself, there are also pitfalls which are mainly related to the special
structure of problems as they arise in the field of visual computing.

On traditional CPU hardware, runtime benchmarks are always affected
by noise arising from background processes, memory latencies, or cache
misses. As it turns out, the same holds for GPU-accelerated algorithms,

2.3. RUNTIME MEASUREMENT 19

even if we make sure that only one program claims the GPU at a time.
These effects are even more strikingly visible in benchmarks of GPU-based
algorithms than they are on CPUs. This is a result of the higher data
throughput and the lower absolute runtimes, where the same absolute de-
viation in runtime has a higher relative impact. Moreover, there are more
sources for runtime deviations than on a CPU:

• The execution order of data-parallel operations on massively parallel
hardware is not predetermined. In contrast, it is even the case that
each streaming multiprocessor holds a high number of warps whose
execution order is dynamically changed whenever one warp idles for
an access to global memory [NVi11b].

• Because the overall program flow of GPU-based programs still resides
on the CPU, background processes frequently delay threads from be-
ing dispatched on the GPU. See Section 2.2 for details.

• The higher speed of GPUs causes a much higher data throughput than
on CPUs. Hence, there are more cache misses and potentially higher
bursts in access rates to the memory flow controller. Depending on
which of the concurrent processes accesses which data at which time,
severe memory latencies can be the consequence.

• The graphics driver handles two compute-intensive problems at the
same time. While our GPU-based visual computing task is executed
on the graphics card, the driver must concurrently schedule graphics
operations. Accelerated OpenGL applications compete with our al-
gorithm for the available resources. While we can disable accelerated
graphics output for non-interactive programs, this issue becomes im-
portant if we consider interactive real-time applications such as the
ones described in Sections 5.6 and 6.6.

As a consequence of these considerations, we must pay particular attention
to the validity of time measurements. In experiments, a truncated mean
turned out to be a very suitable measure [Kre05]: Unless stated differently,
we perform 5 independent measurements for every data point, discard the
lowest and the highest value, and average over the remaining 3 entries.
This system reliably smoothes out obvious outliers. At the same time, it
relieves us from the need to identify outliers at hand of special measures,
which could lead to a situation in which we wrongly discard meaningful
benchmarks and falsify the experiment.

Since all algorithms presented in this thesis cover topics in visual com-
puting, we must also take care of some common anomalies that arise from

20 CHAPTER 2. CUDA

the special requirements of such applications. One fundamental property of
such algorithms is the multi-dimensionality of data. Memory is always or-
ganised in a linear manner, while images were optimally stored in 2-D data
structures. As a consequence, neighbouring pixels are only stored in adja-
cent memory cells if they touch each other in one dimension. Neighbours
with respect to the other dimension reside in detached memory cells. This
difference is noticeable in the runtime, if an operator can be separated into
two 1-D operations. In this case, the operation along the coherent memory
direction usually requires less time than the operation across, since the first
setup can make efficient use of caches while the other frequently struggles
with cache misses.

As a consequence, we should be aware that many algorithms behave
sensitive to the aspect ratio of the used image. In most cases, we opti-
mise algorithms with respect to squarish images and consequently use such
examples for benchmarking purposes. Intuitively, this measure yields ‘typ-
ical’ runtimes for our algorithms, which can increase or decrease for actual
problems depending on the aspect ratio. The only exception to this rule
is our optic flow algorithm presented in Chapter 6 which is optimised to
images in the ratio 4:3. This accounts for the fact that we evaluate it in
the established Middlebury benchmark which contains images in this ratio.

Moreover, we should pay attention to the fact that some algorithms have
favourable runtimes if they are executed on images that possess a particular
side length, such as a power of two. Often, this special behaviour is a result
of a hierarchic structure of the program, or of the fact that the problem can
be better decomposed into CUDA primitives such as blocks and bunches.
This leads to two consequences:

1. We should not only test the runtime on power-of-two images, but also
perform experiments for other sizes to check whether this affects the
runtime of the process.

2. If we find that an algorithm performs badly on non-power-of-two im-
ages, we should consider to execute it on the next larger optimal size
instead. Often, it is possible to pad the problem with bogus values,
compute the solution on the larger image domain, and to discard the
solution at surplus positions.

This finishes our brief overview on CUDA. Details about all sketched ideas
can be found in the comprehensive programming manual from [NVi11b].

Chapter 3
Homogeneous Diffusion

The universal view melts things into a blur.

Émile Michel Cioran

3.1 Motivation

Many modern methods in the field of visual computing are based on partial
differential equations (PDEs). With their help, even challenging problems
can easily be modelled and solved in a clean and structured mathematical
framework. In this chapter, we focus on the most elementary PDE in visual
computing: Homogeneous Diffusion [Iij59, Wit83].

Despite – or maybe because – of its simplicity, homogeneous diffusion
is omnipresent in image processing and computer vision. Its good low-pass
filtering properties make it a standard operation for the smoothing or de-
noising of images [KZ96]. This is particularly important as a preprocessing
step for operations which require a certain smoothness or differentiability of
the input data. Popular applications are the computation of the structure
tensor [FG87], or anti-aliasing for the generation of mipmaps [BA83].

Homogeneous diffusion constitutes the basis of the Gaussian scale-space
theory [Iij59, Wit83, Lin94, SNFJ97, Flo97]. Such scale spaces led to the
development of scale-invariant filters [Wit83], and are today indispensable
for the detection of edges [MH80, Can86] or image features [FG87, Low04].
Related to those scale-selection approaches are also filters which steer their
evolution by scale spaces, such as diffusion-thresholding methods for the
computation of mean curvature motion [MBO92].

21

22 CHAPTER 3. HOMOGENEOUS DIFFUSION

Often, the operand smoothed by homogeneous diffusion is not even an
image in the classical sense. In context of optic flow computation, it is
used to robustify the results by smoothing away outliers in the estima-
tion [LK81]. Even more importantly, homogeneous diffusion is frequently
used to regularise variational methods in visual computing [HS81, WB02].

The applicability of homogeneous diffusion goes far beyond visual com-
puting. Some approaches, such as unsupervised learning [Par62], are used in
many fields in computer science including computer vision [RBK98, FPZ03].
Other techniques are among the standard tools in closely related fields such
as audio processing. Prominent examples are the chirp spread spectrum
technique [Pra98] or Gaussian minimum shift keying [EVB01].

All these approaches have in common that they require homogeneous
diffusion filtering on potentially large datasets. This task may become very
time consuming, such that the need for efficient algorithms for this purpose
is obvious. At this point, we can try to use graphics cards for an additional
boost in performance. Such acceleration offers to process even larger or
higher resolved images under the same given time constraints.

The search for fast GPU-based homogeneous diffusion algorithms is the
subject of this chapter. We review many different numerical approaches
from the literature, and complement them by novel promising techniques.
For all schemes, we discuss ways to implement them efficiently on GPUs,
and evaluate the outcome with respect to their quality-speed tradeoffs.

3.2 Introduction to Homogeneous Diffusion

Let us begin with a short review of the classical idea of homogeneous diffu-
sion in image processing [Iij59, Wit83]. It is borrowed from physics, where
diffusion describes a mass-preserving equilibration procedure of concentra-
tions over time. Fick’s law leads to the general diffusion equation [Wei98]

∂tu = div(D ∇u) , (3.1)

where u denotes the concentration, t represents time, ∇u is the gradient of
the concentration, and ‘div’ denotes the divergence operator. The diffusion
tensor D, a positive definite symmetric matrix, steers the type of diffusion.
In this chapter, we focus on the simplest case in which mass is distributed
homogeneously into all directions. This corresponds to D being chosen as
the identity matrix. Later in Chapters 4 and 5, we also see more advanced
choices for D.

In visual computing, we associate the concentration u with a continuous
image u : Ω→ R, where Ω ⊂ R2 denotes a rectangular image domain. Grey

3.3. CLASSICAL NUMERICS 23

values play the role of mass, and the mass-preserving property of diffusion
carries over to a preservation of brightness in the image.

On images, homogeneous diffusion behaves as a low-pass filter. With
increasing time t, the image is gradually blurred until, for t → ∞, the
process yields a uniform image with the same average grey value as the
original. For most applications, we are thus interested to interrupt the
process at a certain stopping time T . The corresponding result u(x, T) :
Ω× R+ → R can be obtained as a solution of the linear diffusion equation
(or heat equation) at time T :

∂tu = ∆u on Ω× R+ , (3.2)

with the initial state

u(x, 0) = f(x) on Ω , (3.3)

and reflecting (Neumann) boundary conditions

〈∇u,n〉 = 0 on ∂Ω× R+ . (3.4)

In this context, n represents the normal vector across the boundary of the
image domain Ω. On this rectangular image domain, n = (nx,ny)

> simply
corresponds to the unit vectors nx = (1, 0)>, ny = (0, 1)>. Moreover, the
set R+ = (0,∞) contains the real positive numbers, and 〈·〉 denotes the
Euklidean inner product on R2 [Wei98]. On the following pages, we discuss
suitable ways to solve the heat equation (3.2) on a spatially discrete domain.

3.3 Classical Numerics

In the literature, the problem of linear diffusion is approached in many dif-
ferent ways which have advantages with respect to various aspects. They are
designed to yield a very high accuracy or a low runtime complexity, and are
often particularly efficient under special conditions such as a certain range
of standard deviations. Let us now see some prominent representatives for
these classes of algorithms. In Section 3.5, we then use these insights to
develop fast parallel GPU-based algorithms for these approaches.

3.3.1 Explicit Linear Diffusion

A classical approach to linear diffusion is an explicit discretisation of the
heat equation (3.2) in time:

uk+1 − uk

τ
= Auk , (3.5)

24 CHAPTER 3. HOMOGENEOUS DIFFUSION

where τ denotes an artificial time step size, uk is the discrete vector-valued
representation of u at time τk and A is a ‘suitable’ spatial discretisation of
the Laplacian operator. For our convenience, we index u in the following
with two indices i ∈ [0, . . . , nx] and j ∈ [0, . . . , ny] to denote the spatial
location of a pixel in the image domain. Nevertheless, u is technically a
1-D vector, whose canonical index κ can be computed as κ = j · nx + i.
In Section 2.3, we have already discussed this layout in context of runtime
bottlenecks for efficient GPU programs.

By rewriting (3.5), we obtain the iterative explicit scheme

uk+1 = (I + τA)uk . (3.6)

For the 2-D Laplacian, one often takes second-order finite differ-
ences [Smi04]:

Au = [∆u]i,j =

[
∂2u

∂x2
+
∂2u

∂y2

]
i,j

(3.7)

≈ ui−1,j − 2ui,j + ui+1,j

h2
x

+
ui,j−1 − 2ui,j + ui,j+1

h2
y

, (3.8)

where hx and hy denote the spatial grid distances, and i, j are spatial indices.
By [·]p, we indicate a discretisation of the argument at grid point p. In the
following, we assume a squarish grid, such that hx = hy =: h. For the
explicit scheme from (3.6), this leads to

uk+1
i,j = uki,j +

τ

h2

∑
(m,n)∈N4(i,j)

(
ukm,n − uki,j

)
, (3.9)

where N4(i, j) is the 4-neighbourhood around the pixel (i, j):

N4(i, j) =
{

(i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1)
}
. (3.10)

In Section 3.5, we design a parallel GPU-based implementation of this al-
gorithm.

Let us now briefly discuss the selection of the virtual time step size τ .
Since we require the process to be stable, we must ensure that all weights
of the stencil from (3.9) are non-negative. For the main diagonal of the 2-D
operator (I + τA), this leads to the condition

τ 6
h2

4
, (3.11)

3.3. CLASSICAL NUMERICS 25

while the off-diagonals are by construction positive. For an optimal runtime,
we want τ to be as large as possible, since the number of updates kmax is
computed as

kmax =
T

τ
, (3.12)

where T denotes again the stopping time of the process. If we assume that τ
is set constant, we obtain a runtime complexity of O(Tn), where n denotes
the number of pixels in the discrete image domain.

As it turns out, however, the choice τ = h2/4 does in general not yield
the desired solution as well. In this case, the main diagonal of the operator
(I + τA) vanishes, and this matrix looses its irreducibility. We obtain two
decoupled problems on an alternating ‘checkerboard’ domain, and high-
frequent errors cannot be smoothed out by the process.

If we want an optimal variation-diminishing behaviour of the process,
we must ensure that it is sign-stable [GK80]. By Gershgorin’s Theorem, A
possesses eigenvalues in the interval [−8/h2, 0]. Hence, we must ensure that
1− 8τ/h2 > 0, which yields a sign-stability of the process for

τ 6
h2

8
. (3.13)

As a consequence from these considerations, we use two different
parametrisations for our experiments in Section 3.6.3. Assuming a unit
grid, i.e. h = 1, we use τ = 0.125 as the fastest process with a good
error-dampening behaviour. Besides this quality-optimised setting, we also
evaluate an algorithm with τ = 0.24. The latter setup is optimised for a
very low runtime, but preserves the irreducibility of the process.

3.3.2 Implicit Linear Diffusion

An alternative to the aforementioned explicit scheme is given by an implicit
discretisation of the heat equation (3.2) in time [Gou85]:

uk+1 − uk

τ
= Auk+1 . (3.14)

This leads to an implicit scheme in which the linear operator is applied to
the left term:

(I − τA)uk+1 = uk . (3.15)

Although the system is stable under arbitrary time step sizes τ , its solution
still requires a significant workload. The reason for this is that an inversion
of (I − τA) in general leads to a dense matrix which requires an immense

26 CHAPTER 3. HOMOGENEOUS DIFFUSION

effort in storage and compute power. Instead, one usually solves such linear
systems of equations numerically. On traditional hardware, 1-D problems of
this kind are often solved by a Thomas algorithm which yields the solution
of one step in only two sweeps. However, since this algorithm is per se
sequential and we aim at an efficient formulation for GPUs, we use an
iterative solver instead. A prominent class of algorithms for this purpose is
given by splitting methods. Due to its data-parallel structure, one member
of this class, the Jacobi scheme, is particularly interesting for application
on massively parallel hardware. Rewriting (3.15) in terms of the Jacobi
scheme leads to [Mei05]:

uk+1,l+1 = D−1(D − (I − τA))uk+1,l +D−1uk , (3.16)

where D denotes the diagonal part of (I − τA). The new index l ∈
{1, . . . , lmax} describes the step within the Jacobi solver. If we again use
second order finite differences for A, we obtain

uk+1,l+1
i,j =

h2

h2 + 4τ

uki,j +
τ

h2

∑
(m,n)∈N4(i,j)

uk+1,l
m,n

 . (3.17)

The choice of the number of outer and inner iterations kmax and lmax rep-
resents a tradeoff between accuracy and runtime. Very few outer iterations
cause a higher approximation error, while few inner iterations might not
suffice to let the linear solver converge to the desired solution. On the
other hand, choosing both values large leads to an undesirably high run-
time. Generally, we can assume that kmax · lmax ∼ T , such that the process
possesses a runtime complexity of O(Tn). In Section 3.6.2, we search a
‘good’ tradeoff between kmax and lmax, and compare the resulting method
to the explicit scheme, as well as to other numerical alternatives which are
to be presented in the following paragraphs.

3.3.3 Spatial Convolution

In a continuous setting, it is well-known that the analytical solution of the
heat equation at stopping time T is given by a convolution with a Gaussian
kernel [AU10]

u(x, T) = K√2T ∗ u(x, 0) (3.18)

with standard deviation

σ =
√

2T . (3.19)

3.3. CLASSICAL NUMERICS 27

This equivalence leads to a number of very efficient approximations for
linear diffusion. On the following pages, we discuss representatives for the
most prominent classes of such algorithms.

As a general remark to all of these solutions, note that the continu-
ous equivalence does not exactly carry over to the discrete case. Due to
discretisation artefacts, the space spanned by the arising discrete operator
does often not enjoy scale space properties [Lin90]. However, we see in Sec-
tion 3.6.1 that such principal numerical errors are often below the accuracy
of single precision floating point arithmetics. This holds in particular for
large stopping times (or standard deviations of the kernel).

As a first, straightforward approach to realise Gaussian convolution on
a discrete domain, let us sample the Gaussian kernel and perform a discrete
convolution with the signal. In n dimensions, this Gaussian filter is given
as follows.

Definition 3.1 (Gaussian filter)

A Gaussian filter is a convolution

(Kσ ∗ f)(x) :=

∫
Ω

Kσ(y)f(x− y)dy (3.20)

of an image f with a Gaussian kernel

Kσ(x) :=
1

(σ
√

2π)n
e−
|x|2

2·σ2 (3.21)

of standard deviation σ and x ∈ Rn.

�

An important property which becomes immediately visible from the defini-
tion is the separability of the kernel in space. Equivalent to the convolution
with an n-D Gaussian, a signal can successively be convolved with a 1-D
Gaussian in each direction. This is particularly important when the kernel
becomes very large, as it helps significantly to obtain a reasonable runtime.

In the following, we review some algorithms for linear diffusion which
employ the equivalence to Gaussian filtering. Unless otherwise stated, they
all use the separability as one important step towards a small runtime. In
Section 3.5, we then discuss the actual implementational details for fast
GPU-based algorithms.

Our first approach to Gaussian convolution is straightforward: We con-
volve the discrete signal with a discretised 1-D Gaussian kernel which has

28 CHAPTER 3. HOMOGENEOUS DIFFUSION

been truncated at cσ
h

samples:

[̂Kσ]
c

hj =

{
h

σ
√

2π
e−

j2h2

2·σ2 , |hj| 6 cσ

0 , else
(3.22)

Because of truncation errors, [̂Kσ]
c

does not share the unit sum property
with its continuous counterpart. Hence, we normalise it in order to obtain
a mass-preserving convolution kernel:

[Kσ]chj =
[̂Kσ]

c

hj∑
i [̂Kσ]

c

hi

(3.23)

Using this discrete kernel, the previously continuous convolution operation
from (3.20) turns into a sum:

([Kσ]c ∗ f)hi =
∑
j

(
fhi−hj · [Kσ]chj

)
. (3.24)

Finally, let us remark some properties of this operation. The kernel cut-off
c is motivated by the observation that the Gaussian kernel drops off rapidly
towards ±∞. This guarantees a high accuracy, even for c being chosen
small. By setting c = 3, a portion of less than 3 · 10−3 of the grey values of
the kernel are lost. For c = 4 and c = 5, this bound even drops to 1·10−4 and
1·10−6, respectively. Because the loss in mass is already compensated by the
normalisation in (3.23), these deviations only represent an abstract notion
of an approximation error of the scheme. Note that since this error can be
effectively dampened for large c, convolution with a truncated Gaussian is
also a good candidate to generate reliable ground truths to compare other
methods against.

Moreover, this method is also very efficient in runtime when it comes to
small standard deviations. By (3.24) and the separability of the process, as
well as assuming c to be constant, the algorithm has a runtime complexity
ofO(σn). As before, n denotes the number of pixels in the image. Since σ ∼√
T (see (3.19)), we can equivalently state that discrete convolution with a

Gaussian possesses a complexity of O(
√
Tn). This corresponds more closely

to our understanding of Gaussian filtering is an alternative algorithm for
linear diffusion. Note that the actual runtime can be additionally reduced
if we take the symmetry of the kernel into account. This allows to compute
and store only about half of the kernel samples. Moreover, (3.23) ensures a
unit sum over the (finite) kernel, such that the normalisation weight h

σ
√

2π

from (3.22) can be omitted without loss of generality.

3.3. CLASSICAL NUMERICS 29

However, the runtime complexity of truncated spatial convolution is also
its main counter-argument for large standard deviations, i.e. linear diffusion
with reasonably high stopping times. In such cases, the size of the kernel
lies in the order of magnitude of the length of the signal, and the runtime
class of O(nσ) effectively comes down to O(n2).

3.3.4 Multiplication in the Frequency Domain

Frequency-based convolution techniques are well suited for Gaussian fil-
tering with large standard deviations, as they possess a kernel-independent
runtime complexity ofO(n log n). The motivation for such methods is given
by the convolution theorem. In a continuous sense, it states that a convolu-
tion of two functions in the spatial domain is equivalent to a multiplication
of the duals of these functions in the frequency domain [Bra99]:

F(f ∗ g) = F(f) · F(g) . (3.25)

F denotes the Fourier transform

F(f)(ξ) =

∫
Rn
f(x) e−2π i 〈x,ξ〉dx , (3.26)

with 〈·〉 denoting the inner product. In the concrete setting of Gaussian
filtering, we can thus write [GW08]

Kσ ∗ u = F−1 (F(Kσ) • F(u)) , (3.27)

where • denotes a point-wise product, and where the inverse Fourier trans-
form is given by

F−1(f̂)(x) =

∫
Rn
f̂(ξ) e2π i 〈x,ξ〉dξ . (3.28)

By using (3.27), the time required for Gaussian convolution no longer de-
pends on the standard deviation of the kernel. On discrete signals, F and
F−1 can be computed by efficient fast Fourier transforms (FFTs) with a
runtime complexity of O(n log n) [Bri88]. This is the reason why this tech-
nique belongs to the standard approaches for an efficient implementation of
Gaussian filtering [GW08]. Moreover, it is often beneficial to perform n-D
FFTs instead of using the separability of the Gaussian. The reason for this
is that although the number of operations for the transformations are in
both cases similar, caches can be used more efficiently if all directions are
processed at once. Moreover, the multiplication in the Fourier domain must

30 CHAPTER 3. HOMOGENEOUS DIFFUSION

be performed once per pair of transformations, such that it is again advan-
tageous to compute all directions at once, given the problem can suitably
be represented in physical memory.

As can be seen by simple computations, it is not necessary to trans-
form the Gaussian to obtain its dual. Instead, F(Kσ) can immediately be
computed by (3.26) and (3.21):

F(Kσ)(ξ) = F
(

1

σ
√

2π
e−
|x|2

2·σ2

)
(ξ) = e−2π2σ2|ξ|2 . (3.29)

Depending on the architecture, using separability to set up the dual of the
kernel can be beneficial with respect to the required runtime.

As a final remark, note that the discrete Fourier transform assumes
signals to be periodic. A naive implementation of Gaussian filtering by
the convolution theorem causes wrap-around errors, i.e. grey values are
transported over the image boundaries back into the opposite side of the
image. Since we assume reflecting boundary conditions, the signal can be
made periodic by extending it with its mirrored version [But05]. Compared
to other approaches to obtain periodicity, such mirroring does not introduce
new artificial frequencies, but doubles the workload. In Section 3.6.3, we
are going to see that this modified approach yields results in a comparable
quality to spatial convolution, but also that its linear-logarithmic runtime
complexity only pays off for large standard deviations. In the literature, the
break-even point between these two methods is typically given for kernels
truncated to about 32 samples [Bri88].

3.3.5 Recursive Filtering

Both aforementioned methods yield very accurate results, but they are also
very time demanding. Recursive filters try to remedy these drawbacks by
combining the advantages of both worlds [Der87a, YvV95, Hal06b]. They
design a filter in the frequency domain, but apply it in the spatial domain.
By using already computed samples from the result as an input for the com-
putation of unprocessed samples, recursive filters have an infinite impulse
response. Hence, they can obtain an accuracy comparable to convolution
in the frequency domain, while the computation involves only very few
additions and multiplications per sample.

In order to develop an efficient GPU-based filter for Gaussian convo-
lution, let us briefly sketch the basic idea without going into detail. To
this end, we summarise the concept of a ‘parallel’ application of the causal
and anti-causal parts of the Young-van-Vliet filter [YvV95] as suggested by

3.3. CLASSICAL NUMERICS 31

Hale [Hal06b]. This instance of recursive filters is reported to yield the best
results for large standard deviations, in particular on finite signals [Hal06b].

Let us start with a short introduction into the classical form of the
Young-van-Vliet filter [YvV95]. To this end, we take the Fourier transform
of a 1-D Gaussian similar to (3.29):

F(Kσ)(ξ) = F
(

1

σ
√

2π
e−

x2

2·σ2

)
(ξ) (3.30)

= e−
σ2ω2

2 , (3.31)

where ω = 2πξ. By a Taylor expansion, F(Kσ)(ξ) can be approximated by
an expression of the form

F(Kσ)(ξ) ≈ Gq(ω) =
n0

c0 + c1(qω)2 + c2(qω)4 + c3(qω)6
, (3.32)

where c0, c1, c2, and c3 are constants, n0 is a normalisation parameter that
allows to have a unit integral over the kernel, and q ≈ σ. While the values
of the constants can be immediately computed by solving a linear system
of equations (cf. [YvV95]), q is usually optimised experimentally such that
the impulse response of the filter to be constructed corresponds best to the
one of the Gaussian filter to approximate. Alternatively, one can obtain
a less accurate guess for q from an Levenberg-Marquardt estimate of the
relation between q and σ that is given in [YvV95].

Apart from scaling, the Fourier transform is a special case of the Laplace
transform where the real part of the argument set to zero, i.e. s = iω with
i denoting the imaginary unit:

F(f)(ω) =

∫ ∞
−∞

f(x)e−iωxdx = L(f)(s)|s=iω (3.33)

This idea motivates to regard Gq(ω) from (3.32) in the Laplace domain:

Gq(s) =
n0

c0 − (c1 q2)s2 + (c2 q4)s4 − (c3 q6) s6
. (3.34)

Gq(s) can now be factored into two terms

Gq(s) = Gq,L(s)Gq,R(s), (3.35)

where Gq,L contains all poles that lie in the left half-plane, and Gq,R contains
all poles from the right half-plane. Again without going into detail about

32 CHAPTER 3. HOMOGENEOUS DIFFUSION

the actual values for the constants involved in this process, we obtain two
equations of the form:

Gq,L(s) =
n1

(α1 + qs)(α2 + α3 qs+ q2 s2)
(3.36)

Gq,R(s) =
n1

(α1 − qs)(α2 − α3 qs+ q2 s2)
(3.37)

with α1, α2, and α3 being constants, and n1 serving for normalisation.
The authors of [YvV95] continue with a discretisation of these equations.

For a uniform sampling on a grid with spacing h, the Laplace domain equals
the (discrete) Z domain. They use backward differences s = (1−z−1)/h for
Gq,L, and forward differences s = (z−1)/h for Gq,R. The fact that they apply
different discretisations for both cases accounts for the causal structure of
Gq,L and the anti-causal structure of Gq,R. Assuming h = 1, this leads to a
causal system

HL(z) =
n2

β1 + β2 z−1 + β3 z−2 + β4 z−3
(3.38)

and an anti-causal system

HR(z) =
n2

β1 + β2 z1 + β3 z2 + β4 z3
, (3.39)

where β1, β2, β3, and β4 are third-degree polynomials in q [YvV95]. Recall
that by (3.35), the product of Gq,L(s) and Gq,R(s) gives the approximation
of the Gaussian kernel F(Kσ)(ξ) we are looking for. Hence, the recursive
filter is expressed in the Z domain as

H(z) = HL(z) ·HR(z) . (3.40)

Since a multiplication in the Z domain corresponds to a convolution in
the spatial domain, the filtering result is obtained by a ‘forward’ filtering
with the causal system, followed by a ‘backward’ sweep with the anti-causal
system [YvV95].

As it turns out, this strategy bears a fundamental problem. Both sys-
tems HL(z) and HR(z) provide an infinite impulse response. If we consider
an arbitrary finite signal, this means that the intermediate signal obtained
from the forward run is unbounded to one side. Moreover, we are not al-
lowed to crop this intermediate signal to the length of the input, because the
anti-causal filter HR(z) requires an accurate representation of this region in
order to yield the correct output. A remarkable example for the severity of
this issue is shown in [Hal06b]. If we intend to use the filter in its classical

3.3. CLASSICAL NUMERICS 33

form on real data, we thus require a large boundary at one side of the signal
in which we store sufficiently many intermediate values to reduce the error
in the backward sweep to the minimum.

In [TS06], the authors suggest to truncate the intermediate signal to the
domain of the input, and to remedy the bad initialisation of the backwards
sweep by a sophisticated heuristics. To this end, they analyse the error
that is induced by a truncation, and propose to correct the coefficients of
the backwards sweep such that it suppresses these errors in the output.
Although this approach allows to compute the filtering result without ad-
ditional overhead in storage, some artefacts can still not be removed. This
can also be seen in the original paper (cf. [TS06, Fig. 1]).

An alternative remedy is motivated from the observation that the prob-
lem at the right boundary is inherent to the Young-van-Vliet filter, but
does not occur for the first recursive implementation of a Gaussian filter
by Deriche [Der87a]. This is because the Deriche filter combines a causal
and an anti-causal filter by a sum rather than by a product. In this ‘paral-
lel’ implementation style, both filter components are executed on the same
input signal, and their outputs are summed up to obtain the overall filter
output. As a consequence, Hale suggests a ‘parallel’ implementation style
for the Young-van-Vliet filter [Hal06b]. This yields a method which fuses
the better approximation quality of the Young-van-Vliet filter, in particular
for large standard deviations, with the Deriche filter’s better behaviour at
boundaries. By the partial fraction method, he rewrites (3.40) as a sum

H(z) = H̃L(z) + H̃R(z) . (3.41)

Using one additional expansion, H̃L and H̃R are simplified to sums of
second-order filters:

H̃L(z) =
b+

00 + b+
10 z
−1

a10 z−1 + a20 z−2
+
b+

01 + b+
11 z
−1

a11 z−1 + a21 z−2
, (3.42)

H̃R(z) =
b−10 z

1 + b−20 z
2

a10 z1 + a20 z2
+
b−11 z

1 + b−21 z
2

a11 z1 + a21 z2
, (3.43)

where the coefficients can be immediately computed from the (complex)
poles from (3.38) and (3.39) [Hal06a]: After the scaling factor q has been
determined using any of the methods described above, the polar coordinates
of the poles

1.12075 + 1.27788 i and (3.44)

1.76952 + 0.46611 i (3.45)

34 CHAPTER 3. HOMOGENEOUS DIFFUSION

are adjusted by taking their radius to the power of 2/q, and by multiplying
their angle by 2/q. The resulting new poles d0 and d1 are the poles of the
Young-van-Vliet filter for the selected standard deviation σ. From them,
the values for a10, a11, a20, and a21 can directly be computed as

a10 = −2 ·R(d0) , a11 = −2 ·R(d1) , (3.46)

a20 = |d0|2 , a21 = |d1|2 . (3.47)

The coefficients b+
00, b+

01, b+
10, and b+

11 for the causal filter parts are related to
the zeroes of the filter. Using that the gain of the filter is given by

g = R((1− d0) · (1− d0) · (1− d1) · (1− d1)) , (3.48)

the residues for the first and the second pole can be computed by

g0 =
g2

(1− d1

d0
) · (1− d1

d0
) · (1− d2

0) · (1− d0 d0) · (1− d1 d0) · (1− d1 d0)

(3.49)

g1 =
g2

(1− d0

d1
) · (1− d0

d1
) · (1− d0 d1) · (1− d0 d1) · (1− d2

1) · (1− d1 d1)

(3.50)

from which the coefficients follow as

b+
00 =

I(g0

d0
)

I(1
d0

)
, b+

01 =
I(g1

d1
)

I(1
d1

)
, (3.51)

b+
10 =

I(g0)

I(1
d0

)
, b+

11 =
I(g1)

I(1
d1

)
. (3.52)

In this context, an overline · denotes the complex conjugate, and R and
I denote real and imaginary parts, respectively. Finally, because the anti-
causal filters must be symmetric to the causal ones, b−10, b−11, b−20, and b−21

can be computed as

b−10 = b+
10 − b+

00 · a10 , b−11 = b+
11 − b+

01 · a11 , (3.53)

b−20 = − b+
00 · a20 , b−21 = − b+

01 · a21 . (3.54)

If we apply the filters given by (3.42) and (3.43) to a 1-D signal f , we obtain
two causal (forwards) filtering steps

y
(1)
i = b+

00 · fi + b+
10 · fi−1 − a10 · y(1)

i−1 − a20 · y(1)
i−2 , (3.55)

y
(2)
i = b+

01 · fi + b+
11 · fi−1 − a11 · y(2)

i−1 − a21 · y(2)
i−2 , (3.56)

3.3. CLASSICAL NUMERICS 35

and two anti-causal (backwards) filtering steps

y
(3)
i = b−10 · fi+1 + b−20 · fi+2 − a10 · y(3)

i+1 − a20 · y(3)
i+2 , (3.57)

y
(4)
i = b−11 · fi+1 + b−21 · fi+2 − a11 · y(4)

i+1 − a21 · y(4)
i+2 . (3.58)

The output signal u is then obtained by a point-wise sum of these results:

ui = y
(1)
i + y

(2)
i + y

(3)
i + y

(4)
i . (3.59)

As it turns out, this filter is very efficient and accurate for arbitrary
standard deviations. As found in [Hal06b], this filter surpasses the quality of
other recursive filters such as the one of Deriche significantly for about σ >
32. Below this value, the Deriche filter is said to yield slightly better results.
However, since we are primarily interested in large standard deviations –
smaller ones can easily be established with more simple techniques such as
spatial convolution with a Gaussian – we refrain to this ‘parallel’ Young-
van-Vliet filter for the time being.

To finish this section, let us briefly recapitulate this filtering algorithm.
Given a particular σ, the process starts with a precomputation phase which
is dominated by the search for an appropriate q. Once all parameters are
computed, this filter requires only 15 additions and 16 multiplications per
sample. Moreover, both forward runs and both backwards runs can be
performed in parallel, each. This allows for a very efficient usage of caching
mechanisms of modern hardware. In Section 3.6, we compare this recursive
filter to other implementations for linear diffusion.

3.3.6 Iterated Box Filtering

Another very fast approximation of the Gaussian Filter is derived from the
central limit theorem. This theorem states that, given a sufficiently large
number n of random variables X1, . . . , Xn with the same distribution with
mean µ and variance σ2, their ‘average’

Yn =

∑n
i=1 Xi − nµ√

nσ
(3.60)

approaches a (0,1) normal distribution for n→∞ [Kre05]. If this property
is carried over to the design of filters, it means that a sufficient number
of convolutions with an arbitrary, but similar kernel has a similar effect as
one application of a specific Gaussian kernel. This gives rise to use multi-
ple applications of simple so-called box filters to approximate a Gaussian

36 CHAPTER 3. HOMOGENEOUS DIFFUSION

1
2
3
4
5
6
7
8

Figure 3.1: Visualisation of the central limit theorem. The more box kernels
are convolved with each other, the closer approximates the result a Gaussian.

filter [Wel86]. Figure 3.1 visualises this idea. A convolution of already 3–5
kernels approximates a Gaussian very well.

Box filters are famous for their runtime efficiency, but they are seldomly
used for theoretical derivations. This is the reason why in the literature,
these filters are usually designed in a purely discrete context without refer-
ence to their continuous analogue. However, since we are going to review
and extend this class of filters in the following section, we approach this
problem from the opposite side, and regard the classical form as the dis-
cretisation of the continuous variant:

Definition 3.2 (Continuous Box Filter)

A continuous box filter BΛ with a real-valued length Λ ∈ R+ is a convolution

(BΛ ∗ f)(x) :=

∞∫
−∞

BΛ(x− y) · f(y) dy (3.61)

of a signal f with a box kernel

BΛ(x) :=

{
1
Λ
, x ∈ (−λ, λ)

0, else
(3.62)

for x ∈ R and Λ = 2λ.

�

In the literature, the discretisation is often performed by sampling the prob-
lem at a grid with spacing h, and by rounding the length Λ to the closest
grid distance L := hbΛ

h
+ 1

2
c. This leads to the following discrete filter.

3.3. CLASSICAL NUMERICS 37

L

Λ

Λ L
h

L

Λ

-hl -h... 0 h ... hl

h too high

too narrow

Figure 3.2: In general, the classical discrete box kernel does not approximate
the continuous box kernel well.

Definition 3.3 (Discrete Box Filter)

A discrete box filter BL of length L = h(2l+ 1), l ∈ N0, and sampled at an
equidistant grid of spacing h > 0 is a convolution

(BL ∗ f)hk :=
∑
m∈Z

(BL)h(k−m) · fhm (3.63)

of a signal f with a discrete box kernel

(BL)hk :=

{
h
L
, −l 6 k 6 l

0, else
(3.64)

for k ∈ Z.

�

Figure 3.2 shows a comparison between the continuous formulation from
Definition 3.2 and the discrete version from Definition 3.3 in 1-D. As a con-
sequence from the approximation, BL does in general not exactly resemble
the continuous kernel BΛ that it is supposed to approximate. In most cases,
it is either too wide and low or, as depicted in this figure, too narrow and
tall. However, the approximation becomes better the finer the grid. To this
end, BL thus approaches BΛ for h→ 0. For h = 1, we obtain the form that
is most frequently found in the literature [Wel86, YvV95, Hal06b, GW08].

1-D box filters can be implemented very efficiently if we exploit the
simple structure of their kernels. This leads to a ‘sliding window’ approach.
Each sample of the result is obtained from its predecessor, compensated by
the change that occurred between them [Wel86]:

(BL ∗ f)hi = (BL ∗ f)h(i−1) +
h

L

(
fh(i+l) − fh(i−l−1)

)
. (3.65)

38 CHAPTER 3. HOMOGENEOUS DIFFUSION

Because the first element does not have a predecessor, it must still be com-
puted by a summation over the affected input samples. Hence, for a signal
of length n and a kernel with 2l + 1 samples, box filtering has a runtime
complexity of O(n + l). Moreover, if we additionally assume l < n, this
leads to an accumulated linear runtime complexity. Due to the separabil-
ity in n-D, this complexity carries over to the multi-dimensional case, such
that we obtain an accumulated complexity O(n) in the number of pixels or
voxels n.

By the central limit theorem, we can convolve the signal several times
with a box filter to approach the result for Gaussian convolution. This
removes artefacts that arise from the piecewise linearity of the box kernel,
as well as from the rotational invariance property in multiple dimensions.
For simplicity of notation, we denote the new kernel by Bd

L:

Bd
L := BL ∗ . . . ∗BL︸ ︷︷ ︸

d-times

(3.66)

To this end, applying BL d-times to a signal comes down to the con-
volution with a Cd−1-continuous kernel Bd

L. It possesses the variance
σ2(Bd

L) [Wel86]:

σ2(Bd
L) = d

L2 − h2

12
. (3.67)

As can be seen in this equation, sigma only depends on two quantised
variables, the length L and the number of iterations d. Moreover, L is
required to be (a multiple of) an odd integer, since the kernel must be
symmetric around 0. As a consequence, the set of admissible values for σ
is quantised. For example, assume we use d = 3 iterations and set h = 1.
Then, we can not find an interval of length 1 which contains more than
one admissible value for σ. As we are going to see in Section 3.6.2, this
limitation has a significant impact on the quality of the filtering results.

In the literature, people try to remedy this problem by using kernels with
different lengths [Wel86]. However, this approach bears new problems:

1. Although the arising filter still possesses low-pass characteristics, it
does in general not approximate a Gaussian as well as a series of
similar kernels.

2. Because in practice, d is usually chosen from {3, 4, 5}, the combina-
torial possibilities for σ are still relatively small.

3. Even if d is large, finding the optimal configuration of different box
kernels can be tedious.

3.3. CLASSICAL NUMERICS 39

�a

�b
Figure 3.3: a. Convolution of three box kernels with same length (red) vs. three
box kernels with different length (black). b. Kernels used for a., scaled by 0.25 in
height. The red graph from a. was obtained by a convolution of three red boxes,
the black result by a convolution of one blue and two black ones.

While issues 2 and 3 are intuitively clear, the first problem might require
further explanation. Hence, let us compare the results of an iterated box
filter B3

11 with the ones obtained by the combination B2
13 ∗ B5. By Bi-

enaymé’s formula, the variance of a sum of uncorrelated random variables
equals the sum of individual variances [Kre05]:

σ2(X1 + . . .+Xn) =
n∑
i=1

σ2(Xi) (3.68)

This leads to σ2(B3
11) = 3 · 10 = 30, and σ2(B2

13 ∗B5) = 2 · 14 + 2 = 30.
We compare the impulse responses of these filters on a discrete signal with
the one of a convolution with a Gaussian with standard deviation σ =√

30 truncated at 15σ, and compute the L2 error. While B3
11 has an error

1.21 · 10−7, the error for the combination B2
13 ∗B5 is already twice as high,

namely 2.53 · 10−7. Moreover, the gap between these errors is significantly
increased as the variance in the used boxes’ lengths grows. In particular for
large standard deviations, the approximation quality using this technique
can thus grow significantly.

We can convince ourselves about the reasons for this striking difference
if we regard the outcomes of different convolutions with box kernels graphi-
cally, as shown in Figure 3.3. The resulting kernels from this operation that
are depicted in part a. are the ‘effective’ kernels of the whole cascade of box
filters. While the convolution of three similar boxes yields a kernel which
already approximates the corresponding Gaussian very well, a convolution
of two small boxes with one big box still reveals the overall shape of the
larger kernel. In the latter case, a significantly higher number of iterations
is required to approach the Gaussian as well as in the uniformly sized case.

40 CHAPTER 3. HOMOGENEOUS DIFFUSION

In the next section, we see two alternatives to this approach which allow
a good approximation of Gaussians with arbitrary standard deviation.

3.4 Numerical Improvements

3.4.1 Box Filtering with Correction

In the previous sections, we observed some characteristics of iterated box fil-
tering on the one hand, and discrete convolution with a truncated Gaussian
on the other:

1. Iterated box filters are very efficient and approximate a Gaussian well
even for few iterations, but they only yield certain standard devia-
tions. Their runtime complexity is O(dn).

2. For a small number of iterations d, the distance between two standard
deviations that can be expressed by iterated box filters is relatively
small.

3. Discrete convolution with a truncated Gaussian kernel has a runtime
complexity of O(σn). If there exists a c � n such that σ < c for all
σ, this operation is very efficient with a complexity of O(n).

This gives rise to the design of a new filter that combines the advantages
of both worlds. We use Bienaymé’s formula to rewrite the Gaussian of the
desired filter by a convolution of two Gaussians:

Kσ = KσB ∗KσG , where σ2 = σ2
B + σ2

G . (3.69)

In particular, we can choose σB such that KσB can be expressed by an
iterated box filter. If σB � σG, the arising filter becomes very efficient:

Definition 3.4 (Iterated Box Filter With Correction)

A d-times iterated box filter with correction is the convolution

Cd
σ ∗ f (3.70)

of an image f with a corrected iterated box kernel

Cd
σ = Bd

L ∗ [KσG] , (3.71)

where

L = h

2

√

12 σ2

dh2 + 1− 1

2

+ 1

 , (3.72)

3.4. NUMERICAL IMPROVEMENTS 41

and

σG =

√
σ2 − dL

2 − h2

12
. (3.73)

�

In (3.72), bxc denotes the so-called floor function, which computes the
largest integer not greater than x ∈ R. By construction, L the largest
admissible length of a box filter that has a smaller standard deviation than
σ. Its computation in (3.72) follows directly from (3.67). As a consequence
we obtain:

Theorem 3.1 → Proof 1

Given an iterated box filter with correction Cd
σ, the standard deviation σG

of the correcting Gaussian kernel [KσG] is bounded by

σG <

√√√√dh2

3

(√
12

σ2

dh2
+ 1− 1

)
(3.74)

if L > h, and by σG = σ otherwise.

�

The special case L = h (L cannot be smaller than h, see (3.72)) is not
surprising. In this case, the component Bd

L comes down to a discrete unit
peak:

Bd
h(hk) =

{
1, k = 0

0, else
, (3.75)

such that Cd
σ = [KσG]. Since we do not perform box filtering in this case,

it holds that σG = σ.
As an example for the more interesting case L > h, assume we want

to perform Gaussian filtering with a standard deviation σ = 100 on a grid
with h = 1 using a box filter with correction in d = 3 iterations. Using
Definition 3.4, we obtain the length L = 199, and as a consequence, σG =
10. This is in accordance with Theorem 3.1, which predicts an upper bound
σG,max ≈ 14.11.

However, Theorem 3.1 also reveals that σG grows proportional to
√
σ.

Thus, the iterated box filter with correction possesses a runtime complexity
ofO(dn+

√
σn) (or equivalentlyO(dn+ 4

√
Tn)). As it turns out, a correction

is more important the smaller the standard deviation of the kernel is. To
this end, we can reduce the runtime for real problems without sacrificing
the overall quality if we omit the correction step for large σ. In Section 3.6,
we go more into detail about this idea.

42 CHAPTER 3. HOMOGENEOUS DIFFUSION

Λ

L

Λ

-hl -h... 0 h ... hl

h

hw

hα

=

hα

Figure 3.4: Construction of an extended box filter (grey) out of a continuous
prototype (red) by redistributing weights at both ends.

3.4.2 Extended Box Filtering

While iterated box filtering with correction is very well suited to remedy
the bad approximation of Gaussians by iterated box filtering, it also intro-
duces a significant dependency of the runtime from the standard deviation.
To some extent, this property counteracts the nature of box filters, which
typically only depend on the numbers of pixels and iterations. Hence, let
us discuss a fast alternative to the aforementioned approach, which does
not possess this problem.

To this end, let us come back to the continuous box filter as given in
Definition 3.2. Because the continuous box kernel can have arbitrary real-
valued lengths, its standard deviation can freely be adjusted. The goal of
this section is to find a better discretisation EΛ of the continuous box filter
BΛ than is provided by the classical discrete box filter BL. This extended
box filter shall fulfil the following criteria [GGBW11]:

1. The new filter EΛ must be continuous over Λ, such that kernels with
an arbitrary standard deviation can be constructed. The variance
σ2(EΛ) shall be a smooth function in Λ.

2. EΛ must extend the classical discretisation in a way that it comes
down to a standard box filter BL for Λ→ L.

3. Moreover, EΛ must approach the continuous box filter BΛ for h→ 0,
i.e. lim

h→0
σ2(EΛ) = σ2(BΛ).

In order to achieve these requirements, we write the continuous length Λ as
a sum of an integer length L that can be obtained by a classical box filter,
and two small increments 0 6 α < 1:

Λ = h(2l + 1 + 2α) = L+ 2hα , (3.76)

3.4. NUMERICAL IMPROVEMENTS 43

where l ∈ N0 as it is for the conventional box filter. Considering that the
continuous box filter possesses the height h

Λ
, we redistribute the area for the

two extensions, hα · h
Λ

, onto the sampling points ±h(l+1). This is shown in
Figure 3.4. To this end, we obtain two additional weights at both sides, each
with height w = hα

Λ
. This leads to the following construction [GGBW11]:

Definition 3.5 (Extended Box Filter)

An extended box filter EΛ with a real-valued length Λ ∈ R+ and discretised
on a uniform grid of spacing h > 0 is a convolution

(EΛ ∗ f)hk :=
∑
m∈Z

(EΛ)h(k−m) · fhm (3.77)

of a signal f with an extended box kernel

(EΛ)hk :=

h
Λ
, −l 6 k 6 l

hw, k ∈ {−(l + 1), l + 1}
0, else

(3.78)

with

l :=

⌊
Λ

2h
− 1

2

⌋
, w :=

1

2

(
1

h
− 2l + 1

Λ

)
, (3.79)

and k ∈ Z.

�

Compared to Definition 3.3 of the classical box filter, the extended box
filter only requires small modifications. The weight w was added, and l
was modified to preserve the average grey value during filtering. Similar as
in (3.66), we write

Ed
Λ := EΛ ∗ . . . ∗EΛ︸ ︷︷ ︸

d-times

(3.80)

As a consequence of this high similarity, the new construction also pos-
sesses many advantages of classical box filtering. It is separable in n-D, and
can still be implemented in a sliding-window manner:

(EΛ ∗ f)i = (EΛ ∗ f)i−1+
(h

Λ
− hw

)
(fi+l − fi−l−1)

+ hw (fi+l+1 − fi−l−2) . (3.81)

44 CHAPTER 3. HOMOGENEOUS DIFFUSION

After computing the result for the first pixel in a row, only four additions
and two multiplications are required, because hw and h/Λ − hw are both
constants that can be precomputed before the program run. Hence, we
obtain the same runtime complexity O(dn + l) as for conventional box
filtering. Moreover, because we can in general assume that l < n, the
accumulated runtime comes down to O(dn).

Let us now discuss some mathematical properties that simplify and ex-
plain the use of extended box filters for real-world applications. A crucial
property is the variance of the arising construction, as it determines which
extended box filter must be iterated to approximate a given Gaussian best.
As a first step, let us note that w depends linearly on α:

w =
1

2h

(
1− (2l + 1)h

Λ

)
=

1

2h

(
1− Λ− 2αh

Λ

)
=

α

Λ
. (3.82)

Since α is a component of Λ, we can thus express w as a function on Λ.
Moreover, all other parameters of extended box filtering are by definition
related to Λ. Hence, it is feasible to talk about Λ as the ‘effective’ length
of the kernel, although its value does in general not appear verbatim in the
layout of such filter.

As a consequence, let us note the variance of an extended box filter with
effective length Λ. As done for the conventional box filter, we regard the
general case for d iterations:

Theorem 3.2 → Proof 2

The variance σ2(Ed
Λ) of a d-times iterated extended box kernel with effective

length Λ is given by

σ2(Ed
Λ) =

dh3

3Λ

(
2l3 + 3l2 + l + 6α(l + 1)2

)
. (3.83)

�

Although this relation cannot be written in a simple form as in (3.67) for
the conventional box filter, this equation falls back to the conventional case
if α = 0. To this end, the extended box filter generalises the conventional
box filter by an an option to select continuous lengths Λ:

Theorem 3.3 → Proof 3

The extended box kernel EΛ constitutes a generalisation of the discrete box
kernel BL, i.e. EL = BL for L ∈ Nodd,

3.4. NUMERICAL IMPROVEMENTS 45

∀L ∈ Nodd : lim
Λ→L+

σ2(Ed
Λ) = σ2(Bd

L) , and (3.84)

lim
Λ→(L+2h)−

σ2(Ed
Λ) = σ2(Bd

L+2h). (3.85)

�

Moreover, we also want to guarantee that σ2(Ed
Λ) satisfies the intuitive

dependency on the length Λ. To this end, we assume the limiting case h→
0, for which the extended box filter approaches its continuous prototype:

Theorem 3.4 → Proof 4

The extended box kernel EΛ is a suitable discretisation of a box kernel BΛ

in the continuous domain, i.e. for d-times application,

1. its variance approximates the continuous analogue arbitrarily well:

lim
h→0

σ2(Ed
Λ) = σ2(Bd

Λ), and (3.86)

2. the order of consistency is O(h2).

�

Note that we obtain the same result for the discrete box filter for h → 0.
This can be shown analogously to Proof 4, but with (3.67) instead of (3.83)
as the variance. Once again, this insight indicates that the extended box
filter is a natural extension of the conventional idea.

Moreover, in the special case of a small extended box kernel with only
one central weight, the extended box filter equals one explicit diffusion step
with the same stopping time:

Theorem 3.5 → Proof 5

One iteration of an extended box filter EΛ with h < Λ < 3h equals one
explicit diffusion step with a second-order finite difference discretisation in
space and a time step width

τ =
σ2(EΛ)

2
. (3.87)

�

Finally, let us remark that the extended box filter is not only closely related
to the classical discrete box filtering theory, but also shares a number of
common concepts with other filters. By (3.81), extended box filtering may
be written in a sliding window form. To this end, one output sample is com-
puted from a linear combination of four input samples and one output sam-
ple. This idea follows a similar spirit as recursive filters [Der87a, YvV95].

46 CHAPTER 3. HOMOGENEOUS DIFFUSION

However, while recursive filters use a small local stencil and typically read
balanced numbers of output and input samples, extended box filtering only
accesses one output sample that lies close to the processed grid point, plus
few input values in a greater distance. As a result, box filters create sym-
metric results by construction, while recursive filters must always be applied
at least once in both directions to obtain a similar result. To this end, ex-
tended box filtering is superior to recursive filters when the signal does not
possess a specified length. Such situations occur for instance for audio and
video streaming, or for data streams gathered by a sensor.

Moreover, extended box filtering can be seen as a special case of stacked
integral image filtering [Cro84, BSB10]. This technique assembles a Gaus-
sian kernel from a stack of different box kernels. Each of these box kernels
has a unique width and height such that the ‘heap’ formed by these boxes
approximates the Gaussian kernel well. While the heights are typically real-
valued, the widths of all individual boxes reside on a grid. Hence, we can
write the extended box kernel as a stack of one box that is h(2l + 3) wide
and hw high, and one box of length h(2l + 1) and height h/Λ − hw. The
difference to the original idea is that while stacked integral image filtering
approximates a continuous Gaussian, extended box filtering approximates
a continuous box filter. In the first case, the result is obtained from a sum
over different impulse responses. In order to enhance the quality, more boxes
must be added. This increases the approximation quality, but does (in a
continuous sense) not increase the smoothness of the arising convolution
kernel. In contrast, extended box filtering can be written as a convolution
of sums of scaled standard box filters w1BL and w2BL+2h, where w1 = hwΛ,
and w2 = 1− hwΛ:

Ed
Λ = (w1BL + w2BL+2h) ∗ . . . ∗ (w1BL + w2BL+2h)︸ ︷︷ ︸

d-times

(3.88)

By adding more iterations, both the approximation quality and the smooth-
ness of Ed

Λ can be increased simultaneously. This fact is the reason why
Gaussian convolution can in general much more accurately be performed
by extended box filtering than it is by Gaussian convolution.

3.5 Efficient GPU-Based Algorithms

3.5.1 Explicit Linear Diffusion

As a first GPU-based algorithm, let us design a 2-D explicit scheme for linear
diffusion as developed in Section 3.3.1. Because the operations necessary to

3.5. EFFICIENT GPU-BASED ALGORITHMS 47

compute (3.9) only depend on the intermediate solution at time step k, the
operation is fully data-parallel. As a consequence, the arising problem can
easily be formulated in a parallel manner. In order to preserve the integrity
of input and output, we must use two buffers in GPU memory. We can
then always compute the update from the first into the second buffer, and
exchange their pointers such that the roles of the buffers are flipped.

However, our algorithm’s runtime still crucially depends on the strong
memory-boundedness of the explicit scheme. By assuming h = 1 in (3.9),
the update of one pixel requires 3 multiplications and 5 additions, but also
5 read and 1 write operations to global memory. On GPUs, this leads
to a misbalance. Arithmetic operations can in general be performed in
4 or 1 cycles, depending on whether the GPU supports CUDA Compute
Capability 1.x or 2.x. Memory interactions, in contrast, require about 400-
800 cycles [NVi11b]. Hence, a major criterion for the runtime is given by
the use of fast on-chip memory for caching.

CUDA textures offer a simple and efficient solution to this problem
(see Section 2.2.2). Their 2-D aware cache helps to hide memory latencies
behind computations. Moreover, their adjustable boundary behaviour is
ideally suited to emulate reflecting boundary conditions.

To this end, our algorithm works as follows. After uploading the image
data into the first buffer on the device, the algorithm iterates over the
number of steps. In each of these steps, it first binds a previously configured
texture reference to the buffer that contains the image. In the parallel
execution kernel that is called thereafter, image information is requested
by texture fetches and stored back in large chunks from shared memory.
After a synchronisation, the device pointers are flipped and the iteration
continues until the desired stopping time is reached. Finally, the result is
downloaded from the device.

3.5.2 Implicit Linear Diffusion

When it comes to the structure of the execution kernel, an algorithm for one
Jacobi step of an implicit solver does not differ much from the previously
mentioned explicit diffusion kernel. The update rule from (3.17) can be
implemented straightforwardly. However, the data flow is more expensive
in this case, since both the ‘right hand side’ from the previous outer iteration
k, as well as the result from the previous inner iteration must be accessible
within the kernel.

For the same reasons as before, the ‘offset’ stencil calls arising from uk+1,l
m,n

can best be realised by texture fetches. In contrast to this, the right hand
side uki,j is only queried in the ‘central’ pixel with respect to the stencil,

48 CHAPTER 3. HOMOGENEOUS DIFFUSION

hence possessing the same alignment as the output. As a consequence, it is
easily fetched by coalesced loads from global memory.

On the CPU side, this new data dependency also requires changes to
the buffer juggling mechanism. Instead of performing a double buffering
technique as for the explicit scheme, the algorithm must now take care of
three arrays. During the ‘inner’ iterations over l, two of them are perpetu-
ally exchanged and alternately bound to a texture, while the third buffer is
held constant. After each cycle of inner iterations, this ‘right hand side’ is
then exchanged with the most current solution from the inner cycle. This
process is iterated until the desired number of ‘outer’ steps is reached.

3.5.3 Spatial Convolution

Implementing a spatial convolution with a Gaussian is straightforward from
a logical perspective, but challenging when it comes to the technical imple-
mentation. The reason for this is given in the strong memory-boundedness
of the algorithm. For every pixel of the result, a large neighbourhood in
the size of the support of the truncated kernel must be read. Moreover,
the arithmetics involved in this case are inexpensive, such that the whole
efficiency of the algorithm comes down to a fast throughput of data.

Unfortunately, this throughput can in general not be reduced. Although
a Gaussian can easily be computed on-the-fly, its truncation requires a linear
scaling of the remaining kernel samples to preserve the mass of the filtered
image. As a consequence, we must precompute the convolution kernel prior
to filtering, and apply it to the image. However, by using the separability
of the process and the symmetry of the kernel, we can still save many loads
and stores. Hence, we regard both directions independent from each other
and load the kernel in both cases only once for left-offset and right-offset
input samples.

Texture-Based Approach

Considering row-first ordering, convolution along the y axis is a very
memory-intensive task, since it requires several memory lines to be cached.
Here, an implementation in which both the signal and the kernel are fetched
as 2-D and 1-D textures, respectively, turns out to be the fastest solution.
Such an algorithm is even faster than one which works completely on shared
memory. A possible interpretation to this observation is that large implicit
memory fetches into 2-D caches of textures are faster than single line loads
into shared memory.

3.5. EFFICIENT GPU-BASED ALGORITHMS 49

Target
pixels

...

Left offset Right offset

Progression

Truncated kernels

1 Thread

Figure 3.5: Fast Gaussian convolution in shared memory, following the linear
direction of memory. Shared memory contains the input (grey and blue), as well
as solution vectors (only blue range).

Convolutions along the coherent direction of the memory are even more
interesting. If the support of the truncated kernel is too large to fit into
shared memory, there is no option other than performing a similar strategy
as above. Textures work well on coherent memory, and mask a large portion
of random access to memory by their large caches. This approach works
regardless of the chosen standard deviation.

Cache-Based Approach for Small Standard Deviations

If all samples for the kernel and the associated input samples both fit into
the shared memory, there is a second possibility to speed up the algorithm
significantly. In a linear sense, we assign each pixel to one thread. Offset
memory operations are then executed in a laminar fashion, such that this
process is free of bank conflicts. Moreover, each thread handles eight rows
in terms of a loop unrolling scheme. This allows to mask occurring memory
latencies to a minimum. Figure 3.5 visualises this algorithm. For each block
of pixels for which a solution is computed, a three times larger array with
input data is additionally kept in shared memory. To this end, each pixel
can be convolved with a (discrete) kernel which has a support of at most
2n+ 1 elements, where n is the length of one block. After all target pixels
are processed, the range denoted by ‘right offset’ becomes the range of new
‘target pixels’, the old central inputs become the new ‘left offset’, and a new
‘right offset’ is loaded from global memory. This ring buffering technique
causes each input pixel only to be read once from global memory. If we
design the length of one (output) block as 64 pixels and assume 8 rows for
loop unrolling, this buffer can still be represented in shared memory. It
allows for a convolution with a Gaussian of standard deviation σ = 12 with

50 CHAPTER 3. HOMOGENEOUS DIFFUSION

a cutoff at 5σ. To this end, this second algorithm is very well suited for
regularisation purposes in the context of more complex frameworks, where
the standard deviation is typically very small.

3.5.4 Multiplication in the Frequency Domain

Gaussian filtering in the frequency domain is algorithmically challenging,
in particular because our main focus lies on efficiency. Our algorithm is
dominated by the fast Fourier transform, such that its overall efficiency is
directly linked to the performance of the FFT. While the basic idea behind
the FFT is simple and easy to implement, several extensions and optimi-
sations are proposed in the literature to optimise the absolute runtime. To
this end, the classical algorithm [CT65] is often complemented by other ap-
proaches which perform better on special (e.g. prime) problem sizes [Rad68].
Besides these, a number of technically motivated changes, such as optimi-
sations on caching patterns are frequently applied, in particular when it
comes to parallel hardware [Sto66, GLD+08]. A good overview of state-of
the-art techniques in this field is given in [FJ05].

However, since fast Fourier transforms belong to the standard tools
in signal processing, there are many GPU-based algorithms in the liter-
ature [MA03, GLD+08, NVi10a]. Some of these algorithms are even freely
available for download. Today, the cuFFT library provided by NVidia is one
of the best maintained software suites for this purpose. Its performance
improved significantly in the recent years, and many concepts known from
sequential algorithms are now also found in this library [NVi10a]. Moreover,
cuFFT is shipped together with the CUDA API, such that it is available on
all CUDA-enabled platforms. This also makes it very convenient to use in
our algorithm. By calling cuFFT for both the forward and the backward
transform, the arising high-level algorithm consists only of a handful of
well-structured operations which are easy to design and optimise.

Note that the CUDA SDK provided by NVidia already provides a very
simple implementation of an FFT-based convolution routine [NVi11a]. As it
turns out, this method is very specialised, as it assumes kernels of a certain
size only, and does not provide reflecting boundary conditions. Neverthe-
less, the approach we develop in the following pursues a similar strategy, and
complements these ideas by additional operations where necessary. Since
these modifications are pretty straightforward, we can see our algorithm as
a generalisation of NVidia’s approach.

Since we are only considering real-valued input and output data during
the computation, our algorithm can be accelerated by using real-to-complex
forward transforms and complex-to-real backwards transforms. While these

3.5. EFFICIENT GPU-BASED ALGORITHMS 51

transforms possess the same runtime as their complex-to-complex valued
variants, they use the symmetry of the Fourier plane, and read and write
only a half-plane. This allows the intermediate scaling operation to be
performed much more efficiently.

The essential operation, a point-wise multiplication with the dual of the
Gaussian as in (3.25), is arithmetically inexpensive but memory-intensive.
For each multiplication, we must load two values from global memory (the
signal and the kernel), as well as store one resulting value. Since these mem-
ory operations are about two orders of magnitude slower than arithmetic
operations, this setup immediately leads to a severe bottleneck. A remedy
to this problem is found in the immediate computability of the dual of the
Gaussian in frequency space as given in (3.29). It allows to save one load
per pixel if we compute the value of the Gaussian inline. This requires 7
multiplications, 1 addition, and 1 call to a hardware-accelerated intrinsic
function for the exponential function. On a Fermi architecture (Compute
Capability 2.0), these computations require about 20 clock cycles in aver-
age [NVi11b]. Not only is this strategy more than one order of magnitude
faster than accepting a 400–800 cycles latency for loading the data, but
it can also easily be hidden behind load and store latencies for input and
output. To this end, the computation of the Gaussian does not measurably
increase the runtime.

As an additional means of acceleration, we formulate the 2-D point-
wise multiplication with a simple 1-D CUDA kernel. This is numerically
equivalent to a real 2-D operation, since the underlying 2-D coordinates can
directly be computed from the 1-D thread ID and be used as an argument
to the exponential function. However, the advantage of such multiplication
is a better tessellation of the Fourier plane with CUDA primitives. The
lower padding requirement arising from this setup additionally reduces the
memory throughput of this operation.

Finally, let us briefly remark on the mirroring of the input image to fulfil
its periodicity, as explained in Section 3.3.4. It is immediately clear that
the effective size of the image to be transformed and multiplied grows by a
factor 4 as a consequence of this procedure, which is then also reflected in
the overall runtime. As we are going to see in Section 3.6.4, this modification
also significantly limits the maximal image size possible to be computed by
the GPU-based algorithm. However, the mirroring procedure itself can be
efficiently realised if we consider that the process consists of two independent
mirrorings along different symmetry axes. Assuming row-first ordering, the
mirroring along the vertical axis is expensive, since it involves a reversal of
coherent memory structures. However, this operation can still be performed
efficiently if data is read via a texture. By setting the pitch of the input

52 CHAPTER 3. HOMOGENEOUS DIFFUSION

to the total width, it can be bound to the ‘top left’ quadrant of the buffer,
while the ‘top right’ quadrant is written. Note that this proceeding is valid
in terms of the CUDA API, since we can ensure that no field of the buffer
that is read will also be written. The subsequent mirroring step along the
horizontal axis is even more inexpensive, since the coherency of memory
lines is preserved during this step. It can thus be efficiently realised by
cudaMemcpy operations.

3.5.5 Recursive Filtering

The GPU-based implementation of the ‘parallel’ Young-van-Vliet filter pre-
sented in Section 3.3.5 extends the sequential algorithm from [Hal06a] by a
parallelisation strategy for GPUs, which follows similar design concepts as
our algorithm for spatial convolution (see Section 3.5.3). To the beginning
of the program run, the coefficients from (3.46)–(3.47) and (3.51)–(3.54) are
computed on the CPU. A parallel algorithm for this step does not pay off,
since these 12 coefficients are the same for all pixels in the image domain.
Moreover, the scaling factor q from (3.32) is optimised by a manual optimi-
sation step which is also an inherently sequential operation which cannot
be parallelised.

If we again assume row-first ordering, the filtering process starts with a
convolution in y direction. It consists of one forward run and one backward
run, since the individual filtering steps (3.55)–(3.56) and (3.57)–(3.58) are
pairwise grouped to reduce calls to global memory. Because vertical stripes
of pixels are data-parallel with respect to each other, each thread handles
one column. This is represented by a linear CUDA ThreadGrid of size 512.
Hence, a common load of input data comes down to a large coherent access
to global memory. The ‘offset’ input and feedback values f·±1 and y

(·)
·±1 from

(3.55)–(3.58) can conveniently be stored in registers.
For the other direction along the direction of linear memory, loads and

stores from and to global memory represent a performance bottleneck. This
is because vectors that are jointly loaded or stored by all active threads now
reside in memory cells which are full image widths apart from each other.
For loading new input data, textures provide a good runtime, as they mask
memory latencies well by use of their 2-D aware caches. However, writing
back global memory still results in an incoherent write operation, which
makes this part of the filter more than a factor 3 slower than the one for
the perpendicular direction.

In [Ril09], the author suggests to overcome this problem by transposing
the problem twice per filter application, such that the kernels for both
dimensions run into the same directions. However, such transposition step

3.5. EFFICIENT GPU-BASED ALGORITHMS 53

is very expensive. As a consequence, the overall framerate for filters with
similar data patterns as in our case is stated as 31–100 FPS for images of
size 640×480. In Section 3.6.4, we see that this value is about a factor 3–10
below the performance of the aforementioned approach.

Finally, let us discuss the handling of boundaries. As it is described in
Section 3.3.5, technical issues such as the preservation of mass are already
compensated by the ‘parallel’ implementation as suggested in [Hal06b].
These problems used to be a fundamental problem of recursive filtering
in the literature. However, it remains to implement a suitable strategy to
obtain the desired ‘reflecting’ behaviour around boundaries. Here, we can
apply a similar idea as for spatial convolution and assume the kernel to be
truncated at cσ

h
samples. Since a physical mirroring of the image in memory

is expensive, we simulate this scenario with a ‘warm-up phase’ before every
filter run. In this phase, we initialise the filter in distance cσ

h
from the im-

age boundary, and let it first approach this boundary in ‘reverse’ direction
without writing back the result. The intermediate values accumulated in
the filter stencil are then used as an initialisation for the actual run. This
has the same effect as if the image was mirrored by a boundary of cσ

h
, and

cropped to its original size after the filter run is finished. As it was for
spatial convolution, a choice of c > 3 yields good results. Unless stated
otherwise, we use c = 5 in our experiments in order to obtain a best com-
parability to the other methods. Note that a ‘full’ mirroring as performed
in context of frequency-based convolutions does not yield a benefit in this
case. The filter run is by concept finite, such that the arising periodicity
cannot be exploited in this case.

3.5.6 Iterated (Extended) Box Filtering

Let us now detail on the implementation of traditional and extended box
filters, which enjoy a similar algorithmic structure. The box filter with
correction then follows straightforwardly as a concatenation of this box
filter implementation with a spatial convolution as in Section 3.5.3.

In this implementation, we assume a grid spacing h = 1 in both di-
rections, and exploit the separability of the kernel. To the beginning of
the program run, we first compute the coefficients to be used during the
filtering process:

• For traditional box filtering, the only parameter to be computed
is the half-length l. Since l must be an integer, the supported range of
standard deviations σ is limited to a sparse set of values (see (3.67)).
This is a problem for an implementation, since σ is usually given as

54 CHAPTER 3. HOMOGENEOUS DIFFUSION

an input parameter and does not fulfil the sparsity constraint. As a
consequence, we round σ to the closest value that can be represented
by a box filter and accept the occurring rounding error as a discretisa-
tion artefact. By these considerations, l follows from (3.67) by setting
h = 1 and exploiting that L = 2l + 1:

l = round

(√
12
σ2

d
+ 1− 1

)
, (3.89)

where round (·) denotes a rounding to the closest integer. If the argu-
ment of round (·) already yields an integer, the created box filter with
length 2l + 1 possesses exactly the desired standard deviation.

• In case of extended box filtering, we need the ‘inner’ half-length
l, as well as the height of the external weight w at position ±(l + 1).
Since the deficiency in the length is absorbed by the free choice of
w, we do not need a rounding towards the nearest integer. Instead,
we now search the largest l which yields a smaller standard deviation
than σ:

l =

⌊√
12
σ2

d
+ 1− 1

⌋
, (3.90)

where the floor function b·c denotes a truncation of the decimal part.
Based on this l, we apply (3.76) and (3.83) to obtain the size of the
‘missing’ length increment α:

α = (2l + 1)
l(l + 1)− 3σ2

d

6(σ
2

d
− (l + 1)2)

. (3.91)

By (3.82), we then obtain w as

w =
α

2l + 1 + 2α
. (3.92)

Moreover, we also precompute 1
Λ
−w =: ŵ as a second weight, which

simplifies the sliding window algorithm:

ŵ =
1− α

2l + 1 + 2α
. (3.93)

In both directions, the respective filtering process consist of two parts.
To the beginning, the first element in a row is computed by a spatial convo-
lution with the underlying kernel. This step is necessary because the sliding

3.5. EFFICIENT GPU-BASED ALGORITHMS 55

�a 0 l-1 l...-l ...

Mirror and add

0 l l+1...-l-1 ...
w

ŵ
Λ
1

Λ
1

Λ
1

Mirror and add

�b
Figure 3.6: Initialisation kernel of a. the traditional and b. the extended box
filter. Blue denotes the original contribution right of the central pixel, red visu-
alises the mirrored partition from the left.

1 ...

2 ...

3 ...

4 ...

5 ...

Figure 3.7: Implicit boundary handling during box filtering. To update ‘◦’, the
solution left of ‘◦’ is reduced by the contribution at ‘−’, and increased by the one
at ‘+’. The pointer ‘−’ is chosen such that it simulates mirroring (light grey).

window approach that is to be started later requires the previously writ-
ten output as a feedback. Note that since we assume reflecting boundary
conditions, there is no need to mirror the signal if we assume an implic-
itly mirrored kernel. This is shown in Figure 3.6. For a traditional box
filter, this amounts to l− 1 sampling points with weight 2/Λ, as well as one
sampling point with weight 1/Λ. In the case of an extended box filter, the
algorithm requires l− 1 sampling points with weight 2/Λ, one with 1/Λ +w,
and one with w.

The actual filtering works by applying the sliding window algorithms
from (3.65) and (3.81). These operations are data-parallel in 2-D, where
each thread is assigned to one row of data. During these operations, we
assume mirroring boundary conditions. However, since an actual mirroring
in memory is very expensive, we apply a similar trick as for the ‘warm-
up phase’ during recursive filtering (see above). To this end, we maintain
pointers to the locations which are to be read. These pointers are then ma-
nipulated where necessary, such that they allow for a boundary handling
on-the-fly. For the case of the left boundary, this is shown in Figure 3.7.
Here, light grey cells correspond to virtual pixels beyond the image bound-
ary. Note that in this example, the ‘−’ pointer mimics a mirroring behaviour
of the process during the first three steps.

This idea is simple to realise algorithmically if in addition to the three

56 CHAPTER 3. HOMOGENEOUS DIFFUSION

pointers, we also store two binary variables which denote the current ad-
vance direction of the ‘−’ and ‘+’ pointers. In each step, both pointers are
advanced by one pixel into either positive or negative direction, depending
on the state of their direction variable. When a pointer runs beyond the
image boundary, it is reset and its direction variable is inverted.

Surprisingly, a boundary-aware pointer juggling for extended box filter-
ing can be established with only two more value assignments. Assuming
the processing of pixel i, the two pointers from above are attached to the
rightmost sample (i + l + 1) and to the second-but-left sample (i − l − 1).
These two pointers again simulate an implicit mirroring and are advanced
as above. As an exciting side effect, both values can be used twice over the
course of the filter run. The sample at i+ l+ 1 takes the role of one at i+ l
if i is advanced by 1, and so does the sample at i − l − 1 with respect to
the one at i− l − 2. As a consequence, two out of the four samples can be
read out of a register rather than from global memory. This change speeds
up the process significantly.

Note that for the sake of notation, we only discussed a 1-D problem in
the previous paragraphs. However, keep in mind that due to the separa-
bility of the 2-D process and the inherent data-parallelism per dimension,
this setting immediately carries over to the 2-D case. In this moment, all
previously described scalar loads and stores map to fast loads and stores of
full vectors, which makes the process efficient. Similar to the case of recur-
sive filters, we choose textures to load data during the filter run along the
coherent memory direction, and direct accesses to global memory otherwise.

This finishes our excursion on the details of efficient GPU-based algo-
rithms for linear diffusion. In the next part, we evaluate the properties of
these algorithms, and compare their quality and their runtime efficiency.

3.6 Experiments

On the next few pages, we evaluate our algorithms with respect to the qual-
ity of their results and the time required to obtain these solutions. Some
of our algorithms are parameter-free, which makes the evaluation straight-
forward. We can simply measure the quality and runtime on representative
sample images, and take these measurements as a basis of comparison. How-
ever, other algorithms such as implicit convolution or box filters, possess
additional parameters which steer a tradeoff between quality and runtime.
In order to compare them to the remaining methods, we must first optimise
their parameters. To this end, our experiments are grouped into four parts.
After we answer the question for a reasonable ground truth to compare

3.6. EXPERIMENTS 57

against, we optimise free parameters for all of our approaches to yield a
solid basis for comparison. In the following benchmark, we compare the
approximation quality of all approaches against each other. The final and
most important series of experiments aims at the runtime of all algorithms.
We compare these GPU-based methods against each other, and against
their counterparts on the CPU. This gives us important insights about the
absolute runtimes, but also about the scaling behaviour of our algorithms.

3.6.1 Ground Truth

Before we begin with the evaluation and comparison of the presented al-
gorithms, let us address the fundamental question of a reliable reference
solution for our experiments. As it turns out, this question is less trivial
than it seems at first glance. Our setup suffers from a number of inaccu-
racies such as the imprecision of floating point arithmetics. Even if we use
very high quality settings for algorithms such as explicit diffusion or spa-
tial convolution, these impairments cause the solutions obtained from both
experiments to be different.

In order to get a feeling for the effects occurring in this context, let
us perform an experiment on the CPU. On a 1-D unit grid, we create a
signal of length 2001 which has a unit peak at 1000, and which is zero
elsewhere. We fix the stopping time to T = 1000, and perform explicit and
implicit diffusion with different time step sizes, as well as spatial Gaussian
convolution with truncation c = 10. In the latter case, we mirror the signal
sufficiently often at its boundaries such that the full support of the kernel
lies within a valid range. For the implicit discretisation, we use a Thomas
algorithm to solve the equation system arising for each time step [vR09].
Note that we use sequential hardware and a 1-D signal in this experiment,
such that this algorithm can be efficiently applied.

Our hope is that the explicit and the implicit method yield a similar
solution if they are configured with ‘suitable’ parameters. We can then call
this solution a ground truth of the process, and can be confident that a
similar configuration gives equally reliable results for more complex inputs.
Spatial Gaussian filtering, in contrast, is likely to yield a different solution.
This is because of discretisation artefacts that cause the continuous solution
not to carry over to the discrete case (see [Lin90] for details). Nevertheless,
Gaussian filtering possesses a very simple algorithmic structure which helps
it to dampen rounding errors to a minimum. Depending on the impact of
rounding errors on the quality of the result, this property makes Gaussian
filtering an interesting alternative to the actual discretisations of the linear
diffusion equation. In addition to this algorithmic alternative, we compare

58 CHAPTER 3. HOMOGENEOUS DIFFUSION

 0 ⋅ 10
-3

 1 ⋅ 10
-3

 2 ⋅ 10
-3

 3 ⋅ 10
-3

 4 ⋅ 10
-3

 5 ⋅ 10
-3

 6 ⋅ 10
-3

 7 ⋅ 10
-3

 8 ⋅ 10
-3

 9 ⋅ 10
-3

 10 ⋅ 10
-3

 600 700 800 900 1000 1100 1200 1300 1400

Explicit (τ = 10
-2

)
Explicit (τ = 10

-3
)

Explicit (τ = 10
-4

)
(DP) Explicit (τ = 10

-2
)

(LDP) Explicit (τ = 10
-2

)
Implicit (τ = 10

-2
)

Implicit (τ = 10
-3

)
Implicit (τ = 10

-4
)

(DP) Implicit (τ = 10
-2

)
(LDP) Implicit (τ = 10

-2
)

Gauß (c = 10)
(DP) Gauß (c = 10)

(LDP) Gauß (c = 10)

8.800 ⋅ 10
-3

8.850 ⋅ 10
-3

8.900 ⋅ 10
-3

8.950 ⋅ 10
-3

9.000 ⋅ 10
-3

 990 995 1000 1005 1010
8.916 ⋅ 10

-3

8.917 ⋅ 10
-3

8.918 ⋅ 10
-3

8.919 ⋅ 10
-3

8.920 ⋅ 10
-3

8.921 ⋅ 10
-3

8.922 ⋅ 10
-3

 998 999 1000 1001 1002

Figure 3.8: Linear diffusion with stopping time T=1000 on a 1-D signal contain-
ing a unit peak centred at 1000. Computations are performed in double (DP),
long double (LDP), or single precision floating point arithmetics (else).

the results of all algorithms in single, double, and long double floating point
arithmetics. This gives us a feeling for the impact of rounding errors on the
whole process.

The results of this experiment are shown in Figure 3.8. In single pre-
cision arithmetics, we apply both the explicit and the implicit solver with
time step widths τ = 10−2, τ = 10−3, and τ = 10−4. Since we use a
first-order discretisation in time, we expect smaller approximation errors
the closer τ approaches zero. However, the converse happens. While for
τ = 10−2, the solutions for both schemes are less than 2.5 · 10−5 apart,
their maximal distance grows to more than 2.0 · 10−3 for τ = 10−4. This

3.6. EXPERIMENTS 59

error is significant, since it affects the absolute value by more than 20%.
It is a result of rounding errors which accumulate over the course of the
process [GO96]. Smaller time step widths cause more iterations, and each
iteration causes a certain rounding error. As a consequence, the absolute
error increases due to rounding, although numerics promises a dampening
of the error.

In order to account for these inaccuracies, we re-perform the experiment
for τ = 10−2 in double and long double arithmetics. As it turns out,
both methods yield indistinguishable results up to the 9th decimal place.
Consequently, their graphs in Figure 3.8 are superposed. Compared to the
single-precision case, the implicit and the explicit result are much closer to
each other. Their maximal distance shrinks to 6.7 · 10−8.

Let us now compare the result of Gaussian filtering against these solu-
tions. As a first striking property, we see that spatial convolution with a
Gaussian is almost invariant under rounding inaccuracies. The three graphs
for single, double, and long double precision are superposed. This is a result
from the limited rounding error taking place in this operation. A stopping
time of 1000 corresponds to a standard deviation σ ≈ 45 on a unit grid.
Considering a truncation c = 10, each value of the solution is computed as
a weighted sum over 895 samples. This value is in striking contrast to 1010

weighted additions per output sample for explicit diffusion, or even more
for implicit diffusion. For a stopping time of 1000 and a time step τ = 0.01,
these discrete diffusion algorithms require 100 000 iterations. Moreover,
implicit diffusion requires one run of the Thomas algorithm per iteration,
which is additionally prone of accumulating rounding errors.

However, we can also see that Gaussian convolution does not exactly
yield the same results as the discretisations of the diffusion equation. For
the analysed stopping time T = 1000, the maximal error between the aver-
age of the diffusion processes and Gaussian filtering amounts to 4.29 · 10−6.
There are different interpretations for this observation. On the one hand, it
could be related to the fact that although the results obtained with double
precision arithmetics are more precise, they are not accurate with respect to
the optimal solution of the discrete diffusion process. The discrepancy be-
tween precision and accuracy for floating point arithmetics is impressively
shown in [Rum88]. On the other hand, it is more likely that the observed
error between these algorithms is related to the inadequacy of Gaussian
filtering as an algorithm for discrete linear diffusion (see [Lin90]). An indi-
cator arguing in favour of this hypothesis is given by a reference experiment
for a stopping time T = 10. In this case, the error grows to 5.74 ·10−4. This
behaviour for small stopping times is also reported in [Lin90, Footnote 14].
An alternative could in these cases be given by a kernel as in [Nor60].

60 CHAPTER 3. HOMOGENEOUS DIFFUSION

To this end, we can draw several conclusions from this experiment. On
GPUs, we are interested in a low runtime. Since double precision arith-
metics slows down the process significantly (see [NVi11b]), there is little
option other than using single precision floating point arithmetics. More-
over, our main focus is on large diffusion stopping times. This is a natural
consequence from the opportunity of fast computations on a GPU. Using
this computing power, we can in the same time process much larger im-
ages than on a CPU. This allows us to increase the resolution of an image
to provide a higher accuracy for a superordinate algorithm. In this case,
we also require higher stopping times T , since T scales inversely to the
grid spacing h. Also from a technical perspective, large stopping times are
more interesting than smaller ones. Since input data required to process
one pixel does not fit into fast on-chip memory, we require algorithms that
reduce the memory intensity rather than the computational intensity. Such
requirement is usually the more challenging case on GPUs.

As a result from these considerations, spatial Gaussian filtering with a
truncation such as c = 10 provides the best ground truth for our experi-
ments. However, keep in mind that for small stopping times, this ground
truth contains a systematic error which makes results less reliable.

3.6.2 Parameter Configuration

In the following, we optimise free parameters for the presented algorithms.
Since these parameters all represent trade-offs between accuracy and speed,
we aim at configurations which still yield a ‘sufficient’ quality, but which do
not significantly squander runtime of the process. As a basis for comparison,
we use the Boat image shown in Figure 3.9.

Gaussian Convolution

Let us adhere to spatial Gaussian convolution for a moment, and investigate
the influence of the truncation parameter c on the quality of the results.
For an optimal runtime, we require c to be as small as possible. It is the
goal of this experiment to find a lower bound for c which is still sufficient
for real-time applications.

From a theoretical analysis in the continuous 1-D setting, we expect
a value of about c ≈ 3 to be sufficient. In such case, we truncate about
2.7 · 10−3 of the mass of the kernel. By the normalisation in (3.23), this
error is distributed over the full support of the kernel. For larger c, this
error even decreases further, such as 6.3 · 10−5 for c = 4, or 5.7 · 10−7 for
c = 5. By separability, the same approximation errors carry over to the n-D

3.6. EXPERIMENTS 61

Figure 3.9: Boat test image from the USC-SIPI image database (http://sipi.
usc.edu/database/), 512×512 pixels. This image is used to compare algorithms
presented in this chapter.

case. As a measure for similarity, we apply the mean square error, which is
given by [LK11]

MSE(a, b) =
1

N

N∑
i=1

(ai − bi)2 , (3.94)

where N describes the number of pixels. The vectors a and b are more
similar to each other, the smaller the MSE between them is.

Figure 3.10 shows the MSE between the result and the ground truth,
depending on the choice of the standard deviation σ. The colour coding of
the plot reflects our intuitive interpretation of the quality of the filtering
result. Green corresponds to an MSE that is smaller than about 0.2. Such
errors are typically invisible in actual applications. The more the colour
fades to red and black, the higher is the error. Such deviations from the ex-
act solution can often be spotted, in particular in a direct comparison with
the exact solution. Our expectation that a truncation c = 3 is sufficient to
dampen the error significantly is confirmed by the real-world experiment.
A much lower setting for c does not make sense, the error already grows to
about 1.0 for c = 2. Errors of this magnitude are in general even visible
by the human eye. We also notice that apart from very small standard
deviations σ, potential discretisation errors have no significant impact on

http://sipi.usc.edu/database/
http://sipi.usc.edu/database/

62 CHAPTER 3. HOMOGENEOUS DIFFUSION

 0

 10

 20

 30

 40

 50

 0

 2

 4

 6

 8

 10

 0

 0.5

 1

 1.5

 2

 2.5

 3

σc

 0

 0.5

 1

 1.5

 2

 2.5

 3

Figure 3.10: Mean square error for spatial Gaussian filtering on Boat, 512×512
pixels, depending on standard deviation σ and cutoff parameter c.

the optimal choice of the truncation parameter. The graph is sufficiently
smooth. The reason that we obtain even lower errors for small σ is re-
lated to the rounding of the absolute truncation cσ

h
to full integers. In

Section 3.6.3, we perform a more detailed analysis on a logarithmic scale,
and a comparison against other techniques. Besides the choice c = 3, we
additionally evaluate for the ‘high-quality’ setting c = 5 which gives results
that are almost indistinguishable from our ground truth.

Implicit Diffusion

Our implicit diffusion algorithm possesses two free parameters which steer
the quality but also the runtime of the process. The first parameter of
this kind is the time step size τ for each implicit step which implies the
number of ‘outer’ iterations kmax. Equivalently, we can fix the latter to a
certain number and compute τ from the stopping time T as τ = T/kmax.
Small τ in general lead to better solutions. The second parameter lmax

controls the approximation quality of each individual step of size τ . It
describes the number of iterations of the internal Jacobi solver. Apart from
accumulative errors, we can state that more iterations in general lead to a
better approximation.

From the perspective of runtime, we also do not want to choose kmax

and lmax too large. Their product yields the absolute number of steps, and

3.6. EXPERIMENTS 63

 0

 500

 1000

 1500

 2000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

k
m

a
x
 ⋅
l m

a
x

τ

MSE < 0.01

MSE < 0.02

MSE < 0.05

MSE < 0.1

MSE < 0.2

MSE < 0.5

MSE < 1.0

Figure 3.11: Minimal number of iterations (kmax · lmax) of the Jacobi solver for
implicit diffusion with given τ such that a desired MSE is reached. As a basis
for comparison, we use a stopping time T = 50 on Boat.

determines the total runtime of the process. The aim of this experiment
is to jointly optimise these two parameters with respect to a desired max-
imal error. This setting then serves as a basis of comparison in runtime
experiments later in this chapter.

Using the Boat image from Figure 3.9, we choose a stopping time T =
50, vary τ , and run implicit linear diffusion with different ‘outer’ and ‘inner’
steps kmax and lmax. For a collection of selected MSEs, we visualise the
minimal number of total steps required to yield a solution with an equal or
smaller error.

This is shown in Figure 3.11. If we are interested in moderate errors
smaller than about 0.5, a large interval of time step sizes yields agreeable
results in about the same runtime. This changes the more we restrict the
maximal admissible error. For a bound of 0.01, for example, only time steps
in the interval τ ∈ [0.4, 0.8] yield results with a minimal number of steps.

As a consequence of this experiment, we fix the time step for all following
experiments to τ = 0.6 and set the number of inner steps to lmax = 13. This
is motivated from different considerations. For this particular example with

64 CHAPTER 3. HOMOGENEOUS DIFFUSION

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 0.01 0.1 1 10

S
S

E

h

d = 1

d = 2

d = 3

Figure 3.12: SSE between impulse responses of box filters and corresponding
Gaussians for σ = 1 under varying grid spacings h. Lines correspond to extended
box filters, circles to traditional box filters.

T = 50, we obtain an MSE that is lower than 0.05 with a total number of
1092 steps. Since we target at speed, this setup seems to be a reasonable
tradeoff. Moreover, there is good evidence that our insights carry over to
other input images and other stopping times. In this context, lmax is the
most uncritical setting, as it only depends on τ and the desired quality.
On the other hand, even the optimal choice for τ seems to be relatively
stable under varying stopping times, unless T is chosen close to 0. Other
experiments show that Boat possesses characteristics that are typical for
many real-world images, such as many high and low frequencies, and a high
value range. To this end, we can safely assume that τ = 0.6 serves most
purposes. If for real-world applications, a smaller error or smaller runtime
should be desired, this tradeoff can easily be established by an adaptation of
lmax. The resulting deviation in runtime can then be read out of Figure 3.11.

3.6. EXPERIMENTS 65

Consistence of Traditional and Extended Box Filtering

Let us now focus on box filters. As the first experiment in this series, we
evaluate the approximation quality of the extended box filter and its relation
to traditional box filtering. From Theorem 3.3, we know that the extended
box filter comes down to the simpler traditional box filter if its length is an
odd integer. As a consequence, we expect its approximation error to a linear
diffusion process to continuously interpolate the error of the traditional box
filter sampled at locations where it is defined. This consideration leads
immediately to the question of the quality of this interpolation. We expect
it to be much better than a simple rounding as proposed in Section 3.5.6
for traditional box filters.

As a representative example for the behaviour of extended box filter, we
observe its impulse responses for a given number of iterations d. In close
correspondence to the theoretical motivation from Section 3.4.2, we vary
the spatial grid width h in a simple 1-D setting and normalise the standard
deviation σ to 1. As a basis for comparison, we use a signal with a single
unit peak in the central sample. The length of this test signal is chosen
large enough such that potential wrap-around errors are below the limit of
machine precision.

Concerning the ground truth for this experiment, it would be nice to
have solutions of continuous box filtering with the given number of iterations
d. However, such results do not exist on a discrete grid. Computing them
analytically and sampling them on the target grid is no valid choice either,
since this procedure introduces new errors. In fact, the extended box filter
by construction already represents one such discretisation.

Instead, we use the fact that a sufficiently large number of iterations
with a box filter leads to a Gaussian filter and compare the box filtering
result to this desired solution. While it is clear that a higher number of
iterations d leads to an absolutely better solution, this solution suffices to
provide a direct comparison of extended and traditional box filters with
respect to their relative errors. As a measure for similarity, we use sum of
squares errors (SSEs):

SSE(a, b) =
N∑
i=1

(ai − bi)2 , (3.95)

where N is the number of samples in a and b. Note that we do not nor-
malise by the number of samples. This makes sense because we expect the
impulse responses to be well localised, and allows to abstract from the ac-
tual length of the signal. It is always chosen large enough to fit a Gaussian
with truncation c > 10.

66 CHAPTER 3. HOMOGENEOUS DIFFUSION

Figure 3.12 shows the SSE for box filters with d ∈ {1, 2, 3} iterations
against the ground truth. While the results produced by the extended box
filter are visualised by lines, the results for traditional box filters are overlaid
by circles. The rightmost circles in each colour correspond to a Bd

3 , i.e. to
a d-times iterated box filter of kernel length 3h. Let us first focus on the
measurements to the left of these points. These results are obtained with
box kernels that are larger than 3h. As expected, the extended box filter
possesses the same error as the traditional box filter when it comes to setups
for which the latter is defined. However, in between these configurations
the extended box filter approximates the Gaussian much better than we
would expect from a simple linear interpolation of the given samples. This
is a consequence of the characteristic shape of the extended box kernel. Its
additional weights of height hw at both sides cause a much more smoothing
behaviour than expected from a box filter. Such behaviour acts in favour
of Gaussian filtering, and is consequently reflected in a lower error.

For all box filters, the error drops for h → 0. This is because we have
an increasing number of samples as h approaches 0, while the convolution
kernels still possess unit sum. As a result, we obtain low but elongated
impulse responses. Consequently, the measured error between consistent
kernels also approaches 0.

Let us now discuss the case h < Λ < 3h, which corresponds to the
partition to the right of the circles in Figure 3.12. If we recall that all filters
approach the identity for h → ∞, we can easily explain the asymptotic
behaviour of the error. The filters hardly touch the signal in this case, such
that we actually compute the error between two copies of the input. The
dominant oscillations for Λ→ 3h−, in contrast, deserve more attention. By
Theorem 3.5, we can lead them back to approximation errors in second-
order finite difference approximations. The error for this approximation of
the Laplacian takes the form

h2

12

∂4u

∂4x
+O(h3) , (3.96)

where u(x) denotes the 1-D signal [Saa03]. For large h, this term can
become significant, which explains the maxima in the plot. However, we
also observe striking minima which represent errors of a magnitude that
we do not expect in these orders of h. As it turns out, these minima
occur because for particular configurations, the extended box kernel closely
resembles the corresponding Gaussian. For example, consider the minimum
for d = 1. For h =

√
3, we set the length of the extended box kernel to

Λ = 3/2h to obtain a standard deviation of σ = 1. As it turns out, the

3.6. EXPERIMENTS 67

arising kernel closely resembles a discrete Gaussian truncated at c = 1:

[K1]1 (0 ·
√

3) ≈ 0.69144 [K1]1 (1 ·
√

3) ≈ 0.15428 (3.97)

E1.5 (0 ·
√

3) ≈ 0.66667 E1.5 (1 ·
√

3) ≈ 0.16667 (3.98)

The left column in (3.97)–(3.98) refers to the central weights of the two
3-point stencils, the right column to the outer weights. The SSE between
these configurations is 9.2 · 10−4 – which agrees with our observation from
Figure 3.12. By a similar argument, we have two minima for the mea-
surements d = 2 and d = 3. In this case, the iterated extended box filter
matches discrete Gaussians with truncation c = 1 and c = 2.

Box Filters: Rotational Invariance

Linear diffusion is rotationally invariant. This property follows from the
shape of the (continuous) Laplacian, and states that a filtering of a ro-
tated image is equivalent to a rotation of the diffused original image by
the same angle. Rotational invariance is also an important property of
discrete implementations, since it confirms that no grid-dependent discreti-
sation artefacts are introduced. Most filters presented in this chapter either
solve the diffusion equation directly in 2-D, or they use the separability of
Gaussian filtering. If these approximations are accurate, the arising filter
is rotationally invariant by construction.

Box filters are prone to violate this requirement, because the elementary
case d = 1 has a square-shaped support. As a consequence, their rotational
invariance can only arise from a high number of iterations. In this experi-
ment, we want to determine the minimal number of iterations d such that
this property is fulfilled.

Figure 3.13a shows the image of a black circular disc with diameter 768
pixels on a plane of size 1024×1024 pixels. The size of this image has been
chosen large enough to smooth out potential discretisation artefacts arising
from the input. A rotationally invariant algorithm is supposed to transport
grey values perpendicular to the edge, i.e. to propagate information in con-
centric circles. Since small variations in the grey value are almost invisible
to the unaided eye, we visualise the results with their isolines. Two neigh-
bouring isolines enclose an interval of 15/255 of the full grey scale. For the
ground truth shown in Figure 3.13b, we see that the rotational invariance
property is perfectly fulfilled. All isolines describe concentric circles. This
is different for one iteration of a box filter. Here, the isolines are distorted
towards an axis-aligned structure, as can in particular be seen for the outer-
most line. Moreover, in a direct comparison with the ground truth we also

68 CHAPTER 3. HOMOGENEOUS DIFFUSION

�a �b

�c �d �e �f
d = 1 d = 2 d = 3 d = 5

�g �h �i �j
Figure 3.13: Rotational invariance of box filtering in comparison to Gaussian
convolution. Results show isolines of a filtering of a. the Disc image, 1024×1024
pixels with σ = 80. b. Ground truth. c.–f. Traditional box filtering. g.–j. Ex-
tended box filtering.

observe that gradients are largely estimated wrongly. While the ground
truth features different distances between isolines, they are almost equi-
spaced for the box filter. Both problems disappear the more iterations we
prescribe. With d = 3, the result already looks perceptually similar to the
ground thruth, although the grid bias is still noticeable in the distance be-
tween the two outer isolines. The solution for d = 5 is almost equivalent to
the ground truth, and does not contain any of the aforementioned artefacts.

As it turns out, the results for the extended box filter are indistinguish-
able from the ones for the traditional box filter. Consequently, it contains
visual inadequacies for d = 1 which are completely resolved for d = 5 it-
erations. This indicates that the new discretisation involved in this case
does not introduce unexpected new artefacts when the filter is applied to
multi-dimensional settings.

Hence, in view of the rotational invariance of the process, already 3 to 5

3.6. EXPERIMENTS 69

 0

 10

 20

 30

 40

 50

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

 0

 0.5

 1

 1.5

 2

 2.5

 3

σd

 0

 0.5

 1

 1.5

 2

 2.5

 3

Figure 3.14: Mean square error for traditional box filtering on Boat, 512×512
pixels, depending on standard deviation σ and iterations d.

iterations of a box filter suffice to yield very good results. In the following,
we check whether this insight carries over to the approximation quality on
real-world data, or whether we require even more iterations to yield a low
approximation error.

Box Filters: Quantitative Analysis

In this experiment, we analyse two different aspects of box filtering. In
the first part, we measure the impact of the number of iterations d on the
quality produced by the different box filtering algorithms. In the second
part, we then keep d fixed and perform a direct comparison of the three
methods. The latter helps us to decide which discrete instance of a box filter
is best suited for a particular problem, while the first one yields insights
about the optimal configuration of this instance.

Let us begin with a measurement of the MSE for traditional box filtering
using d ∈ {1, . . . , 20} iterations. As a basis for comparison, we again apply
the Boat image from Figure 3.9, and apply a standard deviation σ ranging
from 0 to 50. Whenever there is no box kernel with the desired standard
deviation σ available, we choose either the next smaller or next larger kernel,
depending on which provides the better approximation (see (3.89)). As a
reference solution, we use again a spatial Gaussian filtering with c = 10.0.

70 CHAPTER 3. HOMOGENEOUS DIFFUSION

The mean square error between the result and the reference solution
is visualised in Figure 3.14, using the same colour scheme as before. We
observe high errors for small d, but also for fairly small σ. The first fact
is immediately clear if we recall that very few iterations of a box filter do
not suffice to approximate a Gaussian well (see (3.60) and [Wel86]). This
effect is well understood in the continuous setting, and carries over to the
discrete case.

In contrast, the high errors for small σ and larger d are more interesting.
Each of the peaks corresponds to an interval of standard deviations which
cannot accurately be represented. It is easy to explain why these effects
occur most dominantly for small standard deviations. Let us refer once
more to Figure 3.2 which explains that a traditional box filter is in general
either higher and narrower than its continuous prototype, or lower and
wider. Without loss of generality, let us assume the latter setting. Then,
the rounding step from (3.89) causes the traditional box filter to be at most
one sample longer than necessary. This sample has width h and height h/L
(by (3.64)). Since the kernel is normalised to unit sum, all weights that
are placed into the surplus sample are missing over the length of the kernel,
such that the total error is doubled. To this end, we obtain a maximal
absolute approximation error on the kernel of

AEmax = 2h
h

L
= 2h

h

h(2l + 1)
= 2h2

√
d

12σ2 + dh2
, (3.99)

where the third equality follows from (3.67). If in (3.99), we let σ → 0
or d → ∞, the maximal AE approaches 2h. Whenever a box kernel is
convolved with an image, its AE is introduced to every pixel, scaled by the
image grey value at this point. This explains the significant errors depicted
in Figure 3.14.

Let us now repeat this experiment for a box filter with correction. The
MSE on Boat is shown in Figure 3.15. We observe that the error almost
vanishes for d > 3, independent of the standard deviation σ. This is bought
by relatively large correction steps by Gaussian filtering, in particular when
it comes to small σ and large d. Note that independent of d, filtering results
with a very small standard deviation can accurately be reproduced. This
is because the box filters B1 used in this case simply equal the identity. In
such cases, we should no longer speak of box filtering, but attribute the
effect to the Gaussian filter.

Figure 3.16 shows the corresponding experiment with an extended box
filter. The plot is very similar to the one for box filters with correction,
except for an additional error for very small standard deviations σ. This

3.6. EXPERIMENTS 71

 0

 10

 20

 30

 40

 50

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

 0

 0.5

 1

 1.5

 2

 2.5

 3

σd

 0

 0.5

 1

 1.5

 2

 2.5

 3

Figure 3.15: Mean square error for box filtering with correction on Boat,
512×512 pixels, depending on standard deviation σ and iterations d.

 0

 10

 20

 30

 40

 50

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

 0

 0.5

 1

 1.5

 2

 2.5

 3

σd

 0

 0.5

 1

 1.5

 2

 2.5

 3

Figure 3.16: Mean square error for extended box filtering on Boat, 512×512
pixels, depending on standard deviation σ and iterations d.

72 CHAPTER 3. HOMOGENEOUS DIFFUSION

10
-2

10
-1

10
0

10
1

10
2

 0 5 10 15 20 25 30 35 40 45 50

M
S

E

σ

Traditional box filter (d = 3)

Extended box filter (d = 3)

Corrected box filter (d = 3)

Figure 3.17: Mean square errors of different box filtering algorithms for d = 3
iterations under varying standard deviations σ, on Boat, 512×512 pixels. Circles
refer to positions where the traditional box filter is defined.

error has already been discussed on pages 65ff in context of 1-D extended
box filtering, and is caused by approximation errors for σ/h → 0 (see also
Figure 3.12).

Up to this point, we have already convinced ourselves that both cor-
rected and extended box filtering are superior to traditional box filtering
when it comes to real-world applications, since significant errors are damp-
ened sufficiently well. Let us now analyse the differences between these
methods in detail. To this end, we plot the errors for the exemplary case
d = 3 on a logarithmic scale. Figure 3.17 shows the results of this exper-
iment. It depicts traditional box filtering in blue, the corrected box filter
in black, and the extended box filter in red. In addition, all locations on
which the discrete box filter is exactly given are also marked with dark blue
circles.

Surprisingly, this experiment does not yield the outcome expected from
the theoretical analysis in Section 3.4.2 and the experiment from pages 65ff.
In general, the error of all methods seems to approach a constant rather than

3.6. EXPERIMENTS 73

 0⋅10
-2

 1⋅10
-2

 2⋅10
-2

 3⋅10
-2

 4⋅10
-2

 200 220 240 260 280 300

Gaussian
Traditional Box (d = 3)

Extended Box (d = 3)

Figure 3.18: Impulse response of box filtering for σ = 10.8 and d = 3 on a unit
peak centred at 250, and result of Gaussian filtering.

dropping off towards 0 as σ approaches∞. So far, this observation does not
contradict the insights obtained on pages 65ff. While the absolute error for
each impulse response drops as σ is increased, the effective support of each
impulse response grows by about the same amount. Consequently, smaller
errors are superposed in a larger area, such that the overall error to be
measured remains about constant. If, in contrast, we choose σ much larger
than 50, the solution approaches a uniform image with the same average
grey value as the original. Given that no methods accumulate numerical
inaccuracies, all errors approach 0.

Within this slightly modified setup, we also find that both the extended
and the corrected box filter behave consistent to the traditional box filters at
defined positions (marked by circles). In case of the extended box filter, the
lower error in between these samples is easily explained by the smoothing
behaviour of the external weights. The corrected box filter possesses a lower
error the higher its partition of Gaussian filtering is.

Most unexpectedly, however, the traditional box filter partially manages
to yield significantly lower errors than both modified techniques. This hap-
pens when the desired standard deviation is slightly higher than those of

74 CHAPTER 3. HOMOGENEOUS DIFFUSION

the ‘most similar’ traditional box filter. In such cases, it seems to pay off
to use the next smaller traditional box filter rather than a kernel with the
correct standard deviation. The error even drops significantly compared to
the ‘consistent’ case where the standard deviation of the iterated box filter
matches the one of the desired Gaussian.

In order to understand this anomaly, let us compare the impulse re-
sponses of the filters for a setting in which the traditional box filter is more
accurate than the extended one. For a standard deviation of σ = 10.8 and
d = 3 iterations, this is shown in Figure 3.18. Although all kernels have
unit sum and the same standard deviation, the result for the extended box
filter has a lower maximum. The mass missing in this region is instead
distributed over the rising and falling slopes of the function. This explains
the high error. The ‘smaller’ traditional iterated box filter does better. Be-
cause its variance is smaller, the impulse response becomes narrower. Since
by construction, it still possess unit sum, the central weight is higher. To
this end, the smaller traditional box filter draws advantage from a better
approximation of the shape of the kernel rather than from a more accurate
standard deviation.

For the extended box filter, in particular, this surprising observation is
not only a challenge but also a chance. The starting point for this method
is the traditional box filter, which we canonically assume to yield best re-
sults when the standard deviation is exactly fulfilled. However, we found
that these points do not coincide with the minima in the error plot (cf.
Figure 3.17), but rather with some intermediate error. If we manage to
compute these minima, we can attach the extended box filter to this new
process and improve the approximation error where the traditional box fil-
ter fails. However, finding the exact positions for these minima in a closed
form expression without a direct comparison of impulse responses can be
tedious and remains to be addressed in future work.

Let us conclude this experiment with a brief summary of obtained in-
sights. Both the extended and the corrected box filter possess a lower guar-
anteed error bound than a traditional box filter. For many applications, the
decrease of the maximal MSE by more than one order of magnitude causes
the results of extended and corrected box filtering to yield visually much
more pleasing results than traditional box filtering. However, if we are in-
stead interested in the absolute minimal error, we should be aware that
under special circumstances, traditional box filtering yields better results
than either of the other methods.

3.6. EXPERIMENTS 75

Ground truth

Explicit
(τ = 0.24)

Implicit
(τ = 0.6, lmax = 13)

Spatial
(c = 3)

FFT-based

R
es

u
lt

D
iff

er
en

ce

Recursive
Traditional box

(d = 3)
Corrected box

(d = 3)
Extended box

(d = 3)

R
es

u
lt

D
iff

er
en

ce

Figure 3.19: Visual comparison of linear diffusion algorithms with ‘fast’ param-
eters on Boat, 512× 512 pixels, for a stopping time T = 50. Difference images to
the ground truth are scaled by a factor 10 for a better visibility. The zero-error
level is depicted in 50% grey.

76 CHAPTER 3. HOMOGENEOUS DIFFUSION

3.6.3 Quality Comparison

Visual Similarity

Our aim in this chapter is to find a fast, but accurate GPU-based imple-
mentation for linear diffusion. As the first experiment to evaluate which
method fulfils this goal best, we visually compare exemplary results of all
methods. Regarding the approximation quality, this is the simplest com-
parison that we can perform, as it involves no further error measure than
our intuitive understanding of a similarity. Nevertheless, it is also a very
efficient method to find ‘obvious’ problems in visual computing algorithms.

Figure 3.19 depicts filtering results of the Boat image from Figure 3.9
using a linear diffusion process with stopping time T = 50. Since we are
particularly interested in the points where these methods fail, we steer
them with their runtime-optimised parameter set (where applicable). All
methods except for the FFT-based approach and recursive filters can be
improved in their quality if more time-consuming parameter settings are
used.

Visually, all results look similar. Neither do we note striking deviations
from the ground truth, nor do the results contain artefacts. This indicates
that all presented algorithms in their ‘fast’ parametrisation are well suited
for applications in which only a visual similarity is required.

However, there are indeed differences between the results obtained by
the different methods and the ground truth. In order to visualise them, we
subtract both solutions from each other, scale the result by a factor 10, and
shift it to a zero-error level of 50% grey. This is shown in the second rows
of Figure 3.19. The largest differences among these error plots are observed
for traditional box filtering. We see most of the structure of the original
image which indicates that image edges were not blurred accurately. This is
primarily a problem of the rounding from (3.89), as can be seen for the two
other box filtering variants. Both corrected and extended box filtering show
a much lower error level. Nevertheless, they still reveal a significant amount
of structure, such that we can additionally state that d = 3 iterations are
still too few to smooth all errors sufficiently out.

Among all other tested methods, only the error plot for implicit diffusion
hints at the structure of the original image. This is clearly a sign of sub-
optimal parameter choices, since we already convinced ourselves about the
high quality of discrete diffusion algorithms in Section 3.6.1. However,
we see later in this chapter that a high-quality parametrisation of implicit
diffusion is infeasible in a reasonable runtime.

Explicit diffusion, spatial convolution with a Gaussian, a multiplication

3.6. EXPERIMENTS 77

in the frequency domain, and recursive filtering all provide about the same
solution, with no visible errors in the difference images. We detail more
on the quality of these methods in the next section. As a final remark,
note that none of the depicted error images shows artefacts along the im-
age boundaries. This important property is for some classes of algorithms
not self-evident. Recall that several instances of recursive filtering have
significant problems with image boundaries as a matter of principle (see
Section 3.3.5 for details).

Quantitative Evaluation

Let us now substantiate the visual impressions obtained in the previous
section by a measurement of the mean square error to the ground truth.
In order to provide a good comparability of all methods we do not fix
the stopping time to one value as done before, but observe the behaviour
over a range of admissible values. Without loss of generality, we use the
standard deviation σ of the corresponding Gaussian as a free parameter for
this purpose. This accounts for several aspects:

• Most of the presented algorithms approximate Gaussian convolution
and depend canonically on the standard deviation.

• The standard deviation is an intuitive measure for the average dis-
tance over which grey values are transported. As such, it corresponds
to our intuitive understanding of ‘blurriness’. In context of arts and
image manipulation software, this intuitive measure is often called a
‘radius of effect’ [dJ07].

• If we convolve an image with a kernel of standard deviation σ and
resize the solution by halving its edge length, we obtain a similar
solution as convolving the resized original by a kernel with standard
deviation σ/2. In contrast, the stopping time scales with the number
of pixels in the image.

By (3.19), this notion can easily be translated to the stopping time T . As a
ground truth, we use again a spatial convolution with truncation c = 10.0,
and normalise our measurements with respect to a unit grid spacing h = 1.
Again, we perform our experiments on the boat image, since it represents
a ‘typical’ example for a real-world image.

Figure 3.20 shows the results of this experiment. Note that this graph
contains the results for box filtering with d = 3 from Figure 3.17. The
quality obtained in this experiment can be improved further if we increase

78 CHAPTER 3. HOMOGENEOUS DIFFUSION

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

 0 10 20 30 40 50

M
S

E

σ

Explicit diffusion (τ = 0.24)

(τ = 0.125)

Implicit diffusion (τ = 0.6, lmax = 13)

Spatial convolution (c = 3.0)

Spatial convolution (c = 5.0)FFT-based

Recursive filter

Traditional box filter (d = 3)
Extended box filter (d = 3)

Corrected box filter (d = 3)

Extended box filter (d = 5)

Figure 3.20: Mean square errors of different linear diffusion algorithms under
varying standard deviations σ, on Boat, 512×512 pixels.

d to 5 iterations. For visualisation purposes, Figure 3.20 depicts only the
graph for extended box filtering. However, the missing graphs for traditional
and corrected box filtering show a similar behaviour to the case d = 3.

Note that many methods evaluated in this experiment yield high or
heavily oscillating errors for about σ < 2. Depending on the method, this
is either related to the order of consistency of the technique, to numerical
approximation errors for small standard deviations, or due to the fact that
for small standard deviations, the discrete solution of the heat equation
differs significantly from the ground truth of Gaussian filtering (see Sec-
tion 3.6.1). However, as we are going to see in more detail later in this
chapter, solutions for small standard deviations (or stopping times) can
be efficiently computed. Depending on the application, this works either
by using explicit diffusion schemes with small stopping times, or by using
Gaussian convolution with small kernels. To this end, we can safely ignore
that our current parametrisation leads to the observed effects for extremely
small standard deviations, and concentrate on the more challenging and
computationally intense configurations instead.

3.6. EXPERIMENTS 79

For σ > 20, implicit diffusion with time step τ = 0.6 and lmax = 13 inner
iterations, spatial convolution with truncation c = 3, and recursive filtering
yield almost equivalent results. These are roughly one order of magnitude
better than those for box filtering, which comes down to MSEs of about
10−2. However, if we choose σ from the interval [2, 20], we notice that im-
plicit diffusion looses accuracy. This is a consequence of the unfavourable
ratio of small stopping times and large time steps, which leads to higher
approximation errors [Saa03]. By spending more time on outer iterations,
i.e. decreasing τ , this problem can be remedied. In contrast, the approxi-
mation quality of spatial convolution with a truncated Gaussian becomes
better the smaller the standard deviation is. This is because for a constant
truncation c, the normalisation from (3.23) always redistributes the same
amount of grey values onto the remaining samples of the truncated kernel.
However, since the kernel is narrower for small σ, the relative error induced
to each sample is also lower than for large σ.

Explicit diffusion surpasses the quality of the aforementioned methods
by up to 2 orders of magnitude. Motivated by the considerations from Sec-
tion 3.3.1, we compare a quality-optimised parametrisation of τ = 0.125, as
well as a runtime-optimised setup τ = 0.24. While even for small stopping
times, both measurements indicate a higher quality than for the aforemen-
tioned methods, the error drops even further if we consider larger standard
deviations. For σ = 50, explicit diffusion yields an MSE which is four orders
of magnitude below those of recursive filtering. The impact of the variation-
diminishing setup with τ = 0.125 is clearly visible in the plot. In general, it
yields results which are one order of magnitude below the runtime-optimised
setting. However, for large standard deviations, the error for this method
rises again. This is a result of accumulating approximation errors over
the much higher number of iterations kmax [GO96]. Note that by (3.12)
and (3.19), kmax ∼ σ2.

The best approximation quality is obtained by a multiplication in the
frequency domain, denoted by ‘FFT-based’, and by spatial convolution with
a truncation c = 5. Both create an MSE below 10−8 which is about the
lowest error level that can still be distinguished in single precision floating
point arithmetics, given that the image to be analysed has a value range
[0, 255]. As a consequence, the graphs for both techniques are severely
distorted by noise. Once more, our experiment indicates that a truncation
of the Gaussian at c > 5 does indeed not make sense on single precision
floating point arithmetics, because under these circumstances, the error can
not be reduced significantly further by increasing c.

80 CHAPTER 3. HOMOGENEOUS DIFFUSION

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0 M 10 M 20 M 30 M 40 M 50 M 60 M 70 M 80 M 90 M 100 M

m
il

li
se

co
n
d
s

pixels

Explicit diffusion (τ = 0.125)

(τ = 0.24)

Implicit diffusion (τ = 0.6, lmax = 13)

Spatial convolution (c = 5.0)

(c = 3.0)
FFT-based

Recursive filter

Traditional box filter (d = 3)
Extended box filter (d = 3)

Corrected box filter (d = 3)

(d = 5)
(d = 5)

(d = 5)

Figure 3.21: Runtimes of different linear diffusion algorithms with a standard
deviation σ = 50 over square images containing a varying number of pixels.
Benchmarks are executed on a GTX 480.

3.6.4 Runtime

Scaling Over Pixels

Let us now benchmark the runtime requirements of the presented algo-
rithms. As a platform for our benchmarks, we use a modern NVidia GeForce
GTX 480 graphics card with 1.5GB RAM on an Intel Core2 Duo E8200 with
2.66 GHz. In the first experiment of this kind, we are interested in the run-
time of the algorithms over a varying size of images. For all experiments
in this chapter, we assume data to be already residing in GPU memory,
such that the data flow over the PCI bus is not accounted for. This as-
sumption is in particular valid if we recall that in real-world applications,
linear diffusion is often only one small step of a more complex algorithm. In
such cases, we can assume that the entire framework sets up on GPU-based
algorithms.

Figure 3.21 shows the measured runtimes obtained in this experiment.
In accordance with our considerations from Section 2.3, these benchmarks
are performed on squarish images of increasing size and filtered by a

3.6. EXPERIMENTS 81

trimmed mean over 3 out of 5 independent measurements.
Note that parts of the graphs are visualised with dotted lines. At these

locations, the timing graphs possess a lower resolution than in the remaining
parts. Due to the high absolute runtimes of the algorithms, an equally dense
test series as for the solid graphs cannot be acquired in a feasible amount
of time. As a consequence, these graphs still correctly visualise the general
runtime behaviour of the analysed method, but does no longer reveal fine
details such as the characteristic ‘staircasing’ in GPU-based programs.

Such discontinuities in the runtime occur whenever the CPU dispatches
a new bunch of blocks to the GPU. Before it can do so, it must wait for
the kernel call to return, compute the dimensioning of the next bunch, and
re-call the kernel. This costs a constant amount of time in which no pixel
can be processed. Hence, whenever the image size grows over a boundary
of n bunches, the runtime increases by this constant. In Figure 3.21, this
behaviour is particularly well visible for the recursive filter and for the
discrete diffusion processes. In latter case, continuous segments are very
small, because the number of bunches is frequently increased whenever the
number of pixels n2 exceeds the size of one bunch. The recursive filter, in
contrast, is separated into two 1-D processes, such that the discontinuities
occur for the side length n exceeding the size of a bunch. This explains the
much longer continuous segments in this case.

Due to the high number of iterations required to solve the discrete dif-
fusion equation, the implicit diffusion scheme with Jacobi relaxation has
the slowest runtime among all evaluated methods. It requires more than
8 minutes to filter an image of size 10 000×10 000 pixels with a stopping
time T = 1 250. Of course, the Jacobi method applied as a relaxation of
the linear systems of equations is not the optimal solution, even on a GPU.
With modern numerics, such as with multigrid methods, the time required
per time step can be further reduced [Hac85, GT08]. Unfortunately, this
effort hardly pays off for linear diffusion. Although this approach would
allow for larger time step sizes, the solution for each step is still expensive,
in particular on parallel hardware. Assume a time step size τ = 10 which
leads to kmax = 125 steps. Even if each of these steps required only the time
of one explicit time step, the process would take about 1.25 seconds for an
image with 100 megapixels. We see on the next pages that this performance
is easily surpassed by other, less challenging algorithms.

Depending on the selected time step width, the explicit diffusion scheme
performs a factor 4 to 8 better. With the high-quality setting τ = 0.125, the
algorithm processes the same 100 megapixels image in less than 3 minutes.
Using the runtime-optimised setting τ = 0.24, this time is reduced to about
1.5 minutes.

82 CHAPTER 3. HOMOGENEOUS DIFFUSION

All remaining algorithms are significantly faster than these discrete dif-
fusion processes. For this particular standard deviation σ = 50, spatial
convolution with a Gaussian outperforms these algorithms by more than
one order of magnitude, depending on the setting of the cut-off parameter.
With c = 5, our 100 megapixels image requires about 4 seconds. If we use
c = 3, already 2.5 seconds suffice. Note that in Section 3.5.3, two different
algorithms for spatial convolution were presented. The results presented
above are exclusively obtained by the algorithm for large standard devia-
tions. The second algorithm cannot be benchmarked in this experiment,
because the kernel footprints occurring for σ = 50 and c ∈ {3, 5} exceed the
shared memory limits. We see the relation between these two algorithms in
the next experiment.

The application of box filters reduces the runtime even further. In gen-
eral, we do not notice a significant difference in the runtimes for traditional
and extended box filtering. Both the absolute values of the measurements,
as well as the scaling behaviour is almost identical. This shows that the
performance is not bounded by computational limits, but only by the low
memory bandwidth. Since the additional weights read and evaluated by our
extended box filter reside in registers, they do not affect the overall runtime.
To this end, both the extended and the traditional box filter process the
100 megapixels image with 5 iterations in 476 milliseconds. In case of 3
iterations, the extended box filter requires 269 milliseconds, which is even
slightly faster than the traditional box filter that needs 284 milliseconds.
This anomaly can either be related to inaccuracies in the time measurement,
or to a slightly different timing of memory requests.

The performance of box filters is only surpassed by the recursive filter,
which represents the fastest algorithm in our experiment. Using this algo-
rithm, the 100 megapixels image can be filtered in less than 230 ms, which
corresponds to a frame rate of about 4.4 FPS. This corresponds to a filter
throughput of 440 millions of pixels per second, and allows to compute im-
ages up to a size of 4096 × 4096 with more than 25 FPS. To this end, the
GPU-based recursive filter can process images as they are acquired from
commodity DSLR cameras in real-time, and yields more than 140 FPS on
Full HD video frames.

It remains to discuss the runtime performance of the FFT-based con-
volution approach. In Figure 3.21, the graph lives in the interval between
the spatial convolution algorithm and the box filters, but shows severe os-
cillations. This is a consequence of the FFT itself, which performs best on
images with power-of-2 side lengths. Other factorisations are possible, but
those transformations are much more expensive. Note that for many appli-
cations, it is acceptable to pad the mirrored image sufficiently to obtain an

3.6. EXPERIMENTS 83

image plane with power-of-2 edges. This strategy offends the periodisation
of the image, but is often not severely reflected in the approximation error.
To this end, we can achieve the lower runtime bound if we accept a slightly
worse result. However, another problem remains. The graph ends already
at about 13 megapixels. The reason for this is that the algorithm exceeds
the memory limitations already at this size. Beyond this mark, only 6 image
sizes whose edge lengths can be factored to small primes can be processed.
The largest image computable on a GTX 480 is 4096 × 4096 pixels large.
This size does often not suffice for practical applications, considering that
many modern digital cameras are already equipped with larger sensors.
Hence, this limitation is another argument to use other implementations
such as the recursive filter.

With results shown in Figure 3.21, our experiment also indicates that
our recursive filter on the GPU outperforms other GPU-based algorithms
from the literature. The approach of Riley, which sets up on Gabor filters,
yields about 100 FPS for images of size 640 × 480 pixels [Ril09]. The
recursive filter implementation presented in this chapter processes images of
the same size with about 320 FPS. Fialka and Čad́ık proposed an FFT-based
convolution which is very similar in structure to the one presented in this
chapter [Fv06]. However, in their experiment they only obtain 9 frames per
second on an image of size 1024×1024 pixels. This is surpassed by our FFT-
based approach which yields 103 FPS on the same image size, and finally
outperformed by the recursive filter which yields 191 FPS. However, due to
the rapid progress in the development of graphics cards, it is hard to tell
which portion of this runtime difference is related to algorithmic issues, and
which is only caused by the speed of the graphics card. Regarding the latter
case, it is valid to assume that the two FFT-based algorithms nowadays
require about the same time, such that our recursive filter implementation
should again be about a factor 2 faster.

Scaling Over the Stopping Time

Now that we obtained a feeling for the absolute runtimes of the algorithms
and their scaling behaviour over different image sizes, we analyse the scaling
behaviour over different stopping times. We know that grey values are
transported further in the image domain the larger the stopping time T of
the diffusion process is. Hence, it is not surprising if some algorithms reflect
this different workload in their runtime. Similar to the quality benchmarks,
we normalise this benchmark to standard deviations of the kernel rather
than to the stopping time of the corresponding diffusion process.

Figure 3.22 shows runtime benchmarks on a blank image of size 4096×

84 CHAPTER 3. HOMOGENEOUS DIFFUSION

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100

m
il

li
se

co
n

d
s

σ

Spatial convolution (c = 3)(c = 5)

Corrected box filter (d = 5)

Corrected box filter (d = 3)

Recursive filter

Explicit diffusion (τ = 0.24)

(τ = 0.125)

Implicit diffusion (τ = 0.6, lmax = 13)

FFT-based Traditional box filter (d = 5)
Extended box filter (d = 5)

(d = 3)
(d = 3)

Figure 3.22: Runtimes of different linear diffusion algorithms over varying stan-
dard deviations σ, on an image of size 4 096 × 4 096 pixels. Dashed lines corre-
spond to the cache-based spatial convolution algorithm. All benchmarks are
executed on a GTX 480.

4096 pixels. In general, we observe four different behaviours among the
tested methods:

1. Our recursive filter, the extended and traditional box filters, as well
as the frequency-based convolution algorithm are almost constant in
the standard deviation σ. The overhead for mirroring in case of the
box filters and the recursive filter largely vanish in the total runtime.
Note that since the side length of the image is a power of two, the
FFT-based method performs better than average, and even requires
less time than the box filters with d = 5.

2. Spatial convolution algorithms scale linear in σ. The results per-
formed with the cache-based convolution algorithm for small standard
deviations are denoted with dashed lines. As expected, this variant is
faster than the more general implementation, but the neighbourhood
footprint cσ is limited to the size of three CUDA blocks.

3.6. EXPERIMENTS 85

3. Box filters with correction represent a tradeoff between the aforemen-
tioned runtime classes. Since the amount of post-processing changes
with increasing σ, the graphs are noisy.

4. Explicit and implicit diffusion algorithms scale quadratic in the stan-
dard deviation, which corresponds to a linear dependency in the stop-
ping time T . For large standard deviations, this property makes them
very slow in practice.

As a main conclusion, we learn that apart from small standard deviations,
a recursive filter on the GPU seems to be the most efficient algorithm. Its
break-even points with spatial convolution are at σ = 4.62 and σ = 2.75 for
truncations c = 3 and c = 5, respectively. In both cases, we take the faster
cache-based algorithm as a basis. Note that we should ignore the fact that
explicit diffusion seems to outperform the runtime of spatial convolution
for σ < 1. Our parametrisation with a step size of τ = 0.24 or τ = 0.125 is
usually not well suited for such small stopping times (see Section 3.6.3 for
details).

For regularisation purposes in context of optic flow computations in
chapter 6, we come back to the results of this experiment. There, we use
a fast cache-based spatial convolution with c = 3 in the common case that
σ < 4.62, and fall back to a recursive filter above this threshold.

Comparison to CPU

Let us now compare the runtime of our GPU-based algorithms to their
corresponding CPU-based variants. In all cases, we use the same type of
numerics on the CPU and the GPU, and hand-optimise the algorithms
with respect to their required runtime. For example, the role of the cuFFT

library on CUDA is played by the FFTW3 library on the CPU, which provides
a similar degree of functionality and optimisation to compute fast Fourier
transforms of arbitrary size.

Note that in some cases, such as for implicit diffusion, more efficient
numerics on the CPU exist. Here, it might help to choose larger time
steps τ , and solve the arising system of equations by means of bidirectional
multigrid methods [Hac85]. However, benchmarking against such advanced
strategies on the CPU bears the risk of a lacking comparability. A detailed
analysis of the advantages and drawbacks of these techniques and potential
consequences to more advanced implicit diffusion algorithms on the GPU
go far beyond the scope of this thesis.

Our experiments are performed four different image sizes. These input
images are all square-shaped, and have edge lengths of 256, 1024, 4096,

86 CHAPTER 3. HOMOGENEOUS DIFFUSION

and 8192 pixels. Due to a better occupancy, we expect the speedup of the
GPU-based algorithm to be higher the larger the image.

Table 3.1 shows the comparison of runtimes for the presented algorithms,
as well as the speedups between both architectures. Depending on the
complexity of the algorithm, we obtain speedups up to a factor 138 which
is a lot even for graphics processors. However, we also notice that the
analysed algorithms behave very differently.

In total, the lowest speedup is obtained for traditional box filtering.
Even for very large images, it does not grow beyond a factor 14. In this
case, the reason is obvious. Traditional box filtering is a strictly memory-
bound algorithm with almost no arithmetic computations, such that the
runtime is only limited by the memory throughput. This is also reflected
in the extended box filter which requires significantly more time than the
traditional variant on the CPU, but about the same runtime on the GPU.
As a result, we obtain speedups up to about 35.

By similar arguments, we measure the largest speedups for recursive fil-
tering. While on the CPU, reads to the stencil require a significant amount
of time, the GPU holds all relevant data in the fast on-chip memory. This
allows a high data throughput and might be one reason for the high per-
formance of recursive filters on the GPU.

A similarly high speedup can be observed for the fast Fourier transform
which dominates the frequency-based convolution algorithm. Since both
the CPU and the GPU variant set up on complex third-party libraries, it is
hard to tell which optimisations are in the end responsible for this efficiency.
However, it is likely that the closed-source cuFFT library is closely tailored
to the specific memory structure and scaling behaviour of GPUs, and that is
computes large portions of the algorithm on the fast shared memory of the
device. However, note that neither the CPU-based variant nor our GPU-
based algorithm can compute the 67 megapixels image, such that this row
is omitted in Table 3.1.

Although they are also memory-bound, the two iterative discrete diffu-
sion algorithms still yield a 60 times lower runtime on the GPU than on the
CPU. This is because of the efficient texturing units on graphics processors
which supply data in 2-D aware caches. This is fundamentally different on
CPUs, where applications of the outer off-diagonals of the penta-diagonal
system operator usually require additional reads to the RAM. In the next
chapters, we come back to this observation and exploit the efficient scaling
of those stencil-based operations for more advanced numerics.

Finally, let us have a look on the scaling behaviour of the spatial con-
volution algorithm. Since the chosen standard deviation is too large to use
the faster cache-based algorithm, we read all inputs from textures. Never-

3.6. EXPERIMENTS 87

Table 3.1: Runtime comparison of filters with standard deviation σ = 50 on
CPU and GPU.

Size CPU (ms) GPU (ms) Speedup

65 536 3 481.94 127.69 27.27
Explicit 1 048 576 55 806.57 935.54 59.65
(τ = 0.24) 16 777 216 893 450.98 13 843.68 64.54

67 108 864 3 572 479.98 55 217.33 64.70

65 536 18 113.45 703.27 25.76
Implicit 1 048 576 291 700.40 5 247.96 55.58
(τ = 0.6, lmax = 13) 16 777 216 4 659 460.45 77 970.11 59.76

67 108 864 18 627 402.34 311 709.51 59.76

65 536 32.43 1.87 17.34
Spatial conv. 1 048 576 520.60 26.40 19.72
(c = 3) 16 777 216 8201.34 417.19 19.66

67 108 864 32783.46 1 668.98 19.64

FFT-based
65 536 16.98 2.12 8.01

1 048 576 388.00 9.68 40.08
16 777 216 9 316.78 78.86 118.14

Recursive filter

65 536 4.63 1.57 2.96
1 048 576 251.41 5.22 48.16

16 777 216 4 963.19 35.87 138.37
67 108 864 19 766.75 145.06 136.27

65 536 2.54 1.20 2.11
Traditional box 1 048 576 40.06 5.35 7.49
(d = 3) 16 777 216 634.21 49.96 12.69

67 108 864 2 583.34 190.64 13.55

65 536 17.22 1.67 10.29
Corrected box 1 048 576 283.66 9.62 29.49
(d = 3) 16 777 216 4 611.05 115.72 39.85

67 108 864 19 406.41 451.24 43.01

65 536 3.96 1.09 3.63
Extended box 1 048 576 57.94 5.02 11.54
(d = 3) 16 777 216 929.76 48.12 19.32

67 108 864 3 775.50 180.55 34.78

88 CHAPTER 3. HOMOGENEOUS DIFFUSION

theless, memory patterns are very irregular in this case and the size of the
kernel often causes cache misses. As a consequence, we obtain moderate
speedups ranging from about 17 to 20 for all image sizes.

3.7 Summary

In this chapter, we have designed and compared many different algorithms
for homogeneous diffusion on the GPU. The best performance among these
methods is obtained by a novel GPU-based algorithm which is based on the
recursive Young-van-Vliet filter with an additive implementation as sug-
gested by Hale [YvV95, Hal06b]. On a modern Geforce GTX 480 graphics
card, this algorithm yields a data throughput of 440 millions of pixels per
second, regardless of the chosen stopping time of the diffusion process. This
allows to compute more than 140 full HD video frames (of size 1920× 1080
pixels) per second, and the algorithm still achieves real-time performance
on images in the size of current DSLR sensors. Moreover, the proposed
method only requires two buffers in the size of the input image in graphics
RAM. This guarantees that even very large images containing more than
100 millions of pixels can be processed on-the-fly without the necessity to
swap out data into CPU RAM, or even to the hard disk.

Compared to a similar recursive filter on the CPU, the GPU-based al-
gorithm obtains a speedup of more than 130. Even if we compare against a
less accurate, 3 times iterated box filter on the CPU, the proposed method
still runs 18 times faster. For any application with a tight time constraint,
this speedup allows to process images with more than a quadruplicated edge
length in the same time as before.

Besides this evaluation, we have also discussed extended box filtering as
an inexpensive novel approach to improve the quality of traditional iterated
box filtering. Although this method is slightly less accurate than recursive
filtering, it enjoys a similar runtime. Compared to recursive filtering, how-
ever, it possesses an intuitive, mathematically well-founded structure that
makes it easy to implement even on massively parallel hardware. There is
no need to evaluate complex-valued coefficients, or to optimise parameters
numerically before filtering, such as it is for the scaling variable q in re-
cursive filtering. Because extended box filtering also works with only two
buffers of input image size, this new method is also very well suited for the
processing of very large images.

As a general conclusion from our experiments, we can state that one
of the main challenges for homogeneous diffusion on massively parallel
hardware is given by the dominant memory-boundedness of the operation.

3.7. SUMMARY 89

Those algorithms which process the image with the least global memory
accesses achieve the largest speedups – almost regardless of the number of
performed operations. This shows that if the current development of mas-
sively parallel hardware continues as before, there might soon be a time
when simple diffusion algorithms no longer scale with increasing compu-
tational power. Instead, it becomes more and more important to increase
the memory bandwidth from the processor cores to the device RAM, or to
enlarge the fast on-chip caches.

However, there is also potential room for improvement for some of the
presented algorithms. Let us focus on the two most promising approaches:
Extended box filtering and recursive filters. As we have seen in Section 3.6.2,
the cases in which the standard deviation of a traditional box filter equals
the standard deviation of a Gaussian are not necessarily the cases in which
this filter provides the best approximation. If instead, we succeed to find a
relation between the minima of the graph from Figure 3.17, we can select
the traditional box filter based on this new measure. Then, there is also
no objection against defining the extended box filter as an interpolation of
these new instances of the traditional filter – and benefit from a much lower
approximation error.

A potential improvement for recursive filters follows from observations
in our runtime experiments on the GPU. For box filters, as well as for the
recursive filter, we found that the runtime depends largely on the number of
memory loads and stores, but only marginally on the number of arithmetic
operations. For certain applications, it might thus be interesting to increase
the support of the recursive update to allow higher-order filters. Since
these operations are likely to be performed in fast on-chip memory, this
measure should yield a marginal runtime overhead, but a significant increase
in quality.

Chapter 4
Anisotropic diffusion

I can’t change the direction of the wind,
but I can adjust my sails to always reach my destination.

Jimmy Dean

4.1 Motivation

In the last decade, many PDE-based algorithms in visual computing enjoyed
a significant boost in quality. One main ingredient responsible for this
success are nonlinear diffusion schemes. Such techniques act smoothing
within relatively flat image regions, but preserve dominant image edges.
Hence, they are very useful to smooth out high-frequent noise, while image
structures are mostly untouched.

We distinguish two classes of nonlinear diffusion schemes. Isotropic tech-
niques such as the approach of Perona and Malik weight the flux along the
image gradient by the magnitude of this gradient [PM87]. As it turns out,
such strategy yields the desired behaviour in flat regions, but often han-
dles edges overcautiously: Since the smoothing behaviour of the method
approaches zero in regions with edges, noise along the edge cannot be re-
moved sufficiently well (see [Wei98, Figure 5.2]). This is fundamentally
different for anisotropic diffusion schemes. In addition to the magnitude
of the image gradient, such approaches also consider its direction [Wei98].
This allows to smooth along image edges, while diffusion across such edges
is inhibited.

While for many applications, nonlinear diffusion yields more favourable
results than homogeneous diffusion, it is also computationally more chal-

91

92 CHAPTER 4. ANISOTROPIC DIFFUSION

lenging. Fast convolution-based algorithms as presented in Chapter 3 are
usually not applicable, such that there is often no way other than solv-
ing the discretised diffusion equation directly. Since the system operator
is now nonlinear, it must be repeatedly evaluated over the course of the
evolution. This requires image gradient information, and causes another
runtime overhead.

In view of this situation, it seems reasonable to design a GPU-
accelerated algorithm for nonlinear diffusion. With similar arguments as
for the previous chapter, there is a justified hope that such an algorithm
possesses a higher bandwidth than its CPU-based variant. This allows to
compute much larger images in the same runtime, and helps to lift the
bound for the maximal image size to be computed in real-time.

Despite this wide applicability and promising speedup involved in such a
GPU-based approach, there are few algorithms proposed in the literature.
Most techniques that are efficiently parallelised and evaluated on GPUs
target at nonlinear isotropic diffusion models such as the Perona-Malik
approach [PM87] (see e.g. [RS01, SWD05, Pat07, How10, Pus11]). Such
models are computationally less expensive than anisotropic approaches, but
as it is described above, also less suited for a wide range of applications.
Compared to anisotropic schemes, they are fairly easy to implement and
parallelise.

Other works from the literature aim at the solution of an anisotropic
diffusion model, but circumvent the computationally expensive solution
process. By using fast alternatives, these methods yield results which
only look alike, but do not resemble, anisotropic diffusion. While the
method from [Fel08] sets up on iterated adaptive filtering, the technique
from [SKB+11] uses a bilateral filter. Such approximations are very fast:
On modern hardware, both approaches yield realtime performance on im-
ages of size 1 024×1 024 pixels.

Real anisotropic diffusion processes for GPUs are rare. An example for
such algorithms is the GPU-based 3-D edge-enhancing diffusion algorithm
from [BLF+07]. Although the original paper gives only very little details
about the implementation, it seems that the authors used a standard ex-
plicit solver to compute the results. This results in a sub-optimal runtime.

It is the goal of this chapter to design a simple but efficient scheme for
anisotropic diffusion on GPUs. In this context, we are not interested to
search for the optimal algorithm under particular conditions, as this goes
far beyond the scope of this thesis: Because the model depends on more
parameters, it is also likely that the number of fundamentally different
approaches to the problem is also significantly higher. Instead, it is our
goal to present a very flexible and efficient approach which is still simple

4.2. EDGE AND COHERENCE ENHANCING DIFFUSION 93

enough to allow an easy adaptation to other PDEs. This philosophy is
carried over to the following two chapters, in which we discuss an application
of the algorithm derived here to much more complex PDE-based methods
in visual computing.

4.2 Edge and Coherence Enhancing

Diffusion

Let us begin with a review of the edge and coherence enhancing diffusion
(ECED) model by Weickert [Wei98, Wei11a]. Given an image u ∈ Ω→ R,
it is modelled by the diffusion equation

∂tu = div
(
(D(Jρ(∇uσ))) ∇u

)
, (4.1)

where

uσ = Kσ ∗ u , (4.2)

Jρ(∇uσ) = Kρ ∗c (∇uσ∇u>σ) , (4.3)

and where Kσ, Kρ denote Gaussians with standard deviations σ and ρ,
respectively. In this context, we use ∗c to denote the component-wise con-
volution. The 2 × 2 diffusion tensor D steers the anisotropic behaviour of
the process. We want to express it in an orthonormal base that aligns to
the edges in the image, such that we can control the diffusivities along and
across the edges separately [Wei98]. Hence, we choose its eigenvectors v1,v2

as the eigenvectors j1, j2 of the smoothed structure tensor Jρ(∇uσ) [FG87].
The idea behind this selection becomes obvious if we let ρ = 0. Then, we
have

v1 ||∇uσ, v2⊥∇uσ . (4.4)

By a smart choice of the eigenvalues λ1, λ2 of this system, we can steer the
diffusion across and along the edge separately. The additional smoothing
of the structure tensor by Kρ allows to adapt to coherent structures rather
than directly to edges [Wei98]. Note that the variance ρ of the Gaussian
kernel determines the scale on which these edges are sought.

We want a strong smoothing along dominant edges, but a vanishing
smoothing across them. Assuming µ1 and µ2 to be the eigenvalues of the
smoothed structure tensor Jρ(∇uσ), this leads to the configuration

λ1(∇uσ) := g ((µ1 − µ2)2) , (4.5)

λ2(∇uσ) := 1 . (4.6)

94 CHAPTER 4. ANISOTROPIC DIFFUSION

The diffusivity g is a decreasing function which takes the value 1 for the
argument 0. Hence, it reduces diffusion across large image gradients, but
makes the process act similar to homogeneous diffusion in flat regions. In
this chapter, we use a diffusivity as proposed by Weickert [Wei98]:

g(s2) =

1, s2 = 0

1− exp

(
−Cm

(s2/λ2)
m

)
, s2 > 0

, (4.7)

with m = 4 and Cm = 3.31488. The contrast parameter λ steers which
slopes are considered an edge, and which are considered to be a flat im-
age region. To this end, it defines a threshold above which gradients are
sharpened, while gradients with a lower magnitude are blurred.

Given the eigenvectors v1,v2 and their eigenvalues λ1, λ2 as above, the
diffusion tensor D is given by

D = (v1,v2)

(
λ1 0
0 λ2

)(
v>1
v>2

)
. (4.8)

Note that this model reduces to the famous edge-enhancing diffusion
(EED) for ρ = 0 [Wei98]. If we choose the eigenvalues of D according
to [Wei98, Section 5.2], we obtain the coherence enhancing diffusion (CED).

Let us now briefly address the discretisation of this process. In order to
obtain the structure tensor, we use a discretisation as in [WSW08, Equation
(29)]. This corresponds to a linear combination between central and one-
sided differences with a weight α = 1/2, evaluated at positions ±1/2.

After an adjustment of the Eigenvalues according to (4.5) and a
component-wise tensor smoothing as indicated in (4.1), it remains to dis-
cretise the actual diffusion process. Here, we use an explicit discretisation
in time, such that we obtain

uk+1 − uk

τ
= A(ukσ)uk , (4.9)

where uk describes the discrete image at time step k, and τ is an artificial
time step size. The nonlinear nona-diagonal operator A(ukσ) is obtained
by a discretisation scheme suggested by Weickert [Wei11c]. It follows from
a similar energy minimisation as in [WSW08], but uses a more advanced
coupling of central and one-sided differences.

Compared to traditional discretisation approaches, this scheme yields
less unintentional blurring across edges, but is also computationally more
expensive. The algorithmic consequences from these characteristics are very

4.3. FAST EXPLICIT DIFFUSION 95

different to the homogeneous diffusion algorithms discussed in the previous
chapter. Hence, this scheme is an ideal candidate for our parallelisation
efforts in this chapter. The insights to be obtained in the experimental
evaluation are going to give a good overview about a wide range of diffusion
and diffusion-like algorithms in visual computing.

4.3 Fast Explicit Diffusion

Let us now focus on the numerical solution of the aforementioned process.
Starting with an equation as in (4.9), an standard explicit update repre-
sents the simplest approach for this purpose. As we have seen in context
of homogeneous diffusion, these schemes also yield reasonable speedups of
about 30–60 during parallelisation to the GPU. However, we have also seen
that a standard explicit scheme suffers from rigid limitations of the maximal
time step size which makes it comparably slow in practice.

A remedy to this problem is given by the Fast Explicit Diffusion (FED)
scheme which was recently proposed by Grewenig et al. [GWB10]. It de-
composes the stopping time t for an explicit scheme into a special series
of non-uniform time steps τi. Although the full FED process is provenly
stable, individual steps are not: about 50% of all steps are larger than the
maximal stable time step size τmax. We see later that the stopping time
T of a process depends quadratically on the number of steps n, such that
this technique reaches a given stopping time faster than a standard explicit
scheme.

The idea behind FED is related to box filtering (see Section 3.3.6). A
1-D box filter B2n+1 can be decomposed into a series of n linear diffusion
steps with individual time step sizes τi [GWB10]:

(B2n+1)h =
n−1∏
i=0

(I + τi∆h) . (4.10)

In this context, ∆h denotes the discrete Laplacian operator (using central
differences and reflecting boundary conditions):

(∆h)k =
uk−1 − 2uk + uk+1

h2
, (4.11)

The individual time steps τi, i ∈ {0, . . . , n− 1}, are then computed as

τi =
h2

4 cos2 π 2i+1
4n+2

. (4.12)

96 CHAPTER 4. ANISOTROPIC DIFFUSION

It can be shown that the stopping time t of this FED cycle is given by

t :=
n−1∑
i=0

τi =
h2

3

(
n+ 1

2

)
, (4.13)

which is in general larger than n · τmax (see [GWB10] for details).
In Section 3.3.6, we have seen that an iterated box filter with sufficiently

many iterations approaches a Gaussian filter. As a consequence, we can
iterate FED cycles to obtain a discretisation of a homogeneous diffusion
process. Note that up to this point, we have not gained an algorithmic
benefit, since each FED cycle can be computed more efficiently by a sliding
window approach as in (3.65).

However, FED becomes algorithmically interesting if the discrete Lapla-
cian ∆h is replaced by an arbitrary semi-definite matrix [GWB10]. In order
to maintain the stability of a cycle, this exchange only requires a rescaling
of the time steps τi by the eigenvalue of largest absolute value µmax of the
new operator A. By this, we can rewrite (4.12) as:

τi(µmax) =
1

|µmax| cos2 π 2i+1
4n+2

. (4.14)

As it was shown by Grewenig et al. [GWB10], this modification allows
multi-dimensional, non-linear, and even anisotropic processes to be effi-
ciently computed by means of FED. A non-linear operator such as the one
from (4.9) is then approximated by a series of linear operators which are
kept stable over the course of an FED cycle. After each cycle, it is possi-
ble to use the intermediate solution to update the system matrix. Hence,
the iteration over FED cycles both increases the approximation quality and
takes the role of a time-lagged diffusivities scheme.

A crucial aspect for implementations of this scheme on real hardware
are rounding inaccuracies introduced by the limited machine precision. In
practice, this leads to different results of the process depending on the order
in which the time steps from (4.11) and (4.12) are applied, although they
are supposed to yield equivalent results from a numerical perspective. In
many cases, these approximation errors are even significantly amplified and
destroy the numerical stability of the process. To circumvent this problem,
Grewenig et al. suggested to re-order the time steps such that the error is
dampened best possible (see [Gen79, GWB10, GZG+10]).

In experiments, it turned out that the optimality of a given permutation
of time steps only depends on the number of FED steps n per cycle, but not
on the underlying problem. This allows to precompute suitable permuta-
tions off-stream based on a test problem, and to look up the corresponding

4.3. FAST EXPLICIT DIFFUSION 97

reordering at runtime. An inexpensive way to do this is to select a suitable
positive integer κ which is relatively prime to n, and to permute the steps
τ̃i as

τ̃i = τj, with j = κi mod n . (4.15)

For each n, this reordering is uniquely determined by only one value for κ
that must be retrieved during runtime [GWB10, GZG+10].

Let us conclude this section with a sketch of the complete algorithm to
solve (4.1) for a given stopping time T . We additionally assume to be given
the number d of ‘outer’ FED cycles, which steer the approximation quality
of the scheme. The initial state u(x, T) of this process is the input f(x).

1. Given d cycles, use (4.13) to compute a (real-valued) minimal number
of steps ñ as

ñ =

√
24T

dh4|µmax|
+

1

4
− 1

2
. (4.16)

Note that because we assume an arbitrary process, T is scaled accord-
ing to (4.12) and (4.14).

2. Set n = dñe, and use (4.14) to find a series τi(µmax)i∈{0,...,n−1} of time
steps. Since in general ñ 6= n, rescale each of these steps by ñ/n. This
procedure dampens errors, such that its stability is preserved.

3. Using a suitable κ that is retrieved from a pre-computed lookup table,
use (4.15) to reorder these time steps.

4. For each c ∈ {0, . . . , d− 1}:

a. Apply a Gaussian filter to smooth the current solution u(x, ct)
and use the discretisation from [WSW08] to set up the structure
tensor. Using (4.5)–(4.7), rescale its eigenvalues and apply (4.8)
to compute A(ucnσ) as in (4.9). Note that this step involves a
component-wise Gaussian filtering of the diffusion tensor. From
this matrix, it suffices to store 4 off-diagonals. While the remain-
ing off-diagonals follow by symmetry, the main diagonal can be
computed by the unit row sum property of the operator.

b. For each i ∈ {0, . . . , n− 1}:
• Update the intermediate solution ucn+i by a time step adap-

tive explicit scheme as in (4.9):

ucn+i+1 = (I + τ̃iA(ucnσ))ucn+i . (4.17)

Note that this scheme uses the reordered time steps from 3.

98 CHAPTER 4. ANISOTROPIC DIFFUSION

4.4 Implementation on a GPU

Let us now discuss the efficient implementation of this ECED scheme on
a modern GPU. In the algorithm above, we identify the operations taking
place in step 4 as massively parallel operations, while the initialisation of
the FED scheme (1–3) is a predominantly sequential process which requires
access to the look-up table for κ. Hence, we prepare the reordered array of
time steps on the CPU, upload it to the GPU, and perform the remaining
operations on the GPU. Note that the size of this array usually vanishes in
the size of the original image, such that this proceeding does not cause a
significant overhead.

As it turns out, the GPU kernels required in this context can largely
be derived from those which were used for homogeneous diffusion (see Sec-
tion 3.5 for details).

• Our explicit scheme used in step 4b constitutes the central opera-
tion with the most calls and the highest runtime requirements. The
algorithm used in this case does not differ much from the one for homo-
geneous diffusion which we have discussed in Section 3.5.1. However,
it possesses a much higher memory bandwidth. For each pixel a dense
3×3 neighbourhood of input values must be read, in addition to eight
stencil weights.

These memory loads are very inexpensive if we read data from CUDA
textures. Four textures holding the off-diagonals of the operator
A(ukσ) are queried twice per pixel. Dirichlet boundaries ensure that
no information is diffused out of the image domain. Following these
reads, the main diagonal of the operator is efficiently computed in
the fast on-chip shared memory. The intermediate solution from the
previous time step must be retrieved 9 times per pixel and channel.
However, these requests are also very efficient because of the 2-D
aware caches of graphics cards, such that cache misses are reduced to
a minimum.

• The computation of the entries of the diffusion tensor D is per-
formed in a two-stage algorithm. In the first step, we compute the
structure tensor (∇uσ∇u>σ)i in each pixel, whose eigenvalues and
eigenvectors are used in the second step to obtain the diffusion ten-
sor. Both CUDA kernels process the image in 128 pixels wide stripes
(see Figure 4.1). Within these stripes, they maintain a lookahead
of 1 pixel in either direction in shared memory. This suffices to re-
solve the memory dependencies stemming from the discretisation as

4.5. EXPERIMENTS 99

1 block
(128 threads)

Shared MemoryProcessed Unprocessed

Figure 4.1: Processing scheme to set up diffusion tensor entries with the dis-
cretisation from [WSW08]. Note the single additional row and column in shared
memory.

in [WSW08], and turns out to be slightly more efficient for this ap-
plication than reading data from textures.

• It remains to find a suitable algorithm for Gaussian filtering, such
that we can compute uσ = Kσ ∗ u and Kσ ∗ (∇uσ∇u>σ). We have
discussed different algorithms for this purpose in context of homoge-
neous diffusion (see Chapter 3). Following the experimental results
from this chapter, we use the fast cache-based Gaussian convolution
from Section 3.5.3 with truncation c = 3. If this algorithm fails to pro-
vide the required standard deviation because the neighbourhood does
not fit into the limited shared memory, we fall back to a GPU-based
recursive filter as given in Section 3.5.5.

4.5 Experiments

4.5.1 Visual Comparison

Let us now evaluate the performance of the presented algorithm. As a first
step, we perform an evaluation with respect to the quality of the results.
Different to the case of homogeneous diffusion, however, it is much harder
to find a suitable ground truth to compare against. The reason lies in the
non-linearity of the process. Even small numerical errors in the process can
steer the solution to a fundamentally different result.

An example for this challenge is shown in Figure 4.2. Based on the
Boat image from Figure 3.9, it presents three results of edge and coherence

100 CHAPTER 4. ANISOTROPIC DIFFUSION

�a �b

�c �d
Figure 4.2: Edge and Coherence Enhancing Diffusion on a. the Boat image
from Figure 3.9. b. Explicit diffusion with T = 250, τ = 0.125, λ = 1.0, σ = 1.0,
ρ = 1.0. c. Implicit diffusion, same parameters, but τ = 50.0. d. FED, same
parameters as in b., with d = 3 cycles.

4.5. EXPERIMENTS 101

enhancing diffusion with a stopping time T = 250. Besides CPU-based
variants of the classical explicit and implicit schemes, we also apply our
new GPU-based FED algorithm.

In this direct comparison, the result of the FED algorithm is almost
indistinguishable from the implicit solution, while the explicit result strik-
ingly differs from these outcomes. The reason for this observation are the
significantly different numbers of iterations performed with either approach,
over which discretisation artefacts and numerical inaccuracies accumulate
and steer the process in different directions. In the explicit case, the time
step size τ is limited, such that the process requires 2 000 iterations with
τ = 0.125 to yield the desired stopping time. Hence, we use the oppor-
tunity to update the non-linear operator after each iteration. This yields
a better non-linear behaviour, but is also subject to an increased blurring
of edges. In contrast, the implicit approach permits larger time step sizes,
which allows us to linearise the present problem in only a few steps. As
a consequence, edges are preserved much more prominently. Note that we
obtain an equivalent result to Figure 4.2b if we run the implicit scheme with
τ = 0.125.

The same arguments carry over to our GPU-based FED algorithm.
While it is capable of very large time steps, it depends on the applica-
tion if the resulting behaviour is intended or not. However, once the time
step per FED cycle is reduced, this algorithm gradually fades into a stan-
dard explicit solver. This affects both the appearance of the results and the
runtime of the algorithm.

As a consequence of these considerations, let us regard FED as an al-
ternative to implicit solvers which can easily be parallelised to massively
parallel architectures such as GPUs. In the following, we convince our-
selves about the good scaling behaviours of this algorithm. Because the
GPU-based version yields the same results as an equivalent CPU-based
variant, we refer to [GWB10] for a detailed quality analysis.

4.5.2 Runtime Scaling on Image Size

Let us first evaluate the scaling behaviour of our algorithm over images in
different sizes. To this end, we create square-shaped images in different
sizes, and diffuse them with ECED using the parameters λ = 1.0, σ = 1.0,
and ρ = 1.0, and a stopping time T = 500 with d = 3 FED cycles. This
setting is chosen as a typical configuration for many real-world problems,
and gives us a rough idea of the scaling behaviour of our algorithm over
different image sizes. As a benchmarking platform, we use again the NVidia
GeForce GTX 480 on a Intel Core2 Duo E8200 platform.

102 CHAPTER 4. ANISOTROPIC DIFFUSION

 0

 500

 1000

 1500

 2000

0M 2M 4M 6M 8M 10M 12M 14M 16M 18M

m
s

pixels

Grey

RGB

Figure 4.3: Scaling of the anisotropic diffusion algorithm over the image size on
squarish grey-valued and colour-valued images, with parameters T = 500, d = 3,
λ = 1.0, σ = 1.0, ρ = 1.0.

Figure 4.3 visualises this benchmark on grey-valued images, and on
colour-valued three-channel images. In both cases, we obtain a linear scal-
ing in the image size. Colour images are processed in less than twice the
time than grey images of the same size. This is because the additional effort
is largely required in the explicit solver kernel, where all operator entries
can be re-used from on-chip memory for all image channels.

Moreover, note that the maximal image size possible to process with our
algorithm is limited by the memory resources of the graphics card. On the
GTX 480 with 1.5GB RAM, this means that the largest grey image that
can be computed has the size of 4 096×4 096 pixels. Colour images are even
limited to a maximal size of 3 584×3 584 pixels, which is a consequence of
the higher memory consumption in this case.

However, despite its simplicity, our FED-based algorithm seems to be
much faster than the approach from [BLF+07]. On a volume of size
256×256×128 voxels, they report a runtime of 0.51 seconds per iteration.
If we assume that this performance can be carried over to the 2-D case, and
if we double the performance due to the developments in the GPU market,
we obtain about 250 milliseconds for one iteration on an image with 8.4
megapixels. Even if we again double this performance to compensate for
the omitted operations in the third dimension, their approach must require
less than five iterations to have a similar runtime as FED. It is unlikely that
any algorithm can yield the desired quality with only four (inner) iterations.

4.5. EXPERIMENTS 103

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700 800 900 1000

m
s

T

d = 1

d = 2

d = 3

d = 4

d = 5

d = 6

d = 7

d = 8

d = 9

d = 10

Figure 4.4: Scaling of anisotropic diffusion over the stopping time T on a grey-
valued image of size 1024×1024 pixels, with λ = 1.0, σ = 1.0, ρ = 1.0.

4.5.3 Runtime Scaling on Stopping Time

As a next step, we evaluate the scaling behaviour of our algorithm under
different varying stopping times T and FED cycles d. The choice of these
two parameters is application-dependent, which is in particular troublesome
as both T and d also take the main responsibility for the runtime of the pro-
cess. Hence, this experiment shows how the algorithm behaves on different
characteristics of inputs, rather than on different sizes.

For a better visibility, we first compare grey-valued images in the size
1 024×1 024 pixels. This is shown in Figure 4.4. By (4.13), the stopping
time T depends quadratically on the number of steps n. Because the run-
time of the process depends linear on n, we observe a characteristic sub-
linear dependency between T and the runtime. The step-wise increase of
these graphs is related to the rounding in the algorithm from Section 4.3.
Each step corresponds to a fixed number n of inner steps.

The scaling behaviour over the number of FED cycles d is dominated by
the constant overhead of the operator update. This becomes obvious if we
consider the linear scaling in d for very small stopping times, and compare

104 CHAPTER 4. ANISOTROPIC DIFFUSION

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700 800 900 1000

m
s

T

Grey (d = 3)

RGB (d = 3)

Figure 4.5: Scaling of 3 FED cycles for anisotropic diffusion over the stopping
time T on grey-valued and colour-valued images of size 1024×1024 pixels. Again,
we use a contrast parameter of λ = 1.0, and smoothing σ = 1.0, ρ = 1.0.

the relative differences with the ones for large stopping times.
Figure 4.5 compares the grey-valued setting for d = 3 from Figure 4.4

with the colour-valued variant. The latter scales similar to the grey-valued
variant, but has higher time requirements. These overheads are composed
from two contributions. The time needed to update the nonlinear operator
over more than one channel appears as a constant overhead which can
particularly be seen for small stopping times T . In contrast, the additional
time lost during the explicit update step appears as a contribution which
is variant in the stopping time. It causes the two graphs to differ more the
larger the stopping time is chosen.

As a final remark to this experiment, note that we have evaluated the
impact of all runtime relevant parameters. In this chapter, we analysed
the stopping time T , the number of FED cycles d, and the image size.
Besides these, there are only two other parameters which have a minor
impact on the runtime of the process: the standard deviations σ and ρ for
the smoothing at local scale and at integration scale, respectively. Their
influence has already been thoroughly evaluated in Chapter 3.

4.5. EXPERIMENTS 105

4.5.4 Runtime Comparison to CPU

In the last experiment for this chapter, we compare the runtime of our novel
GPU-based algorithm against those of classical and efficient algorithms on
the CPU 1:

1. The explicit scheme with time step τ = 0.125 and operator up-
dates after every step represents the simplest, but potentially slowest
method to solve anisotropic diffusion models. While these methods
are very well suited to describe the non-linear process most accu-
rately, they are also potential subject to discretisation artefacts and
approximation inaccuracies (see Section 4.5.1).

2. An implicit scheme approximates the process with larger time steps,
in our case with τ = 50. Each of these steps requires the solution of
a large system of equations, which is done in this case by using a
conjugate gradient approach [Mei05]. Because of the approximation
of the non-linear process by large linear steps, this process is prone to
yield a higher approximation error to the desired solution, but is also
less prone to numerical inaccuracies.

3. The CPU-based FED scheme also uses large linear time steps to
yield results that are similar to the ones obtained by implicit diffusion
schemes. Based on our experiment from 4.5.1 where FED with d = 3
cycles yielded very similar results to the implicit solutions, we use the
same parameter in this experiment. However, note that this method
represents one of the fastest approaches for this purpose on the CPU
and forms the reference for our speedup computations. Hence, any
increase of d for numerical reasons does have an impact to the absolute
runtimes, but not to the measured speedup (as long as it is performed
on the CPU and the GPU simultaneously).

For this experiment, we again apply all algorithms on an Intel Core2 Duo
E8200, in which the GPU-based method is executed on an NVidia GeForce
GTX 480. All algorithms were adapted such that they use the same dis-
cretisations and optimisation levels. As a sample stopping time, we again
choose T = 500.

Table 4.1 shows the results of this experiment. Although FED is much
faster than the implicit and the explicit scheme on the CPU, it is again
outperformed by the new GPU-based algorithm. While the speedups are

1 My thanks go to Joachim Weickert and Sven Grewenig for providing reference imple-
mentations running on the CPU.

106 CHAPTER 4. ANISOTROPIC DIFFUSION

Table 4.1: Runtimes for anisotropic diffusion with FED using T = 500 on the
GPU, compared to the corresponding algorithm on the CPU, and to explicit and
implicit diffusion on the CPU. All times are given in seconds.

CPU GPU Speedup

Size Type Explicit Implicit FED FED FED

2562 Grey 48.71 0.77 0.07 0.02 2.91
RGB 62.06 2.24 0.08 0.03 2.83

1 0242 Grey 878.93 16.41 1.19 0.11 10.52
RGB 1 140.59 46.12 1.46 0.20 7.43

2 0482 Grey 3 549.53 68.78 4.82 0.35 13.78
RGB 4 620.50 186.50 5.88 0.65 9.00

4 0962 Grey 14 287.85 280.92 19.84 1.23 16.13
RGB 18 655.53 761.42 24.12 n/a n/a

moderate for small image sizes, they quickly grow to 10–16 for images in
the range of 1 0242 to 4 0962 pixels. This is in particular remarkable if
we consider that FED is already several orders of magnitude faster than
classical algorithms such as explicit and implicit diffusion. On grey images
of size 4 096×4 096 this causes the GPU-based FED algorithm to be more
than 200 times faster than implicit diffusion, and even more than 10 000
times faster than explicit diffusion on the CPU.

Although the parallelisation speedup is significant, is does not reach
the values obtained in context of homogeneous diffusion (see Section 3.6.4).
Recall that two orders of magnitude are possible for algorithms such as
recursive filtering. The reason for this striking discrepancy is the higher
data throughput for anisotropic diffusion. Not only several iterations, but
also frequent operator updates require data to be loaded from and stored to
global device memory. In every case, multiple memory buffers are involved,
such as for providing the input image, the operator weights, or image deriva-
tives. Moreover, the arithmetic operations performed on these buffers are
in general very inexpensive, such that load latencies cannot be effectively
hidden behind arithmetics.

As it turns out, the runtime on colour-valued images deserves an addi-
tional discussion. On the CPU, we observe that the runtime for the implicit
scheme expectedly grows by about three times, while the factor is much
lower for the explicit scheme and the FED approach. The reason for the
better runtime of the latter two might be their simple algorithmic structure,

4.6. SUMMARY 107

such that compiler optimisations can be applied more effectively. Note in
this context that operations on the CPU are in general computationally
bound, such that the additional memory bandwidth does not significantly
affect the measured runtime. This is fundamentally different for the GPU-
based algorithm, where memory latencies play the most fundamental role
for the runtime. Nevertheless, the runtime only increases by less than 100%
when going from one to three channels, which is an indicator that concepts
such as the re-use of operator weights from on-chip memory are success-
ful. Still, the different cause of acceleration in both cases also affects the
speedup factor, which is in general about 30% lower than for grey-valued
images.

As a final remark to colour-valued images, note the missing entry for
images of the size 4 096×4 096 pixels. As was already discussed in Sec-
tion 4.5.2, it occurs because the memory requirements in this case exceed
the physical resources of 1.5 GB. With future graphics cards and larger GPU
memories, it will be straightforward to perform computations on images in
this size.

4.6 Summary

In this chapter, we have created and evaluated a novel GPU-based algorithm
for anisotropic diffusion. It is based on the recent Fast Explicit Diffusion
(FED) scheme by Grewenig et al. [GWB10]. Our algorithm is designed for
a very general setting that can be specialised to many modern diffusion
schemes. As a model, we use the new Edge and Coherence Enhancing Dif-
fusion (ECED) by Weickert [Wei11a]. It constitutes a natural combination
of the famous anisotropic diffusion models by Weickert [Wei98], and is as
such also a generalisation of isotropic diffusion models. This versatility also
carries over to the discretisation of the problem. For this purpose, we use
a new discretisation scheme by Weickert [Wei11c] which generalises ideas
from [WSW08]. This discretisation is algorithmically very challenging, and
can easily be specialised to many traditional finite difference discretisations.

On a modern graphics card, this new algorithm yields speedup factors of
up to 16 over an FED scheme on the CPU. Because FED is already very fast
compared to classical numerical schemes, this means that our new algorithm
is up to 200 times faster than an implicit scheme, and even up to 10 000
times faster than an explicit scheme on the CPU. The key to the efficiency
of this new algorithm is a combination of well-scalable components. Both
the FED scheme, as well as all steps that are required to evaluate the
non-linear system matrix, are data-parallel. As such, they are perfectly

108 CHAPTER 4. ANISOTROPIC DIFFUSION

suited for massively parallel architectures such as GPUs. Besides these,
our algorithm only consists of homogeneous diffusion for the smoothing at
local scale and integration scale, which can be efficiently computed with
algorithms presented in Chapter 3.

However, we also observe that our anisotropic diffusion algorithm does
not scale as well as many GPU-based algorithms for homogeneous diffusion.
This is the result of a higher memory throughput between graphics mem-
ory and the GPU. To this end, our parallelisation efforts also illuminate a
fundamental problem of many PDE-based algorithms in visual computing.
They are largely memory-bound, such that the real problem for modern
parallel hardware is not the supply of compute resources, but the provision
of a suitable memory bandwidth. Algorithms can benefit from this insight
if they require a smaller memory throughput as a competing method. In
the following chapters, we frequently come back to this essential insight.

Chapter 5
PDE-Based Image Inpainting

But nature flies from the infinite,
for the infinite is unending or imperfect,

and nature ever seeks an end.

Aristotle

5.1 Motivation

All algorithms that we have designed so far solve parabolic PDEs. Hence,
they are well suited to describe the evolution of a diffusion process, as they
yield the solution for any given stopping time. However, the requirements
of some applications even go far beyond this goal. Instead of the solution
at a finite time, elliptic approaches aim at a steady state that is established
as the time approaches infinity. In this chapter, we discuss a GPU-based
algorithm that approximates infinite diffusion stopping times in a very small
runtime.

Elliptic processes of this kind are of great use when acquired data is
non-dense, or when partitions of this data are unreliable. A prominent ex-
ample are image regularisation techniques which allow to handle ill-posed
problems [TA77, BPT88]. Such variational methods enjoy a multitude of
applications, in particular for problems in the field computer vision. In mo-
tion estimation approaches, so-called optic flow methods, they smooth away
outliers in the measured data and fill in information where there is none
available [HS81, NE86]. Efficient regularisers are still important ingredients
for modern, highly accurate optic flow methods [ZBW11b]. Chapter 6 is
concerned with details about an efficient optic flow algorithm on the GPU.

109

110 CHAPTER 5. PDE-BASED IMAGE INPAINTING

Closely related to optic flow are variational stereo vision applications which
compute 3-D surfaces from a series of 2-D input data [ADSW02, BAS10].
Both techniques can even be combined to yield structure and 3-D optic flow
simultaneously [HD07, VBZ+10].

In the recent years, the class of PDE-based image inpainting techniques
enjoyed a high popularity. Such methods recreate missing parts of an im-
age by filling in information from surrounding areas. As a fundamental
difference to the aforementioned regularisation approaches, however, these
methods are supplied by a binary confidence mask which indicates missing
image regions. This allows to fill in holes while the given image information
is left unaltered.

Image inpainting is a robust tool for image reconstruction pur-
poses [MM98]. Impressive examples for the disocclusion of manually an-
notated defect locations can be found in [MM98] and [BSCB00]. How-
ever, image inpainting is also applied in a number of automatic and semi-
automatic schemes for special reconstruction applications. One example is
the dejittering of interleaved television footages [GBW09].

A major factor for the recent popularity of PDE-based inpainting strate-
gies might be their application for image compression. Such lossy compres-
sion schemes use the fact that a few selected pixels suffice to describe the
whole image with very low errors [BL77, AD96]. The remaining areas are
reconstructed by diffusion inpainting algorithms [GWW+08, BBBW09]. In
special cases, such diffusion-based image compression schemes even outper-
form modern conventional approaches such as JPEG 2000 [SWB09, MW09,
MBWF11].

Similar ideas are applied in gradient domain editing [EG01, OBW+08,
MP08]. These approaches do not exploit the fact that edges can be com-
pactly stored, but that they contain most descriptive features of the image.
By deleting, modifying, or adding edges, the image can be edited without
destroying its general appearance. Low-frequent differences such as shading
or shadow are automatically reproduced by the inpainting operation.

In view of this multitude of applications and the complexity of the prob-
lem, it is not surprising that there are several GPU-based algorithms in
the literature. In [GWL+03], the authors design a bi-directional multigrid
solver for the Poisson equation with a traditional GPGPU approach on
the OpenGL pipeline. This corresponds to performing linear diffusion in
the holes, while the known pixels act as non-trivial Dirichlet boundaries
to the process. Similar, but more simplified and thus faster algorithms
were proposed in [OBW+08] and [MP08]. In [JCW09] the authors propose
to combine discrete Laplacian stencils in different sizes to transport data
faster over the image domain.

5.2. IMAGE INPAINTING 111

Nevertheless, it seems there is no GPU-based anisotropic diffusion im-
age inpainting algorithm available in the literature so far. A related work
uses distance maps to propagate pixel data according to a set of predefined
directions [RFSB10]. However, this procedure is not PDE-based. More-
over, its algorithmic structure is closely related to parallel solvers for the
Eikonal equation [JW07] such that this approach has striking similarities
with hyperbolic rather than with elliptic ideas.

In this chapter, we design an efficient GPU-based algorithm for arbi-
trary PDE-based image inpainting approaches. In a similar spirit as for
nonlinear diffusion, we formulate a very general framework that can later
be specialised to concrete applications. Our approach is anisotropic, and it
uses a technically complex discretisation scheme. Later in this chapter, we
additionally perform a specialisation to homogeneous diffusion inpainting
which is more related to the previous work from the literature.

5.2 Image Inpainting

Let us now briefly review the mathematical background of PDE-based im-
age inpainting. Given an image domain Ω ⊂ R2, we distinguish two sub-
domains:

1. In K ⊂ Ω, we assume pixel values to be known. These are the undis-
torted pixels in case of image reconstruction, or the stored pixels in
case of image compression.

2. The set Ω \K contains those pixels whose values are unknown. They
must be reconstructed by means of diffusion image inpainting.

The affiliation of a point to either of these subsets is determined by the
characteristic function c:

c(x) =

{
1, x ∈ K
0, else

. (5.1)

Again, we use an anisotropic diffusion process as in (4.1). However, follow-
ing the works from [GWW+08, SWB09], we do not perform tensor smooth-
ing, but set ρ = 0. This leads to edge-enhancing diffusion (EED) in the
domain Ω \K:

0 = −(1− c(x)) div
((
D(∇uσ∇u>σ)

)
∇u
)

+ c(x)(f − u) , (5.2)

where u is the sought solution and f is the input image [GWW+08]. It
is easy to check that a solution u to this elliptic diffusion equation equals

112 CHAPTER 5. PDE-BASED IMAGE INPAINTING

the input f at the known points, while it describes the steady state of a
diffusion process in the unknown domain Ω \K.

Throughout our numerical experiments, we choose D similar to de-
scribed in Section 4.2, but allow small changes. Besides the aforementioned
elimination of the smoothing at integration scale, we also use the Charbon-
nier diffusivity [CBAB97] instead of (4.7):

g(s2) =
1√

1 + s2

λ2

. (5.3)

Both modifications are in accordance with the choices in [GWW+08]
and [SWB09] which were shown to yield very good results for the appli-
cation of image compression for real-world images.

Besides these settings, we discuss a slightly different setup in Section 5.6.
These efforts aim at an efficient solution of the heat equation within Ω \K,
which corresponds to D being set to the identity. Results of this type
are less computationally intense than the anisotropic model, and are very
well suited for the compression of cartoon-like images [MW09, MBWF11].
Moreover, note that this instance is comparable to the objectives for the
gradient-domain works from [EG01, OBW+08, MP08]. This allows a fair
comparison of the novel GPU-based algorithm against other parallel ap-
proaches from this field.

5.3 Cascadic FED

A common strategy to solve elliptic equations such as the one from (5.2) is
to regard them as an energy function on u, and to minimise this energy by
a gradient descent. This leads to the parabolic process

∂tu = (1− c(x)) div
((
D(∇uσ∇u>σ)

)
∇u
)

+ c(x)(u− f) . (5.4)

This parabolic process finds the minimum of the energy for its stopping
time T approaching infinity. Hence, we need a numerical scheme which
obtains large stopping times in a very short runtime.

As it turns out, the FED scheme is again a good candidate for a numer-
ical scheme that fulfils these constraints. Similar to the procedure in Sec-
tion 4.2, we use the new spatial discretisation scheme by Weickert [Wei11c],
and complement it by an FED discretisation in time. In order to further
accelerate this process, we embed the solver into a hierarchic coarse-to-fine
strategy. This comes down to the cascadic fast explicit diffusion (CFED)

5.3. CASCADIC FED 113

scheme from [GWB10]. In this section, we briefly review the essential steps
necessary to use this scheme for anisotropic image inpainting.

In analogy to the FED update equation (4.17), we first write down a
standard (non-cascadic) FED update equation for (5.2):

ucn+i+1 = (1− c)�
(
(I + τ̃iA(ucnσ))ucn+i

)
+ c� f . (5.5)

In this context, we use � to denote the component-wise vector product,
and 1 for a vector of the same length as c whose entries are all 1.

Note that the steady state obtained by the diffusion on Ω \ K does
not depend on the initialisation. Instead, it can be uniquely determined
by the location and value of the pixels in K. However, the closer the ini-
tialisation resembles the desired solution, the less time requires the system
to converge to this solution. This gives rise to use a cascadic approach
which initialises a process on one scale with the prolongated outcome from
a coarser scale [BD96, GWB10]. On coarse grids, long distances between
known pixels are sampled with less points, such that they can be computed
much more efficiently.

Given an image f and a mask c, cascadic FED first restricts both inputs
to a coarser scale. Let IHh denote a restriction operator which transfers an
image from a grid with spatial distance h to one with spacing H [TOS01].
While the concrete form of this operator is implementation dependent, we
require it to preserve a certain intuition of similarity between the represen-
tations on both grids.

As it turns out, this required similarity can be a problem for the re-
striction of the binary mask c, because IHh c is in general real-valued. While
IHh c can easily be re-binarised, such modification must account for the com-
patibility to IHh f . Normalised convolution is a convenient way to handle
this shortcoming [KW93, Bru10, MBWF11]. Let superscripts (h) and (H)
denote the representations of an image on the fine and coarse scale, respec-
tively. Then, we compute the coarse image and mask by

f
(H)
i,j =

(IHh (f (h)� c(h)))

i,j

(IHh c(h))
i,j

,
(
IHh c

(h)
)
i,j
6= 0

0 , else
, (5.6)

c
(H)
i,j =

{
1 ,

(
IHh c

(h)
)
i,j
6= 0

0 , else
. (5.7)

Note that (5.7) represents the intuitive binarisation in which all non-zero
entries are reset to 1. The resampling of the image in (5.6) respects this
new setting by expanding the area of known pixels to the new area. Hence,

114 CHAPTER 5. PDE-BASED IMAGE INPAINTING

a new image pixel is created by the weighted average of the known pixels
contained in it, or by 0 if it does not contain known pixels.

As a next step, let us discuss a suitable way to prolongate a fine-grid
solution u(h),0 out of a coarse-grid solution u(H),t. Since we know the op-
timal solution at known grid points – they simply correspond to the input
– we adapt the prolongation operation to the fine grid mask. This leads
to [Bru10]:

u(h),0 = (1− c(h)) �
(
IhHu

(H),t
)

+ c(h) � f (h) , (5.8)

where superscripts are again chosen as above.
The steps described above can be applied recursively up to an arbitrarily

coarse representation of the problem description. To this end, we obtain an
algorithm as follows:

1. If desired, obtain initialisation by:

a. Restrict c and f by (5.6) and (5.7).
b. Perform recursive call on coarse grid.
c. Prolongate solution by (5.8) and initialise fine-grid solution.

Else, initialise solution with 0.

2. Perform FED with given parameters on (5.5).

The evaluation of the condition in 1. depends on algorithmic considerations.
Since (5.6) has the side effect of densifying the image, it is usually a good
idea on sequential hardware to restrict the problem down to the point on
which all pixels are known. On massively parallel hardware such as GPUs,
however, the algorithm scales worse the less pixels it is executed on. Hence,
it is usually a better choice here to limit the minimal element counts in
both dimensions to a constant.

5.4 GPU-Based Algorithm

The design of an efficient GPU-based algorithm requires us to focus on two
critical aspects. On the one hand, we must parallelise all operations, and
take care of a beneficial scaling behaviour on the chosen scales. We have
already designed algorithms for most operations in context of anisotropic
diffusion (see Chapter 4). Hence, a new layout is only required for the new
resampling operator. On the other hand, we must pay attention to the
memory bandwidth of the FED solver on each level. As it turns out, this
throughput is much higher for inpainting than it is for diffusion. We go into
detail about this aspect in the following paragraph.

5.4. GPU-BASED ALGORITHM 115

5.4.1 FED

Let us first analyse the parallelisation of the FED solver from (5.5), and the
data patterns occurring in this case. On a GPU, we want all active threads
to perform the same operation at the same time. This procedure protects
the algorithm from branch divergence, and thus allows for a high efficiency.
As a consequence, we evaluate both summands of (5.5) at all points. This
causes intermediate results to be always computed, even if they are later
discarded by a multiplication with zero. In order to optimise the memory
bandwidth for this process, we can pursue two strategies:

1. We can input the symmetric system matrix for diffusion as in Sec-
tion 4.4, plus the mask and the old solution in a 3×3 neighbourhood.
Since the weights from the matrix are uniquely representable by 4 val-
ues per pixel, we obtain 9+9+4 = 22 loads for a pixel of a grey-valued
image, or 3 · 9 + 9 + 4 = 40 loads for a colour-valued image. Note that
the mask and each image channel are read from one texture, each,
such that most reads are cached.

2. Alternatively, we can already store the ‘masked’ weights during the
setup phase of the operator. Since the operator is kept stable over
several steps, the additional load latencies from this stage can usually
be neglected. Because the resulting matrix is no longer symmetric,
we need to load at least 8 entries per pixel. This leads to a minimum
of 9 + 8 = 17 loads per grey-valued pixel, or 3 · 9 + 8 = 35 loads per
colour-valued pixel.

Although in the first case, many data points are read from the same texture
cache, the totally lower bandwidth of the second case makes the process run
slightly faster. In experiments, it even turns out that loading the main di-
agonal of the operator instead of computing it inline pays off in the runtime.
This might be due to reduced data dependencies within the solver. Hence,
we use the second strategy within our anisotropic algorithm, but leave the
first one as a more efficient option for special applications such as linear
diffusion inpainting.

5.4.2 Resampling

As the most important complement to the algorithm from Chapter 4, we
now discuss efficient restriction and prolongation operators. Since the ad-
ditional normalisation from (5.6)–(5.8) are straightforward, we focus on a
technique to realise the real-valued operators IHh and IhH . The CUDA kernel

116 CHAPTER 5. PDE-BASED IMAGE INPAINTING

�a �b
Figure 5.1: Application of 1-D restriction operators (from ‘black’ to ‘blue’).
a. Area-based resampling [BWF+05]. b. Fast texture-based resampling.

for each operator then handles both the mask and the image jointly, which
also allows for a fast normalisation in shared memory.

Restriction and prolongation are crucial operations in multi-scale algo-
rithms. On the one hand, they must be very accurate in finding a ‘suitable’
representation of a given problem on another grid. Even small errors in-
duced by this process must later be smoothed out by expensive iterative
solvers, which involves a high runtime of the overall process. On the other
hand, they must not consume too much runtime by themselves, as their
runtime constitutes a significant partition of the process runtime. Hence,
let us briefly focus on an efficient technique for this purpose on the GPU.
We begin with the restriction operator IHh .

Restriction operators from the literature can be classified by their func-
tionality. Often, it is assumed that both the input and the output have side
length 2n + 1 with some integer n [TOS01]. Transferring a signal from a
grid of size 2k+1 + 1 to 2k + 1 then works by simply discarding even-indexed
grid points, or by a smart averaging on a 3 × 3 basis [TOS01]. However,
once differently sized images or arbitrary resampling factors are given, this
technique is not applicable. In such cases, works from the literature often
use an area-based restriction scheme [BWF+05]. Such methods do not only
take into account the location of a pixel, but also its area in the image do-
main. A coarse representation of an image is then found by a re-distribution
of masses. Figure 5.1a visualises this idea with a simple 1-D example. As
a first step, both pixel grids are normalised to the same width, while their
individual sampling frequencies are different. Then, each pixel area of the
coarser grid takes the integral over grey values in the corresponding area
of the finer grid. This yields a canonical representation of one image on a
different scale.

We need a resampling strategy of the second kind for our application
to diffusion inpainting, because we want to allow input images to have
arbitrary sizes. However, area-based restriction is very costly on GPUs.
Even if we assume restriction factors in the interval (1, 2], one output pixel

5.5. EXPERIMENTS 117

can depend on 4, 6, or 9 input pixels. Depending on whether some pixel
cells of both grids coincide or not, there are even 16 different cases that must
be handled individually. In a massively parallel layout, this case distinction
causes a high degree of sequentialisation. Each case is executed by those
threads for which the condition holds, while the remaining pixels are idle.

As a very fast alternative to this approach, we exploit the bilinear in-
terpolation capabilities of the texturing unit. Figure 5.1b shows a simple
1-D example of this novel strategy. The input image is read as an inter-
polating CUDA texture, which is visualised with a black line. Similar to
area-based resampling, we normalise the width of both grids. This comes
down to a translation of pixel coordinates of the output grid into the tex-
ture coordinate system of the input grid. To avoid aliasing, we obtain
the value of a pixel x as the average over texture requests at locations
x̃ = (x1 ± 1/4,x2 ± 1/4)>. This is denoted by red arrow heads and lines.
Carried over to the 2-D setting, this strategy only requires the retrieval of
four original samples per new sample. Because most of these memory loads
are buffered by the 2-D aware texture caches, this operation is very fast.
Moreover, the oversampling with 2 input samples per output sample allows
aliasing-free restriction for arbitrary factors in the interval (1, 2]. Larger
factors can be obtained by an increase in the number of sampling points.

In any case, all threads perform the same operation at the same time,
such that texture-based resampling can be performed very efficiently on
GPUs. Nevertheless, it yields different results to area-based resampling.
This is also visible in Figure 5.1. While the values for the first two sam-
ples are identical for both strategies, the third grey value is lower than
for area-based resampling. However, experiments confirm that both re-
sampling strategies seem to yield equally reasonable representations of a
problem, such that the convergence rate in both cases is very comparable.

The corresponding prolongation operator IhH can even be realised with
less computational effort. Values for pixels on the new, finer grid can conve-
niently be sampled on a bilinearly interpolated texture. Note that aliasing
cannot occur in this case.

5.5 Experiments

5.5.1 Quality and Parameters

As a first experiment with our developed algorithm, we would like to anal-
yse its convergence behaviour over a varying number d of FED cycles per
level. While most of the remaining parameters are problem dependent, d is

118 CHAPTER 5. PDE-BASED IMAGE INPAINTING

�a �b �c
Figure 5.2: Inpainting experiment from [SWB09]. a. Trui, extended to 257×257
pixels. b. Inpainting mask c. c. Mask pixels, overlaid with image grey values.

a FED-specific variable which we can expect to be largely invariant under
the input. To this end, we take the inpainting mask from [SWB09, Figure
1], and perform EED inpainting as in the original publication. This setup
is also shown in Figure 5.2. For different d, we perform a series of bench-
marks with varying stopping times. Each of these configurations leads to
a different runtime of the algorithm. We want to reproduce the results
from [SWB09] with our algorithm, but with the same model parameters
as in the original paper. Hence, we search a configuration with the lowest
runtime that obtains a reconstruction with a similar error as their cascadic
successive over-relaxation (CSOR)1.

The results of this experiment are visualised in Figure 5.3. The sought
error obtained by the CSOR reference implementation is denoted by a
runtime-independent line. We can see that no CFED configuration with
less than d = 8 iterations reliably obtains the anticipated error for a wider
range of configurations. Because the graphs for d > 8 all reach this error
level, d = 8 seems to be a good choice for our further experiments.

Note that the presented graphs have different supports. The reason for
this is that implementations of FED on real architectures suffer from numer-
ical inaccuracies which cause the process to become unstable for very large
stopping times per cycle (see Section 4.3 for details). This drawback seems
to be amplified by the cascadic approach described in this chapter. Hence,
the supports of the graphs account for the admissible range of parameters
in which our implementation produces stable results.

It remains to determine a suitable stopping time which yields the desired
approximation error with a low runtime. For any fixed d, the runtime scales

1 My thanks go to Christian Schmaltz and Andrés Bruhn for providing a sample im-
plementation of the CSOR algorithm from [SWB09].

5.5. EXPERIMENTS 119

 45

 50

 55

 60

 65

 0 50 100 150 200

M
S

E

ms

d = 3

d = 4

d = 5

d = 6

d = 7 d = 8 d = 9 d = 10

Reference: CSOR

Figure 5.3: Reconstruction error on Trui with different numbers of iterations d
on the runtime of the algorithm.

by a monotonic function on the stopping time of the process. This allows
to plot the stopping time against the approximation error, and to pick the
smallest stopping time as a configuration for the smallest runtime of the
process. This experiment is shown in Figure 5.4. Again using the CSOR
reference as the desired approximation error, we find that a stopping time
of T = 2000 is fully sufficient to obtain the desired error.

This leads to inpainting results as shown in Figure 5.5. As expected,
the solutions obtained by the CFED method are indistinguishable from the
CSOR reference. As a consequence, both methods obtain about the same
reconstruction error to the original.

5.5.2 Runtime

Comparison to CPU

Let us now compare the runtimes of the novel GPU-based algorithm against
two sequential algorithms on the CPU:

1. The first method to compare against is a cascadic FED implemen-

120 CHAPTER 5. PDE-BASED IMAGE INPAINTING

 45

 50

 55

 60

 65

 0 1000 2000 3000 4000 5000

M
S

E

T

d = 3

d = 4

d = 5

d = 6

d ∈ {7, ..., }10

CSOR

Figure 5.4: Reconstruction error on Trui with different numbers of iterations d
on the stopping time T of the algorithm.

�a �b �c
Figure 5.5: Inpainting results with different numerics. a. Trui (257×257 pixels)
from Figure 5.2. b. CSOR, parameters as in [SWB09], 211 ms on CPU, MSE =
49.62. c. CFED, T = 2000, d = 8, 136 ms on GPU, MSE = 49.59.

5.5. EXPERIMENTS 121

tation similar to the one from [GWB10], but with the discretisation
from [Wei11c]. The speedup obtained in this experiment tells us the
plain parallelisation benefit.

2. Secondly, we perform the same benchmarks with the cascadic succes-
sive over-relaxation (CSOR) method used in [SWB09], which is again
extended by the more complex discretisation scheme. This solver
belongs to the state-of the art methods for image compression with
anisotropic PDEs. Hence, the observed speedup in this case corre-
sponds to the overall benefit of the novel algorithm against one of the
best algorithms on the CPU.

Note that these two methods have fundamentally different mathematical
properties. While the CFED algorithm approximates the elliptic process
by large parabolic steps on each level, CSOR directly solves the elliptic
problem. In the latter case, the known points in K play the role of Dirichlet
boundary values.

In order to provide a fair comparison, we select the parameters for all
algorithms such that they obtain the same reconstruction error on the Trui
image shown in the last section. On each level, this corresponds to d = 8
iterations and a stopping time T = 2000 for the CFED algorithms, and 5
iterations with 10 relaxations for the CSOR-algorithm as used in [SWB09].
These parameters are applied to images in different sizes. Without loss of
generality, we use white images and random masks with a coverage of 10%
for this experiment, since we are only interested in the runtime (but not
the outcome) of this process.

Note that using a fixed parameter set for arbitrary images is in general
not an optimal choice. In fact, settings such as the stopping time depend
on the percentage of known points in the discrete image domain, as well
as on the maximal distance between two known points. However, this is
the same for all evaluated algorithms, such that we can expect relative
speedups to remain valid. Moreover, this fixed parameter set allows us to
analyse algorithmic rather than numeric behaviours, which is in accordance
to the main focus of this work.

Table 5.1 shows the results of this experiment. Note that because of
the high memory consumption of all algorithms, the supplied 1.5 gigabytes
of GPU memory do not suffice to execute three-channel images in the size
4 096 × 4 096 pixels. As a consequence, the corresponding benchmarks are
missing in the table.

Let us first discuss the direct parallelisation benefit, i.e. the speedup
between the GPU-based and the CPU-based CFED algorithms. While for
small images, this factor is rather moderate, it quickly grows to 30 to 50 for

122 CHAPTER 5. PDE-BASED IMAGE INPAINTING

Table 5.1: Runtimes and speedups for cascadic FED on the GPU, compared
to the corresponding algorithm on the CPU (‘Speedup CFED’) and to cascadic
SOR on the CPU (‘Speedup CSOR’). All times are given in milliseconds.

CPU GPU Speedup

CSOR CFED CFED CFED CSOR

2562 Grey 202.19 711.74 107.56 6.62 1.88
RGB 433.95 1 952.42 129.57 15.07 3.35

1 0242 Grey 4 063.54 13 195.41 580.96 22.71 6.99
RGB 8 401.91 36 985.29 949.78 38.94 8.85

2 0482 Grey 16 534.26 54 228.03 1 772.06 30.60 9.33
RGB 34 423.84 150 348.34 3 108.26 48.37 11.07

4 0962 Grey 66 638.59 218 958.42 6 299.53 34.76 10.58
RGB 139 431.14 604 902.74 n/a n/a n/a

images of the size 2 048×2 048 pixels. Since we truncated the data structures
in both cases such that they do not exceed a minimal size of 64× 64 pixels
per layer, this speedup again indicates the good scaling behaviour of GPUs
on explicit schemes. However, note that this approach does not reach the
speedups measured in context of linear diffusion (see Table 3.1), which is a
result of the higher memory dependencies involved in this case.

This memory-boundedness becomes also obvious if we compare the be-
haviours of both CFED algorithms on grey-valued and on colour-valued
images. While the CPU-based variant scales almost linearly with the num-
ber of channels, the GPU based technique computes three-channel images
in less than twice the time of a one-channel image. This is because entries
for the non-linear operator can be re-used for all channels, and because com-
putations on on-chip memory require a negligible partition of time claimed
by the many memory loads.

One principal caveat of the novel approach can be seen if we compare
the runtimes of the CPU-based reference runs. On this architecture, CFED
is more than 3.2 times slower than CSOR when it comes to obtaining the
desired low reconstruction error. This drawback also carries over to our
GPU-based implementation. It is still about one order of magnitude faster
than the best method on the CPU which justifies the use of GPUs for this
purpose. However, this speedup is relatively low if we compare it to the
pure parallelisation benefit.

5.5. EXPERIMENTS 123

0

2

4

6

8

10

0M 2M 4M 6M 8M 10M 12M 14M 16M 18M

s

pixels

Grey

RGB

Figure 5.6: Scaling of CFED with d = 8 iterations per level over grey-valued
and RGB-valued images in different sizes.

Despite this apparent restriction, the basic idea of FED seems to bear
an amazing potential, even for elliptic processes. In this chapter, we have
used FED-based numerics over SOR-based solvers because they possess
a parallelisation-friendly algorithmic structure. While SOR methods are
per se sequential, FED is entirely data-parallel. However, the difference
between the observed runtime does not seem to be related to the same
property, but to the gap between solvers that are tailored to the parabolic
case on the one hand, and those that perform best on elliptic problems
on the other. As a consequence, it might be worthwhile to focus more
on the direct solution of the elliptic problem, rather than approximating
it by a gradient descent with parabolic solvers. Promising candidates for
this purpose are over-relaxed Jacobi schemes [Mei05, OBW+08]. Here, it
could even be possible to use FED time steps to drive the over-relaxation
of the scheme [Wei11b]. Evidence for the principal functionality of such
approaches is given in the next chapter. However, a detailed analysis and
evaluation of the applicability and runtime of such Fast Jacobi schemes to
PDE-based image inpainting remains as future work.

Scaling on Image Size

For a better understanding of the runtime behaviour of our novel algorithm,
let us briefly analyse its scaling behaviour over different image sizes. Fig-

124 CHAPTER 5. PDE-BASED IMAGE INPAINTING

ure 5.6 visualises these results. As in the previous experiment, we use a
constant setting of d = 8 and T = 2000 iterations. The overall linear scal-
ing behaviour is only interrupted by characteristic discontinuities whenever
the CUDA block grid exceeds multiples of the maximal extent. As it was
observed before, the version taking colour-valued images scales up to a size
of about 12.5 megapixels, while grey-valued version still works on images
with about 17.5 megapixels. Above these limits, the memory requirements
exceed the available resources.

5.6 Application: Realtime Video Inpainting

5.6.1 Scenario

In the introduction to this chapter, we have seen that many applications
which require PDE-based image inpainting do not necessarily require com-
plicated anisotropic PDEs. Instead, many approaches are based on ho-
mogeneous diffusion inpainting. Besides gradient domain techniques such
as [EG01, OBW+08], this holds in particular for image compression of
cartoon-like images [MW09, MBWF11]. One main criterion for using this
simpler PDE over more complex ones is the existence of an analytical so-
lution. Besides other aspects, this property allows a reliable designation of
interpolation points.

In this section, we develop an interactive demonstrator for image com-
pression with homogeneous diffusion. Our framework shall read a raw video
stream from either a web-cam or the console input. This data is reduced to
a few interpolation points using either the technique from [BBBW09], or the
one from [MBWF11]. This sparse data is then interpolated by linear diffu-
sion inpainting. A graphical frontend visualises all necessary intermediate
solutions and the final outcome.

Note that we do not compress and decompress the sparse data in terms of
entropy coding. These intermediate steps are per se sequential and closely
related to a storage on hard discs. However, neither of these stages are
interesting from a purely vision-motivated perspective. Moreover, they infer
significant memory latencies to the system, since data must be additionally
copied between the host machine and the graphics device.

5.6.2 Semantic and Analytic Image Compression

In the following, we distinguish two different strategies to thin the image
down to a few significant inpainting points:

5.6. APPLICATION: REALTIME VIDEO INPAINTING 125

1. The analytic approach from [BBBW09] sets up on a continuous the-
ory which relates the approximation quality during reconstruction to
the preservation of defects of harmonicity. Such regions are identified
by the magnitude of the Laplacian ∆u. Hence, the approximation
with homogeneous diffusion becomes better the more image regions
with a large Laplacian magnitude are retained.

In [BBBW09], the authors show that this theory can be carried over to
a discrete setting. They suggest to rescale |∆u| such that its average
value equals the one of an image that contains just as many white
pixels on black ground as the desired number of mask pixels. The
mask can then be obtained by halftoning, i.e. binarising, the rescaled
magnitude. Note that we do not go into detail about halftoning at
this point, since this field of research is subject of Chapter 7.

2. The semantic approach used in [MW09] is motivated by an analysis
of the human perception of an image. Our visual system performs well
in detecting edges, but does not pay much attention to flat regions.
This motivates to reduce the image to thin lines on both sides of a
dominant image edge.

Following the original approach from [MW09], we obtain edges by
a Marr-Hildreth edge detector with hysteresis thresholding [MH80,
Can86]. This comes down to a detecting edges as zero-crossings of
the discrete Laplacian ∆u, and to discard mismatches based on the
local image gradient. The sought mask is obtained as the set of pixels
to both sides of an edge.

In either case, the resulting mask c is multiplied to the dense image to
obtain the sparse image f which could now be encoded and stored to hard
disk. Instead of performing this encoding, we immediately continue with
the inpainting of f .

5.6.3 Implementation

Memory Transfer

One of the main challenges in the implementation of this real-time demon-
strator is the low bandwidth between the CPU and the GPU. Unlike before,
it does not suffice to measure the time the algorithm needs to inpaint the
image. Instead, all that counts for a human observer is the latency be-
tween capturing a frame and displaying the result on the screen. This is
particularly interesting if we use a web camera connected to the system.

126 CHAPTER 5. PDE-BASED IMAGE INPAINTING

As it turns out, such cameras provide a very compact representation
of the video data they acquire. In the planar YV12 format they produce,
each colour pixel occupies only 1.5 bytes. Recall that a single precision
float representation of an RGB buffer requires 12 bytes per pixel. Hence, a
good strategy is to upload this raw data to the GPU, and to decode it with
CUDA kernels on the device.

For the visualisation of the results, we do not even need to copy buffers
at all, since both the computation and the visualisation are performed
on the same graphics card. CUDA offers a set of OpenGL interaction
routines which allow to map buffers to the address spaces of both frame-
works [NVi11b].

GPU Kernels

A main difference to the previous setting is the exchange of the anisotropic
diffusion model by homogeneous diffusion. As it turns out, we cannot apply
any of the highly efficient linear diffusion techniques presented in Chapter 3
in this context. Even if we decouple the problem into a series of diffusion
steps alternating with a reconstruction of the known points, this process
already takes seconds to converge on relatively small images.

Instead, we apply a CFED strategy similar to the one for the anisotropic
case. However, since we use a homogeneous diffusion model, this approach
becomes very similar in spirit to iterated box filtering. In this context,
the cascadic application of the solver simply corresponds to box kernels in
different sizes. Moreover, since the process on each level is linear there is no
need to update an operator during the course of the operator. This reduces
the memory bandwidth for the explicit solver, and additionally allows to
yield good results with already few FED cycles per level.

The operators required to create the masks in the analytic or semantic
approach are data-parallel and can straightforwardly be transformed into
GPU kernels. The only exception from this rule is given by the halftoning
step that is required in context of the analytic approach from [BBBW09].
The authors of the original paper suggest to use the accurate but inherently
sequential dithering algorithm by Floyd and Steinberg [FS76]. On the GPU,
we replace it by the less optimal, but parallel approach by Purgathofer et
al. [PTG94]. In Chapter 7, we go into detail about the differences between
these methods.

5.6. APPLICATION: REALTIME VIDEO INPAINTING 127

Figure 5.7: Screen shot of the live demonstrator for ‘analytic’ image thinning,
followed by homogeneous diffusion inpainting. On the Sintel movie (CC-BY,
Blender Foundation) with a size of 480×360 pixels, about 43 FPS are obtained.

5.6.4 Examples

Let us now see some examples of the demonstrator in action. Both the
semantic and the analytic approach have been integrated into the same
program. It expects the raw data input either from a web cam, or from
standard input. By using the realtime video converter mencoder as a pre-
processing step to the latter option, our application can process any video
data including live web streams. Because the transcoding runs on the CPU
while the compression framework runs on the GPU, this option is designed
to support the main statement of our demonstrator: It is possible to com-
press and decompress video streams of sport events or live footages with
PDEs in realtime.

128 CHAPTER 5. PDE-BASED IMAGE INPAINTING

Analytic approach

Figure 5.7 shows a screen shot of our demonstrator using the analytic ap-
proach. Its window is divided into quadrants. In the top left part, it shows
the original input. As an example, we use the Sintel movie produced by
the Blender Foundation and released under terms of the CC-BY Creative
Commons License. The top right frame shows the computed magnitude of
the Laplacian, which is then dithered to obtain the mask which is shown
in the bottom left quadrant. Note that the regularity artefacts in dark
mask regions are due to the parametrisation of the forced random dither-
ing method [PTG94] and can be removed without significant overhead by
choosing larger lookup tables. In the bottom right corner, we finally see
the inpainted result. With the shown 10% of pixels being preserved, it can
hardly be distinguished from the original.

Moreover, note that this application obtains 43 frames per second on
an input of size 480×360 pixels, as is indicated in the window title bar.
This measurement includes the time required to upload the original and
to visualise the solution. This means, there is only a latency of about
23 milliseconds between the deployment of raw data by the CPU and the
presentation of the thinned and inpainted results on the screen. On larger
frames of size 640×480 pixels, our algorithm still obtains 29 FPS. Hence,
even frames in VGA resolution can easily be processed in realtime.

Semantic approach

Let us now have a look on our demonstrator running the semantic approach.
This is shown in Figure 5.8. Again, the screen is divided into four parts,
where the top left again presents the original and the bottom right shows
the result. However, the top right now visualises the detected edges. In the
bottom left frame, the contours of these edges are coloured with the pixel
values at the respective points. This is the image that is inpainted to obtain
the result. Again, our algorithm obtains almost 45 FPS on this sequence
of size 480×360 pixels including memory transfer and visualisation. Again,
this good performance carries over to larger frames. Streams with a spatial
resolution of 640×480 pixels are processed with 29 FPS.

5.6.5 Efficiency

An interesting question which arises from the specialisation to linear
diffusion inpainting is its efficiency compared to other GPU-based al-
gorithms from the literature. While it seems that there are no non-

5.6. APPLICATION: REALTIME VIDEO INPAINTING 129

Figure 5.8: Screen shot of the live demonstrator for ‘semantic’ image thinning,
followed by homogeneous diffusion inpainting. On the Sintel movie (CC-BY,
Blender Foundation) with a size of 480×360 pixels, about 45 FPS are obtained.

linear PDE-based inpainting algorithms on the GPU so far, several frame-
works were proposed to solve the Poisson equation on graphics proces-
sors [GWL+03, OBW+08, MP08, JCW09]. A fundamental problem for
the comparison of these techniques is the lack of implementation details in
the original publications, as well as a missing description of the conditions
under which the original experiments were conducted. Often, the number
of known points in the image or the convergence state of the system are not
mentioned, although both affect the runtime.

Hence, the purpose of this brief overview shall be to compare the run-
times given in the original papers to ‘equivalent’ runs of our novel approach.
While performing these comparisons, we must keep in mind that our ap-
proach is not specifically optimised to this much more simple problem, but
uses the same generic setup as the anisotropic variant. However, the linear
case and the fact that we approach the problem in a scale space allow us to
use very fast parameter settings.

130 CHAPTER 5. PDE-BASED IMAGE INPAINTING

In order to optimise the parameters, we generate a ground truth for
linear diffusion inpainting on the Trui image from Figure 5.2. To this end,
we use an explicit scheme with 10 million time steps of size 1/8. We find
that by using CFED, already d = 2 iterations and a process stopping time
T = 110 suffice to obtain a solution that differs by less than an MSE of
10−1 from this ground truth. If we now assume that the point density and
distribution almost remains constant within a large range of possible input
images, it is justified to use the same parameters for arbitrary images.

Under these conditions, our algorithm requires 8.24 milliseconds to re-
construct an image of size 512 × 512 pixels, and 22.43 milliseconds for an
image of size 1 024× 1 024. Compared to the runtimes of other approaches
from the literature, it seems that our algorithm belongs to the fastest avail-
able methods.

The approach presented in [GWL+03] sets up on a classical GPGPU
approach. Because it was evaluated on hardware that is much slower than
modern commodity products, it is hard to perform a fair comparison. In
2003, the authors obtained a runtime of 400 milliseconds on 513 × 513
pixels, and 1.45 seconds on images of size 1 025 × 1 025. Considerations
based on the performance gain reported by NVidia [NVi11b, Figure 1-1]
suggest that this method would require about 22 and 80 milliseconds on
modern hardware, respectively. This makes it about a factor 3 slower than
the novel CFED approach.

A more recent approach described in [OBW+08] reports ‘realtime per-
formance’ on images of size 512× 512 pixels. If we assume that the authors
refer to a runtime of 40 milliseconds per frame, it might require about 20–25
milliseconds on a modern graphics card. Again, CFED is 2–3 times faster.

It seems that the performance of CFED is most similar to those tech-
niques proposed in [MP08] and [JCW09]. The first one reports runtimes
of about 10 milliseconds ‘per cycle’ on an megapixel image. It is not said
how many cycles are required to let the method sufficiently converge, but a
comparison in [JCW09] suggests that about four cycles should be sufficient.
Carried over to the performance of modern graphics cards, we obtain about
20–25 milliseconds, which is about the same performance as for CFED.
The approach from [JCW09] even decreases this runtime at the cost of a
higher approximation error. If an application does not require an optimal
convergence state of the underlying method, this approach can even be up
to two times more efficient as CFED, while still providing a more accurate
solution.

Nevertheless, we can state that CFED is a justified alternative to all
other GPU-based image inpainting algorithms from the literature. Besides
its good runtime constraints, it also benefits from a clear and intuitive

5.7. CONCLUSION 131

algorithmic structure. In general, the linear variant of our algorithm seems
to scale much better than the anisotropic version, which is both due to a
more optimal memory bandwidth and the linear structure of the problem.

5.7 Conclusion

In this chapter, we have designed the first GPU-based algorithm for
anisotropic PDE-based image inpainting. Our algorithm is based on the cas-
cadic fast explicit diffusion scheme suggested by Grewenig et al. [GWB10].
This allows to use the FED-implementation from the last chapter, and to
extend it by an efficient texture-based resampling strategy. The resulting
algorithm scales very well on GPUs, and obtains up to a factor 48 on the
corresponding CPU-based variant. This performance seems to be partic-
ularly good for the specialisation to homogeneous diffusion inpainting, for
which CFED obtains similar or smaller runtimes than other GPU-based
approaches from the literature. By using this homogeneous diffusion ap-
proach, images of size 1024×1024 pixels can in general still be inpainted in
real-time. As a result, the thinning and reconstruction of video frames using
either the method from [BBBW09] or [MW09] obtain real-time performance
on frames with 640×480 pixels.

The good scaling behaviour despite the high memory throughput is a
consequence of the careful algorithmic design. Both the FED scheme from
the previous chapter, as well as the novel resampling strategy are tailored to
the characteristics of GPUs. Nevertheless, both parts are very easy to im-
plement. While the FED algorithm consists of little more than an explicit
solver, restriction and prolongation operators are mapped to primitives of
the hardware. This design makes our approach a perfect framework for
quick but efficient implementations of arbitrary elliptic algorithms. More-
over, because these algorithms are still transparent to the developer, they
are well suited for rapid prototyping.

Despite its simplicity, however, CFED does not seem to be the opti-
mal solution for PDE-based image inpainting. This becomes obvious if we
compare its runtime to solvers which directly approach the elliptic problem
instead of approximating it with large parabolic steps. One prominent ex-
ample is the CSOR method from [SWB09] which runs 4 times faster than
CFED on the CPU, but which cannot be parallelised to the GPU due to
its inherently sequential structure. A promising solution to this drawback
might be a cascadic application of the Fast Jacobi scheme proposed by We-
ickert [Wei11b]. It uses Jacobi steps [Mei05] to solve the elliptic problem on
each level, but over-relaxes them with a variant series of parameters that

132 CHAPTER 5. PDE-BASED IMAGE INPAINTING

are coupled to the series of FED time steps. This scheme would be fully
data-parallel and can be realised on the GPU by using an anisotropic exten-
sion of the algorithm from [OBW+08]. However, it remains as future work
to show the applicability to PDE-based image inpainting. In this context,
it should also be investigated what the optimal relation between the FED
time steps and the resulting over-relaxation weights is. In the next chapter,
we see an application of a Fast Jacobi scheme to optic flow computations
where it helps to speed up this process by more than a factor 2. This raises
hopes that a similar strategy will also work for inpainting, and that it even
performs significantly better than CFED.

Chapter 6
Optic Flow

Do not go where the path may lead.
Go instead where there is no path and leave a trail.

Ralph Waldo Emerson

6.1 Introduction

An important task in computer vision is the accurate computation of motion
in a captured scene. If not more than an image sequence of this scene is
given, we can still measure the apparent motion of brightness patterns in
this sequence. This so-called optic flow is frequently used to track objects
in a scene [LK81, TK91], or to register different views of the same scene
onto each other [LK81, SC94]. Often, these patterns allow for even more
exciting applications. Accurately registered frames of an exposure series
can be combined to a single image with a higher dynamic range [MP95],
to an image with a higher spatial resolution [MPS+09], or both [ZBW11a].
The deduction of motion information reoccurs in related models for stereo
vision [ADSW02, BAS10] and scene flow estimation [HD07, VBZ+10].

The resulting quality in most of these applications depends directly
on the accuracy of the underlying optic flow estimation. As a conse-
quence, optic flow approaches enjoyed a tremendous increase in quality
over the last three decades. This is impressively observable in the Mid-
dlebury benchmark [BSL+11]1. Such a progress became possible by re-
cent developments in the field of energy-based methods. Modern ap-
proaches still set up on the same energy minimisation ideas as early

1 Available online at http://vision.middlebury.edu/flow/eval/

133

http://vision.middlebury.edu/flow/eval/

134 CHAPTER 6. OPTIC FLOW

methods [HS81, NE86, BA96, WS01a]. However, they extend them by
a variety of new ingredients which lead to more and more accurate re-
sults [BBPW04, ZPB07, SRLB08, WTP+09, ZBW+09, XJM10, ZBW11b].

Energy-based optic flow models find the optic flow as the minimiser of
an energy, which typically consists of two different terms: The data term
penalises deviations from constancy assumptions such as the preservation
of intensity values or image gradients over time. This is complemented
by the smoothness term (or regulariser), which enforces the solution to be
sufficiently smooth.

The high quality of modern approaches is related to their careful de-
sign of these two terms. Most methods weight the local influence of
the data term by robust sub-quadratic penaliser functions which reduce
the impact of outliers [BA96, BBPW04, ZPB07, ZBW+09]. Moreover,
they frequently apply higher-order constancy assumptions such as the con-
stancy of the image gradient to be more robust under varying illumina-
tion [TP84, BBPW04, ZBW+09]. An additional normalisation prevents
overweighting at image gradients [SAH91, ZBW+09].

Sub-quadratic penalisers also find application in the smoothness term,
where they allow to preserve dominant discontinuities in the flow field,
while small fluctuations are still reliably smoothed out [BA96, BBPW04,
ZPB07]. Anisotropic regularisers further support this behaviour by allowing
to smooth parallel to image or flow edges, but preventing smoothing across
these edges [NE86, WS01a, SRLB08, WTP+09, ZBW+09]. In [ZBW+09,
ZBW11b], this concept is even optimised by designing the smoothness term
complementary to the data term. This allows to employ smoothing only in
directions where the data term cannot give reliable results.

As a side effect of the growing accuracy of optic flow approaches, the
accompanying energy functionals also become more complex. Modern op-
tic flow energies are often highly non-convex and nonlinear, such that their
minimisation is a numerically challenging task. Even highly efficient multi-
grid methods, which are well-known for their good performance on CPUs,
cannot achieve even near-realtime performance on typical image sequences.
Such methods can also be ported to the GPU, where they obtain real-time
performance for relatively basic optic flow models [GT08]. However, their
algorithmic structure requires many computations on coarse, i.e. small, rep-
resentations of the problem. This low degree of parallelism contradicts the
massively parallel layout of GPUs, and causes these approaches to waste
significant amounts of the available resources. This might be a reason why
this option was not pursued by a large community so far.

A class of algorithms which is better suited for GPU-based implementa-
tions are primal-dual approaches [ZPB07, WTP+09]. These methods intro-

6.1. INTRODUCTION 135

duce a coupling term which allows to perform separate minimisations with
respect to the data term and the smoothness term. While the latter min-
imisation comes down to a gradient descent algorithm similar to [Cha04],
the new energy for the data term can easily be performed by thresholding.
This strategy allows to solve modern models very efficiently, even on GPUs.
However, despite these promising properties, primal-dual approaches are re-
stricted with respect to the models they can handle. This is because the
thresholding technique can only be efficiently implemented for a limited
number of data terms, and because the gradient descent algorithm is par-
ticularly challenging if the desired regulariser is anisotropic [WTP+09].

On the CPU, the most popular and versatile strategy for minimising
continuous energy-based methods is given by the Euler-Lagrange frame-
work [HS81, NE86, WS01b, BBPW04, ZBW+09, ZBW11b]. According to
the calculus of variations, the minimiser of such methods is given by a sys-
tem of coupled partial differential equations which constitute necessary con-
ditions for a minimiser [Els61]. Energy minimisation via the Euler-Lagrange
framework has several advantages:

• Flexibility. Euler-Lagrange equations can directly be derived from
arbitrary models. Even if non-differentiable penalisers are applied,
these can easily be handled by introducing small regularisation pa-
rameters [Vog95].

• Generality. Euler-Lagrange equations are all of diffusion-reaction
type. Hence, the same solution strategies work for Euler-Lagrange
equations arising for arbitrary energies. The diffusion part can be
minimised in a way that is closely related to elliptic diffusion systems
such as the one from Chapter 5.

Nevertheless, the solution of Euler-Lagrange equations is often algorithmi-
cally demanding. Although bi-directional multigrid methods promise an ef-
ficient solution of such equations, they are in general not sufficient to obtain
near-realtime performance on modern optic flow models [BW05]. Moreover,
this problem seems to be even worse on GPUs, where such schemes are re-
stricted to the solution of fairly basic models [GT08].

In this chapter, we develop a new GPU-based algorithm for variational
optic flow based on a simple cascadic implementation of parallel iterative
solvers. Our design adopts concepts from the elliptic diffusion scheme dis-
cussed in the previous chapter. Besides performing a gradient descent with
a cascadic FED solver as in Chapter 5, we also apply the recent Fast Jacobi
(FJ) solver [Wei11b]. Our novel parallel algorithm for this solver yields
optic flow results in even shorter time.

136 CHAPTER 6. OPTIC FLOW

In order to demonstrate the strength of our algorithms, we apply them
to the modern optic flow method of Zimmer et al. [ZBW+09] which gives
very accurate results. In the same spirit as for the previous chapters, this
computationally expensive method also offers the opportunity to design our
algorithm very general, such that many other modern techniques can easily
derived by an appropriate adaptation. Often, the arising scheme for such
techniques is computationally less expensive than the method described
here.

Our experiments show speedups of more than 40 over a bi-directional
multigrid solver on the CPU. This performance also allows a better quality
to runtime ratio than many other methods from the literature. Compared to
the anisotropic primal-dual method of Werlberger et al. [WTP+09], which
is the top-ranking GPU-based anisotropic optic flow method apart from
this work, our algorithm obtains better results in an equivalent runtime.

The work described in this chapter was also subject of a publica-
tion [GZG+10]. At the time of publication, the algorithm presented in
this chapter ranked 6th in the Middlebury benchmark, and obtained these
results in the fastest runtime among the ten most accurate methods. Be-
cause of the high amount of newly presented techniques in the last months,
our algorithm lost several places in the Middlebury benchmark. Today, it
claims the 18th rank, but still represents the fastest algorithm among the
best 30 techniques.

6.2 Variational Optic Flow

We begin with a detailed review of the complementary optic flow model
by Zimmer et al. [ZBW+09]. A deep understanding of this model allows
us not only to find a suitable GPU-based algorithm for this purpose, but
also gives many insights about general concepts which are similarly used in
other modern optic flow techniques. Because our algorithm is tailored to
these concepts rather than the concrete model, it will be easy to adapt it
to other — potentially more complex — models later.

Let Ω ⊂ R be a rectangular image domain. An image sequence is then
given by f(x) := (f 1(x), . . . , fn(x)), where x := (x, y, t)> ∈ Ω × N, and
n ∈ N+. Each f i : Ω × N → R denotes one channel of the image sequence
at location (x, y) ∈ Ω and at time t > 0. In this chapter, we specialise on
grey images and on RGB-valued colour images, such that n only takes the
values 1 and 3, respectively. In both cases, we assume the image sequence
to be spatially presmoothed by a Gaussian with standard deviation σ.

6.2. VARIATIONAL OPTIC FLOW 137

For any given time t ∈ N+, we aim at computing the optic flow w :=
(u, v, 1) as the dense displacement field from f(x, y, t) to f(x, y, t+ 1). In a
variational framework, it is found as the minimiser of an energy functional
of the form

E(u, v) =

∫
Ω

(
M(u, v) + αV (∇u,∇v)

)
dx dy . (6.1)

In this context, ∇ := (∂x, ∂y)
> denotes the spatial gradient operator, and

α > 0 is a smoothness weight. While M denotes the data term which
penalises deviations in the consistency between the image sequence and the
computed flow, V penalises deviations from the smoothness in the result.
The concrete shape of the data term and the smoothness term depends on
the underlying optic flow model.

6.2.1 Complementary Optic Flow

We instantiate this framework with the recent complementary optic flow
(COF) method by Zimmer et al. [ZBW+09]. In several perspectives, it
represents one of the most accurate and versatile variational optic flow
models in the literature. Its data term enforces the constancy of both im-
age grey values and gradients, and weights contributions non-quadratically.
Such configuration is frequently applied in the literature and can easily
be extended by other constancy assumptions. Moreover, it features an
anisotropic smoothness term which is related to the diffusion scheme from
Chapter 4, and can thus easily be adapted to simpler isotropic terms where
necessary.

The combination of these two powerful ingredients makes COF a very
powerful method, as it is witnessed by the Middlebury benchmark. In June
2010 when the work described in this chapter was first published, COF
was listed on the fourth place with respect to the endpoint error. In the
meantime, it has been passed on to the 18th position, which is an amazing
indicator for the rapid progress in this field. We detail more on these facts
in Section 6.5.

Data Term

For the data term M , we use the same model as described in [ZBW+09],
but interpret the input as RGB or grey channels instead of converting them

138 CHAPTER 6. OPTIC FLOW

to the HSV colour model from the original work. This leads to

M(u, v) := ΨM

(
n∑
i=1

θi0
(
f i(x+w)− f i(x)

)2

)
(6.2)

+γ ΨM

(
n∑
i=1

(
θix
(
f ix(x+w)− f ix(x)

)2
+ θiy

(
f iy(x+w)− f iy(x)

)2
))

with subscripts denoting partial derivatives. The weight γ steers the influ-
ence of the two contributions in the data term:

1. The first line in (6.2) penalises deviations from the constancy of grey
values under displacement [HS81]. To this end, it steers the solution
towards a state in which

f(x+w) ≈ f(x) . (6.3)

As a measure against an overweighting of the data term at large image
gradients, we perform a normalisation in the spirit of [SAH91]. This
comes down to the multiplication with a normalisation factor

θi0 :=
1

|∇f i|2 + ζ2
, (6.4)

where 0 < ζ < 1 is a small positive constant to regularise θi0 as
|∇f i| approaches 0. Moreover, we robustify the data term against
noise and occlusions by weighting its contribution by a sub-quadratic
penalisation function

ΨM(s2) :=
√
s2 + ε2 . (6.5)

In this context, 0 < ε � 1 denotes a small regularisation parameter
similar to the one in [BBPW04].

2. The second line in (6.2) models the constancy of the image gradi-
ent under displacement [BBPW04]. This robustifies process under
additive illumination changes, and yields a solution w which fulfils

∇f(x+w) ≈∇f(x) . (6.6)

Again, we normalise this contribution by a factor

θi{x,y} :=
1

|∇f i{x,y}|2 + ζ2
, (6.7)

6.2. VARIATIONAL OPTIC FLOW 139

and apply the same sub-quadratic penaliser as above. However, note
that we perform a separate penalisation of the brightness constancy
assumption and the gradient constancy assumption. This follows the
suggestion from [BW05], and proves to be more stable under outliers
produced by only one of the two constancy assumptions.

Smoothness Term

Because motion can be ambiguous, the data term is only capable of supply-
ing flow vectors along the direction of incident, the so-called data constraint
direction. Orthogonal to this direction, no information is provided by the
data term. This caveat is also known as the aperture problem [Mar82], and
is one of the reasons for the ill-posedness of the problem [BPT88]. A pop-
ular way to circumvent this problem is the introduction of an additional
constraint that requires a global smoothness of the solution [HS81].

Following the arguments from above, it makes sense to design this
smoothness term in a way that it complements the data term [ZBW+09].
Along the data constraint direction, we want a reduced smoothing be-
haviour to preserve the information that is given by the data term. Per-
pendicular to it, however, a strong smoothing allows to fill in missing infor-
mation from the neighbourhood.

As a first step towards this goal, it is necessary to determine the data
constraint direction. We obtain it as the direction of the largest eigenvector
of the regularisation tensor

Rρ :=
n∑
i=1

Kρ ∗
(
θi0∇f i

(
∇f i

)>
+ γ

(
θix∇f ix

(
∇f ix

)>
+ θiy∇f iy

(
∇f iy

)>))
,

(6.8)
where Kρ ∗ · denotes a Gaussian filter as in Definition 3.1 with standard
deviation ρ. Note that for ρ = 0, Rρ is reduced to a spatial motion tensor
as it occurs in linearised data terms. A more detailed explanation of this
relation can be found in [ZBW+09] and [ZBW11b].

Let r1 and r2 be the larger and smaller orthonormal eigenvectors of Rρ.
The complementary smoothness term is then given by

V (∇u,∇v) = ΨV

((
r>1 ∇u

)2
+
(
r>1 ∇v

)2
)

+
(
r>2 ∇u

)2
+
(
r>2 ∇v

)2
. (6.9)

Since r1 is parallel to the data constraint direction, we reduce smoothing in
this direction by applying a sub-quadratic Perona-Malik penaliser [PM87,
BA96]:

ΨV (s2) := λ2 ln

(
1 +

s2

λ2

)
, (6.10)

140 CHAPTER 6. OPTIC FLOW

where λ > 0 takes the role of a contrast parameter. Along the perpendicular
direction of r2, we perform a strong quadratic penalisation to allow missing
information to be filled in from the neighbourhood.

6.2.2 Energy Minimisation via the
Euler-Lagrange Framework

Let us now discuss the minimisation of the energy from (6.1) with the data
and smoothness terms from (6.2) and (6.9), respectively. By the calculus
of variations, we know that a minimiser (u, v) must necessarily fulfil the
Euler-Lagrange equations [Els61]:

∂uM − α div
(
D (r1, r2,∇u,∇v) ∇u

)
= 0 , (6.11)

∂vM − α div
(
D (r1, r2,∇u,∇v) ∇v

)
= 0 , (6.12)

with reflecting boundary conditions. These equation take the form of a
diffusion-reaction system. The minuends ∂uM and ∂vM in (6.11) and (6.12)
stem from the data term, and play the role of the reaction part. They are
complemented by the subtrahends which arise from the smoothness term
V (∇u,∇v). We underline their role as the diffusion part of the system by
denoting them in divergence form.

In order to deduce these terms in more detail, let us introduce the fol-
lowing abbreviations. For any ♦ ∈ {x, y} and � ∈ {x, y, xx, xy, yy}, we
define derivatives on the image sequence as

f i� := ∂�f
i(x+w) , (6.13)

f iz := f i(x+w)− f i(x) , (6.14)

and

f i♦z := ∂♦f
i(x+w)− ∂♦f i(x) . (6.15)

Moreover, we refer to Ψ′M(s2) as the derivative of ΨM(s2) with respect to
its argument s2. For the reaction term, this leads to:

∂uM = Ψ′M

(
n∑
i=1

θi0
(
f iz
)2

)
·

(
n∑
i=1

θi0f
i
z f

i
x

)
(6.16)

+ γ Ψ′M

(
n∑
i=1

(
θix
(
f ixz
)2

+ θiy
(
f iyz
)2
))
·

(
n∑
i=1

(
θixf

i
xz f

i
xx + θiyf

i
yz f

i
xy

))
,

∂vM = Ψ′M

(
n∑
i=1

θi0
(
f iz
)2

)
·

(
n∑
i=1

θi0 f
i
z f

i
y

)
(6.17)

6.2. VARIATIONAL OPTIC FLOW 141

+ γ Ψ′M

(
n∑
i=1

(
θix
(
f ixz
)2

+ θiy
(
f iyz
)2
))
·

(
n∑
i=1

(
θixf

i
xz f

i
xy + θiyf

i
yz f

i
yy

))
.

By using the same notation for the diffusion term, we obtain for the diffusion
tensor D:

D (r1, r2,∇u,∇v) := Ψ′V

((
r>1∇u

)2
+
(
r>1∇v

)2
)
r1r

>
1 + r2r

>
2 . (6.18)

By construction, this diffusion tensor acts complementary to the data term.
However, we also see that it is both image and flow driven. Its direction
stems from the regularisation tensor in (6.8), which adapts to image struc-
tures. In contrast, its magnitude depends on the spatial gradients of the
flow ∇u and ∇v. A combination of these two components allows to obtain
the sharp flow edges such as in image-driven methods, but reduces artefacts
arising from over-segmentation [SRLB08].

6.2.3 Warping

As it turns out, the Euler-Lagrange equations from (6.11) and (6.12) are
very challenging to solve. This is because the unknown flow w appears
implicitly in the derivatives f i(x+w) of the image sequence. In the litera-
ture, problems of this kind are commonly solved by embedding the solution
into a coarse-to-fine multi-scale warping strategy [BBPW04]. In such an
approach, the input sequence is gradually modified by the computed flow,
until these increments vanish. The total correction performed throughout
this process is the sought optic flow. Moreover, the application of this strat-
egy on multiple scales enables the process to handle large displacements.

As a first step in this process, we require the input images to be restricted
to a coarser scale. On this level k, we then split the flow field into the
partition wk = (uk, vk, 1)> which we obtained from the next coarser level,
and into the increment dwk = (duk, dvk, 0)> that is being computed on the
current level. Together, these two parts yield the flow that is passed on to
the next finer level:

wk + dwk =: wk+1 (6.19)

The increment dwk is computed by a linearised approach [BBPW04].
As a first step to derive this approach, we perform a Taylor linearisation

f i,k+1
z := f i(x+wk+1)− f i(x) ≈ f i,kx duk + f i,ky dvk + f i,kz , (6.20)

where the superscripts k in the linearisation indicate that the arguments
are all taken from level k.

142 CHAPTER 6. OPTIC FLOW

If we replace each occurrence of f i,k+1
z in (6.11) by the linearisation

from (6.20), we obtain the linearised Euler-Lagrange equations :

0 = Ψ′M

(
n∑
i=1

θi,k0

(
f i,kx duk+f i,ky dvk+f i,kz

)2

)

·
n∑
i=1

θi,k0

(
f i,kx duk+f i,ky dvk+f i,kz

)
f i,kx

+ γ ·Ψ′M

(
n∑
i=1

(
θi,kx
(
f i,kxx du

k+f i,kxy dv
k+f i,kxz

)2

+ θi,ky
(
f i,kxy du

k+f i,kyy dv
k+f i,kyz

)2
))

·
n∑
i=1

(
θi,kx
(
f i,kxx du

k+f i,kxy dv
k+f i,kxz

)
f i,kxx

+ θi,ky
(
f i,kxy du

k+f i,kyy dv
k+f i,kyz

)
f i,kxy

)
− α div

(
D
(
rk1 , r

k
2 ,∇

(
uk+duk

)
,∇
(
vk+dvk

))
∇
(
uk+duk

))
, (6.21)

and

0 = Ψ′M

(
n∑
i=1

θi,k0

(
f i,kx duk+f i,ky dvk+f i,kz

)2

)

·
n∑
i=1

θi,k0

(
f i,kx duk+f i,ky dvk+f i,kz

)
f i,ky

+ γ ·Ψ′M

(
n∑
i=1

(
θi,kx
(
f i,kxx du

k+f i,kxy dv
k+f i,kxz

)2

+ θi,ky
(
f i,kxy du

k+f i,kyy dv
k+f i,kyz

)2
))

·
n∑
i=1

(
θi,kx
(
f i,kxx du

k+f i,kxy dv
k+f i,kxz

)
f i,kxy

+ θi,ky
(
f i,kxy du

k+f i,kyy dv
k+f i,kyz

)
f i,kyy

)
− α div

(
D
(
rk1 , r

k
2 ,∇

(
uk+duk

)
,∇
(
vk+dvk

))
∇
(
vk+dvk

))
. (6.22)

6.3. NUMERICAL SOLUTION 143

6.3 Numerical Solution

Let us now discuss the numerical solution of equation (6.21) and the corre-
sponding equation for dv. In this context, we derive and evaluate two dif-
ferent approaches. On the following pages, we first adapt the FED scheme
from Section 4.3 to this problem. Secondly, we use the recent Fast Jacobi
technique by Weickert [Wei11b] as an alternative to this scheme.

6.3.1 Fast Explicit Diffusion

Equations such as (6.21) have similar numerical properties as the ones ap-
pearing in context of image inpainting: They are of elliptic kind. If we
want to solve them by a gradient descent, this means that we must solve a
diffusion-like process with a stopping time that approaches infinity. With
the same arguments as before, FED seems to be a very good technique to
perform this task. It offers large time steps at a low computational cost,
and can easily be parallelised.

As a first step in the development of an FED update equation for comple-
mentary optic flow, we perform a gradient descent on (6.21) and discretise
the arising equation in time. This leads to the following stabilised explicit
scheme [WS01b]:

duk,l+1−duk,l

τ
= div

(
D
(
rk1 , r

k
2 ,∇

(
uk+duk,l

)
,∇
(
vk+dvk,l

))
∇
(
uk+duk,l

))
− 1

α

(
Ψ′M

(n∑
i=1

θi,k0

(
f i,kx duk,l+f i,ky dvk,l+f i,kz

)2
)

·
n∑
i=1

θi,k0

(
f i,kx duk,l+1+f i,ky dvk,l+f i,kz

)
f i,kx

+ γ ·Ψ′M

(
n∑
i=1

(
θi,kx
(
f i,kxx du

k,l+f i,kxy dv
k,l+f i,kxz

)2

+ θi,ky
(
f i,kxy du

k,l+f i,kyy dv
k,l+f i,kyz

)2
))

·
n∑
i=1

(
θi,kx
(
f i,kxx du

k,l+1+f i,kxy dv
k,l+f i,kxz

)
f i,kxx

+ θi,ky
(
f i,kxy du

k,l+1+f i,kyy dv
k,l+f i,kyz

)
f i,kxy

))]
,

(6.23)

144 CHAPTER 6. OPTIC FLOW

and

dvk,l+1−dvk,l

τ
= div

(
D
(
rk1 , r

k
2 ,∇

(
uk+duk,l

)
,∇
(
vk+dvk,l

))
∇
(
vk+dvk,l

))
− 1

α

(
Ψ′M

(n∑
i=1

θi,k0

(
f i,kx duk,l+f i,ky dvk,l+f i,kz

)2
)

·
n∑
i=1

θi,k0

(
f i,kx duk,l+f i,ky dvk,l+1+f i,kz

)
f i,ky

+ γ ·Ψ′M

(
n∑
i=1

(
θi,kx
(
f i,kxx du

k,l+f i,kxy dv
k,l+f i,kxz

)2

+ θi,ky
(
f i,kxy du

k,l+f i,kyy dv
k,l+f i,kyz

)2
))

·
n∑
i=1

(
θi,kx
(
f i,kxx du

k,l+f i,kxy dv
k,l+1+f i,kxz

)
f i,kxy

+ θi,ky
(
f i,kxy du

k,l+f i,kyy dv
k,l+1+f i,kyz

)
f i,kyy

))]
,

(6.24)

The new variable l in these equations refers to the iteration number within
the explicit scheme, and τ denotes a small time step with. Note that the
values for duk and dvk in the reaction term are already taken from the new
time step l + 1 to improve the stability.

It remains to discretise the process spatially on a grid with spacings hx
and hy, and to embed it into an FED context. While the input images and
output flow fields can simply be sampled at this grid, we obtain derivatives
and the regularisation tensor Rρ by second-order finite difference discreti-
sations [Smi04, ZBW+09]. In order to ease notation, we denote the discrete
representations of all involved variables with the same name in bold face
letters. In this context, we also keep the notation du and dv, where each
construct refers to a single vector, and interpret products between vectors
component-wise unless stated differently. Moreover, we denote the discreti-
sation of div(D(..)∇(uk+duk,l)) and div(D(..)∇(vk+dvk,l)) by matrix-vector
products:

A(uk+duk,l,vk+dvk,l)(uk+duk,l) =: Ak+1,luk+1,l , (6.25)

A(uk+duk,l,vk+dvk,l)(vk+dvk,l) =: Ak+1,lvk+1,l . (6.26)

6.3. NUMERICAL SOLUTION 145

With this notation, we finally obtain the (stabilised) FED update equations:

duk,l+1 =

[
duk,l + τ

l
Ak+1,luk+1,l

− τ
l

α

(
Ψ′

k,l
M,∗ (...) ·

n∑
i=1

θi,k0

(
f i,ky dv

k,l+f i,kz
)
f i,kx

+ γ ·Ψ′ k,lM,∗∗(...) ·
n∑
i=1

θi,kx
(
f i,kxy dv

k,l+f i,kxz
)
f i,kxx

+ γ ·Ψ′ k,lM,∗∗(...) ·
n∑
i=1

θi,ky
(
f i,kyy dv

k,l+f i,kyz
)
f i,kxy

)]

·

[
1 +

τ
l

α
·Ψ′ k,lM,∗ (...) ·

n∑
i=1

θi,k0

(
f i,kx
)2

+
τ
l

α
·Ψ′ k,lM,∗∗(...) ·

n∑
i=1

(
θi,kx

(
f i,kxx
)2

+ θi,ky
(
f i,kxy
)2
)]−1

, (6.27)

and

dvk,l+1 =

[
dvk,l + τ

l
Ak+1,lvk+1,l

− τ
l

α

(
Ψ′

k,l
M,∗ (...) ·

n∑
i=1

θi,k0

(
f i,kx du

k,l+f i,kz
)
f i,ky

+ γ ·Ψ′ k,lM,∗∗(...) ·
n∑
i=1

θi,kx
(
f i,kxxdu

k,l+f i,kxz
)
f i,kxy

+ γ ·Ψ′ k,lM,∗∗(...) ·
n∑
i=1

θi,ky
(
f i,kxy du

k,l+f i,kyz
)
f i,kyy

)]

·

[
1 +

τ
l

α
·Ψ′ k,lM,∗ (...) ·

n∑
i=1

θi,k0

(
f i,ky
)2

+
τ
l

α
·Ψ′ k,lM,∗∗(...) ·

n∑
i=1

(
θi,kx

(
f i,kxy
)2

+ θi,ky
(
f i,kyy
)2
)]−1

, (6.28)

where Ψ′ k,lM,∗(...) and Ψ′ k,lM,∗∗(...) refer to the terms Ψ′ from (6.23)–(6.24) with
discretised arguments. Furthermore, note that the previously constant time
step τ is replaced by a step-variant reordered FED time step τ

l
as in (4.15).

146 CHAPTER 6. OPTIC FLOW

Doing so requires to keep the operator Ak+1,l constant over the period of
one FED cycle, which is conceptually very similar to time-lagged diffusivity
schemes. The extension to several FED cycles follows straightforwardly by
re-using a series of FED time steps multiple times.

6.3.2 Fast Jacobi

A second possibility to solve linearised Euler-Lagrange equations such
as (6.21) is to apply an iterative solver directly to this equation. A promis-
ing candidate for this purpose which can again easily be parallelised for
GPUs is the recently developed Fast Jacobi (FJ) technique [Wei11b]. It is
based on a classical relaxed Jacobi solver [Mei05], but uses special iteration-
varying over-relaxation parameters ωl to accelerate the process. We discuss
their selection at the end of this section.

We begin with a spatial discretisation of the process as in the previous
section, end derive a standard relaxed Jacobi scheme. To this end, let P k+1,l

be the matrix that contains the main diagonal from Ak+1,l:

P k+1,l
i,j :=

{
Ak+1,l
i,j , i = j

0, else
. (6.29)

By calling this matrix P instead of using the canonical name D, we avoid
confusion with the diffusion tensor from above. With the same notation as
for FED, we obtain one Jacobi relaxation step by the equations:

duk,l+1 = duk,l (6.30)

+ ωl

[
Ψ′

k,l
M,∗ (...) ·

n∑
i=1

θi,k0

(
f i,kx du

k,l+f i,ky dv
k,l+f i,kz

)
f i,kx

+ γ ·Ψ′ k,lM,∗∗(...) ·
n∑
i=1

θi,kx
(
f i,kxxdu

k,l+f i,kxy dv
k,l+f i,kxz

)
f i,kxx

+ γ ·Ψ′ k,lM,∗∗(...) ·
n∑
i=1

θi,ky
(
f i,kxy du

k,l+f i,kyy dv
k,l+f i,kyz

)
f i,kxy

− αAk+1,luk+1,l

]

·

[
P k+1,l + Ψ′

k,l
M,∗ (...) ·

n∑
i=1

θi,k0

(
f i,kx
)2

+ Ψ′
k,l
M,∗∗(...) ·

n∑
i=1

(
θi,kx

(
f i,kxx
)2

+ θi,ky
(
f i,kxy
)2
)]−1

,

6.3. NUMERICAL SOLUTION 147

and

dvk,l+1 = dvk,l (6.31)

+ ωl

[
Ψ′

k,l
M,∗ (...) ·

n∑
i=1

θi,k0

(
f i,kx du

k,l+f i,ky dv
k,l+f i,kz

)
f i,ky

+ γ ·Ψ′ k,lM,∗∗(...) ·
n∑
i=1

θi,kx
(
f i,kxxdu

k,l+f i,kxy dv
k,l+f i,kxz

)
f i,kxy

+ γ ·Ψ′ k,lM,∗∗(...) ·
n∑
i=1

θi,ky
(
f i,kxy du

k,l+f i,kyy dv
k,l+f i,kyz

)
f i,kyy

− αAk+1,luk+1,l

]

·

[
P k+1,l + Ψ′

k,l
M,∗ (...) ·

n∑
i=1

θi,k0

(
f i,ky
)2

+ Ψ′
k,l
M,∗∗(...) ·

n∑
i=1

(
θi,kx

(
f i,kxy
)2

+ θi,ky
(
f i,kyy
)2
)]−1

.

Note the occurrence of the reaction terms in the inverses. It stems from
a similar stabilisation as for the stabilised explicit scheme, in which du for
the data term is taken already from the new time step k + 1.

In this context, ωl is a relaxation parameter. Setting ωl = 1 for all l
yields a standard Jacobi method. Besides, ωl can also take different values
to improve its convergence speed or error dampening behaviours [Mei05].
In these cases, however, ωl is bounded by a small constant to guarantee the
stability of the arising system.

The idea of the Fast Jacobi technique is to relate ωl to a series of re-
ordered FED time steps such as the ones from (4.15) [Wei11b]. This concept
is motivated by the elliptic homogeneous diffusion case in which a Jacobi
step turns out to be equivalent to an explicit step with limiting time step
size. Hence, it is likely that the same concepts which preserve the stability
over large time steps also work in context of the Jacobi solver, and that
these concepts carry over to the non-linear case.

However, it seems that the optimal relation between the series of
FED time steps (τ

l
)0<l6lmax and the series of over-relaxation parameters

(ωl)0<l6lmax is non-trivial in general. Although it would stand to reason
that these variables should be in the linear dependency

ωl = c · τ
l
, (6.32)

148 CHAPTER 6. OPTIC FLOW

approaches to determine the linear weight c by stability considerations
yielded overcautious configurations. While these estimations of a small
upper bound for c guarantee the process to be stable, they cause a much
longer runtime than necessary.

Experiments suggest that it is possible to chose c much larger than these
estimates. On all tested inputs, complementary optic flow remains stable
up to a bound of about 3.4. Because the stability of the process depends
on numerical inaccuracies of the architecture which change with the input,
however, it is advisable to be slightly more conservative. In the following,
we use the configuration c = 3, which proved to create stable results in all
experiments performed so far.

As a final remark, note that a similar over-relaxation does not work in
the case of FED. There, even small increases of the time step size suffice to
let the process diverge.

6.3.3 Cascadic Application

Independent of whether we decide to use the FED or the FJ scheme, in both
cases the runtime of the process can significantly be reduced if we embed
this scheme into a coarse-to-fine hierarchy. In the previous chapter, we have
already discussed such a hierarchic process in the context of PDE-based
image inpainting. Because a coarser scale can be sampled with larger grid
spacings, information can travel faster over the image domain. This comes
only at a low cost, because computations on a more compact representation
of the problem require less time. Similar to image inpainting, we choose
the smallest restriction factors ν = h/H with ν > 0.5 in both dimensions
for which the coarser image can again be represented on a uniform grid. In
this context, we use h and H to refer to the spatial sampling rate on the
fine and on the large grid, respectively.

This hierarchic algorithm for the cascadic FED or FJ solvers must not
be confused with the hierarchic warping strategy, which is interwoven with
this technique. For warping, we also restrict data to coarser grids, but the
resampling factors η ∈ [0.5, 1) used in this case are in general chosen much
larger than for the cascadic solver. A larger η causes the hierarchy to be
steeper, which means that many computations are performed on relatively
similar grids. While such choice allows to find a good minimum for the
given energy, it also takes considerably longer to compute.

Figure 6.1 shows this double-hierarchic algorithm consisting of non-
linear solver steps, denoted by S, and warping steps, visualised by W. De-
pending on the chosen numerical scheme, the role of S is either played by
FED or by FJ. Arrows represent the data flow between either of these steps.

6.4. IMPLEMENTATION ON THE GPU 149

S
S

S
S

S
S

S
SS

Figure 6.1: Visualisation of the double hierarchic algorithm for optic flow, con-
sisting of solver (S) and warping (W) steps. Data flow is drawn in blue to denote
original images, in red to represent image pairs of which one partner is warped,
and in black to identify solutions.

Where they are running in the vertical direction, a resampling is required.
In this context, blue represents a pair of original images which is restricted
to all warping levels. At either level, it is received by the warping routine
and compensated by the motion from the previous stage. This modified
image pair consisting of one original and one warped image is then passed
on to the hierarchic solver for this stage, which is shown in red. The in-
termediate solution is then gradually improved, and is used for the next
warping level until this process finds the sought result on the finest level.

6.4 Implementation on the GPU

The complementary optic flow model as it is described above is mathe-
matically complex and algorithmically challenging. However, thanks to our
preparatory work from the previous chapters we can easily construct an effi-
cient GPU-based algorithm. Most operators have already been optimised in
context of the previous PDE-based image processing tasks. Hence, we only
discuss the main similarities and differences for those kernels which already
appeared in other contexts. This list is extended by a brief description for
the new CUDA kernels for Fast Jacobi, warping, and the weights from the
data term.

• The FED and FJ kernels have the same memory layout and in-
terface, and are structurally similar to the FED solver from Chap-
ter 4. Again, they are highly memory bound, and reduce their mem-
ory bandwidth by using textures, and by exploiting symmetries in the
stencil weights.

150 CHAPTER 6. OPTIC FLOW

Figure 6.2: ‘Backwards’ warping as performed in [BBPW04, ZBW+09].

• Among these weights, those stemming from the smoothness term
are computed by 3 subsequent CUDA kernels which compute the
derivatives, the diffusion tensor, and finally the arising weights. Be-
cause all of these kernels involve the convolution of a signal with a
stencil, collapsing them into a single kernel would increase (instead
of decrease) their memory bandwidth, such that it seems this step
cannot be optimised further.

• Weights arising from the data term are spatially localised, and can
thus be computed by a single data-parallel kernel. All memory oper-
ations arising in this context are efficiently solved by linear loads and
stores from and to global device memory.

• Restriction and prolongation operators are similar to those from
Chapter 5, but do not perform the normalised convolution step
from (5.6). Because our algorithm is tailored to both grey-valued and
RGB-valued image sequences, we supply different kernels for these two
cases which may be called at request. This allows to mask additional
memory latencies in the case of RGB-valued image sequences.

• For the Gaussian filter required to presmooth the input and the reg-
ularisation tensor, we again apply our efficient algorithm from Chap-
ter 3 with a truncation cσ = 3σ. It includes a cache-based convolution
with a Gaussian kernel for small standard deviations, and a recursive
filter for larger standard deviations.

• As it turns out, the warping step required on each level is not more
challenging, either. Different to the work in [RFSB10], we do not warp
images along the direction of the flow, but against it. This ‘backwards’
warping step is much simpler and computationally inexpensive than
forward warping. As it is shown in Figure 6.2, we evaluate expressions
of type f i(x+wk) by using the texturing unit of graphics cards. To
this end, we simply store the image channel i that is to be warped in
a texture, compute the target location by adding flow field and pixel

6.5. EXPERIMENTS 151

coordinates, and fetch the texture at the respective point. Albeit
incoherent memory access is often considered a major performance
problem on massively parallel hardware, this operation turns out to be
highly efficient: Optic flow is often piecewise laminar and sufficiently
smooth, such that the missing data locality is largely compensated by
the 2-D texture cache.

6.5 Experiments

Let us now evaluate the quality and the runtime of our new algorithm with
some experiments. Besides general impressions for these properties, we are
in particular interested in a direct comparison between FED and FJ, and
in the benefit over CPU-based methods from the literature.

6.5.1 Quality

Visual Comparison and Quantitative Evaluation

As a first experiment, we compare results produced by our approach visu-
ally, and compare them with respect to their approximation error. In this
context, we pick four sequences Dimetrodon, Grove2, RubberWhale, and
Urban2 from the Middlebury optic flow database 2. Since we are interested
in the optimal quality that our algorithm can produce, we tune its param-
eters individually for each sequence. Besides the generic model parameters
σ = 0.3 and ρ = 1.3 which yield optimal results in all cases, we further use

• α = 400, γ = 8, ζ = 1.0, and λ = 0.05 for Dimetrodon,

• α = 50, γ = 1, ζ = 1.0, and λ = 0.05 for Grove2,

• α = 1 000, γ = 20, ζ = 1.0, and λ = 0.05 for RubberWhale,

• α = 1 500, γ = 25, ζ = 0.01, and λ = 0.1 for Urban2.

The arising energy functional is numerically minimised on a warping hier-
archy with η = 0.91, with 1 cascadic solver cycle and 1 linear update per
warping level. As an interesting observation, we find that FED obtains the
minimum for a stopping time T = 150, while FJ already converges to a very
similar solution if the stopping time of the generating FED process is chosen
as T = 40. As a consequence, the runtimes for the FJ algorithm are always
smaller than those for the FED algorithm. We discuss this observation in
more detail later in this chapter.

2 Available at http://vision.middlebury.edu/flow/data/

http://vision.middlebury.edu/flow/data/

152 CHAPTER 6. OPTIC FLOW

�a �b

�c �d
Figure 6.3: a. Dimetrodon from the Middlebury dataset, 584×388 pixels, with
flow key. b. Ground truth. c. FED result, AAE = 1.49◦, AEE = 0.08, Runtime:
226 ms. d. FJ result, AAE = 1.49◦, AEE = 0.08, Runtime: 153 ms.

Figures 6.3–6.6 show the results of this experiment. Part a. of all figures
shows the reference frame of the underlying sequence. In their bottom right
corners, these figures include the colour visualisation key for the arising
flow fields. Part b. shows the provided ground truth coded in this colour
scheme, where unknown partitions are denoted with white pixels. Parts
c. and d. finally depict the solutions of our FED and FJ algorithms on the
GPU, respectively.

In all cases, the solutions yielded by the different numerics cannot be
distinguished from each other. The similarity of the results obtained by the
cascadic FED and FJ solvers is also reflected in the approximation errors of
both solutions to the ground truth. These are defined as follows. Let a flow
field w := (w1, . . . ,wn)> with wi := (ui,vi, 1)> be given. We distinguish
the Average Angular Error (AAE) [FJ90, BFB94]:

AAE(w1,w2) =
n∑
i=1

arccos

〈
w1,i

‖w1,i‖
,
w2,i

‖w2,i‖

〉
, (6.33)

6.5. EXPERIMENTS 153

�a �b

�c �d

Figure 6.4: a. Grove2 from the Middlebury dataset, 640×480 pixels, with flow
key. b. Ground truth. c. FED result, AAE = 2.32◦, AEE = 0.16. Runtime: 366
ms. d. FJ result, AAE = 2.32◦, AEE = 0.16, Runtime: 246 ms.

where 〈·〉 denotes the inner product, and the Average Endpoint Error
(AEE) [ON95]:

AEE(w1,w2) =
n∑
i=1

√
(u1,i − u2,i)2 + (v1,i − v2,i)2 . (6.34)

Table 6.1 summarises the approximation errors for the shown examples,
and compares them to the corresponding errors obtained by the original
method from [ZBW+09]. With respect to both error measures, the results
obtained by FED and FJ are almost identical. This is remarkable if we
consider that both approaches use a numerical parameter set that is opti-
mised for a low runtime, but FJ only requires about 2/3 of the time FED
consumes.

Moreover, the errors deviate only marginally from those obtained by
the original method, although the implementation of the algorithms differs

154 CHAPTER 6. OPTIC FLOW

�a �b

�c �d
Figure 6.5: a. RubberWhale from the Middlebury dataset, 584×388 pixels, with
flow key. b. Ground truth. c. FED result, AAE = 2.93◦, AEE = 0.09. Runtime:
322 ms. d. FJ result, AAE = 2.90◦, AEE = 0.09, Runtime: 219 ms.

Table 6.1: Comparison of FED and FJ against the original method (FAS)
from [ZBW+09], using 4 Middlebury sequences with known ground truth and
the optimal parameter sets from Section 6.5.1.

FAS (CPU) FED (GPU) FJ (GPU)

AEE AAE AEE AAE AEE AAE

Dimetrodon 0.08 1.48 0.08 1.49 0.08 1.49
Grove2 0.16 2.31 0.16 2.32 0.16 2.32
RubberWhale 0.09 2.82 0.09 2.93 0.09 2.90
Urban2 0.31 2.77 0.29 2.75 0.29 2.75

6.5. EXPERIMENTS 155

�a �b

�c �d

Figure 6.6: a. Urban2 from the Middlebury dataset, 640×480 pixels, with flow
key. b. Ground truth. c. FED result, AAE = 2.75◦, AEE = 0.29. Runtime: 725
ms. d. FJ result, AAE = 2.75◦, AEE = 0.29, Runtime: 577 ms.

in significant parts: Besides different numerics and new prolongation and
restriction schemes, our method particularly uses runtime-optimised nu-
merical settings, such as the decision to call only one FED or FJ cycle per
level. The latter simplification seems to benefit from the warping hierarchy,
in which several FED or FJ cycles are subsequently applied over a series of
images sequences in very similar scales.

Optimised vs. Generic Parameters

We would like to confirm these observations on the quality by more quan-
titative experiments. A good resource for a comparison of our algorithm
with other methods in this field is the Middlebury Optical Flow Bench-
mark [BSL+11]. However, the submission rules to this benchmark demand
results to be computed with a fixed set of parameters. As a first step to-
wards this goal, we thus search a generic parameter set for the sequences

156 CHAPTER 6. OPTIC FLOW

Table 6.2: Error measures for 4 Middlebury sequences with known ground truth
using the optimal parameter sets from Section 6.5.1, and the fixed parameter set
α = 300, γ = 20, ζ = 0.01, and λ = 0.1. Results are obtained with FED using
T = 150, and with FJ using relaxation parameters according to T = 40.

Optimised Fixed

FED FJ FED FJ

AEE AAE AEE AAE AEE AAE AEE AAE

Dimetrodon 0.08 1.49 0.08 1.49 0.11 2.20 0.11 2.20
Grove2 0.16 2.32 0.16 2.32 0.19 2.69 0.19 2.69
RubberWhale 0.09 2.93 0.09 2.90 0.11 3.76 0.11 3.75
Urban2 0.29 2.75 0.29 2.75 0.36 3.53 0.36 3.54

from above. The results obtained with this new parametrisation are then
compared to those from above, where we again apply the AAE and the
AEE as measures for the dissimilarity.

As optimised parameter sets, we again use the same settings as for the
examples from Figures 6.3–6.6. To those, we compare the parameter set
α = 300, γ = 20, ζ = 0.01, and λ = 0.1, which was optimised using
all Middlebury sequences with known ground truth. This procedure gives
confidence that a similar configuration might also give good results on the
actual test suite with hidden ground truth. Again, we run our FED algo-
rithm with T = 150, and use a relaxation parameters for our FJ that are
based on the time steps of an FED process for T = 40.

Table 6.2 shows this comparison. The generic setting performs worse
than the optimised configuration, but our algorithms still yield very accu-
rate results. Their quality is comparable to those reported by Werlberger
et al. [WTP+09] which is the top-ranked GPU-based method in the Mid-
dlebury benchmark if we exclude our own work. However, our algorithm
can again slightly be improved over this method if we also optimise the
parameters such as done in the previous experiment. Moreover, we see that
our two numerical schemes perform equally well, which indicates that both
schemes seem to be sufficiently converged.

Middlebury Benchmark

In context of the original publication of our algorithm using the FED
solver [GZG+10], results were submitted to the Middlebury benchmark site
to compare its performance to other methods in the field. Besides the ap-

6.5. EXPERIMENTS 157

Average
endpoint
error avg.

Army
(Hidden texture)

GT im0 im1

Mequon
(Hidden texture)

GT im0 im1

Schefflera
(Hidden texture)

GT im0 im1

Wooden
(Hidden texture)

GT im0 im1

Grove
(Synthetic)

GT im0 im1

Urban
(Synthetic)

GT im0 im1

Yosemite
(Synthetic)

GT im0 im1

Teddy
(Stereo)

GT im0 im1

rank all disc untext all disc untext all disc untext all disc untext all disc untext all disc untext all disc untext all disc untext

Classic+NL [31] 4.8 0.081 0.231 0.07 2 0.22 7 0.74 7 0.18 9 0.29 4 0.65 4 0.19 6 0.151 0.73 3 0.091 0.641 0.931 0.471 0.52 7 1.12 2 0.33 4 0.16 20 0.13 4 0.29 23 0.491 0.981 0.74 5

MDP-Flow [26] 5.5 0.09 2 0.25 2 0.08 5 0.19 2 0.541 0.18 9 0.241 0.55 2 0.20 7 0.16 4 0.91 7 0.091 0.74 2 1.06 2 0.61 4 0.46 4 1.021 0.35 6 0.12 6 0.14 9 0.17 6 0.78 16 1.68 18 0.97 15

NL-TV-NCC [25] 6.3 0.10 6 0.26 5 0.08 5 0.22 7 0.72 5 0.15 3 0.35 7 0.85 6 0.161 0.151 0.70 2 0.091 0.79 4 1.16 5 0.51 3 0.78 14 1.38 7 0.48 11 0.16 20 0.15 14 0.26 18 0.55 3 1.16 3 0.551

Complementary OF [21] 7.6 0.10 6 0.26 5 0.09 8 0.21 6 0.73 6 0.15 3 0.34 6 0.85 6 0.161 0.19 7 1.06 12 0.10 6 0.87 7 1.25 7 0.72 8 1.46 23 1.62 11 0.73 19 0.11 4 0.12 2 0.21 12 0.60 4 1.37 6 0.80 8

Adaptive [20] 8.6 0.09 2 0.26 5 0.061 0.23 10 0.78 9 0.18 9 0.54 17 1.19 19 0.21 9 0.18 6 0.91 7 0.10 6 0.88 9 1.25 7 0.73 11 0.50 6 1.28 5 0.31 3 0.14 12 0.16 19 0.22 14 0.65 8 1.37 6 0.79 6

ComplOF-FED-GPU [36] 10.3 0.11 10 0.27 9 0.09 8 0.20 4 0.77 8 0.14 2 0.35 7 0.86 8 0.17 4 0.19 7 0.99 10 0.11 9 0.90 10 1.30 10 0.78 13 1.68 30 1.76 15 0.84 22 0.14 12 0.13 4 0.30 24 0.61 5 1.40 8 0.80 8

Aniso. Huber-L1 [22] 11.0 0.10 6 0.28 10 0.08 5 0.31 19 0.88 16 0.28 22 0.56 19 1.13 16 0.29 20 0.20 10 0.92 9 0.13 12 0.84 6 1.20 6 0.70 6 0.391 1.23 3 0.281 0.17 23 0.15 14 0.27 22 0.64 7 1.36 5 0.79 6

TV-L1-improved [17] 13.2 0.09 2 0.26 5 0.07 2 0.20 4 0.71 4 0.16 5 0.53 16 1.18 18 0.22 11 0.21 14 1.24 19 0.11 9 0.90 10 1.31 13 0.72 8 1.51 25 1.93 20 0.84 22 0.18 25 0.17 22 0.31 25 0.73 12 1.62 14 0.87 12

Rannacher [23] 15.1 0.11 10 0.31 13 0.09 8 0.25 12 0.84 15 0.21 15 0.57 21 1.27 25 0.26 15 0.24 16 1.32 22 0.13 12 0.91 14 1.33 14 0.72 8 1.49 24 1.95 22 0.78 20 0.15 16 0.14 9 0.26 18 0.69 10 1.58 13 0.86 11

F-TV-L1 [15] 15.2 0.14 23 0.35 19 0.14 25 0.34 22 0.98 22 0.26 20 0.59 24 1.19 19 0.26 15 0.27 21 1.36 23 0.16 19 0.90 10 1.30 10 0.76 12 0.54 8 1.62 11 0.36 7 0.13 8 0.15 14 0.20 10 0.68 9 1.56 11 0.66 3

Bregman-TV [35] 23.3 0.12 18 0.36 23 0.12 23 0.31 19 0.97 21 0.26 20 0.74 26 1.40 27 0.50 24 0.34 24 1.48 24 0.26 23 1.20 29 1.57 30 1.35 25 0.56 9 2.02 23 0.50 12 0.21 29 0.24 34 0.31 25 0.97 23 1.99 24 1.33 25

FOLKI [16] 34.4 0.29 34 0.73 36 0.33 34 1.52 35 1.96 36 1.80 35 1.23 34 2.04 35 0.95 33 0.99 32 2.20 33 1.08 33 1.53 35 1.85 35 2.07 35 2.14 34 3.23 36 1.60 35 0.26 34 0.21 32 0.68 35 2.67 35 3.27 35 4.32 35

Wooden
(Hidden texture)

GT im0 im1

Grove
(Synthetic)

GT im0 im1

Urban
(Synthetic)

GT im0 im1

Yosemite
(Synthetic)

GT im0 im1

Teddy
(Stereo)

GT im0 im1

all disc untext all disc untext all disc untext all disc untext all disc untext

0.151 0.73 3 0.091 0.641 0.931 0.471 0.52 7 1.12 2 0.33 4 0.16 20 0.13 4 0.29 23 0.491 0.981 0.74 5

0.16 4 0.91 7 0.091 0.74 2 1.06 2 0.61 4 0.46 4 1.021 0.35 6 0.12 6 0.14 9 0.17 6 0.78 16 1.68 18 0.97 15

0.151 0.70 2 0.091 0.79 4 1.16 5 0.51 3 0.78 14 1.38 7 0.48 11 0.16 20 0.15 14 0.26 18 0.55 3 1.16 3 0.551

0.19 7 1.06 12 0.10 6 0.87 7 1.25 7 0.72 8 1.46 23 1.62 11 0.73 19 0.11 4 0.12 2 0.21 12 0.60 4 1.37 6 0.80 8

0.18 6 0.91 7 0.10 6 0.88 9 1.25 7 0.73 11 0.50 6 1.28 5 0.31 3 0.14 12 0.16 19 0.22 14 0.65 8 1.37 6 0.79 6

0.19 7 0.99 10 0.11 9 0.90 10 1.30 10 0.78 13 1.68 30 1.76 15 0.84 22 0.14 12 0.13 4 0.30 24 0.61 5 1.40 8 0.80 8

0.20 10 0.92 9 0.13 12 0.84 6 1.20 6 0.70 6 0.391 1.23 3 0.281 0.17 23 0.15 14 0.27 22 0.64 7 1.36 5 0.79 6

0.21 14 1.24 19 0.11 9 0.90 10 1.31 13 0.72 8 1.51 25 1.93 20 0.84 22 0.18 25 0.17 22 0.31 25 0.73 12 1.62 14 0.87 12

0.24 16 1.32 22 0.13 12 0.91 14 1.33 14 0.72 8 1.49 24 1.95 22 0.78 20 0.15 16 0.14 9 0.26 18 0.69 10 1.58 13 0.86 11

0.27 21 1.36 23 0.16 19 0.90 10 1.30 10 0.76 12 0.54 8 1.62 11 0.36 7 0.13 8 0.15 14 0.20 10 0.68 9 1.56 11 0.66 3

0.34 24 1.48 24 0.26 23 1.20 29 1.57 30 1.35 25 0.56 9 2.02 23 0.50 12 0.21 29 0.24 34 0.31 25 0.97 23 1.99 24 1.33 25

0.99 32 2.20 33 1.08 33 1.53 35 1.85 35 2.07 35 2.14 34 3.23 36 1.60 35 0.26 34 0.21 32 0.68 35 2.67 35 3.27 35 4.32 35

Time
(s)

Figure 6.7: Excerpt of the Middlebury ranking at 2010-06-21, sorted by the
AEE. Annotated are the rank (left) and the runtime in seconds for one compu-
tation on 640×480 pixels (right).

proximation quality in which we are interested at first place, we also use the
opportunity to compare the runtimes of the benchmarked methods against
our approach.

An excerpt of the original snapshot of the Middlebury ranking at the
time of submission is shown in Figure 6.7. Listed are all methods which
perform better than our method, as well as all methods in the ranking which
process an image pair of size 640×480 pixels in less than 10 seconds. Note
that these times are supplied by the authors, and are thus not normalised
to a specific architecture or processor clock. The given 0.96 seconds for our
algorithm were computed with FED on an NVidia GeForce GTX 285.

Both in this line-up which is based on the AEE, as well as in the list
that is sorted by the AAE, our algorithm ranked sixth among 36 methods.
Moreover, it represented the fastest technique in the top 10. All other
methods among the 10 most accurate were 10 times or more slower.

The much different quality of complementary optic flow on the CPU
and on the GPU relates to a misleading entry for the CPU method: The
benchmarked state of the method by Zimmer et al. [ZBW+09] was already
an improved version which finally led to the method from [ZBW11b]. To-
day, the Middlebury benchmark lists this improved version as OFH, and
correctly assigns the label Complementary OF to the original approach
from [ZBW+09].

158 CHAPTER 6. OPTIC FLOW

Time
(s)

Figure 6.8: Excerpt of the Middlebury ranking at 2011-09-17, sorted by the
AEE. Annotated are the rank (left) and the runtime in seconds for one compu-
tation on 640×480 pixels (right).

6.5. EXPERIMENTS 159

If we compare these measurements to a recent snapshot of the same
ranking as shown in Figure 6.8, we observe the impressive progress in the
area of optic flow among the last few months. Within 15 months, the list
grew from 36 entries to 58. Some of the new techniques are more accurate
than our algorithm, such that its position dropped to the 18th rank in the
AEE-based line-up, and even to place 19 in the AAE-based ranking.

Most of these methods are clearly optimised to a good approximation
quality rather than a low runtime, which is reflected in extraordinarily high
runtimes of several minutes to hours. This is also visible for the methods
ranking on 38th and 48th place. They are also included in our excerpt be-
cause they set up on a GPU-based algorithm, although their runtime lies in
the order of several minutes. However, there are also new interesting com-
petitors which possess similar runtimes as our approach: The anonymous
method on rank 12 requires about twice the time of our approach, but is
also more accurate.

Nevertheless, complementary optic flow on the GPU still represents the
fastest method among the top 30 of the most accurate methods. This shows
that even today, our algorithm offers a very good trade-off between a high
quality on the one hand, and a very low runtime on the other hand.

Note that the timing for our approach has additionally been replaced
by a new benchmark obtained on the more recent NVidia GeForce GTX
480, and can even be improved if we go from the FED numerics to the new
FJ solver. Section 6.5.2 goes into more detail about the runtime of our
algorithms.

Convergence: FED vs. FJ

In this last quality-related experiment, we are interested in the convergence
behaviour of our two parallel solvers. From the first experiment, we already
know that FJ seems to converge with much less iterations per level than
FED. To prove this hypothesis, we choose different numbers of iterations for
FJ and FED, and execute the arising algorithm with the generic parameter
set on the RubberWhale sequence from Figure 6.5.

Since complementary optic flow is a highly non-convex model, the valid
determination of a convergence state is not trivial. Even if the algorithm
is fully converged on the finest level, a numerical inaccuracy on a coarser
level could steer the process into different minima with a similar energy.
Hence, we choose the official ground truth as a neutral basis for comparison,
and relate the difference between a given solution and this ground truth
to the convergence state of the minimisation process. As a measure for
dissimilarity, we use the AAE.

160 CHAPTER 6. OPTIC FLOW

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100 120 140 160 180 200

A
v
er

ag
e

A
n
g
u
la

r
E

rr
o
r

T

FED
FJ

Figure 6.9: Convergence comparison for FED and FJ on RubberWhale with
optimal parameters, normalised to the step generating stopping time T per cycle.

By (4.13), the number of iterations is related to the stopping time of
the FED process. A similar relation can be established for the FJ solver,
although the notion of a stopping time for an elliptic process is formally
wrong. Instead, we interpret T in this context as the stopping time of
the step size generating FED process, and thus as an intuitive continuous
analogon to the discrete number of iterations.

Figure 6.9 shows the result of this experiment. It confirms our previ-
ous observation that FJ converges faster than FED: While FED requires a
stopping time of about T ≈ 150 per level to reach a state in which the solu-
tion approaches a constant error level, a similar state is already reached for
T ≈ 40 if we use FJ. This corresponds to about 30 iterations for FED, but
only 15 iterations for FJ, and explains the fundamentally different runtime
observed in both cases.

Besides this insight, we also see that the error does not decay by a
monotonous function as we increase T . This is because the aforementioned
non-convexity of the problem: Even small numerical errors or dissipative
effects during the minimisation can steer the process to a different solution.
This seems to occur for certain numbers of iterations, where we obtain piece-
wise linear segments in the graph. However, again the FJ scheme appears
to be more robust than FED by reducing these effects. This dampening
behaviour could be related to the fact that we couple ωl by a factor of c = 3
to τ

l
, although larger factors are experimentally possible. It is likely that

this effective under-relaxation further stabilises the process.

6.5. EXPERIMENTS 161

6.5.2 Runtime

Scaling on Image Size

Let us now evaluate the runtime and scaling behaviour of our algorithm
on image sequences in different sizes. Because the Middlebury benchmark
largely features images in the size ratio 4:3 and our algorithm is optimised
to this measure, we use the same size ratio in this experiment. Following
the insights obtained in the previous sections, we use the generic parameter
set, and use a stopping time T = 150 for FED. In context of FJ, time steps
are generated based on an FED process with T = 40.

Besides the pure time required for the computations, we also measure
the time required to transfer the problem and the solution from CPU to
GPU RAM and vice versa. For optic flow, this measure is interesting for
two reasons: While the previous chapters were primarily concerned with
concise sub-problems of complex visual computing applications, optic flow
can already be seen as one of such self-contained frameworks. Moreover,
the bandwidth between CPU and GPU is a very important factor for optic
flow computations. For RGB-valued image pairs in single precision floating
point arithmetics, 24 bytes per pixel must be uploaded to the device, and
a solution with 8 bytes per pixel must be retrieved once the computations
are finished.

The outcome of this experiment is shown in Figure 6.10. For small im-
ages, the GPU is not fully occupied, and the overhead required for expensive
operations such as the management of the hierarchy require additional run-
time. Both effects cause the problem of sub-optimal scaling under these
conditions. However, the full potential of the graphics device is clearly un-
veiled once the size of one image exceeds about 1 megapixels. Then, the
process scales almost linear in the number of pixels.

This leads to remarkable runtimes when the image sequence is relatively
large. RGB-valued image sequences with 3.5 megapixels per image can
be processed in less than 2 seconds, and the optic flow in typical screen
resolutions such as 1 280×960 pixels is computed in about 1 second or less.

In a direct comparison of the computations on grey-valued and RGB-
valued image sequences, we see that the latter setting can only process
images up to a size of about 3.5 megapixels, while the grey-valued case is
even able to yield results for images that are larger than 5.0 megapixels.
This limitation is only due to the restricted GPU RAM, and will more and
more vanish with the development of new graphics cards with larger main
memory. Nevertheless, we also see that the runtimes do not differ much
between these two cases. This is because the number of input channels

162 CHAPTER 6. OPTIC FLOW

Grey

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

0.5M 1.0M 1.5M 2.0M 2.5M 3.0M 3.5M 4.0M 4.5M 5.0M 5.5M

m
s

pixels

640x480

727

511
1280x960

1380

927

FED Computation
+ Transfer

FJ Computation
+ Transfer

�a

RGB

 500

 1000

 1500

 2000

 2500

 3000

 3500

0.5M 1.0M 1.5M 2.0M 2.5M 3.0M 3.5M 4.0M

m
s

pixels

640x480

734

577

1280x960

1433

1042

FED Computation
+ Transfer

FJ Computation
+ Transfer

�b

Figure 6.10: Runtime of GPU-based complementary optic flow for a. grey-
valued input images, and b. RGB-valued input images, both in the size ratio 4:3.
We use the generic parameter set from Section 6.5.1, choose T = 150 for FED,
and generate FJ time steps based on T = 40.

6.5. EXPERIMENTS 163

Table 6.3: Runtimes in milliseconds for GPU-based FED and FJ, for their CPU-
based variants, and the original FAS technique used in [ZBW+09]. Speedups refer
to the parallelisation gain (FED, FJ), or to CPU FAS vs. GPU FJ (Total).

320× 240 640× 480 1 280× 960

Grey RGB Grey RGB Grey RGB

FAS 2 537 3 007 9 630 11 575 38 658 46 681
CPU FED 3 475 3 792 15 054 16 336 63 516 68 812

FJ 2 639 2 948 11 535 12 786 48 191 53 538

GPU
FED 453 460 727 734 1 380 1 433
FJ 328 374 511 577 927 1 042

FED 7.67 8.25 20.71 22.27 46.02 48.03
Speedup FJ 8.05 7.89 22.55 22.15 52.01 51.36

Total 7.74 8.05 18.83 20.05 41.72 44.78

only has an influence on the setup phase of the diffusion tensor, but not on
the actual solver iterations. Since the latter consume a vast majority of the
runtime, the overheads for more than one image channel do not deteriorate
the overall runtime significantly.

If we are interested to use our algorithm within a CPU-based vision
application, the memory upload and download costs are another important
quantity. As it turns out, they are not negligible for optic flow. While
they take up to about 10% of the runtime on computations on grey-valued
image sequences, this partition even grows to about 15% for RGB-valued
sequences.

Comparison to CPU

Let us now have a more detailed look on the runtime of our process, and
compare it against the runtime of the respective variants on the CPU, as well
as against the original non-linear multigrid (FAS) method from [ZBW+09].
In this experiment, we assume data to reside already in the memory of the
target architecture. To this end, we abstract from the times required to
upload or download the problem.

Table 6.3 lists the runtimes in milliseconds for all analysed algorithms, as
well as the speedups obtained by the GPU-based algorithm3. On the CPU,

3 My thanks go to Henning Zimmer and Andrés Bruhn for providing a sample imple-
mentation of the FAS scheme from [ZBW+09]

164 CHAPTER 6. OPTIC FLOW

both FED and FJ run slightly slower than the original FAS approach. This
matches our expectation, since FAS offloads even more computational ef-
fort to hierarchic representations. Such coarse-grid computations are very
efficient on sequential architectures such as CPUs, while they are very ex-
pensive on massively parallel architectures due to their low hardware oc-
cupancy. Nevertheless, FJ seems to be a serious competitor even on this
architecture, since it performs only slightly worse than FAS.

Our GPU algorithm clearly profits from the high data-parallelism of
FED and FJ, and obtains in both cases speedups from about 8 on image
sequences of size 320×240 to about 50 for 1 280×960. From the almost
linear behaviour observed in the last experiment, we know that this speedup
factor will also roughly hold for larger inputs. This speedup is even higher
than for inpainting, which is related to the different numerical structure,
but also to a slightly less computationally demanding discretisation scheme
for the derivatives.

Finally, we compare FAS as the fastest method on the CPU to FJ as
the most efficient method on the GPU. This is indicated by the last row in
Table 6.3. Again, we obtain speedups of about 8 for image sequences of size
320×240 pixels, up to more than 40 for frames of size 1 280×960 pixels. This
is due to the high performance and data-parallelism of FJ, and substantiate
our hypothesis that this scheme might be one of the best parallel solvers
for elliptic problems in visual computing. Future work should be concerned
with a detailed evaluation of this scheme, also with respect to other elliptic
problems such as PDE-based image inpainting (see Chapter 5).

Profiling

In a last short experiment, we analyse the time consumption of the different
parts of our algorithm in more detail. Sample outputs of the CUDA profiler
cudaprof for FED and FJ are shown in Figure 6.11. They were obtained on
a run on the Urban2 sequence from Figure 6.6 using the generic parameter
set. Note that the overall runtime does not fully sum up to the overall
runtime from Figure 6.10. This is because the profiling plot does not include
CPU-side calls to GPU kernels and the latencies involved therein, but only
covers the plain runtime of the kernels.

To ease presentation, the 22 involved kernels (including internals such as
for memory copy operations) are clustered to 10 meaningful groups, each.
For both numerical schemes, the solver kernel consumes the most significant
partition of the runtime. In this contribution, we also spot the main differ-
ences between the runtimes of FED and FJ, which is related to the different
numbers of iterations needed in either case. The second most expensive op-

6.5. EXPERIMENTS 165

0

 50

100

150

200

250

300

350

FE
D

P
resm

oothing

R
esam

pling

S
m

oothness Term

C
opy H

-D

C
opy D

-H

D
erivatives

D
ata Term

W
arping

M
em

ory O
p.

m
ill

is
e
c
o
n
d
s

Computations
Copy CPU/GPU

�a

0

 50

100

150

200

250

300

350

FJ P
resm

oothing

S
m

oothness Term

R
esam

pling

C
opy H

-D

C
opy D

-H

D
erivatives

D
ata Term

W
arping

M
em

ory O
p.

m
ill

is
e
c
o

n
d
s

Computations
Copy CPU/GPU

�b
Figure 6.11: Profiling of the GPU-based algorithm with a. FED, and b. FJ, on
Urban2 (640×480 pixels, RGB).

166 CHAPTER 6. OPTIC FLOW

Figure 6.12: Screen shot of the live demonstrator for complementary optic flow.
The image shows a frame of the Sintel movie (CC-BY, Blender Foundation).
With a high-speed parameter setting, about 13 FPS are obtained on input frames
of size 480×360 pixels.

erator is the Gaussian filter involved at local scale and at integration scale.
Following our analysis from Chapter 3, it seems this part cannot be sig-
nificantly improved further. The same might hold for prolongation and
restriction, as well as for the set up of the diffusion tensor, which share a
common third place. Both operations are highly memory-intensive, such
that it is likely that these operations also cannot be significantly optimised
further. Compared to them, the remaining kernels for the image derivatives,
data term weights, warping, and memory operations such as memset require
only a negligible partition of the runtime. This is particularly remarkable
for the data-intensive warping step, and indicates that our assumption of
a piecewise laminarity of the flow field (see Section 6.4) seems to be valid.
This causes a good cache hit rate in this step.

6.6 Interactive Real-Time Application

Similar to the application of PDE-based image inpainting, the optic flow
framework described above can easily be integrated into an interactive video
application. This development follows closely our demonstrator from Sec-
tion 5.6, and uses similar optimisation strategies.

Even more importantly than for inpainting, optic flow requires a high
bandwidth between the CPU and the GPU, i.e. via the PCI bus. Since this
bandwidth can hardly be provided by hardware available today, we exploit
the fact that our algorithm is given a continuous video stream. This allows

6.7. SUMMARY AND CONCLUSION 167

to upload frames one by one to the device, where we leave them in the
planar YV12 format as provided by the camera or video converter. This
reduces the payload for each frame to 1.5 bytes per pixel, as compared to
24 bytes per pixel for a full RGB sequence in single precision arithmetics.

On the device, these frames are fed into a ring buffer, decoded, and pres-
moothed by convolution with a Gaussian of standard deviation σ. Following
this preparation phase, our algorithm computes the optic flow between the
previous and the current frame, visualises the resulting flow field, and dis-
cards the oldest input frame. Similar to the inpainting demonstrator from
Section 5.6, we compute the necessary visualisation steps such as colour
coding and frame buffer assembly on the CUDA device. This allows to
hand finished frames over to the OpenGL pipeline without requiring to
transfer them back to the CPU first.

Figure 6.12 shows a screen shot of our demonstrator on the Sintel movie.
It is directly streamed into our algorithm by using mencoder as a realtime
video transcoder which is attached to the stdin interface of our program.
For this screen shot, a similar setting as in the generic parameter set was
applied, where time-critical parameters were reduced in favour of a faster
runtime. Although the algorithm is not fully converged in this case, the
outcome still convinces with crisp flow edges and a smooth filling-in of
intermediate regions. In this particular case, we obtain 13 FPS on an input
of size 480×360 pixels. If we use the same high-quality parameters in the
Middlebury benchmark, our algorithm still yields about 2 FPS on this size.

6.7 Summary and Conclusion

In this chapter, we have designed a highly efficient method for the minimi-
sation of modern variational optic flow approaches. Following the example
of the complementary optic flow model from [ZBW+09], we have developed
a general framework for the parallel solution of complicated Euler-Lagrange
equations and similar elliptic processes arising in the field of visual com-
puting.

Our algorithm scales very well over inputs in different sizes, and ob-
tains speedups of more than 40 over the original FAS method on the CPU.
This allows to provide highly accurate flow fields of coloured RGB image
sequences in the size 640×480 pixels within little more than half a second.
At the time of the original publication [GZG+10], our GPU-based approach
ranked 6th in the Middlebury benchmark with respect to the approxima-
tion quality, and constituted the fastest algorithm among the top 10 of
most accurate methods. Due to rapid developments over the last months,

168 CHAPTER 6. OPTIC FLOW

it dropped to the 18th place since, where it still claims the position of the
fastest method among the top 30.

Large parts of this new algorithm incorporate the work and insights
from previous chapters. While presmoothing is done by linear diffusion
approaches from Chapter 3, the core of our algorithm is given by the fast
explicit diffusion (FED) algorithm from [GWB10] whose application to the
GPU has been discussed in Chapter 4. From Chapter 5, we use the efficient
hierarchic application of this numerical scheme on GPUs. This collection
of thoroughly optimised operators has been complemented by a new GPU-
based warping strategy, as well as by novel GPU kernels for the evaluation
of the data term and smoothness term contributions.

Moreover, we designed a parallel solver which sets up on the recent
Fast Jacobi (FJ) technique [Wei11b]. This new numerical scheme has been
shown to converge much faster than FED, while providing results of similar
quality. This gives rise to evaluate and use this scheme in GPU-based
approaches for a large variety of tasks in visual computing, even far beyond
optic flow. The question for an optimal relation between FED time steps
and FJ relaxation weights seems to be one of the most interesting questions
arising in this context. Experiments suggest that mathematical derivations
of bounds usually lead to overcautious settings which are not able to exploit
the full potential of the algorithm.

The framework we have designed in this chapter shares the high versa-
tility of this solver. Our anisotropic smoothness term constitutes one of the
most general formulations for this purpose. In the context of optic flow, it
can easily be specialised to obtain other popular smoothness terms such as
TV regularisation [ZPB07]. Furthermore, because our minimisation strat-
egy sets up on the Euler-Lagrange framework, the same ideas that we used
in this chapter can also be applied to many other variational approaches.
In all of these cases, it is likely that the general concepts developed in this
and the previous chapters help to tangibly speed up the solution of many
challenging problems in image processing and computer vision.

In view of this variety of possible applications, it seems that the develop-
ment of GPU-based algorithms for PDE-based approaches remains not only
an exciting but also a challenging field of research. Our work shows that a
handful of carefully optimised, but fully transparent parallel operations is
able to solve complex problems faster than any other algorithm proposed
in the literature so far. The wide applicability of numerical schemes such
as FED or FJ motivates to search for other schemes with similar character-
istics. In this context, a major key to astonishing runtimes seems to be the
reduction of the memory bandwidth and the total number of operations,
as well as a fully data-parallel and simple algorithmic structure. Although

6.7. SUMMARY AND CONCLUSION 169

these techniques are usually not optimal on sequential architectures, they
easily unveil their full performance on massively parallel systems.

In context of hierarchic algorithms, it turns out that efforts which aim at
a reduction of coarse-grid operations are in general able to lower the runtime
on massively parallel hardware significantly. This is in contradiction to
the general paradigm on sequential CPUs, where one typically achieves
speedups by offloading more operations to coarser grids.

With the end of this chapter, we also leave the area of PDE-based meth-
ods. The remainder of this thesis will be concerned with a different class
of tasks in the field of visual computing. Although they are also based
on physical principles, they are fundamentally different to the problems we
have discussed and solved so far. As a consequence, we must approach
them with different solution strategies. Nevertheless, we are going to see
that these techniques also play an important role in image processing and
computer vision, and can even be used to enhance other PDE-based ap-
proaches such as PDE-based image compression.

Chapter 7
Halftoning

Some say they see poetry in my paintings.
I see only science.

Georges-Pierre Seurat

7.1 Motivation

Let us talk about inkblots. Towards the end of the 19th century, painters
established pointillism as a new genre and novel way to represent objects
on a canvas. Their work influenced both art and technology over more than
a century, and is still of great importance in our modern life.

Artists such as Georges-Pierre Seurat were fascinated by the impression-
istic idea to reduce images to a few simple primitives such as strokes, and
to focus on the expression of light, emotions, and feelings. Nevertheless,
they realised that this level of abstraction is yet unable to transport the
many facets of light and colour which they wanted to communicate in their
paintings. The reason for this limitation was soon identified: A classical
mixture of colours on a palette possesses a luminosity which is limited by
the used pigments. The more pigments are blended, the darker becomes
the overall impression of the outcome.

The idea neo-impressionist painters came up with to solve this prob-
lem revolutionised art. In pointillist paintings, whole images are assembled
from tiny blurs of colour chosen from an extremely reduced palette. If the
observer steps back and regards the painting from a larger distance, such
blobs seem to merge to homogeneous areas. Depending on how many blurs
are contained, these regions can have any arbitrary nuance of the colour

171

172 CHAPTER 7. HALFTONING

space spanned by the used palette. In particular, the variety of virtual
colours created by this technique exceeds the initial palette significantly
up to a continuous scale of nuances. Although pointillism received rather
controversial reviews of contemporary critics, works by Seurat, Signac, or
Cross are today seen as milestones of modern art. These early works in-
spired many artists in the following century, and laid the foundation for a
scientific approach to basic concepts such as colour theory or human visual
perception.

Maybe even more importantly, very similar ideas found their way into
technology. Towards the end of the 19th century, printing was significantly
accelerated by the invention of automatic line printing machines that re-
placed manual typesetting by means of lead sorts [Mer40]. While text could
now be produced much faster than before, the reproduction of images with
high quality still required time and manpower. Whenever photographs were
to be produced in more detail than by a simple thresholding, these figures
had to be created manually by means of lithography, stippling, or hatch-
ing [Sen11, SW87]. This changed with the invention of halftoning as a class
of techniques that allowed to reproduce images with a continuous grey scale
in black-and-white printing processes.

Halftoning goes back to early reproductions of photographs in The
Daily Graphic towards the end of the 19th century. Some sources iden-
tify an 1 873 photograph of the Steinway Hall in Manhattan to be the first
halftone [Sul03]. Others argue that this print was supposedly obtained by
photoengraving techniques, and call A Scene in Shantytown, published by
the same newspaper in 1 880, the first ‘full-tonal range’ halftone [Les06].
However, there is a broad consensus in the literature that either of these
works laid the foundations for halftoning to enjoy a broad popularity in the
following years [Hol26, Uli87].

Traditional halftone printing plates were obtained by exposing a photo-
lithographic plate with a negative of the original image that is superposed
by a glass plate with an etched regular grid [Mur36]. After the development
of computers with binary screens and digital printers in the mid of the last
century, this idea has been carried over into the digital age. In this chapter,
we focus on such digital halftoning methods and their results.

In the literature, many different types of digital halftones are known.
Some of them are designed with a purely technical motivation in mind, and
aim at a preparation of digital images for reproduction on screen or paper.
Thus, they are often working in a purely discrete setup, i.e. they output
images in a regular raster of white or black pixels. The foundations for dig-
ital image halftoning go back to the mid of the 20th century. Goodall and
Roberts show how the impression of a continuous tone can be created by

7.1. MOTIVATION 173

intentionally perturbing an image with Gaussian white noise prior to thresh-
olding [Goo51, Rob62]. Such white-noise dithering algorithm allows to fill
regions with a ratio of black and white pixels that correspond to the grey
value of the original, and lent its name to a whole class of algorithms which
produce similar results. One of these approaches, clustered-dot ordered
dither, mimics the behaviour of old photographic screens [Uli87]. Different
to white noise dithering, it thus describes a deterministic algorithm which
guarantees the exact average grey value in a region. Due to its simplicity,
this method is very popular today, and is even included in the PostScript
standard [Ado99]. However, because the smallest dot reproducible on a
device steers the resolution of the whole screen, these amplitude-modulated
(AM) screens appear much more coarse than the printing technology allows.

Dispersed-dot ordered dithering tries to remedy this problem by control-
ling the grey value of a region by the spacing of dots rather than by their
size [Lim69, LK73, Bay73]. This allows to represent arbitrary grey values
despite the fact that all dots have the same size. In order to distinguish this
method from classical screens, it is often referred to as frequency-modulated
(FM) screening, or threshold screening [JLR07]. The latter is a description
of the process. A precomputed thresholding mask with continuous, stochas-
tically well-distributed values is used to threshold continuous images. If the
image is brighter than the mask, the respective pixel is rendered in white,
otherwise in black. Because of their simplicity and optimality under special
conditions [Bay73], such threshold screening approaches are widely used
in real printing systems. Often, the used masks are fairly small, such as
16× 16 pixels, and are tiled to threshold larger images. Modern threshold
screening approaches still use the same idea, but optimise the masks such
that the results look less regular and less artificial without comprising the
quality of the method [PTG94, VO08]. However, a fundamental problem
remains. Since the mask and the input image are uncorrelated, one cannot
give optimality guarantees for arbitrary inputs.

This is different for blue noise dithering methods [Uli88]. They create
halftones only based on the input image. Distances between single black
pixels are optimised such that the halftone represents all grey values as good
as possible, with the general appearance being kept as smooth as possible.
The quality of such halftones is reflected in their spectral properties, i.e. in
the presence and quantity of certain frequencies. Error diffusion is the first
class of algorithms designed to create such results [FS76]. Such dithering
algorithms process the image once in a predefined order, and threshold pix-
els one after the other. The error, i.e. the excessive or insufficient grey
value, is immediately added to the unprocessed neighbouring pixels. Af-
ter the famous work of Floyd and Steinberg [FS76], many modifications

174 CHAPTER 7. HALFTONING

were proposed to improve these results. These include better masks or
grids [JJN76, SA85], image-adaptation and optimisations with respect to
dot-gain [Stu81], a grey-value adaptive mask [Ost01], and threshold mod-
ulation to avoid artefacts in mid-tone regions [Kno89, ZF03]. As a conse-
quence, error diffusion is not only frequently applied for a high number of
tasks, but it also remains an interesting field of research. Several exten-
sions and modification were proposed in the literature. A combination with
ordered dither called dot diffusion was shown to give more pleasing, but
blurred results [Knu87]. Other extensions aim at the enhancement of struc-
tures, contrast or fine details [JJN76, JR76, Kno89]. Modern approaches
obtain such results by considering many image features, such as frequency,
gradient orientation, or contrast [CAO09]. All these methods have in com-
mon that they sacrifice theoretical optimality properties to turn halftones
perceptually more similar to the original, or to make them more pleasing
to the eye.

Over the last decade, a new class of algorithms for blue-noise dithering
became popular that did not set up on the old idea of error diffusion. These
algorithms based on direct binary search (DBS) find a halftone by minimis-
ing an error measure on random swaps of pixels [AL96, PQW+08]. Thus,
they can be tuned to preserve arbitrary additional features of the image,
such as fine structures. However, these algorithms are also computationally
expensive, because many pixels must be exchanged until the optimum is
reached. In order to obtain this minimum faster, DBS halftoning meth-
ods are thus often initialised with an error diffusion result obtained with
a classical method [PQW+08]. A related method performs halftoning us-
ing a Markovian framework [GRS93]. As it is for many DBS algorithms,
this approach obtains results which pronounce both contrast and structure,
rather than approximating the original image well. Besides the methods
mentioned so far, there are a number of hybrid or rather unconventional
halftoning techniques which cannot be assigned to a specific class of algo-
rithms. Most of them possess blue noise properties, but aim at specific
applications such as nonphotorealistic screening [OH95].

In the last few years, continuous halftoning methods were presented
which distribute dots or other primitives freely in the image domain. These
grid-less approaches are important for different reasons. On the one hand,
they can be used in context of high addressability halftoning [Kan99]. Such
methods are required when a printer supports a dynamic dot placement
beyond the geometry of a single inkblot. On the other hand, continuous
halftoning methods enjoy many applications in the field of artistic screen-
ing [Sec02, BSD09, Fat11], object placement [RB85, DHL+98, CSHD03,
SAG03, PH10], or sampling [Coo86, MF92, KK03]. The boundaries be-

7.2. POINT-BASED HALFTONING 175

tween these individual applications are often blurred, because they can
technically be realised in a very similar fashion. We see some examples later
in this chapter. Continuous dot-placement techniques first arose in the area
of sampling, and in particular for importance sampling [Coo86, MF92]. A
popular class of techniques in this field of research is Poisson disk sam-
pling, i.e. placement strategies in which dots can be freely arranged as
long as all points keep a given minimal distance to their neighbours. For
such techniques, many evaluation measures were developed which judge the
stochastic properties and homogeneity of point distributions [MF92]. An
early approach to continuous image halftoning approximates images with
either dots or non-intersecting level lines [PB94]. Either of these visual-
isation elements is replicated onto equipotential lines of a function that
solves the Eikonal equation for the underlying image. In the last years,
many new techniques were proposed that obtain continuous point distri-
butions of non-trivial densities. Besides variants of established Monte-
Carlo methods [Hal60, Coo86, Han05] and a regular tiling with good
stochastic properties [KCDL06], a series of approaches uses Voronoi tes-
sellations [Sec02, BSD09]. Recently, these approaches became very popular
due to their high approximation quality, and produced the best halftones
of this time [BSD09].

In the following, we discuss a novel approach to continuous digital
halftoning that outperforms these previous methods. In its basic form,
it represents a point-based halftoning method with uniform dot sizes, and
is thus visually most similar to works such as [Sec02, BSD09], and [Fat11].
By this, it represents one instance of FM screening. Its results are obtained
by electrostatic laws. This idea was first formulated by Ilbery [Ilb00], al-
though the concept to use potentials for halftoning is much older [PB94].
However, neither of these techniques thought this conception through to
the end, but used electrostatic forces only to optimise stencils [Ilb00], or
applied other potentials to find halftones [PB94].

7.2 Point-Based Halftoning

Before we go into detail about electrostatic halftoning, let us first define
some basic notation for halftoning. These considerations define the goal a
‘good’ halftoning method tries to reach, and form the basis for an objective
qualitative comparison and evaluation.

In point-based halftoning, we search an image of black dots on a white
plane in which points approximate a given (continuous) image u, and where
points are optimally distributed:

176 CHAPTER 7. HALFTONING

Definition 7.1 (Halftone, Halftoning Method)

Given a continuous domain Ω ⊂ R2, and an image u : Ω → [0, 1] that is
integrable on Ω, the image

h : Ω→ {0, 1} (7.1)

is called halftone of u, if there exists a halftoning method

H : (Ω→ [0, 1])→ (Ω→ {0, 1}) (7.2)

such that h = H(u), and ∫
Ω

h dx =

∫
Ω

u dx. (7.3)

�

Unless stated differently, we associate in the following the co-domain value
0 with black, and 1 with white. By (7.3) we require the halftoning method
to be grey value preserving [PB94]. Although it is often formulated in
a purely discrete way, halftoning can thus be seen as a shock-generating
diffusion-reaction system with the halftone as its steady state.

In addition, one typically demands a certain similarity between h and
u for a human observer. This assumption sounds intuitive, but bears a
fundamental technical problem: By today, the human visual system (HVS)
is still not fully understood and can thus not be accurately modelled in a
mathematical sense. In the early halftoning literature, one often finds the
actual printing or visualisation process and the human perception of the re-
sults combined in a physical reconstruction function [Uli87]. This function
depends on a sampling at a periodic grid corresponding to potential dot
locations, a convolution with a linear shift invariant response kernel, and
a weighting by material properties of the paper or video screen. Option-
ally, the imperfectness of the printing process can be taken into account by
applying an additional dot noise function. However, because modern print-
ing processes are already optimised for a ‘good’ perception of the result
by humans, this comprehensive vision model became less and less appli-
cable. Today, one often tries to separate technological details and human
perception.

Hence, the human visual system (HVS) is described by dedicated HVS
models which are also frequently used in many other areas of visual com-
puting. Experts today widely agree that the underlying filter has low-pass

7.2. POINT-BASED HALFTONING 177

characteristics [Näs84, KA02, GBAL06, LA08]. Moreover, there is good ev-
idence that certain features are perceived differently than others. Examples
are the adaptive stimulation of the retina based on the frequencies of the
signal and the background [CCL69, vdBV96], deviations from regular pat-
terns (saliency) [IKN98], virtual continuation of incomplete edge or pattern
information [FHH93], or motion [WA85]. Still, there is no mutual con-
sent about a universal HVS model that is able to mathematically explain
all effects occurring in human vision. This can best be seen in extremal
situations such as optical illusions, or in challenging machine vision tasks
such as object and character recognition, or scene understanding. In these
fields, computers are usually not able to mimic the human impressions to
a satisfying degree.

However, let us assume there is a perfect HVS model V : (Ω→ [0, 1])×
Ω → Rn which maps a real image to its neural perception in the human
brain. The image u and its halftone can then be called similar if

∃ 0 6 ε� 1 :

∫
Ω

‖V (h,x)− V (u,x)‖ dx 6 ε (7.4)

where ‖ · ‖ denotes a ‘suitable’ norm. Although this idea cannot provide
a final and comprehensive solution to the problem, it can at least serve as
a rough model to provide objective measures for a quality comparison of
halftoning methods. In particular, we can incorporate parameters such as
viewing distance, lighting conditions, colour-dependent perception, and all
kinds of other impairments of the visual system into V . In Section 7.7.2,
some of these properties are used as error measures to judge the quality of
halftones. Besides, there is still the option to perform a user study which is
less prone to modelling errors, but could be biased by subjective preferences.
For the time being, let us resort to an abstract notion of similarity, and come
back to these ideas later.

In order to create a more profound basis of evaluation, we separate
point-based halftoning into two operators which are subsequently applied:
Sampling and rendering. The first term describes the placement of dots on
the medium, i.e. accounts for the spacing between dots. The second term
handles the visualisation of the dot in its desired size. In this particular
case, the halftone is generated by sampling, and rendering has a purely
technical character. The main computational effort thus lies on sampling.

We should recall that the concept of separating the halftoning process
into two operators is frequently found in the literature, although it is not
explicitly stated as such [Uli87, Kip01]. Since the times of photographic
halftones, people address technical shortcomings such as dot gain or wrong
ink application as the drawback of a halftoning method for a particular

178 CHAPTER 7. HALFTONING

device. In this context, rendering is often seen as part of the physical re-
construction function [Uli87], as a technical limitation that must be consid-
ered in the halftoning process [Kip01, ZN10], or is simply ignored [BSD09].
Because devices change more frequently than halftoning technologies, the
separation into an abstract and a purely technical stage allows to evaluate
halftoning methods more objectively. We can thus identify principle the-
oretical issues and distinguish them from the technical imperfectnesses of
an actual printer. Moreover, this concept is very flexible. Most halfton-
ing schemes known today can be separated in two operators, albeit they
sometimes look essentially different than for point-based halftoning. For
instance, consider an application of AM screening, in which the halftone is
steered by the size of dots rather than by their distance. Here, sampling
comes down to a trivial regular placement, while the essential grey-value
generating methodology is included in the (fault-prone) rendering operator.
In Section 7.4.7 we see examples for more complex rendering operators, and
for their combination with state-of-the-art sampling techniques.

7.2.1 Rendering

Let us first consider the rendering operator, as it is easier to understand
and lays the foundations for the sampling step. In the following, we use ‖·‖
to denote the Euclidean norm: ‖x‖ =

√∑
i x

2
i .

Definition 7.2 (Point-Based Rendering of a Point Set)

Given a finite set of 2-D points P ∈ P(Ω), and a reference image u ∈ Ω→
[0, 1], a functional R : P(Ω)× (Ω→ [0, 1])× Ω→ {0, 1},

R(P, u,x) =

{
0, ∃ p ∈ P : ‖x− p‖ < r

1, else
(7.5)

with the radius r such that

|P |πr2 =

∫
Ω

u dx (7.6)

is called a point-based rendering of P with respect to u.

�

This ideal point-based rendering process only depends on the initial point
set P and the image it is about to approximate. However, real-world print-
ing processes often also depend on a set of additional parameters, such as
the properties of the output device. Depending on the application, the
rendering operator can be implemented differently:

7.2. POINT-BASED HALFTONING 179

• Often, the number of points is chosen such that (7.6) yields points that
possess the same size as single inkblots on the device. In Section 7.4.2,
we see in detail how this can be accomplished. Rendering then simply
comes down to physically printing a point set with one blot per point.

• For reproduction on a screen, one usually describes P and r by vec-
tor graphics. The actual rendering then comes down to resolution-
dependent (dynamic) rasterisation, and is performed by a PostScript
interpreter or similar engines.

• If we require a discrete representation of the halftoned result and if
the points are relatively large (as it is for artistic screening purposes)
we can sample the outcome of (7.5) at a regular grid.

Note that neither of these implementations can create a perfect rendering,
either due to physical limitations, or due to discretisation artefacts. In
particular when it comes to real printing processes, many undesired effects
occur. In inkjet printers, dots of ink can be subject to different aerody-
namic or electrostatic environmental conditions such that points are offset
and vary in size [Uli87, KM79]. Laser printers use fine toner particles which
differ in size due to their production process [SBD81]. Finally, the structure,
apsorptivity, and reflectance properties of the paper have different impacts
on the shape of inkblots and their appearance to an observer [Kip01]. Thus,
the range of purely technical limitations even fades seamlessly into a set of
virtual issues that arise from the human visual system and cannot fully be
distinguished. However, for theoretical considerations, we assume in the
following that a perfect rendering process exists. All concrete implementa-
tions can then be regarded as sufficiently good approximations of it.

If we consider purely discrete display devices such as computer screens,
it can additionally be interesting to come up with a second, alternative
rendering function. Such devices are often pixel-based, which means that
they rasterise results at a regular grid. Hence, let us consider a second
‘discrete version’ of Definition 7.2:

Definition 7.3 (Rasterisation of a Point Set)

Let P ∈ P(Ω) be a finite set of 2-D points and Γ = Ω ∩ N2 be a discrete
image domain. We call D : (P(Ω))× Γ→ {0, 1} a rasterisation of P if

D(P, (i, j)) =

{
0, ∃ p ∈ P : (i− 1

2
6 px< i+ 1

2
) ∧ (j− 1

2
6 py< j+ 1

2
)

1, else
.

(7.7)

�

180 CHAPTER 7. HALFTONING

�a �b
Figure 7.1: Sampling (black) of a signal (red). a. Regular sampling with equidis-
tant samples of varying value. b. Importance sampling with irregularly spaced
samples of constant value.

Note that this ‘discrete rendering’ is no longer performed with respect to a
continuously-valued image u, but instead we assume unit pixel size and an
appropriate number of points in P . This fundamental difference is inspired
by the insight that rasterisation only depends on the actual output device
with respect to which we scale and sample the original image. Point-based
rendering, in contrast, shall also be applicable to artistic screening purposes
such as stippling or pointillism where fairly large points can be of particular
interest.

7.2.2 Sampling

Let us now go into detail about the sampling function. It represents the
non-trivial part of the halftoning algorithm and has the main impact on the
quality of the resulting halftone. Before giving a definition, let us briefly
sketch the idea of sampling density functions.

The type of sampling we are looking for in this context is not the stan-
dard discretisation of signals we know from many fields such as image or
audio processing. There, one tries to approximate a continuous signal with
equidistant peaks of varying height. Instead, we use peaks of equal height
and allow variations in the place. This difference is visualised in Figure 7.1.
Both sampling variants have in common that a convolution of the sampled
signal with an interpolation kernel gives a continuous signal that is per-
ceptually close to the original. However, the latter variant is better suited
for halftoning purposes, as it already incorporates the binary character of
halftoning.

Definition 7.4 (Irregular Uniform Sampling)

In the context of halftoning, an irregular uniform sampling is an operator

S : (Ω→ R)× N+ → P(Ω), S(u,M) 7→ P (7.8)

7.2. POINT-BASED HALFTONING 181

with |P | = M , and for all y ∈ Ω there exists a small ε > 0 such that
Nε,y = {x | ‖x− y‖ < ε}:∫

Nε,y
u(x) dx =

∑
q∈(Nε,y∩P)

(∫
Ω

u(x)

M
dx

)
. (7.9)

�

In (7.9), the term in parentheses corresponds to the grey value that is rep-
resented by one particle. Hence, we require that within a ‘suitably small’
neighbourhood, the grey value of the sampled version equals the grey value
of the continuous image. Our intuition tells us that we are primarily inter-
ested in a good locality of S. This can be achieved by choosing the sampling
operator such that it provides a similarity for sufficiently small ε.

However, the lower bound for ε cannot be immediately derived as in the
case of uniform sampling. There, ε only depends on the grid size. To this
end, it is hard to tell whether an irregular sampling is optimal with respect
to the number of points involved in the process.

The number of samples M ∈ N+ is a degree of freedom comparable to
the grid spacing in uniform sampling. If we choose M very small, we obtain
a smaller point set at the cost of a higher approximation error. If we use
M → ∞ and integrate over infinitesimal neighbourhoods, we obtain the
original image u.

In the context of Monte Carlo simulations, the type of sampling given
by Definition 7.4 is often referred to as importance sampling [Cla61]. In
these applications, it is used to analyse the characteristics of an unknown
probability density function, and to improve and accelerate the estimation
by focussing on ‘interesting’ areas of this function. To this end, one does
not sample the unknown function uniformly, but spends more samples to
areas where the values of the function are more likely to give characteristic
insights. The distribution of these samples is given by a second probability
distribution which describes the degree of importance. Hence, this biasing
density can be seen as a normalisation relative to which other functions can
be evaluated.

Importance sampling enjoys a broad coverage in the literature. A large
field of application is traditionally the simulation and automatic evalu-
ation of events in random processes. In signal processing, such mod-
els are required to compensate for high noise levels signals are exposed
to. This is often the case for satellite communication or radar measure-
ments [CLSY93, Sri02]. In finance and economics, importance sampling is
used for a better risk estimation in asset management and stock market in-

182 CHAPTER 7. HALFTONING

vestments, as financial markets are often subject to a multitude of external
influences [GHS99, EJ10].

In the past 20 years, importance sampling found its way into com-
puter graphics and image processing. While it was first employed for an-
tialiasing in raytracing [Coo86, Shi91], it soon became an integral part
for many fields such as texturing and object placement [RB85, DHL+98,
CSHD03, SAG03, PH10, Wei10], the layout of colour filters for digital cam-
eras [Wei10], halftoning [Uli88], and non-photorealistic rendering including
many types of artistic screening [Sec02, BSD09].

In the following sections, we focus on the latter applications. In their
case, the classical concept of importance sampling for Monte-Carlo simula-
tions is slightly abstracted. The interaction with the actual target density
is no longer important, but usually a uniform distribution is assumed. In-
stead, the approximation quality of the biasing density becomes the major
point of interest, and is often evaluated under a multitude of error measures.

7.2.3 Sampling + Rendering = Halftoning?

Before we consider a concrete implementation of the previously described
operators, let us consider some theoretical aspects and limitations of the
process. To this end, we consider the continuous case and construct a
halftoning operator out of an abstract sampling operator S and a point-
based rendering functional R. Depending on the desired output device, we
thus select a suitable number of points n and set

h′(x) := H ′(u)(x) = R(S(u, n), u,x) . (7.10)

Our goal is to obtain a halftone of u, i.e. we expect h′ to satisfy Defini-
tion 7.1. However, this goal can only be established under special condi-
tions, as there are principle limitations in both rendering and sampling.

Let us have a close look on Equation (7.6). By construction, it seems
to describe the grey value preservation of the halftone as specified by (7.3).
However, this only true if points do not overlap, i.e. if it holds that

∀ p1,p2 ∈ P,p1 6= p2 : ‖p2 − p1‖ > 2r. (7.11)

In very saturated regions, this property cannot be fulfilled, as there is no
tiling with circles that could densely fill a rectangular area. As a conse-
quence, circles overlap and leave the same area uncovered at another spot.
However, we can find an upper bound of the error, given that P is ‘opti-
mally distributed’. The latter condition means that points are placed in a
way that the free space is minimised, i.e. they are not intentionally placed
on top of each other.

7.2. POINT-BASED HALFTONING 183

Theorem 7.1 → Proof 6

Given a distribution P of points which represents a perfect sampling of
an image u, a rendering function given by Definition 7.2 approximates the
average grey value to at least 96.28%:∣∣∣∣∫

Ω

R(P, u, ·) dx− |P |πr2

∣∣∣∣ < 0.0372, (7.12)

where r is given by (7.6). Perfect distributions representing a grey value
u(x) > 0.0931 are rendered in such a way that the average grey value is
being preserved.

�

Note that the optimality condition on the point set P is a relatively strong
constraint. For highly textured images, it can even happen that there is no
distribution which fulfils the perfectness assumption in Theorem 7.1 . As a
simple counterexample, consider thin structures in an image. Usually, the
grey value in these regions cannot be represented by an integer number of
points, such that two or more regions share the same point. Moreover, the
particular shape of the area might not allow the points to arrange in the
optimal pattern for this area, as there arise wrong densities of points along
image edges.

We see later in this chapter that these limitations only occur on real-
world images which contain very dark regions. However, in these cases
they arise by construction for all point-based halftoning methods from the
literature (see e.g. [Kip01, LA08, ZN10]). In industrial applications, these
effects are handled by using the circumcircle of the desired pixel hexagon
as the shape of an inkblot [Uli87, ZN10]. Since this setup significantly
taints the average grey value, the input image is preprocessed by a tone
scale adjustment operator based on the physical reconstruction function. It
accounts for a better representation of bright areas. In this case, a coverage
analysis similar to Theorem 7.1 is given by Ulichney [Uli87]. It states an
efficiency of about 82.7% which means that inkblots intentionally overlap by
20.9%. This is a lot compared to about 3.7% assuming an ideal inkblot size
as above and makes a dedicated handling of grey value shifts irreplaceable.
Still, this option is frequently chosen in real printing processes, since the
ability to print truly black regions is an often requested feature.

For a rendering as in Definition 7.2, we can learn that grey values below
0.0931 are still represented accurately, if we perform a preprocessing tone
scale adjustment which over-pronounces black tones. In such case, we create
an intermediate image from the original which can even have negative grey
values (undershoots). The sampling of this image rendered by the standard

184 CHAPTER 7. HALFTONING

rendering function then yields a better approximation of the original than a
standard halftone of the original image. To this end, we modify the sampling
in order to correct errors in the rendering operator. This is the reason why
we are going to regard this tonemapping operation as an optional extension
which is extremely useful for halftoning, but wrong by construction for most
sampling applications. We discuss this extension in detail in Section 7.4.3.

Besides theoretical limitations of the rendering function, we shall also
note at this point that several technical impairments exist, and often even
dominate. The most frequent application of halftones is printing, and dis-
tribution of ink or toner particles on paper is subject to a variety of physical
effects. Dots are often not rendered with their correct sizes, but they join
with nearby blots to one large homogeneous area [LA08]. Liquid ink tends
to follow paper fibres and crinkles. In laser printers, small dots might only
be printed by a certain probability that additionally depends on the toner
coverage in the neighbourhood [Uli87].

To this end, we can regard H ′ as an approximation of H that fulfils our
requirements well enough to be used for most practical applications. The
observations made above just tell us that the quality of results yielded by a
point-based halftoning method is limited by technical and theoretical issues
in both the rendering and the sampling stage. For specific applications,
we shall thus individually decide whether the general framework can be
adopted to this application at all and be aware of potential sources of error.
Moreover, for quality evaluations of halftoning algorithms, we should always
distinguish between artefacts that are due to the sampling function, and
those which are a principle consequence of the imperfectness of rendering.

7.3 Electrostatic Halftoning

Let us now introduce a novel flexible model for a multitude of applica-
tions including point-based halftoning, dithering, importance sampling, and
many other fields in visual computing. We introduce a framework to design
highly accurate sampling operators. The result these operators yield can
be rendered using any of the two functions presented in Section 7.2.1, or
used as an importance sampling operator within a framework for complex
computer vision applications. The work we discuss on the following pages
is also published in [SGBW10].

The key property we want to obtain is a uniform distribution of samples
within ‘flat’ areas of the input. Such an arrangement implies that distances
between individual inkblots are maximised. If we assume that the human
visual system blurs out high frequent fluctuations under a certain viewing

7.3. ELECTROSTATIC HALFTONING 185

distance, this distribution causes every inkblot to virtually dissolve in an
area of equal size. As a consequence, the impression of a smooth greyscale
image arises. This concept of maximising distances is a well-known concept
in nature, and can be found in both magnetic and electrostatic repulsion
laws. While magnetic forces are less suited for our application due to their
inherent bi-polarity, the electrostatic framework forms a perfect foundation
for our purpose.

Consequently, we regard the sampling points as actors in an electrostatic
particle system. In this model, all particles are equally charged and float on
a thin glass plate with finite extent. In the moment we release them onto
this plane, they repel each other and drift apart. Driven by Coulomb’s
force, they aim to maximise the distances to all other particles, as this is
the energetically optimal state. However, if we hinder them to leave the
glass plate, they soon are uniformly distributed over the whole domain.
By using this simple idea, we can already sample flat densities, such as
uniformly grey images.

As a second step, let us extend this concept to nontrivial images. With-
out loss of generality, assume the particles have negative charges. Hence,
if we attach positively charged objects to the bottom of the glass plate,
their electric field influences and attracts the particles moving on top of the
plate. As the challenge is to make the particles arrange in a distribution
that imitates the original image, we use a simple trick. We charge objects
with positive charges relative to the local grey value of the original image.
Regions with a higher charge density naturally attract more particles than
those with lower charge density, such that the desired state naturally arises
after some time.

Let us now model this idea as an image processing system. For simplicity
of notation, we first consider grey-valued images. This allows us to have
only one density function to approximate at once. Later in Section 7.4.6, we
extend this idea to colour images and multi-channel images in general. To
ease notation, we introduce an index set IP := {1, . . . , |P |} which describes
the set of all particles. Every particle n ∈ IP is annotated with a position
pn such that {pn | n ∈ IP} = P , and with a charge qn.

7.3.1 Repulsion

First, we consider two particles 1, 2 ∈ IP and observe the electrostatic force
F

(R)
1,2 acting on the first particle. Since it is caused by the electric field E2

induced by the second particle, we first compute its magnitude at p1, and
use this information to derive the force.

An important property of our system is the assumption that particles

186 CHAPTER 7. HALFTONING

are only allowed to ‘roll’ on the glass plate, but must not be lifted off
this plane. We are tricked by an illusion if we expect this behaviour to hold
naturally: Our mind tends to assume gravitational forces on all objects, but
those are not present in our purely electrostatic model. We can handle this
problem in two ways: We could design additional forces that pull particles
back, such as a second glass plate on top. However, a much easier way of
thinking is to embed the system into a 2-D world. In this case, forces are
by definition only acting parallel to the plane, and the question of whether
particles are ‘lifted off’ the plane does not arise.

To this end, let us derive the magnitude of E2 at p1. By the theorem
of Gauß-Ostrogradski [Mes06], the electric flux around p2 is given by

Φ =
q2

ε0

, (7.13)

where ε0 is the electric constant. Due to its radial nature, the magnitude
|E| of the electric field on a circular curve with radius r is given by

|E2| =
Φ

2πr
=

q2

2πε0r
. (7.14)

Because particle 1 resides at a distance of radius r = ‖p2 − p1‖ from p2,
we can compute the magnitude of the repulsive force as

|F (R)
1,2 | = q1|E2| =

q1q2

2πε0 ‖p2 − p1‖
(7.15)

It remains to determine the direction of F
(R)
1,2 . Let us thus denote the unit

vector e1,2 from p1 to p2 by

e1,2 :=
p2 − p1

‖p2 − p1‖
. (7.16)

We want F
(R)
1,2 to act parallel to this vector, and in opposite direction, as it

is a repulsive force. With the abbreviation 1
2πε0

=: k, i.e. k taking twice the
value of Coulomb’s constant [Mes06], we finally obtain

F
(R)
1,2 = − kq1q2

‖p2 − p1‖
e1,2 . (7.17)

In this equation, we can see the impact of our assumed 2-D world. Different
to classical electrostatics in the 3-D world, forces decay by 1/r instead of by
1/r2. This difference is introduced by the flux being integrated over a circle
instead of over a sphere.

7.3. ELECTROSTATIC HALFTONING 187

Let us now compute the overall force acting on a particle m ∈ IP . By
the superposition principle, the electric field E equals the sum over the
individual electric fields En induced by the point charges pn. Hence, we
modify and extend (7.17) and obtain:

F (R)
m = −

∑
n∈IP
n6=m

kqmqn
‖pn − pm‖

em,n . (7.18)

By the additional constraint n 6= m, we take care of the fact that each
particle is only moving in the electric field induced by other particles, but is
never subject to its own electric field. This means, a particle never repulses
itself.

7.3.2 Attraction

Let us now extend this concept to the attraction of particles towards an
image u. Although the underlying force can be derived in the same manner
as for repulsion, there are additional challenges to handle. Different to the
sparse set of points P , we assume a continuous charge distribution. This
means we need to integrate over areas rather than summing over a set of
points. Moreover, we want regions to attract particles proportional to their
darkness. To this end, we assume a continuous charge density q(1− u(x))
with some constant q over the image domain Ω.

By the same motivation as for repulsion, we can use (7.18), and replace
its discrete sum with an integral over the image domain:

F (A)
m =

∫
Ω

kqmq(1− u(x))

‖x− pm‖
em,x dx . (7.19)

Note that the notation of the unit vector em,x has been overloaded. In this
context, it denotes the distance from position pm to x:

em,x :=
x− pm
‖x− pm‖

(7.20)

A fundamental difference arising from the continuous formulation is the
behaviour around zero. While in the discrete case, one must exclude the
case x = pm, the continuous integral does not have any singularities:

Theorem 7.2 → Proof 7

For all particles m residing at a point pm ∈ Ω, the integral from (7.19) is

absolutely convergent. The force F
(A)
m acting on a particle m is bounded.

188 CHAPTER 7. HALFTONING

�

Nevertheless, this special case can again be of importance for discrete im-
plementations of the method, as we are going to see in Section 7.5.

7.3.3 Towards an Iterative Scheme

Let us now sum up the repulsive forces F
(R)
m and the attractive forces F

(A)
m

acting on a particle m, and call this force Fm:

Fm =

∫
Ω

kqmq(1− u(x))

‖x− pm‖
em,x dx−

∑
n∈IP
n6=m

kqmqn
‖pn − pm‖

em,n . (7.21)

In terms of halftoning, we are interested to find a state in which the forces
on all particles vanish. In the following, our goal is to use a particle system
to find this state. As a first step in this direction, let us briefly analyse the
objective, and refine (7.21). In halftoning, we are interested in the perfect
point distribution. This is a setting in which all regions contain a number
of particles proportional to their grey value. Thus, a desired property of
Fm is that it should vanish if a region is already properly saturated. For
simplicity, let us assume particles to be rendered in unit size. Then, we
obtain this state of electrostatic neutrality if we assume unit charges, i.e. if
we set all q, qm, qn in (7.21) to 1 C (Coulomb):

Fm = k′

∫
Ω

1− u(x)

‖x− pm‖
em,x dx−

∑
n∈IP
n 6=m

1

‖pn − pm‖
em,n

 . (7.22)

The new constant k′ = k
C2 , [k′] = 1N (Newton), accounts for the fact that

we removed the units from the charges.

Theorem 7.3 → Proof 8

The superposition of a circular homogeneous region with unit charge and a
single particle at its centre are electrostatically neutral. The force Fm on an
external particle m induced by this setup vanishes.

�

By this theorem, it follows that any region that is assembled from such cir-
cular primitives can perfectly be approximated by a point cloud such that
the whole setup behaves neutral to external particles. This construction
seems artificial and far from reality, because arbitrary regions can in gen-
eral not be densely tessellated with circles. However, if we additionally take

7.3. ELECTROSTATIC HALFTONING 189

Theorem 7.1 into account, we can give an tight upper bound for the maxi-
mal deviation from an ideal electrostatic neutrality state for any particular
region. Moreover, experimental results suggest that the electric neutrality
even carries over to inhomogeneous regions with arbitrary shape.

This is an important quality criterion for the arising halftoning process.
In our particle system, it means that only ‘imperfect’ regions attract or
repulse particles, depending on whether their grey value is under- or over-
represented. Neutral regions can even support particles in passing them, by
consuming a particle at one side, and emitting another one at the opposite
side. This ‘impulse’ mechanism allows for a very efficient equilibration of
unbalanced point densities, even over larger distances. The result of this
process is a point distribution in which all regions are optimally represented
by the right number of points.

Let us now use (7.22) to construct an iterative scheme that simulta-
neously minimises the forces acting on all particles. Such schemes are
well-known from physical simulations, in particular for computer graph-
ics [Ree83, Rey87]. In these cases, one assigns a mass to all particles, and
uses the equality of force to the product of mass and acceleration to com-
pute the accelerations to all particles. If this evaluation is performed in an
iterative framework, one can update the velocity of all particles based on
their current acceleration. This velocity vector weighted by a small artificial
time step size can then be used to translate their position. To this end, one
obtains a physically correct animation of the particles.

In the application for halftoning, we are not interested in the course of
the evolution, but in a steady state in which an equilibrium of forces holds.
Classical inertia-aware particle systems are in general unable to find such
state, since they might end up with particles residing on circular of elliptic
trajectories around the desired minimum. Such non-trivial states essential
to our solar system and to celestial systems in general. As a modification
to remedy these problems, we remove the association of velocity and mass
to particles. Instead, we perform an artificial time evolution in which the
particles are offset by the forces acting on them:

pk+1
m = pkm + τ

∫
Ω

1− u(x)

‖x− pm‖
em,x dx−

∑
n∈IP
n6=m

1

‖pn − pm‖
em,n

 . (7.23)

Here, superscripts denote the iteration number. Note that in comparison
to (7.22), the constant k′ is integrated into the artificial time step size τ .

This design follows our assumption that particles are massless and thus
abstracts from the inertia of mass. A side-effect of this concept is that the

190 CHAPTER 7. HALFTONING

process approaches the desired solution much faster than a physically cor-
rect system: Since we expect the global error to decrease with the number
of iterations, the force magnitudes are largest in the first iterations. In
contrast to an inertia-aware model where particles must first be accelerated
to reach a suitable velocity, they can freely move in this simplified model.
Moreover, there is no need to store the velocity of a particle in addition to
its position, such that memory requirements are diminished.

As it turns out, the process described by (7.23) needs one additional
refinement, as it can get stuck in a local minimum. Although such situation
seems to be rather theoretical, these states occur frequently in practice if we
consider a 2-D optimisation process. As a simple example, consider a 2× 2
checkerboard, where the two black regions have the charge of one particle,
each. It is easy to see that the ideal halftone is given by two particles at
the centres of the two squares. However, if we initially place these particles
on the centres of the white tiles, they never find their way into the black
regions: They are equally attracted to both black tiles and repulsed by the
sum of both forces, such that their current position is a local (but unstable)
minimum.

In our imagined setup of small particles moving on a glass plate, we
can easily solve such situations by performing slight knocks on the exper-
imental setup. These vibrations dislocate all particles by a small offset in
a random direction. For our checkerboard thought experiment, this means
that both particles have a preferred direction to pass the other particle,
and finally end up in the desired state. In our particle model, we can use
the same strategy to support a global convergence. To this end, the it-
eration is periodically interrupted after some iterations. Every particle is
then offset by a small vector whose direction and magnitude are selected
randomly from a uniform distribution. Since the magnitude shall not be
too large, the interval out of which it is drawn is bounded by a small value
that decays exponentially with the number of iterations. This ensures that
larger displacements are performed when the process is still far from the
solution, and still its convergence to a correct solution is not sacrificed. Ex-
perimentally, (−0.6 + 0.1 · log2(imax)) · exp(−i

1000
) proved to be a good choice

for the upper bound, where i denotes the current iteration, and imax is the
desired maximal number of iterations. Its shape was determined by practi-
cal considerations on the shape of the curve, and the numerical parameters
were empirically optimised on a test problem. Still, keep in mind that the
only requirements of the desired function are a sufficient elimination of local
minima in the first iterations, and a drop-off towards the end of the process.
Many other functions with these properties can provide a similar quality.

7.4. MODIFICATIONS AND EXTENSIONS 191

Let us now discuss the initialisation of the process, i.e. {p0
m | m ∈ IP}.

Because the process is stabilised with respect to local minima, all initiali-
sations lead to similar minima. This allows to distribute particles equally
over the image domain, or even to use the halftone of a different image with
the same average grey value. However, we can accelerate the process if we
place particles close to their prospective target locations. This is motivated
by a simple observation: If large potential differences exist in the system,
particles can travel large distances. Even though an optimisation of local
interactions takes place right from the beginning, it does not show effect
in these cases, since the large movements dominate. In turn, if regions are
already close to being electrically neutral, particles are only optimised in a
local neighbourhood. This leads to a fast convergence.

Clearly, the best initialisation would be given by the solution itself.
However, since this configuration is unknown for obvious reasons, good
choices are to use any other halftoning method, or to distribute particles in
a stochastic way proportional to the grey value of the image. The latter is
closely related to classical stochastic dithering approaches. In experiments,
both approaches show a similar behaviour and converge to equivalent re-
sults. However, the runtime can slightly vary as different halftoning algo-
rithms provide more or less qualitative initialisations. In order to provide
a better comparability of electrostatic halftoning to other methods, we are
thus going to use the stochastic approach in all experiments. By this, we
also prohibit a biasing of the solution by a — potentially better — initiali-
sation. The stochastic initialisation works as follows: First, we overlay the
image with an equispaced grid. As the input is usually stored in a discrete
manner, the separation into pixels already serves as a good candidate for
this purpose. For all particles in IP , we then randomly select a grid cell
from a uniform distribution until we find a cell that does not contain a par-
ticle, yet. We randomly pick a number between 0 and 1. If this number is
greater than the grey value of the image in this cell, we place the particle in
this cell. This causes more particles to be put into dark areas of the image
than in bright zones.

7.4 Modifications and Extensions

The model presented in the previous section can already be used for a
multitude of applications, such as for dithering, stippling, screening, and
sampling. Examples for this basic technique are shown in Section 7.7.1.
In many fields, it is among the best methods for its purpose and yields
very good results. However, since these applications differ in their details,

192 CHAPTER 7. HALFTONING

there are additional ways to tune and adapt the method towards these
special requirements. In this section, we see some of these modifications
and extensions.

7.4.1 Dithering

As the first modification, let us have a look on dithering. By historic and
technical reasons, this technique on discrete locations is still very frequently
used, but it is also very different to the basic approach of electrostatic
halftoning which we have explored so far. This is also the reason why we
handle this topic separately, as it can hardly be combined with any of the
following extensions.

If we think back to the beginning of this chapter, the adaptation of
electrostatic halftoning to grid-based dithering seems straightforward. Ap-
parently, it suffices to replace the rendering operator by a rasterisation as
in Definition 7.3, and the result yields discrete results. However, as it turns
out this approach does not lead to results of a sufficient quality. The reason
for this issue is that regular hexagonal patterns as they arise from the sam-
pling process cannot be well represented on the rectangular grid. This is
shown in Figure 7.2a. Even if we input a plain black image, some pixels of
the result do not contain any particles. Consequently, they are rendered in
white, although the solution should be entirely black. In the experimental
section of this chapter, we see more examples for this issue, and observe in
particular that such artefacts are even more severe in the midtone range (cf.
Figure 7.21). To this end, we learn that exchanging the rendering operator
is important, but does not suffice. A remedy for this problem can only be
found if we additionally change the sampling operator. We now discuss two
small changes which, jointly applied, lead to the desired result.

As a first step, we create an additional attractive force which pulls par-
ticles onto grid positions, i.e. into the centre of pixel cells. If dmx is the
vector from a particle m to the closest grid point x, this additional force
Fg,m is given by

Fgm = α · 1

1 + ‖dnx‖8
λ8

· dnx
‖dnx‖

, (7.24)

where the parameter λ = 1√
10

steers the drop-off of the potential depending
on the distance of the particle to the grid point x, and α = 3.5 weights the
influence of this new local force on the entire system. The magnitude of Fg,m
is motivated by the Perona-Malik diffusivity [PM87] and is almost constant
within a circle around the centre of a pixel. On the ridge between two
pixels, the force almost vanishes. Because the directional contributions are

7.4. MODIFICATIONS AND EXTENSIONS 193

�a �b
Figure 7.2: a. Wrong assignment of particles to pixels in the rasterisation of an
unmodified sampling result for a black image. b. Additional forces and projection
to pull particles to the grid.

equal in all directions, this force does not destroy properties such as electric
neutrality of correctly filled regions. Instead, it can be seen as a neutral
correction term to transfer hexagonal patterns into axis-aligned rectangular
structures. Figure 7.2 visualises this ‘egg crate shaped’ potential as fuzzy
black circles.

Although the new force Fgm steers the solution towards the desired
result, local minima still cause double assignments of particles to one pixel
cell. This effect arises from a desired property of the result: Rotational
invariance. Particles now move on an axis-aware force field, but they still
behave as in the continuous case, without any axis-aligned bias. This helps
the discrete result to carry over much of the quality from the continuous
solution, but also supports the establishment of unintended local hexagonal
structures. One example for this artefact is a particle residing at the meeting
point of four pixels with the surrounding pixels being occupied as well.
This is visualised in Figure 7.2b. As the diagonal repulsive forces do not
suffice to resolve this state, a trick can be applied to still yield the desired
result: Particles are only allowed to move along the grid lines that connect
the centres of pixels. In the implementation, this side constraint comes
down to one projection step to the closest point on the grid after every
iteration. In the figure, grid lines and projections are depicted by dashed
lines and red arrows, respectively. By tieing particles onto the grid lines,
and thus supporting the constructive superposition of forces, local minima
are successfully circumvented.

As we are going to see in the experiments (cf. Section 7.7.3), these
two modifications make the model yield discrete dithering results of higher

194 CHAPTER 7. HALFTONING

quality than state-of-the-art methods. Because both changes act only on a
local scale within the range of one pixel, global properties of the original
model are still well preserved.

7.4.2 Point Size Adjustment

Let us now come back to a continuous distribution of points. When we
derived the force Fm on a particle m ∈ IP in Equation (7.22), we made one
important assumption: Particles were assumed to be rendered in unit size,
i.e. with a radius r such that πr2 = 1. As it turns out, this assumption
can be a problem in the printing process because the point size depends
on technical parameters of the device. Moreover, a freely selectable radius
does not conflict with our definitions for halftoning. In fact, Definition 7.2
explicitly allows an arbitrary number |P | of points in P , and adapts the
radius such that the average grey value is preserved. By a variation of the
number of samples, it is thus possible to modify the radius. In terms of
electrostatic halftoning, this change can be represented by a modification
of (7.22) such that r becomes a free parameter.

To this end, we consider (7.21), and in particular the charges qm, qn of
the particles m,n. So far, we wanted them to equal the charge q of the
image, as the area of one particle was equal to the area of one pixel. This
changes if we consider larger particles. For example, let us consider particles
of area 2. Intuitively, we want them to behave as if two particles of unit
size are coinciding at one place. In other words, the charge of these new
particles must be twice as high as before. Generalised to arbitrary factors
λ, we obtain the dependency

λq = qm , (7.25)

with λ = r′ 2

r2 , where r, r′ describe the old and the new radius, respectively.
In the standard model, we assume πr2 = 1, thus

λ = πr′ 2 . (7.26)

From these considerations, we obtain the modified force F ′m acting on a
particle m as

F ′m =
1

λ2
k′

λ ∫
Ω

1− u(x)

‖x− pm‖
em,x dx−

∑
n6λ|IP |
n6=m

1

‖pn − pm‖
em,n

 . (7.27)

Compared to Fm from (7.22), two details change: After obtaining λ from
r′ according to (7.26), we adjust the amount of points |IP | such that the

7.4. MODIFICATIONS AND EXTENSIONS 195

average grey value of the new point set rendered with the new radius equals
the one of the old point set rendered with the old radius. Secondly, the
inverse image 1− u(x) must also be rescaled by λ to reestablish the charge
equilibrium between the repulsing point set and the attractive force field.

Note that the transformation of F ′m into an iterative update equation
as in (7.23) is straightforward. Moreover, since we are interested in the
steady state F ′m = 0, the constant factor 1

λ2 vanishes in the artificial time
step size τ . In Section 7.4.7, we develop this idea of different point sizes
further, and design systems in which particles with different sizes are jointly
optimised. While the need for a uniform adaptation of sizes has purely
technical reasons, such second order halftones are used both for technical
and for artistic purposes.

7.4.3 Grey Value Correction

To the beginning of this chapter, we saw that dark tones are not well rep-
resented in the final halftone. From Theorem 7.1, we learned that this
problem is a principle limitation of the rendering operator itself. It occurs
even if we consider a perfect sampling operator, and is due to using circles
as a structure element. To this end, it is impossible to find a dense tiling of
a large plane with circles of constant size. In this section, we remedy this
problem by a rendering-dependent preprocessing step.

As is mentioned before, the classic halftoning literature approaches this
problem by choosing circumcircles of regular hexagons [Uli87]. In a honey-
comb pattern, each partition of space is covered by at least one circle. Since
this action reduces, i.e. darkens, the average grey value of the whole result
in bright regions, a tonemapping operator is applied to the input prior to
halftoning. It artificially brightens up areas such that the ‘wrong’ halftone
using larger circles again well approximates the original.

Assuming a perfect sampling operator, i.e. one which distributes circles
in a perfect honeycomb pattern, we can apply a similar idea to correct grey
values in the range [0, 0.0931]. To this end, we artificially darken very dark
areas, sometimes even resulting in a negative grey value. Consequently,
more samples are drawn in these regions. Since their relative distances
must be reduced by the sampling operator to fit all circles in such areas,
they overlap more than usual and cover the area much better than before.

Theorem 7.4 → Proof 9

Given a perfect sampling operator and a tonemapping operator

T (x) =

{
1− π

2
√

3 c2
, x 6 1− π

2
√

3

x, else
(7.28)

196 CHAPTER 7. HALFTONING

with c chosen such that

π

2
√

3 c2

(
1− 6

π

(
arctan

(√
1

c2
− 1

)
− c
√

1− c2

))
= x , (7.29)

√
3

2
6 c 6 1 , (7.30)

the halftone of T (u(x)) is grey value preserving w.r.t. u(x), i.e.∫
Ω

H(T ◦ u,x)dx =

∫
Ω

u(x) dx . (7.31)

�

As it turns out, the challenging part in the application of Theorem 7.4
is the evaluation of (7.29) which has to be solved for c depending on x.
Because of the multiple occurrence of c in nontrivial functions such as the
arc tangent, this relation can hardly be inverted. However, it is possible
to evaluate the equation numerically for fixed x. This can easily be done
by the use of a computer algebra system. Since the input is often discrete,
we can thus compute a corresponding T (u(x)) for all u(x). Even more
importantly, the input data is often quantised to a few levels, such that we
can precompute all potential values in a lookup table. A sample table for
grey values quantised to 8-bit depth is shown in Table 7.1.

Note that the values in this table perfectly agree with the theoretical
framework given by Theorem 7.1: Below a grey value of 0.0931, there is no
c that fulfils both (7.29) and (7.30) which indicates that there is indeed no
overlap that has to be corrected. In these cases, the tonemapping operator
was thus designed to perform no modification on the image. Moreover, we
find that T (0.0372) = 0, i.e. a black tone renders as a homogeneous grey
value of 0.0372 — which is just the statement of Theorem 7.1.

Finally, let us remark that this extension is fundamentally different to
the approach of Zhuge and Nakano [ZN10]. Their method consists of a
modification to classic error diffusion stencils on rectangular grids, and aims
at a biasing of the halftone to form particle clusters on bright areas. By
doing so, the authors try to artificially brighten areas by enforcing overlaps
between particles such that the overall covered area is smaller. In contrast
to this idea, the method proposed in this section solves the problem already
at its root. It does so by locally adapting the number of particles according
to the natural overlap that arises in the process. Hence, it allows the process
to find the optimal solution without causing additional constraints about
the dot distribution.

7.4. MODIFICATIONS AND EXTENSIONS 197

Table 7.1: Lookup table for the grey value correction on 8 bit images.

u(x) 255 · u(x) c 255 · T (u(x)) T (u(x))

0.000000 0.0000 0.866025 -53.3459 -0.209200
0.003922 1.0000 0.893535 -34.6518 -0.135890
0.007843 2.0000 0.905129 -27.2789 -0.106976
0.011765 3.0000 0.914085 -21.7746 -0.085391
0.015686 4.0000 0.921665 -17.2408 -0.067611
0.019608 5.0000 0.928358 -13.3295 -0.052273
0.023529 6.0000 0.934415 -9.8621 -0.038675
0.027451 7.0000 0.939984 -6.7330 -0.026404
0.031373 8.0000 0.945163 -3.8726 -0.015186
0.035294 9.0000 0.950017 -1.2340 -0.004839
0.039216 10.0000 0.954596 1.2184 0.004778
0.043137 11.0000 0.958935 3.5098 0.013764
0.047059 12.0000 0.963063 5.6611 0.022200
0.050980 13.0000 0.967000 7.6873 0.030146
0.054902 14.0000 0.970765 9.6019 0.037654
0.058824 15.0000 0.974370 11.4144 0.044762
0.062745 16.0000 0.977827 13.1337 0.051505
0.066667 17.0000 0.981144 14.7663 0.057907
0.070588 18.0000 0.984327 16.3175 0.063990
0.074510 19.0000 0.987380 17.7912 0.069769
0.078431 20.0000 0.990305 19.1904 0.075256
0.082353 21.0000 0.993102 20.5168 0.080458
0.086275 22.0000 0.995763 21.7684 0.085366
0.090196 23.0000 0.998274 22.9402 0.089962
0.094118 24.0000 n/a 24.0000 0.094118

...
...

...
...

...

198 CHAPTER 7. HALFTONING

7.4.4 Jittering for Stippling

One important application of electrostatic halftoning is stippling. Long
before digital screening techniques were invented and could be technically
realised, stippled graphics were frequently used in academic textbooks: Be-
sides an accurate description of technical and biological objects with a high
level of detail, they put an additional focus on an aesthetic and pleasant
appearance of the results. Electrostatic halftoning clearly forms a good
basis for stippling algorithms, as it distributes particles well on the image
domain and still approximates the average grey value of the original very ac-
curately. Still, halftones produced by this method frequently contain spots
which are optimal with respect to their error to the original image, but
which unintentionally appear salient for a human observer.

These visual artefacts often occur in regions with a low but non-zero
image gradient. The human eye can hardly see these small fluctuations
of the grey value but they have a significant effect on the halftone: Let
us assume an edge between two regions that differ by a very small grey
value. By Kepler’s conjecture and Theorem 7.3, we know that each of
these regions is best described by a number of particles being arranged in
a regular hexagonal pattern. Since the size of the hexagonal patches each
particle occupies is proportional to the darkness of the respective region,
both hexagonal grids slightly differ in the pairwise distances of particles. If
these two grids meet at the edge in consideration, it is in general impossible
to connect both grids in the same absolute angle without introducing an
error at this point. Consequently, electrostatic halftoning finds states in
which these grids meet at a different angle, or even introduces irregular
distances in a small region in order to keep the global error low. Both cases
are striking to an observer, as the human eye is trained to spot deviations
from regular structures as salient features of an image.

From these considerations it becomes clear that we cannot remedy these
artefacts without allowing slight approximation errors. The challenge is to
improve the visual quality by removing all artefacts without sacrificing too
much of the algorithm’s quality. A good concept to handle these issues can
again be found in nature: Perturbations of the electric field. Apart from
other causes, such effects occur because electric conductors are subject to
thermal agitation. This electronic noise has first been described by John-
son, and was later explained by Nyquist [Joh28, Nyq28]. For the resulting
electric field, this means that the electric field is perturbed over time by
Gaussian noise with a small magnitude in an arbitrary direction.

We can use a very similar approach to avoid artefacts in stippled results.
Since we are interested in a steady image rather than an oscillating state, we

7.4. MODIFICATIONS AND EXTENSIONS 199

modify this idea by taking a snapshot of the perturbation field to a random
time, and by keeping this state constant over the evolution of the particles.
By this change, the perturbation no longer counteracts the convergence of
the process. Hence, even with small time steps τ , the system can run into
a minimum and is still perturbed to a sufficient degree. Moreover, we can
improve the quality of the results if we only apply perturbation to relatively
flat areas: Textured regions do not suffer from the aforementioned artefacts,
and strong particle displacements would unnecessarily increase the error
between the solution and the image that is to be approximated.

To this end, we create a ‘smooth’ white noise field by adding small dis-
placement vectors at the grid locations and by interpolating bilinearly in
between them. The additional smoothness assumption supports the con-
vergence of the particle system without impairing the desired jittering of
the result. In order to obtain suitable displacement vectors, we first draw
two random variables a, b from a 2-D zero-mean normal distribution with a
small standard deviation ψ that is truncated at 1 to avoid infinitely large
displacements. The resulting displacement vector v is then obtained from
an anisotropic weighting with the image gradient ∇u:

v(x) =

∣∣∣∣〈(ab
)
,∇u(x)

〉∣∣∣∣ (ab
)
, (7.32)

where 〈·〉 denotes the inner product. In the implementation, a and b can
easily be obtained using a random generator for uniform distributions and
the Box-Muller transform [BM58]: First, we choose a direction angle α from
a uniform distribution over [0, 2π). Then, we compute the length l of the
vector as l = ψmax(1,−2 ln(x)), where x is a second random variable from
the uniform distribution over (0, 1]. After the length has been weighted by
the projection of the image gradient, both values are transformed back into
Cartesic coordinates. In experiments on a unit grid with unit area particles,
all visible artefacts already disappear for ψ ≈ 2.5 ·10−2. However, ψ should
also not be chosen too large: For ψ > 5 · 10−2, results reveal a noticeable
graininess, in particular within dark regions. In Section 7.7.3, we see some
example for this issue.

As it turns out, this extension only marginally affects the overall runtime
of the process. The electric field E remains constant over the evolution
of the particles, as we assume the image to be constant in time. At the
other hand, the attractive force F

(A)
m from (7.19) depends linearly on E

(by F = qE in (7.15)), such that F
(A)
m is constant over the evolution as

well. Any vector field added to E can thus be interpreted as an additional
zero-mean force term Fp which can be precomputed at the beginning of the
program run and kept constant over the evolution. The dense vector field

200 CHAPTER 7. HALFTONING

can then be represented by a matrix which is sampled sufficiently fine and
which is bilinearly interpolated to obtain perturbation values at arbitrary
position.

Finally, let us note that other distribution functions for the choice of v
are proposed in the literature. In [SGBW10], the length of the vector is
chosen from a uniform distribution. Although this difference remedies the
required cutoff of the probability density function, the faster drop-off of the
probability density function causes more offsets to be chosen close to zero.
Still, the results obtained with this less physically justified model are very
similar to the ones yielded by the framework described above.

7.4.5 Edge Enhancement

In the definition of halftoning at the beginning of this chapter, we aim at
an accurate representation of the original image. However, in particular
when it comes to stippling, this property is often not desired. Instead,
many halftoning techniques try to create perceptionally similar results by
showing what people expect to see rather than what is actually in the
image. While both approaches usually agree in flat image regions, they
can differ significantly in textured areas: Halftones that approximate the
true grey value are often perceived as blurred-out. This illusion comes
from the fact that high frequencies can only be represented within the
technical limitations of the rendering operator. For electrostatic halftoning,
this means that the steepness of edges depends on the size of the rendered
dots, as well as on the pairwise distance between particles. In the literature,
these effects are remedied by an introduction of artificial high frequencies
across edges. This is either done by a direct modification of the input
image [JJN76, JR76, Stu81], or by additional structure enhancement in the
halftoning method itself [EK91, GRS93, PQW+08].

In the context of electrostatic halftoning, both approaches lead to a
similar implementation. If we consider non-turbulent attractive force fields
with classical potential sources and sinks, any additional attractive or re-
pulsive force directly comes down to a modification of the input image.
On the other hand, turbulences are bad for the convergence of the particle
system anyway. They could ‘trap’ particles on a fixed trajectory of equal,
but maybe not minimal, energy. To this end, we can safely assume edge-
enhancement to be applied as an operator to the input image rather than
an additional structure-enhancing force term.

The particular edge-enhancement operator included in the early dither-
ing literature is known as unsharp masking or high boost filtering [JJN76,
Stu81, GW08]. This method goes back to an old darkroom technique in

7.4. MODIFICATIONS AND EXTENSIONS 201

which the contrast of an image was virtually increased by exposing an pho-
tographic paper jointly with a negative and its blurred positive. The latter,
called the mask, was obtained by a previous exposure step with a thin glass
plate that blurred the image by distorting the trespassing light. By this
technique, the contrast along an edge is locally increased, because grey val-
ues along the edge are shifted parallel to the image gradient. Thus, dark
areas are darkened towards an edge to a bright area, and vice versa. In
digital image processing, this technique comes down to creating a mask as
the difference of an image and its blurred version, and by adding this mask
to the original.

Given an image u : Ω→ R and a Gaussian Kσ with standard deviation
σ, the mask g : Ω→ R is created as

g(x) = u(x)− (Kσ ∗ u)(x) , (7.33)

and is then added to the original using a weight c:

û(x) = u(x) + c · g(x) (7.34)

This process has two parameters σ and c as degrees of freedom. While the
standard deviation σ steers the radius of influence, c steers the amount of
grey values that are transported. In the literature, one often finds the term
‘high boost filtering’ for c > 1, and ‘unsharp masking’ for c 6 1. During
discretisation, both steps (7.33) and (7.34) can be unified into one operator.
For dithering, the authors use small stencils with radius 2 [JJN76, JR76,
Stu81]. However, since this choice was motivated by the fact that these
methods return discrete results with unit pixels, the best values for σ and c
depend on the problem. In experiments on a unit grid with circular points
of unit area, σ ≈ 0.6 and c ≈ 1.0 give reasonable results on most images
(cf. Section 7.7.3).

Finally, let us note that unsharp masking does not fulfil the minimum-
maximum principle, i.e. values in the codomain of the filtered image can
exceed the range of the codomain of the original image. Although the
halftoning process still works on such images, extremal values can nega-
tively affect the overall appearance of the result. This is closely related to
the considerations we made in context of grey value correction (cf. Sec-
tion 7.4.3). Depending on the application and the used rendering function,
it can thus be advisable to clamp the preprocessed image prior to halftoning.

7.4.6 Colour Halftoning

Let us now lend some colour to the model. Many applications require the
reproduction of images in their full range of colours. The problem arising

202 CHAPTER 7. HALFTONING

in this case is very similar to the black and white setup. Again, there are
only a small set of different inks available which cannot be mixed before
they are transferred onto the medium. Instead, each ink is applied in single
dots, such that the overall appearance of all colours taken together shall
best approximate the original image. The inks used in this process must
be chosen such that all desired colours can be approximated using this
technique. Since we do not know a priori which pigments are used in
this process and what their physical and chemical mixture properties are,
we cannot detail on the exact range of colours that can be reproduced.
However, as a simple model, it often suffices to assume that colours mix
linearly up to the maximal saturation of the used pigments. Let us represent
each pigment by a vector in a multi-dimensional colour space. The range of
printable colours is then given by the subset of linear combinations of these
vectors which, projected to any pigment vector, do not exceed its length.

Multi-colour halftoning is simple if the supported colours are linearly
independent, i.e. orthogonal. In this case, the problem decomposes into sev-
eral one-dimensional problems. A trivial example is the grey valued case,
which is by itself linear. For full-colour prints, both the cyan-magenta-
yellow (CMY) and the red-green-blue (RGB) model fulfil this assumption.
The subtractive CMY model is applied for reflective systems, such as paint
on paper, while the additive one is used where the colour of light is to be
mixed, such as it is for monitors. The latter one is less frequently used
in the last years because modern displays usually support a broad colour
range. Even the CMY colour model, which was frequently used in early
desktop printers, lost much of its importance in recent times. It was re-
placed by more complex models such as CMYK. This model complements
the traditional CMY approach by an additional ‘black’ channel. In the fol-
lowing, we consider an achromatic composition in which black replaces the
common grey partition of the classic channels. This accounts both for tech-
nical and economical reasons in the printing process [Kip01]. When using
liquid ink, paper is less soaked through in dark areas. Moreover, there are
no ideal inks. This means that the mixture of cyan, magenta, and yellow
often yields a brownish shade rather than a truly black colour. This is of
particular importance as black is frequently appearing as a printing colour,
such as for text. Finally, the application of one ink instead of three helps
to reduce printing costs.

The main challenge of many-colour printing such as CMYK is that inks
used in this model are no longer independent. This means we are no longer
allowed to halftone channels independently of each other. To overcome this
problem for electrostatic halftoning, we assign particles to classes. Each
class contains the subset of all particles which share the same colour. All

7.4. MODIFICATIONS AND EXTENSIONS 203

particles of one class behave in the same way, such that they become indis-
tinguishable. In order to model the repulsion between particles of different
classes, we introduce the concept of interaction matrices. Interaction ma-
trices are symmetric square matrices which contain one row and column per
class. A zero entry indicates that two classes are independent of each other,
while a non-zero entry shall be read as a weight to the force acting on a
particle from one class when it is repulsed by a particle of the other class.
For the moment, we design attractive and repulsive forces to be symmetric.
This means the same matrix is applied to both repulsion and attraction.
However, later in this chapter we also see other applications in which this
requirement is intentionally dropped (cf. Section 7.4.7).

In an orthogonal colour space, the interaction matrix is simply given
by the identity because all particles interact with other particles of the
same class, but not with any other particle. For more complex systems
such as CMYK, the off-diagonals become nontrivial to model interactions
between particles from different classes. In such cases, we can decompose
the interaction matrix into a linear combination of an identity matrix and
a non-overlap map. While the first part covers interactions of particles of
the same class with each other, the second part takes care that particles
of different class only overlap where desired. For example, let us consider
an achromatic CMYK colour space. It can be computed from the CMY
model by making the black K channel take over the grey partition of all
channels [Kip01]. Speaking of particles, this means that we introduce the
new class of black (K) particles as a ‘stack’ of three different chromatic
particles. To this end, a given colour vector (c,m, y)>CMY in the CMY model
is transformed to CMYK by using an achromatic decomposition [Kip01]: c

m
y

CMY

=

c−min(c,m, y)
m−min(c,m, y)
y −min(c,m, y)

min(c,m, y))

CMYK

. (7.35)

For such a CMYK vector, the interaction matrix is set up as

ϕ

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

︸ ︷︷ ︸
weighted identity

+

1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 1

︸ ︷︷ ︸

non-overlap map

=

1 + ϕ 0 0 1

0 1 + ϕ 0 1
0 0 1 + ϕ 1
1 1 1 1 + ϕ

︸ ︷︷ ︸

interaction matrix

.

(7.36)
The non-overlap map arises from the fact that, by (7.35), a black particle
represents the union of all chromatic colours. To this end, we neither want

204 CHAPTER 7. HALFTONING

�a

C M Y K

C 2 0 0 1
M 0 2 0 1
Y 0 0 2 1
K 1 1 1 2

�b

C M Y R G B K

C 2 1 1 1 1 1 1
M 1 2 1 1 1 1 1
Y 1 1 2 1 1 1 1
R 1 1 1 2 1 1 1
G 1 1 1 1 2 1 1
B 1 1 1 1 1 2 1
K 1 1 1 1 1 1 2

Figure 7.3: Interaction matrices for a. CMYK and b. CMY-RGB-K.

a particle of a chromatic colour to overlap with a black particle, nor do
we desire two particles of the same colour to overlap. In contrast, it is
well desired that different chromatic particles overlap, thus the zeroes at
the respective entries. Since a good distribution of particles of one colour
and the non-overlap property are conflictive, the free parameter ϕ acts as
a weight to find a compromise. Experimentally, ϕ = 1 proves to be a good
choice. In this case, the interaction matrix comes down to the one shown in
Figure 7.3a. To simplify readability, also in respect to further extensions,
it has been written in tabular form with the colour abbreviations as indices
to both rows and columns. Still, it is to be interpreted as a matrix that can
be multiplied to a column vector in the respective colour model.

Note that besides this multiplicative impact of the parameter ϕ, it can
also be applied additively [Sch11]. This leads to weights (1− ϕ̃) and ϕ̃ for
the two matrices. While the case ϕ̃ = 1/2 is equivalent to ϕ = 1 from above,
the advantage of this choice lies in the better numerical reproducibility of
the extremal case ϕ̃ → 1, which is given by ϕ → ∞ in our case. However,
since this case is usually not considered in real applications, we can stay
with our simplified notation. Later in this chapter (cf. Section 7.4.8), this
choice also helps us to write up more complicated interaction matrices in a
relatively concise manner.

The implementation of a colour halftoning process is simple. First, the
input image is converted to the CMY colour space and decomposed into
CMYK using the achromatic split as in (7.35). Then, all channels are
initialised with an appropriate number of particles, while the non-overlap
map is used to avoid overlaps right from the beginning. Finally, the system
is jointly optimised for all colours, where interactions between any two
particles are weighted by the corresponding entry in the interaction matrix.

Interestingly, this multi-colour halftoning concept is much more versa-

7.4. MODIFICATIONS AND EXTENSIONS 205

tile as it seems at first glance, and can even be extended to an arbitrary
number of colours. This is important for modern desktop inkjet printers,
but also for artistic purposes such as digital pointillism. In both cases,
the available inks or pigments are only able to reproduce colours that lie
within a certain subspace of the full colour space, their gamut. Adding more
pigments enlarges this region and provides the opportunity to tune the ap-
pearance of printed images to more closely resemble the human impression
of the depicted scene. In advertisements for printers, this property is often
announced as the ‘brilliancy of colours’ the printer is able to produce. How-
ever, experiments also show that the number of available printing colours is
usually limited by a loss of spatial resolution in the result. In Section 7.7.3,
we go into more detail about this issue.

As one example for a more involved model, let us consider a CMY-RGB-
K colour space as it is supported by many large scale printing machines.
Similar to the achromatic decomposition into CMYK, we can further split
away R from M and Y, G from C and Y, and B from C and M. For CMY-
RGB-K, this split is unique and commutative. For the non-overlap matrix,
several choices are possible and valid. However, since all combinations of
chromatic colours are already present as distinct particles, it is suitable to
forbid any overlaps. This comes down to choosing the non-overlap matrix as
17×7. With ϕ = 1, we eventually obtain the matrix depicted in Figure 7.3b.
We see in Section 7.7.3 that this theory can easily be extended to many other
colour models, such as ‘asymmetric’ CMY-RG-K or CMY-RB-K models as
they are used in modern desktop printers.

Whenever a unique split into the required number of colour classes is
impossible, we can assume additional constraints that resolve ambiguities.
One toy example for a better understanding of this issue can be constructed
by removing the K component from 7-colour printing, thus obtaining in a
CMY-RGB model. A black region must then be expressed by a combina-
tion of other colours, but this combination cannot uniquely be computed by
an achromatic decomposition as above. In fact, a red-cyan overlay perform
as well as a green-magenta or a blue-yellow overlay. Even a linear combi-
nation of these pairs, such as 30% red-cyan and 70% green-magenta, still
fulfil the concept of achromatic decomposition. Thus, we need additional
constraints that steer the colour space transformation towards a unique so-
lution. Usually, simple concepts such as a minimisation of the L2 norm of
the arising colour vector suffice to obtain a good solution. In terms of the
simple CMY-RGB example, this strategy would cause black to be uniquely
represented by (1/3, 1/3, 1/3, 1/3, 1/3, 1/3)CMY−RGB. Similar ideas can also be ap-
plied to more complex models, such as palettes with many different shades
of red or green, but finding the solution is more tedious in these cases.

206 CHAPTER 7. HALFTONING

7.4.7 Second Order Screening

In the previous section, we laid the foundations for the application of elec-
trostatic halftoning to printing processes. In order to enable this method
for being used as a preprint stage in large-scale printing processes, we now
address the technical problem of dot loss, and the minimisation of such
effects by a tailored adaptation of electrostatic halftoning to this issue.

Dot loss occurs for different reasons, and is more likely the smaller the
dot to be printed is. In laser printers, the inhomogeneous electrostatic
attraction of toner particles is a typical reason for this issue [Kip01]. In
bright regions, it can happen that the transfer unit attracts less toner par-
ticles than necessary to create a specific grey value, which causes small dots
not to be printed at all. A similar effect can be observed for other printing
techniques if paper with a higher graininess is used. In this case, small
dots possess different reflectance properties depending on whether they are
printed on top or on side of a paper fibre. Both scenarios have in common
that only very small dots are affected. Large dots are printed in any case,
and since their areas overlap whole paper fibres, they are also less subject
to changes in reflective properties.

In the printing industry, people frequently address this problem by
choosing different dot sizes and aim at a distribution of all types of dots
over the whole image domain. In comparison to AM and FM screening,
this technique is usually called hybrid screening or second-order (frequency-
modulated) screening [Kip01]. Since large dots are perceived as clusters
of smaller dots, these results look more grainy than first-order halftones.
However, they have also fundamentally different spectral properties. High
frequencies vanish, and the results obtained by such methods are often
classified as green-noise halftones as opposed to standard halftones which
possess blue-noise characteristics [LAG98, LA08]. The goal of the exten-
sion we are going to discuss in this section is to complement the idea of
electrostatic halftoning by the additional option of different inkblot sizes
to obtain such results. As a by-product of these considerations, we also
obtain an interesting effect filter which can be used for many applications
in the field of non-photorealistic rendering. For simplicity of notation, let
us first consider two classes, each containing particles with one constant
(but class-wise different) size. Later, we generalise this model to arbitrarily
many classes.

From the electrostatic motivation in Section 7.3 and the optional point
size adjustment in Section 7.4.2, it seems obvious to regard large particles
as clusters of smaller ones. This comes down to a repulsion that is pro-
portional to the areas of the participating particles. To this end, a particle

7.4. MODIFICATIONS AND EXTENSIONS 207

�a �b �c
Figure 7.4: Comparison of different repulsion models for second order screening.
a. No bias. b. Bias on both the small and large particles. c. Bias only on large
particles.

with an area of size x and a particle with area 1 repulse x times stronger
than two unit particles. Two large particles, each with area x, repulse x2

times stronger than two unit particles. However, such a naive mass-based
approach turns out to be insufficient to obtain the desired solution. The
reason is that, if we observe the result from a larger distance, all that can
be identified as a single object are the larger dots, while smaller dots are
already blurred out. However, we do not require a certain distribution of
large dots so far such that we can replace any set of n small dots by one big
dot and vice versa. This leaves the algorithm the freedom to form extremal
cases, like assigning all big dots to one side of the image, and all small dots
to the other. Figure 7.4a shows this issue for a constant grey value of 60/255.

A natural remedy to this problem is to regard the particle system as
a linear combination of all single-class interactions on the one hand (small
with small, large with large), and the complete interaction on the other.
This comes down to weighting the main diagonal of the interaction matrix
with small constants that are larger than 1. The desired result would be
one in which all sets of equally-sized particles, as well as the whole of all
particles each provide a good approximation of the image. If we speak in
terms of interaction matrices, such design is equivalent to multiplying the
same constant factor to all entries on the main diagonal.

Surprisingly, also this approach does not yield an optimal solution. To
understand the fundamental problem, let us consider the setup depicted in
Figure 7.4b. Here, all three contributions were equally weighted, i.e. we
expect the set of large particles, the set of small particles, and the complete
set to give equally good approximations of the underlying density. However,
the latter two constraints are in conflict. While the smaller particles must
distribute equally in order to yield a good per-class approximation, they
must at the same time leave gaps for the larger particles such that the

208 CHAPTER 7. HALFTONING

S L

S A2
S ASAL

L ASAL CA2
L

K
+

AS (1 + wL(C − 1))AL

Figure 7.5: Interaction matrix for the interaction between small particles (S)
with area AS, and large particles (L) with area AL.

overall particle cloud gives good results. Such a setup is impossible, and
the establishing compromise contains overlapping small and large particles
(cf. Figure 7.4b). These gear-like structures are certainly undesired for all
applications, because they appear noisy and do not preserve the average
grey value.

One solution to all of these problems is to drop the constraint of a good
distribution of small particles in favour of the remaining constraints. As
a consequence, only the whole set and its partition of large particles are
required to distribute well. The small particles distribute such that these
requirements are fulfilled, and have only a small impact on the placement
of large particles. The sketch in Figure 7.4c shows such a setup which has
a similar appearance to the unconstrained case in Figure 7.4a, but features
a uniform distribution of large particles.

The interaction matrix required to obtain such results is shown in Fig-
ure 7.5. Different to colour halftoning, particles of all sizes are attracted by
the same force field. This is the reason why we now distinguish a repulsive
part (S, L vs. S, L), and an attractive part (K+ vs. S, L). The attractive
part arises from the fact that the charge density of the image is normalised,
i.e. the area of the (virtual) interaction partner K+ has unit size: AK+ = 1.

Note the constant C as the important difference to the unconstrained
model. It steers the influence that small particles have on large ones. The
weight wL describes the quotient of the area covered by large particles over
the area covered by all particles, and is required in order to keep the system
electrically neutral. It increases the attraction of large particles to compen-
sate for the amount of additional repulsion caused to them by the other
large particles:

(1− wL) · AL + CwLAL (7.37)

= (1 + wL(C − 1))AL . (7.38)

If C ≈ 1, large particles are pushed away if a cluster of small particles can
yield a better approximation. For C ≈ 2, we obtain a state as in Figure 7.4c,

7.4. MODIFICATIONS AND EXTENSIONS 209

where the structure of large particles can be slightly distorted in order to fit
full clusters of small particles in the arising gaps. Finally, if we choose C �
2, large particles are forced to align in an optimal arrangement, regardless of
whether small particles can fill the gaps or not. A more thorough evaluation
of these issues is given in Section 7.7.3 (cf. Figure 7.39). We are going to
see that the choice C = 2 can effectively suppress gear-like structures while
still allowing a high quality of the results.

Finally, let us remark that this concept for second order screening can
be generalised to an arbitrary number of different classes. To this end, we
simply configure the system with respect to three sets of variables, and
maintain different weights CM , CL for the medium and the large particles,
respectively:

1. Sizes of particles. In some applications, these dimensions are already
prescribed by technical limitations of the device. Where it is not, a
smart tradeoff must be found. If particles differ only marginally in
size, second order screening does not have any benefits over classical
electrostatic halftoning. On the other hand, the ratio between the
smallest and the largest particle must also not be too large, as un-
pleasant ‘halo’ artefacts can occur. We see examples for this issue in
in Section 7.7.3.

2. Amounts of particles. We must find a ‘good’ ratio between large
and small particles, such that enough small particles are available
to fill the gaps between the larger ones. Still, we must introduce as
many large particles as possible, because the human eye easily spots
single occurrences of large particles as salient points. Experimentally,
wS = 2/3, wL = 1/3 yield good results. For three classes, this concept
carries over to wS = 2/3, wM = 2/9, wL = 1/9, and so on.

3. Priorities of particles. Cx should be chosen as an ascending series,
with CS for the smallest class being 1. The powers of 2 seem to be a
good choice, i.e. for three classes CS = 1, CM = 2, CL = 4.

Figure 7.6a shows the arising interaction matrix for three classes, where Cx
was chosen as above. Part b shows the arising patterns on a flat image of
grey value 100/255, with areas AS = 1, AM = 3, and AL = 5. We see that
the largest particles are best distributed, although they are not on a perfect
grid. The other two classes fill up the spaces left by the more prioritised
class, and establish regular grid patterns where possible. In Section 7.7.3,
we perform some experiments on real-world images, and evaluate the choice
of parameters in detail.

210 CHAPTER 7. HALFTONING

�a

S M L

S A2
S ASAM ASAL

M ASAM 2A2
M AMAL

L ASAL AMAL 4A2
L

K
+

AS (1+1wM)AM (1+3wL)AL

�b
Figure 7.6: Second order screen with three classes (AS = 1, AM = 3, AL = 5).
a. Interaction matrix. b. Arising patterns for each of the classes.

7.4.8 Multi-Class Sampling

Both multi-colour halftoning and second order screening are based on a
force matrix that weights the interplay between their actors. As it turns
out, force matrices are a very flexible and powerful tool when it comes
to the placement of heterogeneous objects on canvas. In such cases, one
often considers much more complex rendering operators than one that only
draws dots. We can use our generated samples as placeholders for people
at a public place, cattle in a meadow, or trees in a forest. This class
of techniques is usually referred to as object placement and is frequently
used in the generation of photo-realistic scenes in computer graphics [RB85,
DHL+98, CSHD03, SAG03, PH10]. If 2-D sprites are distributed, one often
calls this process procedural texture creation. The resulting images can be
arbitrarily large without any periodicity and are usually used for texturing
large objects or ground planes in 3-D scenes [Per85, LD05]. Samples can
also describe locations at which environment maps are sampled in order
to simulate correct illumination and shadowing of scenes [CD01, ARBJ03,
KK03]. The brighter the environment map at a specific point, the more light
sources are allocated for this area such that the all objects are illuminated
according to this virtual environment.

All these examples have in common that we are no longer interested in
the rendering operator as it depends only on the application (and perhaps
artistic considerations). Instead, we focus on the extended sampling opera-
tor that forms a uniform basis for all approaches. As it is for second order
screening and colour halftoning, each dot is now assigned properties such as
object type and size. This is the reason why all these approaches are com-
prisedly called multi-class sampling. By assigning and configuring classes

7.4. MODIFICATIONS AND EXTENSIONS 211

�a �b
Figure 7.7: Sampling of a. a single-class density showing the logo of the MIA
group with b. daisies in three sizes. Daisy sprite by André Karwath, CC-BY.

of objects and their interactions, we can model any setup that requires a
locally adaptive distribution of heterogeneous samples on a plane. This is
done by generalising different extensions such as multi-colour halftoning,
second order screening, and jittering into one general and versatile concept.

Let us use a simple example from object placement to discuss the neces-
sary modifications for a general multi-class sampling framework. Assume we
want to distribute flowers on a flower field, and ‘plant’ them according to a
predefined probability of presence. In order to make this scene look natural,
we want these flowers to vary in size and shape, and to be well distributed.
By the latter aspect, we require nearby plants not to overlap, as they would
not do so in nature either, and to approximate the desired charge density
best possible. A classic approach in the literature is to distribute objects
independently from their size [LD05]. However, this approach is nothing
more than a workaround, since it only works if the variation of sizes is small
enough such that the wrong placement is not recognised by the observer.

If we only regard one class of objects, second order screening and a
new rendering operator can already give reasonable results. One example
of how such image can look like is given in Figure 7.7. It shows a binary
image rendered with daisy sprites on a grass texture. In order to make the
appearance more natural, we use sprites in three different sizes and rotate
each individual sprite by a random angle to avoid regular patterns.

Let us now extend this idea to an arbitrary number of different classes

212 CHAPTER 7. HALFTONING

of objects. In such mixed setups, we want ‘good’ distributions of

1. each individual class of objects, and

2. all power sets of these classes (including the entire set).

Within each of these sets, we additionally require the properties known
from second order screening. This means that if we take the subset of all
objects larger than a certain threshold from any of the aforementioned sets,
they must again be well distributed.

These requirements are very restrictive, but they can easily be approx-
imated if we assemble the underlying interaction matrix from known con-
cepts. To this end, we interpret the different classes of objects as colours
that may or may not interact with any other class. Within each class, we
can have an arbitrary number of particles that underlie the laws set up
in context of second order screening. If we re-use the idea of interaction
matrices (see (7.36)), we can again write the interaction matrix as a linear
combination of a weighted self-interaction matrix and a non-overlap matrix.
However, both matrices are now block matrices with second order screen-
ing sub-matrices where an interaction shall happen, and zero sub-matrices
where no interaction takes place. The attractive interactions for all classes
then follow by straightforward computations.

Let S be the repulsive part of a second order screening interaction matrix
such as in Figures 7.5–7.6. If all n classes of particles have the same size
configurations, and all classes interact with each other, we obtain

ϕ · In ⊗ S︸ ︷︷ ︸
weighted block
diagonal matrix

+ 1n×n ⊗ S︸ ︷︷ ︸
non-overlap

map

=

(1+ϕ)S S . . . S
S (1+ϕ)S S
...

. . .

S S (1+ϕ)S

︸ ︷︷ ︸

interaction matrix

.

(7.39)
In this context, In denotes an identity matrix of size n× n, 1n×n a matrix
of the same size whose entries are all 1, and ⊗ represents the Kronecker
product [BSMM08]. Independence between two classes can be expressed
by replacing the respective sub-matrices in the non-overlap map by a zero
block, i.e. by exchanging 1n×n by a suitable other matrix. Objects of these
classes are then allowed to overlap and do not interact at all. In the same
style, it is possible to weight the interactions between different classes by a
scalar multiplied to the respective block. However, all modifications to the
non-overlap map must preserve its symmetry, and the interaction entries
for attraction must be adjusted accordingly.

7.4. MODIFICATIONS AND EXTENSIONS 213

Sa La Sb Lb

Sa (ϕ+1)A2
S (ϕ+1) ASAL A2

S ASAL

La (ϕ+1)ASAL (ϕ+1)CA2
L ASAL CA2

L

Sb A2
S ASAL (ϕ+1)A2

S (ϕ+1) ASAL

Lb ASAL CA2
L (ϕ+1)ASAL (ϕ+1)CA2

L

K+
a (ϕ+1)AS (ϕ+1)(1+wL,a(C−1))AL AS (1+wL,a(C−1))AL

K+
b AS (1+wL,b(C−1))AL (ϕ+1)AS (ϕ+1)(1+wL,b(C−1))AL

Figure 7.8: Second order multi-class sampling interaction matrix for two classes
a, b and two object sizes AS, AL.

As an example for an interaction matrix, assume a setup with two classes
a, b of objects and two possible object sizes AS and AL. The arising interac-
tion matrix is shown in Figure 7.8. Its block structure is clearly visible. As
before, wL,a and wL,b describe the fraction of area covered by large particles
within classes a and b, respectively. The two parameters ϕ and C can be
freely chosen, and steer priorities of one sub-class of objects over another.
As for second order screening, the constant C describes a priority of large
particles over smaller ones. Even more than it is for second order screening,
its choice depends on artistic or application-dependent arguments rather
than on measurable concepts. A rising series such as the powers of two
again gives very good results. However, because for multi-class sampling,
all objects interact with all other objects, C now implicitly also controls the
priority of large objects of one class over small objects of another. We see
examples for this case in Section 7.7.3. The choice of the reflexive weight
ϕ follows the same motivation as for colour halftoning. If it is chosen close
to zero, the total density is well approximated while the densities for each
class are badly represented. If it is chosen close to infinity, the opposite
is the case. Hence, a good compromise is given by ϕ = 1. Again, we see
examples in Section 7.7.3.

To this end, note that the combination of interaction matrices for sec-
ond order screening and colour halftoning represents a very powerful frame-
work for all kinds of adaptive sampling and halftoning. Both second order
screening and colour halftoning are instances of this flexible model. This
observation implies two important consequences:

1. Multi-class multi-size sampling is a versatile framework for many
applications such as colour halftoning, digital pointillism, second or-
der screening, and multi class sampling. It can easily be adapted and
configured for future application cases. Moreover, it is possible and
often mandatory to combine this general methodology with other ex-

214 CHAPTER 7. HALFTONING

tensions such as discrete dithering (cf. Section 7.4.1), or jittering (cf.
Section 7.4.4). By this, it is well possible to extend the scope of the
method into areas such as digital sensor design [Wei10], image-based
lighting [KK03], discrete second order screening [LA08], or multi-class
blue noise sampling [Wei10].

2. Principle limitations from colour halftoning and second order screen-
ing carry over to this case, and can even exacerbate each other. In a
setup with particles of n classes and m different sizes, n ·m types of
particles must be distributed such that all of them fulfil multiple opti-
mality constraints — which is in general impossible without allowing
for compromises. The more types are available and the less particles
are included in each individual type set, the more this issue reduces
the quality of the final result.

This finishes our excursion about modifications of the electrostatic halfton-
ing model from Section 7.3 for special purposes. The multitude of exten-
sions presented here gives a good impression of the flexibility of electrostatic
halftoning for a whole range of applications, which do not even need to be
closely related to the original idea. To this end, the given list of extensions
should not be regarded as comprehensive, but should instead be seen as
a motivation to develop and introduce even more modifications that carry
over the quality of electrostatic halftoning to similar applications.

Let us now focus on some technical aspects of electrostatic halftoning.
In the following, we discuss two GPU-based algorithms for this purpose,
and go into detail about their special adaptations to obtain a high runtime
efficiency.

7.5 Direct Summation Algorithm

Electrostatic halftoning is an iterative process which requires an update of
all particle locations within each iteration. For each particle m and iteration
number k, the update is given by (7.23). It consists of two computationally
intensive parts:

1. Computation of the attraction field based on the input image u.

2. Evaluation of the repulsion acting between particles.

The repulsive force acting on a particle m depends on the position of all
other particles. It changes in every iteration if any of the particles move.
As it turns out, this does not hold for the attractive forces. They depend on

7.5. DIRECT SUMMATION ALGORITHM 215

the position of the particle m itself, and on the image u which is constant
over all iterations.

We can benefit from this fact if the image u is sufficiently smooth.
By (7.19), this smoothness carries over to the (dense) force field {F (A)

m }m∈IP .
Hence, we can precompute the force field at a sufficiently fine grid to the
beginning of the program run, and interpolate to obtain an approximation
at an arbitrary location. Fortunately, this modification does not even intro-
duce an additional error in most cases, because the image u is either already
stored in a discrete manner, or it is discretised as soon as attractive forces
are evaluated. For discrete images, it thus makes sense to use the same grid
as a basis for evaluation. During the optimisation process, these values can
then be queried at the surrounding grid point and interpolated by a suitable
function. One of the most inexpensive but sufficiently accurate functions
for this purpose is a simple (bi-)linear interpolation. In 2-D, it requires only
four sampling points on surrounding grid locations. On graphics cards, this
operation can even be boosted further by using 2-D textures. They perform
bi-linear interpolation on dedicated circuits in hardware and provide 2-D
aware caching strategies which allow an efficient access to the required input
data. However, before we go into detail about the evaluation of attractive
forces during the iterations, let us first discuss the precomputation of the
attraction field which takes place at the beginning of the program run.

7.5.1 Attraction

A parallel GPU algorithm to compute sums such as the one arising from
the discretisation of (7.19) was described by Nyland et al. in context of N-
Body simulations [Ngu07]. Such systems are frequently applied to simulate
interactions between solid bodies when they cannot be measured in the real
world. Prominent examples are thermophysical effects between molecules
which occur on too small spatial scales, or gravitational interactions between
celestial bodies that live on too large temporal scales. Because N-Body
simulations work with virtually any underlying potential function and since
they are often highly consistent with real processes, they are frequently used
in many areas of research such as physics, chemistry, and computer graphics.

It seems natural that a modified version of the direct summation algo-
rithm of Nyland et al. works well for electrostatic halftoning. Although
this algorithm does not provide an optimal runtime complexity – we dis-
cuss a more efficient algorithm in Section 7.6 – it is still worth a detailed
analysis. Direct summation is among the simplest algorithms one can find
for this purpose, which makes it much more flexible and versatile with re-
spect to future extensions or modifications than other approaches. In many

216 CHAPTER 7. HALFTONING

more advanced algorithms such as the one described in Section 7.6, direct
summation also reoccurs as one small component such that it is important
to understand this process in detail. Also, the computational overhead in-
duced by more complex algorithms is often very high such that small images
can typically still be faster processed by a direct summation algorithm. We
see examples for this issue in Section 7.7.4.

In order to set up the force field for attraction, we recall that attractive
forces only depend on the location and the charge of one particle, but do
not depend on other particles in the neighbourhood. This means that we
can evaluate the individual forces acting on a particle in each grid location
independently from each other. This can even happen in parallel. To this
end, we assume unit test charges in all grid positions

g ∈ Γ = {0, . . . , nx − 1} × {0, . . . , ny − 1} = Ω ∩ N2 , (7.40)

and evaluate their interaction with the image. In order to approximate the
integral from (7.19), we sample the charge density 1 − u(x) at the grid Γ.
On discrete images, this grid can either coincide with the original grid of
the image, or any resampled version thereof obtained by a rescaling of the
image. This leads to a discrete force[

F (A)
p

]
=
∑
g∈Γ
g 6=p

1− u(g)

‖g − p‖
ep,g , (7.41)

where [·] denotes a discretisation of the argument. In the same spirit as
before, ep,g is the unit vector from p to g. One important aspect in this
context is the special treatment g 6= p. Different to the continuous case (cf.
Theorem 7.2), the discrete sum is unbounded, such that it would approach
infinity. By this correction, we exclude this case, but can potentially obtain
a higher discretisation error.

As it turns out, an adapted version of the direct summation approach
by Nyland et al. can also be applied to compute the sum from (7.41). To
this end, let us consider all pair-wise forces

[
F̂

(A)
i,j

]
=

1−u

(
(xiyi)

)
∥∥∥∥(xiyi)−(xjyj)

∥∥∥∥2

((
xi
yi

)
−
(
xj
yj

))
, i 6= j

0, else

, (7.42)

where i, j ∈ {0, . . . , n − 1} and n := nx · ny = |Γ|. The coordinates xi, yi
of the grid point i can be immediately computed, assuming that the grid
points are enumerated in row-first or column-first ordering. Following the

7.5. DIRECT SUMMATION ALGORITHM 217

canonical ordering in memory, we assume in the following a row-first order-
ing, i.e. i ∈ {0, . . . , nx − 1} describes the first row, i ∈ {nx, . . . , 2nx − 1}
the second row, and so on. Using the pairwise forces from (7.42), we set up
a tensor

F(A) =
[
F̂

(A)
i,j

]
i,j

. (7.43)

Every column of F(A) describes the contribution of one grid point to the
attraction. In turn, each row represents one test charge that is influenced

by the grid. As a consequence,
[
F

(A)
p

]
can be computed as the sum over

the respective row of F(A):

[
F

(A)

(xj ,yj)>

]
=

n∑
i=0

[
F̂

(A)
i,j

]
j
. (7.44)

Since the rows are independent of each other, they can be computed in
parallel. On a GPU, this option does not only exploit the full data paral-
lelism of the device, but can even be applied to re-use data that was already
computed or read from global memory [Ngu07].

To this end, we decompose F(A) into horizontal bands, where each band
is integrated by one CUDA block that consists of a one-dimensional thread
grid. The integration result lies in shared memory and needs only be written
once when the full band is processed. However, since all threads read the
same data at the same time, we can also have the threads cooperating in
computing the coordinates xj and yj. To do so, we split the bands into
strides. During integration, all threads first jointly compute all potentials
xj and yj within one stride into shared memory. After a synchronisation
step, they then evaluate ‘their’ integration over the distances to all other
points in shared memory, and weight them with the grey value of the image
as obtained by a texture fetch. Since texturing is cached and many threads
access the same grey value at the same time, this access is extremely fast.

Figure 7.9 shows a graphical visualisation of this algorithm. For n grid
points and d threads per band, n global writes and at most nd global mem-
ory reads for texture fetches are required. Moreover, this setup is also
tailored to graphics cards when it comes to structural properties of the al-
gorithm. By accessing the input image in regular patterns, considerably
more texture cache hits occur. If we additionally set d to a multiple of the
internal warp size of the device, there are also no branch divergences taking
place. This property holds independent of the fact that we perform 8-fold
loop unrolling within each stride for an additional gain in performance. To
this end, we obtain a highly efficient direct summation algorithm for elec-

218 CHAPTER 7. HALFTONING

...

...

..
.

1 block,
d threads

s d steps

time

1 stride 1 pair-wise force result.

Figure 7.9: Integration over the rows of F(A) or F(R) similar to proposed by
Nyland et al.. Every stride is computed on shared memory.

trostatic halftoning, which is even more efficient than the original algorithm
by Nyland et al.

Once the forces at all grid points have been integrated, the resulting
global memory buffer is ready to be used as a lookup table during the evo-
lution of the particle system. Because these forces remain constant from
this point on and because we need a fast interpolation to obtain an attrac-
tive force at arbitrary points in the image, a texture is the best choice for
this purpose. By attaching a texture reference to the global memory buffer,
the attractive forces can immediately be evaluated by the particle system
without the need to copy data in memory. Forces are returned as float2

vectors using bilinear interpolation in hardware.

7.5.2 Repulsion

Let us now discuss the fast parallel evaluation of the repulsive forces F
(R)
m

from (7.18). This sum is very similar in structure to the one for F
(A)
p as

in (7.41). However, while there is no variable weight such as the image u
involved, the positions of the interaction partners can no longer be com-
puted. This means we must maintain a vector of coordinates at iteration k
in global memory. Still, we can use an instance of the algorithm of Nyland
et al. to compute the repulsion between all particles. The separation into
bands and strides is even more important for a good runtime than before.
Because loads from global memory are expensive, we load all actors that
are relevant for one stride into the fast shared memory. This makes the
algorithm very efficient.

In order to give us a good intuition of how the algorithm works, let us

7.5. DIRECT SUMMATION ALGORITHM 219

construct a tensor F(R) in analogy to F(A) from (7.43). This is straightfor-
ward by a similar argument as in in (7.41) and (7.42). During the program
run, all threads first load the pair of coordinates corresponding to the par-
ticle they compute the integration for, and keep it until the band is entirely
processed. Since the length of one stride is chosen as a multiple of the
number of threads per band, all threads are equally occupied. After a syn-
chronisation flag, each thread then processes one row within this stride,
which is can be accomplished by only accessing the fast shared memory.
During this process, all load and store operations are free of bank conflicts,
which causes a high efficiency of the algorithm.

To this end, the computations necessary to evaluate the interaction be-
tween a pair of particles are not the limiting factor for the runtime of the
process. Instead, the high bandwidth to global memory turns out to be a
critical aspect that the CUDA kernel must be optimised for. Considering d
threads per band and a total number of M := |P | particles, the algorithm
requires M reads and writes for ‘own’ particles and MdM

d
e reads for the

‘other’ particles. All these operations are highly coalesced, and can thus
be performed very fast. The larger d is chosen, the more operations are
solely computed on fast shared memory. Moreover, it is always beneficial
to lay out strides with a larger width than height, i.e. to have s > 1 (see
Figure 7.9). Such choice helps to mask access latencies to global memory
and to gain performance from strategies such as loop unrolling. Hence,
the larger and the more ‘asymmetric’ a stride is, the better becomes the
runtime of the algorithm.

However, strides can also not become arbitrarily large. In order to per-
form all computations on shared memory, each stride must be represented
by one CUDA block. Hence, one streaming multiprocessor must be able
provide the whole shared memory requirements of one stride. These are
two float2 vectors of length d for the ‘own’ position and the result, as well
as one float2 vector of length sd for the ‘remote’ positions. On an NVidia
GTX 480, a configuration of d = 128 threads per block, and a stride-width
of sd = 256 elements turned out to be the fastest choice. This choice even
leaves space for the default fraction of shared memory being used as a cache
to global memory. Whenever two concurrent blocks on this Fermi architec-
ture request the same input data (which is likely to occur in a truly parallel
execution of blocks), all second requests can be served much more quickly
than the first one.

220 CHAPTER 7. HALFTONING

7.5.3 Transporting Particles

Up to this point, we already know how to compute the two summands from
the update equation (7.23). In each iteration, the attraction term is read
out of a texture (cf. Section 7.5.1), while the repulsion is computed directly
(cf. Section 7.5.2). It remains to add both contributions for all particles,
to weight them with the time step size τ , and to transport them to their
new location.

In this context, it is also important that we robustify the process with
respect to numerical instabilities. Because two particles can lie close to
each other, their repulsion may become very large. In this case, our model
would transport particles by an arbitrary distance into an arbitrary direc-
tion – which is seldomly desired. Thus, we limit the maximal displacement
by a reasonable upper bound, and additionally forbid particles to leave the
image domain by projecting them back to the closest boundary point. As
a maximal step size, the side length of one pixel seems to be a good choice.
Note that the projection is not required from a technical perspective, be-
cause CUDA textures can be requested outside the defined domain, where
they return the value from the closest boundary point. However, doing so
can tremendously speed up the process. In the desired solution, all parti-
cles are supposed to lie inside the domain anyway, such that this additional
constraint leads to a much faster convergence.

Compared to the pure repulsion, performing the update still has a com-
putationally low complexity. Assume a number of M = |P | pixels. While
repulsion possesses in the runtime complexity O(M2), the update can be
computed in O(M) and needs only a few additions, multiplications, and
comparisons per particle. Still, a standalone implementation of this opera-
tor is expensive, as it involves 3M reads and M writes to global memory.
The process can thus be significantly accelerated if this operation is inte-
grated into the repulsion kernel from Section 7.5.2. It is executed as a last
step after all repulsion forces are computed, and before they are written
back to global memory. This modification saves M reads and M writes,
because the repulsive force can be re-used immediately from shared mem-
ory. Only the computed new position is written back to global memory.
The remaining load of the old positions, as well as the texture fetch for
attractive forces, are masked behind the arithmetic operations performed
by the repulsion kernel.

This process causes the positions to be updated on-the-fly, thus making
them invalid for being used in repulsion computations that are still taking
place. As a remedy, we perform a double buffering approach in global
memory. While the old positions are still stored in one vector, the new

7.5. DIRECT SUMMATION ALGORITHM 221

positions are written into a second one. In the next iteration, the role
of the two vectors are exchanged by a pointer swap. To the very end of
the program run, the most currently written vector is downloaded by the
CPU. Hence, this small modification does not introduce any additional
computations, but makes the algorithm thread-safe.

7.5.4 Additional Features

So far, we have only seen the implementation of the basic algorithm that
sets up on (7.23). However, there are many additional features such as the
shaking step to avoid local minima, or the extensions from Section 7.4.

The shaking procedure presented in Section 7.3.3 deserves special at-
tention, as it requires a pseudo random number generator (PRNG). Sim-
ple algorithms for this purpose are included in the C Standard Library
and can thus be used by any CPU program. However, such algorithms
are by construction sequential. This might be a reason why a sim-
ilar implementation was not ‘officially’ available for CUDA for a long
time. In the literature, one finds several approaches to generate numbers
with different degrees of statistic randomness, but also with varying run-
times [MS00, Pod07, Ngu07, vMAF+08]. However, for the application to
electrostatic halftoning, we only require that pseudo random numbers ap-
plied to a certain neighbourhood of particles are ‘fairly well’ distributed.
Thus, a very simple implementation suffices. Recently, NVidia published
cuRand, an official random number generator [NVi10b]. It is about four
times faster than the simple PRNG presented in [vMAF+08] and does not
produce significantly worse random numbers. To this end, is is very well
suited for ‘shaking’ the particle vector each 10 iterations.

Extensions are even easier to implement. Many of them, like point
size adjustment, grey value correction, or edge enhancement do not affect
the CUDA kernels at all, but are applied to the input parameters at the
beginning of the program run. Thus, they can be implemented on the
host side and do not affect the runtime of the program considerably. All
remaining extensions can be implemented with a few lines of optional code
in the CUDA kernels, each. While dithering comes down to one additional
interaction term and one projection per particle, the perturbation field for
jittering can directly be read out of a texture that has been precomputed
at the beginning of the program run. Multi-colour halftoning, second order
screening, and multi-class blue noise sampling require an additional vector
containing the class assignment of each particle. It is loaded along with the
positions, and determines if particles interact with each other at all and, if
yes, by how much.

222 CHAPTER 7. HALFTONING

7.6 Fast Summation Algorithm

The direct summation approach presented in the previous section is very
flexible and relatively easy to implement but suffers from a quadratic run-
time complexity in the number of particles. This property makes it inap-
plicable to images where a large number of particles is used.

The slow runtime of this algorithm arises from the fact that all parti-
cles must communicate with each other before a direction vector can be
computed that describes the offset for the next iteration step. Although
this argument is justified from an information theoretic consideration, it
somehow contradicts our intuition. Because the potential around a parti-
cle drops off rapidly, nearby particles experience a much stronger repulsion
than distant ones. To this end, a particle’s neighbourhood is very important
for the accurate computation of the direction vector, while distant parti-
cles only have a significant influence if they are part of a large dominant
cluster. This observation is the key to a whole range of fast approximative
algorithms which enjoy a lower runtime complexity such as O(M logM) in
the number of particles M .

The first method in this spirit was proposed by Hockney and East-
wood [HE81]. It performs a decomposition of the domain into cells and
assigns the charge density of each cell to a virtual super-particle in its cen-
tre. The effects on any particle can efficiently be computed in the frequency
domain and, by the use of fast Fourier transforms (FFTs) [CT65], even the
transformation can be realised in a short amount of time. This approach re-
quires a sufficiently flat potential field at any point and is thus well suited if
particles are far apart. In order to extend the method to interactions on all
distances, particles thus interact directly (particle-particle) if they lie close
together, and indirectly (particle-mesh) otherwise. Hence, this approach is
often called the particle-particle/particle-mesh (P3M) method.

A more simple yet efficient method was introduced by Barnes and
Hut [App85, BH86]. It decomposes the image into a quadtree. Similar to
P3M methods, all cells of this tree offer the capacity or mass of its children
as one accumulated value in the centre of mass. Nodes can thus interact
with individual leave nodes in their direct neighbourhoods, and use approx-
imative values from a higher level in the tree if the respective clusters are
far enough away. Because this interaction takes place in the spatial domain
and discards the local structure of the point clouds, it only has an accuracy
of up to about 99%. Still, it is frequently used in astrophysical simulations
due to its simplicity and computational efficiency.

Since the 1980s, a new class of algorithms rose in popularity. As it is
for the aforementioned methods, such techniques possess a typical runtime

7.6. FAST SUMMATION ALGORITHM 223

complexity of O(M logM) in the number of particles M , which can even
drop to O(M) for potentials with special characteristics. Unlike the pre-
vious approaches, however, these techniques can approximate the optimal
solution up to an arbitrary accuracy. For this purpose, they possess a set
of parameters which steer a tradeoff between runtime and quality. As the
most prominent member of this class, the fast multipole method is widely
used today for all kinds of N-Body simulations such as celestial or molec-
ular dynamics [GR87]. Within a hierarchic decomposition of the image, it
computes interactions between distant particles by means of multipole ex-
pansions. This interaction can also be interpreted as the multiplication of
a vector of particles with a huge interaction matrix. Compared to a direct
summation method which possesses a dense operator, the fast multipole
method comes down to a sparsification of this operator [SP01]. Moreover,
this notation immediately reveals the data-parallel character of this opera-
tion. It has been exploited for a variety of algorithms for massively parallel
hardware, such as the Intel Paragon [KK95], or GPUs [GD08].

In [FS02], the authors show that, apart from application-dependent de-
tails, a number of other methods is closely related or even equivalent to
this technique. Similar ideas, also arising from the field of particle simu-
lations, are the so-called fast mosaic-skeleton approximations [Tyr96] and
the fast H-matrix multiplications [Hac99]. Other approaches are closely re-
lated, but differ in small details. For kernels whose analytical properties are
unknown, the authors of [BCR91] propose to compute interactions in the
wavelet domain. In [BC03], another method is presented which sets up on
a double-step design. While the first step describes a fast approximation
of interactions in the Fourier domain, the second step involves a correc-
tion within a small local neighbourhood to obtain a higher approximation
quality where the underlying potential is large.

For electrostatic halftoning, we use a related technique which reduces
expensive pairwise interactions to cheap multiplications in the frequency
domain [FS04]. It sets up on the idea that the force on one particle is just
given by the sum of (radial) potentials around all other particles, evalu-
ated at its location. To this end, we can perform a convolution of a signal
which contains Dirac peaks at the positions of all particles. By the convo-
lution theorem (cf. (3.25) in Chapter 3), this operation can efficiently be
performed in the frequency domain where it comes down to a point-wise
multiplication. However, since the positions of the particles do not reside on
a regular grid, we require non-equispaced fast Fourier transforms (NFFTs)
for this purpose [PST00]. As it is for standard FFTs, they enjoy a runtime
complexity of O(M logM), but are algorithmically more challenging.

On the next few pages, we develop a novel efficient GPU-based algorithm

224 CHAPTER 7. HALFTONING

for the NFFT-based fast summation method. This work is also published
in [GSWT11]. The theoretical foundations of this work, as well as a CPU-
based prototype, can be found in [TSG+11]. One major ingredient of this
algorithm is the design of a new GPU-based algorithm for the NFFT which
is better applicable to electrostatic halftoning than previous approaches
from the literature [SSNH08, Gre08, GD08]. Later in this chapter, we go
more into detail about this issue. Because our new NFFT implementation
is very versatile and does not make special assumptions on the underlying
structure of the problem, it is also very universal and can be applied in
many other applications beyond halftoning.

7.6.1 Repulsion by Fast Summation

Let us first address the efficient computation of the repulsive forces in elec-
trostatic halftoning. Following the fast summation technique from [FS04],

we rewrite the repulsive forces F
(R)
m from (7.18) such that they can be com-

puted by means of NFFTs. Later, we can use these insights to perform a
similar acceleration to precompute attractive forces much more efficiently
than before. For simplicity, let us assume that qm = qn. This allows to
normalise the constant kqmqn to 1 and obtain

F (R)
m = −

∑
n∈IP
n 6=m

1

‖pn − pm‖
em,n . (7.45)

This sum can be decomposed into three sums with scalar-valued arguments
[FS04, TSG+11]:

F (R)
m = −

∑
n∈IP
n 6=m

pn − pm
‖pn − pm‖2

= pm
∑
n∈IP
n 6=m

1

‖pn−pm‖2 −
(

1

0

)∑
n∈IP
n6=m

pn,x

‖pn−pm‖2 −
(

0

1

)∑
n∈IP
n6=m

pn,y

‖pn−pm‖2

(7.46)

Each of these sums describes a discrete convolution of the form∑
n∈IP

γ(n)K(‖pn − pm‖) (7.47)

where the vector γ takes either of the values γ(n) ≡ 1, γ(n) = pn,x, or
γ(n) = pn,y. K(x) is a radial kernel

K(x) =
1

x2
(7.48)

7.6. FAST SUMMATION ALGORITHM 225

with x = ‖pn−pm‖. In order to perform these summations very fast, we
transform γ and K into the frequency domain. By the convolution theorem,
their convolution can then be computed as a point-wise multiplication of
their Fourier coefficients. To this end, we scale the image domain such that
it fits into the circle with radius 1−εB

4
around (0, 0)>, where εB is a small

constant with 0 < εB � 1. In order to make K smooth, we regularise it
near 0 and ±1

2
in each dimension such that we obtain a 1-periodic kernel

KR(x) =

KI(|x|), |x| < εI

K(|x|), εI 6 |x| <
1− εB

2

KB(|x|), 1− εB
2

6 |x| < 1

2

KB(
1

2
),

1

2
6 |x|

. (7.49)

Note that we write KR(x) in calligraphic letters to underline its approx-
imative character with respect to K. In this context, εI denotes a small
positive constant on which we detail later in this section. As suggested
in [FS04], both KI and KB can be obtained by a two-point Taylor inter-
polation with polynomials of degree p̂. The parameter p̂ steers the quality
of the approximation: the higher, the better. Finally, we can approximate
KR by its truncated Fourier series KR

KR(x) ≈ KF (x) =
∑
j∈IN

bje
2πi〈j,x〉, (7.50)

with

bj =
1

N2

∑
k∈IN

KR
(
k

N

)
e−2πi

〈j,k〉
N . (7.51)

The size of the plane IN in the frequency domain has an immediate influence
on the approximation error between KR and KF : the larger N , the better
the approximation. In accordance with [TSG+11], we choose the same
resolution in time and frequency domain, i.e. N ≈ max(nx, ny). From an
information-theoretic standpoint, this choice allows that all information can
be recovered after transformations to and from frequency space. Moreover,
since we can assume that M ∼ nx · ny and that p̂ constant, it holds that
N ∼

√
p̂M as required in [FS04].

The new kernel KF is small below εI , and close to K if the argument lies
above this threshold. The case x > 1−εB

2
never occurs, because the image

domain is scaled such that it fits in a circle with radius 1−εB
4

(see above).

226 CHAPTER 7. HALFTONING

Hence, the largest distance between two particles is by construction the
diagonal of the image plane x = 1−εB

2
.

On the other hand, the difference KN = K − KR has finite support,
since KN(x) = 0 for x > εI . This observation allows to approximate the
kernel K by

K ≈ KF +KN , (7.52)

where KN describes only local interactions between particles, and KF is
dominated by global interactions. Because of the shape of K, the forces
occurring in the near-field kernel KN are much higher than the ones in the
far-field kernel.

As a consequence, we require a high accuracy in the near-field but can
accept an approximate solution for far-field interactions. Thus, we compute
near-field interactions by a direct summation approach, while we perform
a frequency-based convolution for the far-field contributions. This leads to
the following two steps for either sum from (7.46):

• Far-field interactions. Let us first consider the far-field contribu-
tions for the vectors γ in the discrete convolution from (7.47). For
every γ, we obtain the double sum∑

n∈IP

γ(n) KF (‖pn−pm‖)

(7.50)
=

∑
j∈IN

bj

(∑
n∈IP

γ(n) e2πi〈j,pn〉

)
e−2πi〈j,pm〉 . (7.53)

While the outer term of (7.53) has the form of a forward Fourier
transform, the inner term describes an inverse transform. However,
we cannot use standard FFTs to efficiently compute these Fourier
transforms, since the arguments 〈j,pm〉 and 〈j,pn〉 do not reside on
a regular grid. As proposed in the literature, we solve this problem
by applying a non-equispaced fast Fourier transform (NFFT) [PST00,
FS04].

To this end, we compute (7.53) in three steps [FS04]:

1. Transformation of γ(n) with an adjoint (”backwards”) NFFT
with negated source nodes p.

2. Point-wise multiplication of the results with the precomputed
kernel coefficients bj.

3. Back-transformation using a standard (”forward”) NFFT with
negated source nodes p.

7.6. FAST SUMMATION ALGORITHM 227

Note that in electrostatic halftoning, source nodes for the NFFTs
are given by particle positions which are per definition real-valued.
For this particular application, it is thus sufficient to have a real-to-
complex valued adjoint NFFT, as well as a complex-to-real valued
standard NFFT. This specialisation saves roughly half of the required
operations such that implementations benefit both in runtime and
memory requirements.

Equivalently, we could also compute two real-valued NFFTs jointly by
setting one input vector as the imaginary part of a standard complex-
to-complex valued transform. However, doing so for two of the three
sums to be computed results in a comparable runtime, but a higher
memory consumption. Since memory is a restricted resource in partic-
ular when it comes to GPUs, we do not pursue this idea any further.

In the next section, we detail more about the NFFT and its adjoint,
and discuss efficient GPU-based algorithms for this purpose.

• Near-field interactions. Let us now briefly address the computa-
tion of near-field interactions. Because these interactions take place
in local neighbourhoods with radius εI around a particle and because
the kernel KN can be directly computed, this operation comes down
to a direct summation as shown in Section 7.5. However, particles are
not stored in locality-preserving data structures. This makes an iden-
tification of nearest neighbours of a particle nontrivial. Maintaining
such a structure would be very expensive, because particles move in
every iteration. On the CPU, this problem can easily be solved by
binary search trees in which particles are inserted once per iteration,
and which can then be used to reduce the number of candidates to a
reasonable value [TSG+11]. Unfortunately, such data structures are
unsuited for GPUs because they are very memory-intense and scale
badly to massively parallel architectures. In Section 7.6.3, we thus de-
velop a fast alternative to this algorithm which does not suffer from
the mentioned limitations.

For the sake of completeness, let us briefly come back to our assumption
qm = qn that we made for (7.45). As it turns out, the same strategies as
above carry over to the case qm 6= qn, i.e. for second order screening. If we
have different charges for all particles, we multiply each γ point-wise with
qn, perform the computation, and weight the result F

(R)
m by qm. Additional

concepts such as the priorities C (see Figure 7.5) can be incorporated by
computing a separate repulsion on the subset of large particles. Since the

228 CHAPTER 7. HALFTONING

partition of large particles is in general very small, such sums are relatively
inexpensive compared to the whole process.

7.6.2 Non-Equispaced Fast Fourier Transform

The core of our fast summation approach is an efficient GPU imple-
mentation of the 2-D non-equispaced Fourier transform (NFFT). In the
literature, there are already some GPU implementations for this pur-
pose [SSNH08, Gre08, GD08]. However, neither of these approaches is
suited for the type of problem arising in electrostatic halftoning. The rea-
son for this is the highly irregular structure of the vector of locations. Clas-
sical parallel approaches assume that nodes are still sorted and aligned in
some geometric structure such as special irregular grids, spirals, or other
primitives. As we are going to see later in this chapter, the most expen-
sive step of the NFFT involves reading 2-D neighbourhoods of nodes. To
accelerate this step, all existing GPU-based algorithms exploit this fact by
re-using memory where these neighbourhoods overlap. However, these as-
sumptions do not hold for electrostatic halftoning. Here, particles are freely
distributed over the image domain. Even in regions where they cluster, all
nodes within one cluster are in general not stored in subsequent memory
cells. On the other hand, sorting the vector p prior to computing the NFFT
is also no option. Although this operation is in the same complexity class
O(M logM), it would roughly double the overall runtime due to expen-
sive memory interactions. In the following, we design the first GPU-based
algorithm to work efficiently with random particle positions that are not
aligned in some special structural arrangement. Because the NFFT nowa-
days represents a standard tool for many applications, this new algorithm
has a broad range of applications beyond halftoning.

Let us start with a short recapitulation of NFFTs. Given a set of nodes
(pj)16j6M ⊂ Π2 = [−1

2
, 1

2
]2, we are interested in an operator

A :=
(
e−2πikpj

)
j=1,...,M ; k∈IN

, (7.54)

such that
f = Af̂ , f ∈ RM , (7.55)

is the Fourier transform of f̂ . IN denotes the ‘shifted’ index set in the
frequency space, and is given by IN := {k ∈ Z2| − N

2
6 k < N

2
}. For the

computation of electrostatic halftoning, we use the same resolution in the
spatial domain and the frequency domain, such that M = N . Moreover,
we want to compute the adjoint NFFT

A
>

:=
(
e2πikpj

)
j=1,...,M ; k∈IN

, (7.56)

7.6. FAST SUMMATION ALGORITHM 229

such that
ĥ = A

>
f . (7.57)

One should note that, unlike for the equispaced case, the adjoint NFFT

A
>

does not constitute an inverse to the NFFT A. However, ĥ represents
a good approximation of f̂ . Hence, we treat it as such for the rest of this

chapter, but keep in mind that a pair of transformationsA
>
A can introduce

additional approximation errors. As it turns out, they are irrelevant in
practice.

In [PST00], the NFFT A from (7.54) is approximated as a composition
of a scaling operation D, a standard discrete Fourier transform F , and a
sampling operation B:

A ≈ BFD . (7.58)

As is shown in [KKP09], this approximation holds for transforms in ar-
bitrary dimensions. The complex-valued 2-D Fourier transform F used
in (7.58) is given by

F :=

(
1

ñ2
e−2πikl/ñ

)
k,l ∈ Iñ

. (7.59)

Iñ denotes the Fourier plane, which has been oversampled by a factor
2 6 α < 4, such that ñ = αN and such that there exists a k with ñ = 2k.
By this property, F can efficiently be computed by a standard fast Fourier
transform, which performs best on data with the edge length of a power
of 2 [CT65]. The real-valued sparse matrix

B :=

(
ψ

(
pj −

1

ñ
l

))
j=0,...,M−1; l ∈ I2

ñ

(7.60)

describes a convolution of the transformed result with a Kaiser-Bessel win-
dow function [KS80] ψ that has been truncated at m̃. It accounts for the
fact that the nodes are not residing on grid positions, and approximates the
contributions to the sparsely distributed nodes. The choice of the cut-off
parameter m̃ describes a trade-off between accuracy and speed, and thus
steers the approximation quality. Finally, the real-valued ‘diagonal’ scaling
matrix D is given by

D :=
⊗

t∈{x,y}

(
O

∣∣∣∣∣ diag

(
1

ckt(ϕ)

)
kt ∈ IN

∣∣∣∣∣ O
)>

. (7.61)

In this context, O denote zero matrices of size N × (ñ−N)/2, while ϕ
is the 1-periodic continuation of the Kaiser-Bessel window function on a

230 CHAPTER 7. HALFTONING

torus. The operator
⊗

denotes the tensor product. Moreover, the Fourier
coefficients ckt(ϕ) are computed as

ckt(ϕ) =

∫
Π

ϕ(v)e2πiktv dv (kt ∈ Z) . (7.62)

The purpose of D is to correct the roll-off of the Kaiser-Bessel kernel from
B. To this end, it can be regarded as a normalisation step.

The computation of the adjoint NFFT A
>

follows the same argumen-

tation. Using the same terminology, we can approximate A
>

by

A
> ≈D>F>B> . (7.63)

The operators D and B are real-valued, such that their adjunct matrices
are given by their transposes. In addition, we need the complex-valued

inverse 2-D Fourier transform F>. However, because the nodes are again
arranged in a regularly spaced grid of size |Iñ|, we can apply a generic
inverse FFT at this point.

As it turns out, the choice of εI is a crucial criterion for the approxi-
mation quality and the runtime of the process. Because it represents the
size of the circles around each particle in which we compute interactions
by means of direct summation, we should not make εI too large. If we
assume that each circle holds about k particles, this process has a runtime
complexity O(Mk), such that the whole process approaches the direct sum-
mation method from Section 7.5 for εI → 1/2. On the other hand, εI should
also not be too small because interactions with a high magnitude are then
computed by the approximative frequency-based summation technique. A
good tradeoff between these extremes seems to be given by εI = p̂

ñ
. This

choice also fulfils the constraint εI ∼ p̂
N

from [FS04] (with a factor 1
α

).
Let us now discuss some implementation details of the GPU algorithms

for the application of A and A
>

. From the last section, we know that
electrostatic halftoning only requires the instances of real-to-complex valued
adjoint transforms, as well as complex-to-real valued standard transforms.
This insight allows to reduce the bandwidth of the B and B>, which is
particularly important because they represent the most expensive part of
the algorithm (cf. Section 7.7.6).

For the central operation, the fast Fourier transform F of length
Iñ, we apply the cuFFT library from the CUDA toolkit as provided by
NVidia [NVi10a]. This decision follows the same arguments as given in
context of the frequency-based convolution for linear diffusion (see Sec-
tion 3.5.4).

7.6. FAST SUMMATION ALGORITHM 231

The computation of the two diagonal matrices D and D> is data-
parallel, but highly memory-bound. By using the sparsity of the matrices,
every thread can compute one of the IN point-wise divisions on the main
diagonal. However, to account for the tight memory bandwidth, we do not
precompute ck(ϕ) as it was suggested in [PST00]. Instead, we evaluate this
function on-the-fly. This is very efficient, in particular because each value
can be applied to four values in parallel without re-computing the respec-
tive value. By this procedure, memory latencies are well hidden behind
computations.

Because of their special memory patterns, the two operators B and B>

turn out to be the most expensive part of the NFFT on parallel architec-
tures. Both operations describe a convolution. While for the application
of B, local neighbourhoods of size (2m̃ + 1)2 around the positions of all
particles must be read, they are written in context of B>. In the literature,
algorithms usually require special arrangements of particles in order to en-
force a coherent access to global device memory [SSNH08, Gre08, GD08].
The closer particles lie together, the more their neighbourhoods are overlap-
ping. Data lifetime in on-chip memory is thus being significantly increased
such that bandwidth to global memory can be saved. However, these as-
sumptions do not hold for electrostatic halftoning. Particles can reside at
random positions and do not necessarily cluster or arrange in regular struc-
tures. Hence, we need a strategy which works for arbitrary local relations of
particles and which optionally draws advantage from data locality when this
is possible. For the computation of B, all memory accesses are read-only.
This observation suggests the use of the texturing engine of graphics cards
as it provides 2-D-aware caches. Whenever a random datum is requested
for the first time, we additionally need a whole patch of size (2m̃+1)2 in the
near future. There is a good chance that most of this data is already in the
2-D caches after the first call. Hence, many cache misses can be avoided.

It remains to compute B>. Here, the memory patterns are more ex-
pensive since CUDA knows write caches only from the Fermi architecture
on, and random write operations are still very expensive. However, since
there is no way to circumvent this problem without requiring special condi-
tions, we can only make sure that coinciding writes from different threads
do not interfere. This can be achieved by atomic operations. For older
architectures that support compute capability 1.x, such atomic operations
exist only for integers. Still, we can make use of the fact that these devices
are 32-bit architectures, which means that the data types int and float

are equally large. Thus, we can exchange the value in global memory with
0 by using an integer atomic exchange, reinterpret the result as a float, add
it to the increment, and exchange it again with the (potentially new) value

232 CHAPTER 7. HALFTONING

in the global memory cell [Wor08]. If we repeat this process until it returns
0, the increment to be added to the global datum was successfully applied
in a thread-safe manner. This looks as follows:

while (data)

data = atomicExch(addr, data + atomicExch(addr, 0.0f));

On Fermi architectures with compute capability 2.x, this restriction is no
longer present. Here, the above instructions collapse to a single float atomic
addition, which again saves a significant amount of memory bandwidth.

7.6.3 Near-Field Evaluation

The computation of near-field interactions by using the kernel KN is simple
from a theoretical perspective, but algorithmically challenging and compu-
tationally expensive. Because forces arising from near-field interactions are
much stronger than those of the far-field, the near-field requires a much
higher computational precision. Hence, only a direct summation approach
can be used in this context. At the same time, we want the near-field to be
as small as possible. This means, we only want to read and process those
particles for which the resulting force on a target particle does not vanish.
The reason for this is that, even though an evaluation of the kernel would
result in a zero vector for any of these particles, reading their position and
performing the computation still requires the same computational burden
as for actual near-field interaction partners. Thus, the overall runtime of
the process crucially depends on whether potential neighbours of a particle
can reliably be identified, or not.

On sequential hardware, tree structures such as k-d-trees provide a good
solution to this problem [Ben75, TSG+11]. The runtime for traversing ei-
ther of these structures has a logarithmic complexity with little overhead,
and almost vanishes in the complete process. However, such structures are
usually no option for parallel architectures. This is because traversals of a
tree involve branching on all levels, which contradicts the constraint that
GPUs require whole warps to take the same branches at a time. Like-
wise, because these threads potentially descend into different branches of
the tree, memory access patterns become more complicated the deeper the
level. Thus, we require a data structure that respects and supports the
parallel nature of our algorithm.

The key observation leading to our new data structure is the electric
neutrality of regions as shown in Theorem 7.3. Leaving aside numerical
issues such as shaking, we can expect each region to contain at most the
number of particles which correspond to plain black. It thus seems justified

7.6. FAST SUMMATION ALGORITHM 233

εI

Figure 7.10: Neighbourhood in a lookup map for the near-field of a particle
(red): Neighbours (blue) and false positives (black). Arrows indicate mappings.

to allocate a 2-D hash map in the size of the image domain which contains
the exact coordinates of the included particle, or an empty pair if the cell
is empty. Note that if two particles are close to each other, our simple
hash function assigns two particles to the same cell. However, this does
also not pose a problem to the algorithm. There are at least as many cells
as particles available, such that there is always a cell in the near vicinity
which can still consume a particle. Hence, we are only required to increase
the search radius slightly, as the entry for particle might be dislocated by
a few cells from the actual position of the particle.

Figure 7.10 shows a sample neighbourhood as arising from this strategy.
As a reservoir for a potential relocation of particles, we reserve a small
stripe to the right of a neighbourhood. This is denoted with dashed lines.
All candidates for interaction partners of a particle are thus required to be
found in a search window that covers the circular area with radius εI around
this particle, plus the attached small stripe to the right. This strategy allows
to obtain all neighbours of a particle with little effort while the number of
false positives, and thus the computational expense, is kept small.

In CUDA, these lookups can most efficiently be realised by texture
fetches. By the 2-D aware caches of the texturing unit, cache misses are
reduced to a minimum, and boundaries are handled automatically. Still, we
must take care that the hash map also possesses a surplus stripe at the right
side such that particles are allowed to be slightly pushed off the map. The
empty pair is denoted by the bit string (164)2, i.e. by a series of 64 binary
‘ones’. This corresponds to a pair of two not-a-number entries (NaNs). On
traditional platforms, such assignment would cause performance problems,

234 CHAPTER 7. HALFTONING

since NaNs take longer to be consumed by the processor than actual val-
ues. However, NaNs on a GPU are non-signalling, which means our choice
does not impair the runtime of the algorithm. Instead, it allows for a quick
initialisation of the whole map by one call to cudaMemset. Note that (164)2

is also the only pattern which is both easy to initialise and unambiguous,
since (064)2 is indistinguishable to an actual particle residing in (0, 0)>.

During the nearfield evaluation, we look up all entries in the search
window, check if they represent a candidate, and evaluate if they are a
neighbour to be considered. For all found neighbours, we then compute
the arising force on the particle in question, and accumulate the force in-
crements in shared memory. This algorithm can process a large number of
particles in parallel, and scales well over all streaming multiprocessors of
the graphics card. Only once per iteration, this force is added to the re-
spective far-field contributions and written to global device memory which
again saves memory bandwidth.

Finally, let us discuss the construction of the map. It changes with
every iteration, such that its set-up phase must be highly efficient as well.
To the same time, it must pay attention to special cases such as multiple
assignments of particles to the same cell. In order to realise this process as
a parallel algorithm, we thus use an idea inspired by cuckoo hashing [PR04].
To this end, each particle is inserted into its designated cell, regardless of
whether this cell already contains particles or not. Potential residents are
pushed to the right side, until the process converges. In CUDA, this process
can be modelled by an atomic exchange operation. Beginning at the target
cell and advancing to the right, the register initially containing the new
particle is exchanged with the content of the memory cell in charge, until
the process returns an empty pair. Because there are no atomic exchange
operations for float2 data types, we can use the atomicExch operation for
unsigned long long types, as it works on bit strings of the same length.
Assuming the local float2 entry is called d and the designated cell has
address addr, we obtain:

while (d != 0xFFFFFFFFFFFFFFFF)

{

d = atomicExch((unsigned long long*)addr, d);

addr++;

}

Finally, let us briefly analyse the width of the surplus stripe at the right side,
which constitutes a trade-off between efficiency and the ability to process
a larger number of particles. As stated before, it depends on the fill level
of the image with particles, as well as on the degree to which the electric

7.6. FAST SUMMATION ALGORITHM 235

neutrality of regions is preserved over the program run. As it turns out, the
latter property is easily impaired if we activate shaking (cf. Section 7.5.4).
Surprisingly however, an additionally boundary of 4 cells already suffices
for most images, if we start with an initialisation as in Section 7.3.3. Even if
this boundary does not suffice to the beginning of the process, experiments
show that the evolution still continues as desired.

7.6.4 Attraction

Now that we can compute repulsive forces efficiently, it remains to compute
the attractive forces from (7.23). As for the direct summation approach,
it suffices to compute them once at the beginning of the program run,
and to retrieve them from a CUDA texture during the particle evolution.
Since the precomputation has the same problem description as in the di-
rect summation approach, we could use a similar algorithm as presented in
Section 7.5.1.

However, given the theory developed in the previous section, this pro-
cedure is not optimal if the image is very large. Attractive forces are of
the same form as repulsive ones, with the additional constraint that all
interaction partners now reside on a regular grid. This allows us to split

the sum
[
F

(A)
p

]
from (7.41) in a similar fashion as in (7.46). Since we can

now even apply standard FFTs rather than NFFTs, the fast summation
is no longer subject to approximation errors. Hence, there is no necessity
to distinguish between near-field and far-field interaction but we can use
the fast frequency-based approach for the full domain. To this end, the
precomputation of the force field consists of the following steps:

1. Forward FFTs to transform the vectors (1− u(g)), gx, and gy into
the frequency domain.

2. Point-wise multiplication of the coefficients from 1. with the
Fourier coefficients of the kernel K.

3. Inverse FFTs to transform the modified coefficients back.

4. Assembly of
[
F

(A)
p

]
and linking of the CUDA texture.

In Section 7.7.4, we perform a detailed comparison of the fast summation
algorithm on the GPU with the previously presented direct summation
approach, as well as with the corresponding CPU algorithms.

236 CHAPTER 7. HALFTONING

�a �b
Figure 7.11: Halftoning with 30 150 dots on Trui, 256×256 pixels. This image
serves as a basis of comparison in the following chapters. a. Original. b. Elec-
trostatic halftone.

7.7 Experiments

Let us now evaluate the quality of the halftones produced by our algorithms
with all their extensions and modifications, as well as the runtime required
to obtain these results. On the next pages, we are first going to see principle
quality properties of electrostatic halftoning. They tell us how the system
behaves under varying environmental conditions, and what its benefits and
drawbacks are compared to other methods from the literature. Secondly,
we go into detail about the extensions and modifications presented in Sec-
tion 7.4. For each of these supplements, we see several examples and its
effect compared to standard halftoning. Whenever one of these extensions
relies on a free parameter, we are going to evaluate its effect on the solu-
tion. Finally, we have a look on the runtime of the process depending on
the number of particles and the image size. In this context, we also compare
the runtimes of the two different algorithms from Sections 7.5 and 7.6.

7.7.1 Examples

Before we perform a detailed analysis of electrostatic halftoning and its
extensions, let us first see two examples for this technique. Both were
obtained without any extension being applied, and shall demonstrate the
high visual quality of this method in its general form.

Figure 7.11 shows the famous Trui test image, and an electrostatic

7.7. EXPERIMENTS 237

halftone of it using 30 150 dots. This number corresponds to a setting
in which each dot has the same area as one pixel in the original image.
As can be seen in this figure, electrostatic halftoning creates results that
preserve both the grey value and the structures of the original image. De-
tails in the shawl are equally well represented as smooth gradients between
face and hair or homogeneous regions such as the cheeks. However, if we
view the digital version of this document in a viewer software, we notice
moiré-like artefacts at different zoom levels. These are a drawback of the en-
ergetic optimality of the solution and are remedied by the jittering extension
which we evaluate in Section 7.7.3. Finally, let us note that this image has
favourable characteristics which suggest it as a basis of evaluation. It con-
tains high frequencies, large homogeneous regions, and smooth transitions
between grey values such that all critical situations for halftoning methods
are covered. Moreover, it is small enough to allow evaluation methods and
reference implementations to yield results in a reasonable amount of time.
Hence, we use this image as a source of benchmarks in the course of this
chapter, unless the fine differences occurring in an experiment can better
be shown on a different image.

Secondly, we regard one huge example which involves a high number of
dots on a relatively large image. This is shown in Figure 7.12, by using
647 770 dots on Tiger, 1 024×1 024 pixels. Again, the seemingly arbitrary
choice for the number of particles arises from a normalisation of their indi-
vidual areas to pixels from the input image. Although the image covers a
significant partition of the page, one can hardly identify single dots. The
overall impression is smooth but very detailed. Small structures, such as
the fur or the reflections in the eye, are preserved with a high quality. This
is also visible in the zooms in parts b. and c. Nevertheless, this image can
be computed in a very short time. Using the fast summation approach,
420 · 109 interactions per iteration are evaluated in less than 820 millisec-
onds. Given that about 200 iterations suffice to obtain a result that can
hardly be distinguished from the one given in Figure 7.12, a reasonable
result can already be computed in about 3 minutes. With 1 000 iterations
using time steps of 0.1, the process is almost entirely converged. This corre-
sponds to a runtime of less than a quarter of an hour, which is much faster
than most stippling approaches from the literature [Sec02, BSD09]. Later
in this chapter, we see more examples for this issue.

7.7.2 Evaluation of Quality

From Section 7.2, we know that the quality of a halftoning process is caused
by two different factors. One is the rendering operator, i.e. the way of how

238 CHAPTER 7. HALFTONING

�a �b �c

�d
Figure 7.12: Electrostatic halftoning with 647 770 dots on Tiger, 1 024×1 024
pixels (License: TeryKats, flickr.com, CC-BY). a. Original. b. Zoom into eye
region. c. Excerpt of halftone in the eye region. d. Full halftone (1 000 iterations,
820 ms per iteration using the fast summation technique).

7.7. EXPERIMENTS 239

results are reproduced on the target medium. The quality of this operator
is deeply connected to its implementation. Different printers and screens
give different results, while the theoretical prototype for such rendering
operator is well understood (cf. Section 7.2.1). Hence, we now focus on
objective measures for the quality of the essential component of electrostatic
halftoning, the sampling operator.

Approximation Errors

One key property of halftoning is a good approximation of the underlying
image. The better a halftone, the less an observer should be able to distin-
guish it from the original. It is also evident that a halftone can in general
never reach the quality of the original, since its co-domain is limited to
two binary values while an image can map a coordinate to a value from a
potentially continuous interval. This difference causes halftones to contain
artificial high frequencies which are not present in the original image. In
order to illustrate this issue, one can imagine a flat area of medium grey
value. It is clear that a good halftone for it should contain about as many
black as white pixels, and that those should be fairly uniformly distributed
on the plane. Independent of whether the halftoning method chooses a
regular checkerboard pattern or an irregular stochastic pattern, it always
generates new frequencies, since the original image does not possess any
variations. To this end, we exploit the fact that the human visual system
most closely corresponds to a low-pass filter (cf. Section 7.2). When an ob-
server moves away from an image, high-frequent features begin to disappear
while low-frequent features survive much longer.

Figure 7.13 shows an excerpt of a halftone on the Trui image by means of
electrostatic halftoning, and by the method of Balzer et al. [BSD09]. In the
second row, these results and the original image are blurred by convolution
with a Gaussian of standard deviation σ = 1. The blurred original is a
ground truth against which the blurred halftones can now be evaluated.
This comparison is frequently called a difference of HVS responses, and can
either be obtained by a subjective comparison or by computing an error
measure such as the mean square error [LA08]. First, we are interested in
the visual difference, which is also depicted in Figure 7.13. For a better
visibility, the difference images depict errors scaled by a factor 10. A zero
error is shown in 50% grey.

Note that the method of Balzer et al. has the number of sampling
points per dot as an adjustable quality parameter. This number can freely
be chosen and must not be confused with the number of dots, which is
given by the size of one dot and the average grey value of the image. Unless

240 CHAPTER 7. HALFTONING

O
ri

gi
n
al

/H
al

ft
on

e
B

lu
rr

ed
D

iff
er

en
ce

Input:
Excerpt of Trui.

Balzer et al.
Electrostatic
Halftoning

Figure 7.13: Approximation quality of electrostatic halftoning compared to the
method of Balzer et al., under a Gaussian with σ = 1. Difference images are
scaled by a factor 10. Medium grey means no difference.

7.7. EXPERIMENTS 241

specified differently, we always use the choice 1 024 as specified in [BSD09].
Compared to the capacity-constrained method of Balzer et al., electro-

static halftoning creates much smoother and more consistent results. This
is in particular visible in the difference plot. Almost no image structures are
visible in the error image, which hints at a good approximation of the image.
Moreover, the result does not reveal striking noise artefacts in the whole
image domain. Only in the cheek region within the right half of the image,
the error is slightly higher. This phenomenon is related to the bright tone
of this region and the resulting large distances between particles. To blur
these relatively low frequencies to a flat area, higher standard deviations
are required. Thus, it results from a principle weakness in the evaluation
which does not account for different grey values rather than being an error
of the method. As a consequence, this artefact is also strikingly visible in
the error plot for the method of Balzer et al.

Accounting for the dependency on the choice of the standard deviation
σ is nontrivial. From the motivation of an evaluation under conditions of
the human visual system, the standard deviation corresponds to a certain
viewing distance. At the other hand, different grey values cause different
average particle distances, which in turn requires different standard devi-
ations to distribute the colour information homogeneously in the area of
influence. In a physical interpretation, this insight leads to a dilemma be-
cause different parts of the image would require different viewing distances.

Even from a technical point of view, such spatially variant evaluation
technique bears problems. In general, we consider images with sharp edges,
and an isotropic smoothing with a large kernel in bright regions would also
diffuse information from nearby dark regions into this area. However, ker-
nels in dark areas were smaller, such that less bright tones are transported
into these regions. Hence, the arising process does not preserve the average
grey value, and can consequently not be used as a solid basis for comparison.
However, anisotropic diffusion processes (cf. Chapter 4) are also no option.
Although they can preserve edges, they represent in general no valid model
for the human visual system.

As a consequence of these considerations, we refrain from an evaluation
under Gaussian filtering, but leave the standard deviation as a free param-
eter. To this end, we call a method better than a second technique if the
similarity to the original is higher under convolution with Gaussians of a
larger range of ‘meaningful’ standard deviations. In this context, ‘mean-
ingful’ is a rather flexible term and depends on subjective or application-
dependent preferences, the rendering operator, as well as on the resolution
of the halftone on the target medium. Most experts would probably agree
that the interval of about σ ∈ [1.0, 10.0] is important for human percep-

242 CHAPTER 7. HALFTONING

tion. In the literature, one often finds comparisons that are based on more
complex HVS models which additionally take into account under which en-
vironmental conditions the halftone is viewed [LA08]. However, since all of
these filters have a lowpass character, they can fairly well be compared to
a Gaussian filter as applied here and map to a similar range of admissible
standard deviations.

Note that for σ � 1, almost no information is diffused, such that such
choices require a similarity on a per-pixel basis. This error is minimised
by a simple thresholding approach whose results usually do not conform to
our intuitive understanding of a halftone. The other extreme, σ →∞, does
also not provide a distinctive measure for comparison, as it can only detect
changes in the average grey value.

A standard method for similarity is the peak signal to noise ratio (PSNR)

PSNR(a, b) = 10 log10

(
1

1
N

∑N
i=1(ai − bi)2

)
(7.64)

between the smoothed original Kσ∗u and the smoothed halftone Kσ∗H(u).
Kσ denotes a Gaussian with standard deviation σ. Since this process de-
pends on σ, we plot the PSNR against all meaningful standard deviations.
To this end, a higher value indicates that the L2 distance between the argu-
ments is lower for this particular standard deviation such that the halftone
is more similar to the original under the corresponding viewing distance.

Figure 7.14 depicts the PSNR for electrostatic halftoning and for the
method of Balzer et al. [BSD09] for standard deviations σ from 0 to 15 on
the Trui image. Besides the standard setting of 1 024 points per site for the
latter approach, we also compare against this method with a high-quality
setting of 8 192 points per site. Due to their high memory requirements,
these solutions could no longer be computed on the available hardware.
However, the authors of the original publication kindly agreed to compute
and supply these reference solutions. 1

Our experiment shows that electrostatic halftoning performs in all scales
much better than its competitor, regardless of the quality setting of the
latter method. The perceptual distance between the graphs in the plot is
in particular astonishing if we recall that the PSNR describes a logarithmic
measure. Hence, electrostatic halftoning even possesses a more than ten
times smaller approximation error for σ > 10 on a linear scale.

In particular, electrostatic halftoning seems to be more optimal in a
global sense than the method of Balzer et al.. In order to support this

1 My thanks go to Thomas Schlömer from the University of Constance for kindly pro-
viding reference results for comparison.

7.7. EXPERIMENTS 243

 0

 20

 40

 60

 80

 100

 0 5 10 15

P
S

N
R

σ

Electrostatic Halftoning

Balzer et al. (1024)

Balzer et al. (8192)

Figure 7.14: PSNR of electrostatic halftones for Trui smoothed by Gaussian
convolution with standard deviation σ with respect to the smoothed original.
Results for the method of Balzer et al. with 1 024 and 8 192 points per site are
given for reference.

claim in more detail, let us briefly go into detail about the co-domain of
the PSNR. By construction, the PSNR is unbounded, since two identical
images let the denominator in (7.64) vanish. However, a halftone can in
general not approximate an image to an arbitrary degree. The reason for
this is that we halftone with a certain number of black discs with unit
area. These discs, together with the empty white space in between, are
supposed to have the same average grey value as the image. However,
since the image consists of values that are taken from a continuous interval,
there is often a slight inconsistency between the average grey values of the
image and the halftone. For instance, the Trui image has an average grey
value of about 0.53994165, while its halftone has an average grey value
of about 0.53994751. This difference bounds the PSNR to 104.6380. As
a consequence, the PSNRs of all evaluated methods approach this value
when the grey value information is equally diffused over the whole image
domain, i.e. for σ → ∞. Electrostatic halftoning approaches this value
much faster, which means that it creates a very good approximation of
the image, locally as well as globally. Moreover, one should remark that
the optimum for any halftoning method at any standard deviation cannot
exceed the maximal PSNR given above. Compared to its competitor, and

244 CHAPTER 7. HALFTONING

considering the logarithmic nature of the co-domain, electrostatic halftoning
has reduced the gap between theory and practice tremendously. By this, it
represents the best halftoning technique available today.

Spectral Analysis

Next, we evaluate the spectral properties of electrostatic halftoning. They
are an indicator for the regularity and noisiness of a halftone h. To analyse
these properties, the method in charge is applied to a flat image. In the
pointwise squared Fourier spectrum of this result, called the power spectrum
Ph(x) of h, one can then check if the halftone fulfils so-called blue noise
characteristics [Uli88]. The closer the halftone mimics this behaviour, the
better is its quality.

The idea behind these methods is the requirement that dots are dis-
tributed equally over the image domain and that they do not suffer from
aliasing artefacts. The average distance between two neighbouring dots is
characteristic for the grey value the halftone approximates. If two points
are moved closer to each other, the result appears darker, if they are moved
further apart, the image becomes brighter. For every grey tone that we
halftone, we can thus compute the principal frequency fp in which we expect
the points to appear [Uli88, LA08]. In the power spectrum, this property
is reflected by a high peak at the radial frequency fp.

So far, the measurement bears one important drawback. Because it was
only generated by one halftone, it shows the properties of this particular
image, rather than those of the whole scheme. As an example, consider
the directional dependency of the power spectrum. A flat grey image can
ideally be represented by a regular grid. Although the method might be
rotationally invariant, each individual halftone still does reveal one direction
in which its grid is oriented. An individual power spectrum can thus be
biased, although the family of power spectra for the halftoning method
does not possess any bias. These stochastic discrepancies can be eliminated
if several independent samples are drawn. This means we compute several
halftones for the same grey value, compute their power spectra, and average
these to obtain a well-founded basis for comparison [Bar78]. Note that we
can even draw different samples out of the result for a deterministic method
if we render a large image, and cut out subplanes at random positions.

Figure 7.15 shows an example for a power spectrum. The peak at the
radial frequency fp appears as a bright circle, and has been annotated with
a blue line. To characterise this peak, we distinguish two measures:

• The radially averaged power spectrum (RAPS) is a histogram

7.7. EXPERIMENTS 245

f
p

0.5 0.710

Figure 7.15: Annotated power spectrum with blue noise properties.

of the power on concentric circles, normalised by the perimeter of the
circle. Algorithmically, one can imagine this measuring process as a
clock hand that performs one full turn, while integrating all entries in
distance n from the centre to obtain the value of the RAPS at point
n. To this end, the RAPS to a halftone h is defined as

RAPSh(f) :=
1

2πf

∮
C(f)

Ph(x) dx, (7.65)

with
C(f) := { (x, y) | x2 + y2 = f 2} , (7.66)

and Ph again denoting the power spectrum of h. The desired proper-
ties of the RAPS can best be seen if we plot it against the frequency
f (cf. Figure 7.16). A good blue noise behaviour is characterised by
a vanishing low-frequency band, a steep ascent to a dominant peak at
the principal frequency fp, and a flat high-frequency area [Uli88]. The
shape of the peak is an indicator for the regularity of the halftone.
A thin high peak denotes a very regular halftone, while a flat but
wide peak shows that the distribution is more random and noisy. The
latter has a direct effect on the approximation quality with respect to
the image. The requirement of a flat high-frequency area arises from
principal limitations. High frequencies cannot be avoided at all, be-
cause they are omnipresent as multiples of low frequencies. However,
their low variation indicates that no additional frequencies are gener-
ated by an unintentional clustering of dots. Finally, one should note

246 CHAPTER 7. HALFTONING

0 0 .2 0 .4 0 .6
-20

-10

0

1 0

dB

Low energy below f
p

Peak at principal frequency

Flat blue noise region

Principal frequency fp

Figure 7.16: Ideal blue noise behaviour as defined by Ulichney [Uli88].

that the stability of the measurement drops above f = 0.5 such that
measurements for very high frequencies are less reliable than for lower
ones. The reason can be seen in Figure 7.15. While up to f = 0.5, full
circles are available for averaging, only a few values in the corners of
the power spectrum must suffice for larger f . In real measurements,
the error thus rises slightly for f →

√
0.5.

According to Ulichney, the principal frequency fp(u) for a flat image
with grey value u is given by

f (r)
p (u) =

√
1

2
−
∣∣∣∣u− 1

2

∣∣∣∣ , (7.67)

if the halftone lies on a rectangular grid, and by

f (h)
p (u) =

2√
3

√
1

2
−
∣∣∣∣u− 1

2

∣∣∣∣ , (7.68)

if it lies on a hexagonal grid [Uli88]. For continuous halftones as we
evaluate them here, neither of these two principle frequencies are ex-
act. Although we expect dots to form hexagonal structures, there
is no defined grid direction. Moreover, the result can be biased by
the fact that we consider rectangular input images on a regular grid.
To this end, the expected principal frequency lies somewhere between
these two values. This is also the reason why throughout this the-
sis, plots for continuous methods indicate the interval for admissible
principle frequencies with two dashed lines in the RAPS.

7.7. EXPERIMENTS 247

�a

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6
-20

-10

 0

 10

�b

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6
-20

-10

 0

 10

Figure 7.17: Spectral analysis of a. the method of Balzer et al., and b. electro-
static halftoning.

• Directional preferences of a method are given by its anisotropy mea-
sure. As opposed to the RAPS, this measure denotes the variance
over each concentric circle. A high anisotropy for a certain frequency
f means that this frequency occurs more often in specific directions
than in others, thus indicating a directional bias of the method. The
anisotropy of a halftone h is given by

Anih(f) :=
1

2πf

∮
C(f)

(Ph(x)− RAPSh(f))2 dx. (7.69)

As stated before, the measured anisotropy depends on the number of
stochastic samples drawn from the halftone. For 10 samples, one can
show that the anisotropy is bounded to a background noise level of
−10dB (cf. Figure 7.16). In all plots in this thesis, this theoretical
limit of the evaluation technique is indicated by a dashed line in the
anisotropy plot.

Let us now analyse the spectral properties of electrostatic halftoning and
compare it against those of the capacity-constrained method of Balzer et
al. Both methods were run on an uniform image with grey tone u = 0.85.

248 CHAPTER 7. HALFTONING

Excerpts from their results, as well as a blue noise analysis, are shown in
Figure 7.17. In a direct comparison of both results, the method of Balzer
et al. generates halftones which look more random than those obtained
by electrostatic halftoning. The latter method in turn convinces by large
patches of almost perfect hexagonal grids. However, this comes at the
expense of striking crystallisation artefacts at the boundaries between these
areas. Still, neither of the two methods shows striking anomalies such as
clusters or inhomogeneous white spaces between the dots.

The high quality but different regularity of the two halftones can also
be seen in the RAPS. Both methods match the principle frequency very
well and show clearly visible bluenoise characteristics. However, the peak
at the principle frequency is more than 3 times higher for electrostatic
halftoning than it is for the capacity-constrained method. When it comes
to an energetically optimal, noise-free approximation of the given image,
electrostatic halftoning thus performs much better than its competitor. The
anisotropy lies for both methods at about −5dB, which is a very good result
considering that we have non-toroidal images.

One should note that some applications prefer a more random distri-
bution of points over an accurate approximation of the underlying density.
However, additional randomness in the results can as well be obtained with
electrostatic halftoning. Using the jittering extension from Section 7.4.4,
the degree of randomness can even be freely adjusted. The approach of
Balzer et al., in contrast, can neither be tuned to give more accurate nor
to give more random results. We see a detailed evaluation of the jittering
extension later in this chapter.

Quality of Fast Summation

Our NFFT-based fast summation algorithm from Section 7.6 approximates
rather than accurately imitates the direct summation algorithm. As a con-
sequence, this process introduces approximation errors, which are caused
by the cut-off parameter m̃, as well as by the degree of the polynomial p̂
used to describe the kernel. Without going into detail about the theoretical
background of these two parameters, let us regard both as one abstract
quality parameter. It constitutes a tradeoff between runtime on the one
hand and quality on the other.

We start with a comparison of halftones for Trui as in Section 7.7.2.
Even at the very first glance, we see that the results obtained with m̃ =
p̂ ∈ {1, 2} constitute a bad approximation of the original. For m̃ = p̂ = 2,
particles are even stacked, which makes this choice of parameters unusable
for any purpose. This changes for m̃ = p̂ ∈ {3, 4, 5, 6}. The results obtained

7.7. EXPERIMENTS 249

�a �b

�c �d

�e �f
Figure 7.18: Excerpt from fast summation halftones on Trui with quality set-
ting m̃ = p̂ ∈ {1, 2, 3, 4, 5, 6}, respectively.

with any of these values are hardly distinguishable. Unsurprisingly, this
is also reflected in the PSNR for the blurred results against the blurred
original. As shown in Figure 7.19, the outcomes for m̃ = p̂ ∈ {4, 5, 6}
are almost identical and very close to the solution obtained with the direct
summation approach, while the result for m̃ = p̂ = 3 follows close up.
In contrast, the graphs for m̃ = p̂ ∈ {1, 2} show a clearly worse behaviour.
This indicates that m̃ and p̂ should be chosen greater or equal to 3 to obtain
a good approximation.

As a second criterion for quality, we additionally evaluate these differ-
ent instances of the fast summation algorithm with respect to their spectral
properties. This is done in Figure 7.20. Like in the previous section, a uni-
form image of grey value 15% was halftoned and the results were analysed
with respect to their blue noise properties. The outcome of this experiment

250 CHAPTER 7. HALFTONING

 0

 20

 40

 60

 80

 100

 0 5 10 15

P
S

N
R

σ

Direct

3-6

2

1

Figure 7.19: PSNR of halftones for Trui smoothed by Gaussian convolution
with standard deviation σ with respect to the smoothed original. From bottom
to top: Fast summation for m̃ = p̂ ∈ {1, 2, 3, 4, 5, 6}, and direct summation.

is surprising. All instances with m̃ = p̂ 6 4 perform unsatisfactory with
respect to both the RAPS and the anisotropy measure. The bad behaviour
of the result for m̃ = p̂ = 4 can best be explained if we have a closer look
on the sample patch rendered in Figure 7.20d. It reveals that points are
arranged much too regular, almost like residing on a fixed grid. If we go
back to Figure 7.19, we can spot such artefacts as well, although they are
less prominent. They seem to be grey-value dependent, and can best be
seen on the bright background in the top left corners. For m̃ = p̂ > 5, these
regular structures are replaced by small patches that contain a regular, but
randomly rotated structure. As a consequence, no directional preferences
can be identified and the process possesses blue-noise properties.

To this end, we can draw two conclusions out of these experiments.
Whenever we are interested in a result with the same high quality as the
direct summation approach, we should set m̃ = p̂ = 5. This is also done for
all following experiments, unless stated otherwise. However, we also have
the opportunity to accelerate the process even further if we only require a
visually convincing result which does not necessarily need to be perfect. In
either case, however, we should not choose m̃ = p̂ < 3. In Section 7.7.5, we
compare the runtimes for different quality settings with each other. This
way, we obtain a feeling for the tradeoff between quality and runtime.

7.7. EXPERIMENTS 251

�a
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6
-20

-10

 0

 10

�b
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6
-20

-10

 0

 10

�c
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6
-20

-10

 0

 10

�d
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6
-20

-10

 0

 10

�e
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6
-20

-10

 0

 10

�f
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6
-20

-10

 0

 10

Figure 7.20: Spectral analysis of fast summation halftones obtained with quality
settings m̃ = p̂ ∈ {1, 2, 3, 4, 5, 6}, respectively.

7.7.3 Modifications and Extensions

Dithering

As a next step, we evaluate the extensions proposed in Section 7.4, and
start with dithering. Because in many applications discrete results are
preferred over continuous ones, the experiments performed here are very
important. They show whether electrostatic halftoning is well suited for
these applications and can reveal potential drawbacks.

However, before we analyse the quality of electrostatic dithering com-
pared to other methods from the literature, there is one fundamental ques-
tion to be answered. In Section 7.4.1, we discussed that a replacement of the
rendering operator by rasterisation is a necessary but insufficient change to
obtain the desired results. In addition to this, we need an ‘egg-crate’ shaped
potential along the grid points, as well as a projection of particles to the

252 CHAPTER 7. HALFTONING

closest grid line. The effects of each of these extensions is subject of the
next experiment.

In Figure 7.21b, we see the halftone of the seagull image which was
obtained by a rasterisation of the continuous electrostatic sampling. The
quality of this halftone is very low. Regions with dark or medium grey tone
are dominated by line-like aliasing artefacts. At the same time, 364 pixels
contain more than one particle. In image c, these locations have been circled
in red. Although we can still print this image if we interpret pixels with
an arbitrary number of particles as a black one, this thresholding process
also modifies the average grey value. Thus, the halftone does no longer
approximate the original image. In Figure 7.21d, the sampling operator
was amended by the additional attractive potential towards grid positions.
The gain in quality is clearly visible. The white artefacts in the background
disappear completely, and all regions are represented by a suitable amount
of homogeneously distributed particles. Still, there are 8 locations in which
a pixel was assigned more than one particle. This means the average grey
value of the image is still not preserved. In part e, the sampling operator
was exclusively extended by the projection step. This modification entirely
resolves the problem with double assignments, as can be seen in the image.
However, the halftone is still not optimal. In the black region in the top
right corner, irregular line-like patterns arise. Even in the background, the
rendering looks more coarse than for image d. Finally, both modifications
are combined to obtain the result shown in Figure 7.21f. It combines the
high visual quality of d with the freedom of double assignments from e and
provides a smooth and realistic representation of the original.

Next, we perform a qualitative analysis similar to the evaluation in
Section 7.7.2. This experiment compares discrete electrostatic halftoning
to other popular methods from the literature. Compared to the continuous
case, where very few methods dominate most of the applications, the dither-
ing market is highly contested. This might be due to the long history of
dithering methods, their numerous applications, and their different tradeoffs
between speed and accuracy. Most of these techniques try to find a halftone
which minimises a local error to the original. A prominent class of repre-
sentatives for this purpose is the so-called error diffusion. By processing
the image on a certain trajectory like scanlines, these algorithms binarise
one pixel by thresholding and distribute the approximation error into the
unprocessed neighbourhood. Starting with the famous work of Floyd and
Steinberg [FS76], several optimisations were proposed in the literature. As
two modern representatives of this class, we additionally consider the ap-
proaches of Ostromoukhov [Ost01] and Zhou et al. [ZF03]. In particular if a
dithering method shall be implemented on printer hardware, one frequently

7.7. EXPERIMENTS 253

�a �b

�c �d

�e �f
Figure 7.21: Effect of the egg-crate potential and projection for dithering, with
double assignments annotated in red (c–f). a. Original (256×256). b,c. Raster-
isation of the continuous result. d. Potential, but no projection. e. Projection,
but no potential. f. Potential and Projection.

254 CHAPTER 7. HALFTONING

refrains to algorithmically more simple and data-parallel threshold screen-
ing techniques. These methods use a mask of continuously distributed grey
values. If the mask at a certain pixel is darker than the continuous-valued
input image, the corresponding pixel is white, and vice versa. The qual-
ity of halftones typically depends on the stochastic properties of the used
mask. In this experiment, we compare the famous forced random dithering
technique [PTG94] with a commercial method. From the latter, samples
were kindly provided by a company which prefers to remained unnamed.
Finally, we additionally take into account two methods which both aim at
a perceptual similarity of the original and the halftone. While the method
of Geist et al. [GRS93] sets up on a Markovian framework to obtain these
visually enhanced results, the structure-aware halftoning method of Pang
et al. [PQW+08] minimises a similarity measure that takes into account
local gradients. In order to make the latter method better comparable in
terms of tone similarity, we additionally consider a variant of this method
in which the structure similarity term was disabled. Unfortunately there is
no such option for the method of Geist et al.

All methods mentioned so far are compared against the (discrete) elec-
trostatic halftoning approach presented in Section 7.4.1. Similar to the
experiments from Section 7.7.2, we use the Trui test image and dither it
with the different methods. In a first step, excerpts of these dithering re-
sults, as well as blurred versions under a Gaussian of standard deviation
σ = 1.0, are visually compared to each other.

The results of this experiment on Trui are shown in Figure 7.22, where
the commercial approach is annotated with ‘threshold screening’. For the
method of Purgathofer et al., a mask with the size of the whole image was
chosen such that the depicted result can be seen as the optimal instance
that can be obtained with this method. As a first impression, we observe
a noticeable contrast enhancement by the approaches of Geist et al. and
Pang et al., while the latter method particularly amplifies small variations
in fine structures. This can for instance be seen in the eye region of the de-
picted woman. However, the enhancement of structures clearly come at the
expense of an accurate approximation of the underlying image, as is best
visible in the difference plots. The result for the tone-similarity term from
Pang et al. is qualitatively equivalent to the error-diffusion approaches of
Floyd-Steinberg and Ostromoukhov, which indicates that the energy min-
imisation taking place for this part of the method only marginally affects
the initialisation with the result of Ostromoukhov. All three results reveal
striking grid-like artefacts in medium grey regions. Such artefacts are not
visible in the results produced by the commercial threshold screening ap-
proach, the method of Purgathofer et al., and the technique of Zhou et al.,

7.7. EXPERIMENTS 255
R

es
u
lt

B
lu

rr
ed

D
iff

er
en

ce

Input Geist et al. Pang et al.
Threshold
Screening

Purgathofer
et al.

R
es

u
lt

B
lu

rr
ed

D
iff

er
en

ce

Floyd-
Steinberg

Ostromoukhov
Pang et al.

(tone)
Zhou et al.

Discrete
Electrostatic
Halftoning

Figure 7.22: Approximation quality of discrete electrostatic halftoning com-
pared to other dithering techniques, under a Gaussian with σ = 1. Difference
images are scaled by a factor 10. Medium grey means no difference.

256 CHAPTER 7. HALFTONING

 0

 20

 40

 60

 80

 0 5 10 15

P
S

N
R

σ

Geist et al.

Pang et al.

Purgathofer et al.

Floyd-Steinberg

Ostromoukhov
Pang et al. (tone)

Zhou et al.

Electrostatic (discrete)
Balzer et al.

Threshold Screening

Figure 7.23: PSNR of ditherings of Trui smoothed by Gaussian convolution
with standard deviation σ with respect to the smoothed original. The continuous
method of Balzer et al. (1 024, 8 192 points per site as in Figure 7.14) is given
for comparison purposes.

but these images possess a more coarse appearance than those prodeuced
by all other methods. In contrast to its competitors, electrostatic halftoning
produces very fine-grained results without visible artefacts. Its difference
plot against the smoothed original shows a fairly random pattern without
visible image structures. This is an indicator for a high quality.

Next, we want to confirm this subjective impression by a numerical
quality measure. As for the experiment described in Section 7.7.2, we thus
convolve the results from the previous experiments with Gaussians in differ-
ent standard deviations and compare their PSNR to the smoothed original
This is shown in Figure 7.23. In order to give a rough estimate of the qual-
ity of discrete methods with respect to the continuous comparison from
Figure 7.14, the graphs for the method of Balzer et al. with 1 024 and 8 192
points are again given as a reference.

Our subjective impression from the previous experiment is also reflected
in this measurement. Electrostatic dithering outperforms all other methods
significantly, in particular when it comes to a globally optimal approxima-
tion, i.e. large σ. For such settings, discrete electrostatic halftoning even
outperforms the continuous method of Balzer et al. — although it obeys
the additional constraint to place particles only on grid positions. Error

7.7. EXPERIMENTS 257

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6
-20

-10

 0

 10

Geist et al.

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6
-20

-10

 0

 10

Pang et al.

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6
-20

-10

 0

 10

Threshold Screening

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6
-20

-10

 0

 10

Purgathofer et al.

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6
-20

-10

 0

 10

Floyd-Steinberg

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6
-20

-10

 0

 10

Ostromoukhov

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6
-20

-10

 0

 10

Zhou et al.

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6
-20

-10

 0

 10

Discrete
Electrostatic

Halftoning

Figure 7.24: Spectral analysis of dithering methods.

diffusion algorithms and the tone-similarity variant of the method of Pang
et al. constitute the second best class of dithering methods. These methods
are qualitatively similar to each other, while the coarseness of the results
obtained by the method of Zhou et al. is also reflected in this experi-
ment. It dominates the other error diffusion algorithms for large σ, but
performs much worse for small values. The threshold screening algorithms
provide results of medium quality, only followed by the contrast enhancing
approaches. Again we should note that the bad performance of the algo-
rithms of Geist et al. and Pang et al. in this experiment is no meaningful
statement, since the structure enhancing property they are targeting is not
covered by this evaluation series.

Finally, we are interested in the spectral properties of the different
halftoning techniques. Since this experiment works on flat grey images,
the results are comparable among all evaluated techniques, independent of
an optional structure enhancement. Moreover, we do not need to distin-

258 CHAPTER 7. HALFTONING

guish the two variants of the method of Pang et al. any longer because
their results are bitwise identical due to a lack of structure in the images.
Figure 7.24 shows the outcome of this experiment on a image of grey value
0.85. Due to the contrast enhancing property of the method of Geist et al.
and the bright grey tone, it yields a plain white output image. This is a clear
disadvantage of this method as it does not only lack a basis of comparison,
but does also not preserve the average grey value of the original. Results
generated by electrostatic halftoning and the method of Ostromoukhov pos-
sess the best blue noise properties, closely followed by the method of and
of Floyd and Steinberg. All of them possess a steep slope towards the high
peak at the principal frequency and a relatively flat high frequency area.
The distinctive peak is missing for the results of Pang et al. and the com-
mercial threshold screening technique, while the approach of Purgathofer
et al. is dominated by undesired high frequencies.

To this end, we conclude that discrete electrostatic halftoning outper-
forms the best and most frequently used dithering algorithms from the lit-
erature by all criteria. Globally, it performs even better than the capacity-
constrained approach of Balzer et al. which represents the second best
continuous approach after electrostatic halftoning. This insight shows that
electrostatic halftoning is not only able to create convincing continuous
point distributions, but is also the first method to create better discrete
dithering results than the class of error diffusion algorithms.

Point Size Adjustment

In Figure 7.25, the image The skull bisected and sectioned by Leonardo da
Vinci was halftoned in different resolutions. Given the input image in the
size 200×300 pixels, the circular discs have been adapted to the radii 0.5,
1.0, 1.5, 2.0, and 2.5 pixels. Independent of the size of the dots, however,
all halftones approximate the original very accurately. While for the one
with the highest resolution, even small details such as single strokes are
clearly visible, the coarsest halftone preserves all important structures. By
this, the depicted object can clearly be identified. Furthermore, it also still
contains fine details of the object such as the y-shaped widening of the
vertical crack at the forehead or the exact shape of the ditch at the right
temple. Electrostatic halftoning is thus very well suited as a preprocessing
stage to printing. Even if details live beyond the physical resolution of the
printer, they can still be represented in the print if dots can be placed on a
continuous domain. Moreover, this experiment also remarkably shows the
application of electrostatic halftoning for artistic stippling. By pronouncing
both dominant structures and fine details, the method mimics the works of

7.7. EXPERIMENTS 259

�a �b �c

�d �e �f
Figure 7.25: Electrostatic halftones of the Skull image (a.) with point radii of
b. 0.5, c. 1.0, d. 1.5, e. 2.0, and f. 2.5 pixels of the original.

260 CHAPTER 7. HALFTONING

painters whose skill enables them to transport important information and
impressions with a few dots of paint.

Grey Value Correction

Let us now evaluate the visual quality gain of images when applying a grey
value correction to dark tones (cf. Section 7.4.3). As it turns out, a sound
evaluation of this modification is challenging by itself. All changes intro-
duced in this context are tailored to a theoretic model of the rendering
operator. From Section 7.2.1, we know that rendering is subject to charac-
teristics of the display or printing device. Hence, in both a hardcopy and
a digital version of sample images, the overall impression can differ signifi-
cantly. This holds in particular since only the 9% darkest tones are affected,
and for those a multitude of effects such as dot merge can occur. To this
end, the visual results obtained in this experiment can best be observed
and evaluated in a digital version of this thesis using a document viewer
that supports anti-aliasing for graphics.

Figure 7.26 shows the effect of grey value correction on an image of blast
furnaces. While the traditional halftone looks greyish in dark tone areas,
the corrected one approximates the original much better. This becomes
even better visible if we regard the zoom-ins into the centre of the bottom
image boundary. This image region features many details such as openings
in the depicted metal structures. Since the contrast of these structures
is low and falls into the tonal range a traditional point-based rendering
cannot properly visualise, many of these details disappear completely in
the uncorrected halftone. Because the corrected halftoning method does
not suffer from these restrictions, it accurately represents all fine structures.

Considering that grey value correction has no major impact on the run-
time of the algorithm, this extension should always be applied to enhance
the quality of the arising halftones. Depending on the printer or display
device used in the reproduction of halftones, it can even be adapted to yield
comparable results in real-world rendering processes. This works either by
a theoretical approach as in Section 7.4.3, or by an experimental optimi-
sation. The latter procedure additionally allows to take into account all
kinds of effects described in [Kip01] such as paper structure, suction, or
perturbation of the inkblots’ trajectories.

Jittering for Stippling

Let us now evaluate the effect of the jittering extension on stippling re-
sults. As it turns out, it is again challenging to find a good evaluation since

7.7. EXPERIMENTS 261

�a

�b

�c

�d �e �f
Figure 7.26: Effect of grey value correction on dark tones of a picture of blast
furnaces at Völklinger Hütte. a. Original. b. Standard halftone. c. Corrected
halftone. d–f. Zooms to red square regions of a–c, respectively.

262 CHAPTER 7. HALFTONING

the objective is underdetermined. It is clear that we can add an arbitrary
amount of jittering to the image, thus obtaining any result from an ener-
getically optimal solution to pure white noise. However, neither of these
extremes is desired. While in the first case, the extension has no effect and
artefacts remain in the image, the second case creates an image that only
preserves the average grey value but is not similar to the original anymore.
The tradeoff between these two extremes lies somewhere in the middle and
depends on subjective rather than on objective factors.

In order to perform a valid evaluation, we thus add an increasing fac-
tor from ψ0 = 0 to ψ5 = 0.05 of jittering to the image, and observe the
changes in the resulting halftones. Figure 7.27 shows magnified excerpts
from results of this experiment on Trui. The result for ψ0 = 0 shows the
typical hexagonal structures that arise for electrostatic halftoning, but also
the crystallisation artefacts that are caused by this setup. With increasing
ψ, these structures and artefacts disappear more and more until we end up
with a highly irregular, but also artefact-free, approximation of the original
image. If we would further increase ψ, this point cloud approaches a white
noise distribution of particles without any relation to the original image.
From the important parameter range covered by Figure 7.27, we can clearly
see the local influence of the perturbation. For example, consider the re-
sult for ψ2 = 0.02. Here, dark regions are significantly perturbed while the
regular structures in brighter regions, such as around the eye, are still well
preserved. This is because the relative distance of particles is in bright re-
gions much higher than in dark regions, such that additional perturbation
of the electrostatic field has less influence. As a conclusion, let us note that
a perturbation as described in Section 7.4.4 is very well suited to remove
artefacts, while still preserving the grey value and important structures of
the image. Depending on the desired effect, the degree of jittering should
be chosen as ψ ≈ 0.02.

Since this visual analysis is prone to subjective preferences and can
only provide a rough qualitative measure, we also perform a numerical
evaluation in terms of error measures. Since the desired tradeoff between
a good approximation of the original and freedom of artefacts cannot be
directly measured, we apply two measures. The approximation quality is
best indicated by the peak signal to noise ratio on error images as done in
Section 7.7.2. Artefacts can best be seen in a spectral analysis as performed
in 7.7.2. The problem is that both measures cannot be applied to the same
image: While the first requires a textured image, the second makes only
sense on a uniform grey image. We thus need to perform the experiment on
two series of results and reason on a combination of the insights acquired
by the two experiments.

7.7. EXPERIMENTS 263

�a �b

�c �d

�e �f
Figure 7.27: Excerpt from halftones on Trui with a. ψ = 0.00, b. ψ = 0.01,
c. ψ = 0.02, d. ψ = 0.03, e. ψ = 0.04, and f. ψ = 0.05.

To this end, let us first compare the PSNR of the Trui halftones from
Figure 7.27 under Gaussians of varying standard deviation σ. This is de-
picted in Figure 7.28. Surprisingly, the well visible randomness introduced
to the halftone does not impair its PSNR by too much. This is a conse-
quence of the locality of the added perturbation field. While locally, regular
structures are broken up to remove artefacts, the underlying density is still
well approximated globally. If we compare jittered electrostatic halftoning
to the capacity-constrained approach of Balzer et al., we observe a much
higher quality in a global sense and a freely adjustable approximation qual-
ity in the range of about 1 < σ < 3. In this local scale, the quality of jittered
electrostatic halftoning with ψ > 0.02 even drops below the one of Balzer
et al. with 8 192 points. This corresponds to the scale in which the artifi-

264 CHAPTER 7. HALFTONING

 0

 20

 40

 60

 80

 100

 0 5 10 15

P
S

N
R

σ

Electrostatic (ψ ∈ [0.00,0.05])

Balzer et al. 1024

Balzer et al. 8192

Figure 7.28: PSNR of jittered halftones of Trui smoothed by Gaussian con-
volution with standard deviation σ with respect to the smoothed original. The
method of Balzer et al. is given for comparison purposes.

cial perturbations of the electrostatic field live. The fact that we can freely
adjust the approximation quality of electrostatic halftoning in this scale in-
dicates that the jittering process works as intended. It represents a major
advantage over the inherent parametrisation of the approach of Balzer et
al. whose quality can only be adjusted by modifying the minimisation pro-
cess of one particular problem. Hence, electrostatic halftoning allows for
any desired jittering in a continuous range, while the capacity-constrained
method only allows discrete steps as a by-product of the minimisation pro-
cess. Finally, let us again remark that electrostatic halftoning performs
much better than its competitor when it comes to globally optimal solu-
tions, i.e. for σ → ∞. One can even observe that the quality for different
choices of ψ converges in this case. This indicates the desired, purely lo-
cal influence of jittering: Local clusters are broken apart to yield pleasing
results, while the overall density is still well approximated in a global sense.

Next, we evaluate the influence of additional jittering to the spectral
properties of the results. This is shown in Figure 7.29. Albeit the char-
acteristic peak for the principal frequency in the RAPS drops off rapidly,
the system preserves the bluenoise properties of its results very well. This
is in particular visible for the results with larger values for ψ, where the
high-frequency area almost describes a parallel line to the abscissa. If we

7.7. EXPERIMENTS 265

�a

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6
-20

-10

 0

 10

�b

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6
-20

-10

 0

 10

�c

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6
-20

-10

 0

 10

�d

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6
-20

-10

 0

 10

�e

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6
-20

-10

 0

 10

�f

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6
-20

-10

 0

 10

Figure 7.29: Spectral analysis of electrostatic halftoning with additional jitter-
ing of a. ψ = 0.00, b. ψ = 0.01, c. ψ = 0.02, d. ψ = 0.03, e. ψ = 0.04, and
f. ψ = 0.05.

266 CHAPTER 7. HALFTONING

compare these results to the method of Balzer et al. (cf. Figure 7.17), we
see that electrostatic halftoning performs much better. Even the result for
ψ = 0.05, which is entirely artefact-free, still has a higher peak at the prin-
cipal frequency than the capacity-constrained approach. The anisotropy
of the method improves up to about ψ = 0.02, and does not significantly
change for larger values for ψ. This indicates that choosing ψ ≈ 0.02 suf-
fices to smooth out regular patterns arising on halftones of the selected grey
tone.

Edge Enhancement

Let us now evaluate edge enhancement by means of unsharp masking. As
was specified in Section 7.4.5, this modification is not applied to the model
itself, but comes down to a change of the input image. To this end, we are
free to use any image manipulation software to apply unsharp masking, or
even to tweak the image by means of other filters. As a simple example, we
are now considering a sole application of the unsharp masking filter from
the GIMP suite [Ham07].

Different to the mathematical notation from (7.33)-(7.34), the filter al-
lows the user to specify a radius of effect r rather than the standard devia-
tion σ of the used Gaussian [dJ07]. Both values can be translated into each
other by the relation

σ =

√
−r̂2

2 ln 1
255

, r̂ = |r|+ 1 . (7.70)

So, a radius r = 1 corresponds to σ ≈ 0.60. Figure 7.30 shows the result of
edge enhancement on the Peacock image. In this experiment, the original is
halftoned without edge enhancement, with edge enhancement using r = 1
and c = 1, and finally using r = 1 and c = 2. Compared to the original,
the classic halftone looks washed-out. This can in particular be seen at the
long feathers on the bird’s head, as well as in the plumage. In contrast, the
edge enhanced version with c = 1 does not suffer from these problems and
provides a visually better approximation of the image. Characteristics of
both homogeneous and textured regions are very well preserved in this case.
The last example with c = 2 shows that unsharp masking should not be
carried to excess. Although the image is again sharper, it also has striking
‘halo’ artefacts around all objects. However, if further sharpening is desired,
such problems can at least partly be remedied by using more complex filters
such as morphological operations, or osmosis [Soi99, Wei11d].

7.7. EXPERIMENTS 267

�a �b

�c �d

Figure 7.30: Edge enhancement by unsharp masking. a. Original image.
b. Electrostatic halftone. c. Ditto, with unsharp masking with σ = 0.6, c = 1.
d. Ditto, but c = 2.

268 CHAPTER 7. HALFTONING

Colour Halftoning

In this series of experiments, we evaluate and compare the visual quality
of colour halftones with a different amount of colours. We regard CMY
and CMYK as the two most frequently used colour models for printing,
and CMY-RGB-K as a representative for a class of models with a higher
colour diversity. In the end, we analyse the applicability of electrostatic
halftoning to commodity printers with extraordinary colour models such as
CMY-RG-K, or CMY-RB-K.

As a first experiment, we test the halftoning methods on a colour circle.
This artificial image is well suited to observe the generation of secondary
colours which are not available as single inks. Apart from sampling, this im-
age contains all hues, as well as all graduations towards black. If we assume
that secondary colours arise by a mixture of two colours that are closest in
the colour spectrum, as well as by black, we find all these combinations in
the colour circle. To this end, the halftones created in this experiment tell
us whether the halftoning method can reproduce the whole colour space.

Figure 7.31 shows the original, as well as the results obtained by halfton-
ing on the three colour models. All results turn out to represent colours
equally well, as can be seen along the boundary of the circle. However,
the more colours are involved, the coarser grained becomes the overall ap-
pearance. This is particularly visible towards the centre of the circle. The
reason for this behaviour is the relatively smaller resolution induced by the
non-overlap maps. While for CMY, particles from different channels can
overlap and are thus unrestricted in their location, they are required to find
a compromise with conflicting channels in the remaining cases. Thus, the
CMY model is capable of an up to three times higher effective resolution
than a purely disjunct system such as CMY-RGB-K. A good indicator for
this issue is the total number of particles involved in halftoning. Assuming
a unit area for all particles, the amount of 1 5741 particles for CMY on
the colour circle reduces to 10 478 if we use CMYK, and even to 7 857 for
CMY-RGB-K. As a consequence, there is always a tradeoff between many
printing colours and the minimal dot size the device supports: the more
inks, the smaller the dot size must be.

To this end, let us remark that, similar to the evaluation of the grey
value correction extension in Section 7.7.3, the visual quality of the results
shown in Figure 7.31 depends strongly on the used output device. It is in
the nature of this extension that the 4-colour CMYK version of the colour
circle has a better quality in a hardcopy of this thesis than on a screen, while
it is the other way round for the CMY version. Another good example for
this device-dependency can often been spotted in the CMY-RGB-K circle

7.7. EXPERIMENTS 269

�a �b

�c �d
Figure 7.31: Comparison of halftoning with different sets of colours on a colour
circle (100 × 100). a. Original. b. 3-colour (CMY). c. 4-colour (CMYK). d. 7-
colour (CMY-RGB-K).

270 CHAPTER 7. HALFTONING

which often seems to have darker shadows from the centre to the red and
blue borders, or to the red and green areas (depending on the device).
Hence, we should always keep in mind that colour halftoning is designed
with respect to an imagined perfect rendering function. A fair comparison
of different colour systems with the same output device is thus technically
impossible. Still, the properties of the presented halftones provide a good
hint of the appearance and quality on an actual device.

The colour circle features many colour gradients but no edges or homo-
geneous regions. As a next experiment, we are thus interested on the be-
haviour of the different colour halftoning variants on an image that contains
such information. The insights gathered in this experiments are representa-
tive for many real-world images. Figure 7.32 shows the Comic image, as well
as halftones of it using the CMY, CMYK, and CMY-RGB-K colour models.
While the images look very similar from distance, they differ significantly
on a small scale. This is best visible in the zoom-ins. While the CMY result
has the overall smoothest appearance, it also lacks a sharp contrast along
the black contours in the image. The reason for this is that edges can be
dislocated depending on the concentration of particles in the neighbouring
areas, thus blurring out the edge. This is not only an issue for cartoon-like
images. The more colours are used in printing, the more likely it is that two
sides of a prominent edge are halftoned with two different inks, thus cre-
ating a sharp transition. However, while such sharp transitions are desired
along edges, they are to a certain degree also present as artefacts in flat ar-
eas. A good example for this issue is the purple area in the zoom-ins. The
CMY screen overlays the three channels independently such that colour
information can be distributed uniformly. In contrast, the CMY-RGB-K
halftone enforces a non-overlapping distribution of colour particles which
creates a much coarser impression. Taken to the extreme, this separation
can even generate artificial salient features, such as the yellow inkblots in
the green shirt. This additional yellow colour is required to correctly rep-
resent the light green tone of the region and it is included in all presented
halftones. However, in the CMY and CMYK models, these occurrences are
not clustered in single dots, but uniformly distributed over the whole area.

This overall increased coarseness for a higher number of inks is also
reflected in the approximation quality with respect to the original image.
Similar to our experiment performed in Section 7.7.2, the graphs in Fig-
ure 7.33 show the peak signal to noise ratio (PSNR) between the halftone
smoothed by a Gaussian with standard deviation σ, and the smoothed
original. The PSNR on colour images is obtained as the average over all
channel-wise measurements. For all σ, the CMY-based model has the high-
est PSNR, while CMYK and CMY-RGB-K are on second and third place.

7.7. EXPERIMENTS 271

�a �b

�c �d

�e �f �g �h
Figure 7.32: Comparison of halftoning with different sets of colours on Comic
(256 × 256). a. Original. b. 3-colour (CMY). c. 4-colour (CMYK). d. 7-colour
(CMY-RGB-K). e–h. Zooms into the centre regions of a–d, respectively.

272 CHAPTER 7. HALFTONING

 0

 25

 50

 75

 100

 0 5 10 15

P
S

N
R

σ

CMY

CMYK

CMYRGBK

Figure 7.33: PSNR of the results from Figure 7.32 for Comic smoothed by a
Gaussian Kσ against the smoothed original.

This confirms our observation that this variant makes use of its higher de-
gree of freedom in placing particles onto the image plane, and in the higher
average number of particles per channel. The fact that the graph for CMY
is more noisy than the others must be an artefact of the evaluation rather
than the method, since the same halftone was used for the whole evalua-
tion. It might be that due to the high number of points, the floating point
accuracy did not suffice to properly accumulate the error up to all necessary
decimal places, which is reflected in a visual jitter on the logarithmic scale.

Finally, let us test the applicability of multi-colour electrostatic halfton-
ing for real-world applications. Although it lies beyond the scope of this
thesis to perform experiments on real printers, we can at least take some
off-the-shelf printers as an example, assume they reproduce colours as we
see them on the screen, and compute halftones for the subset of inks that
they support. To this end, we compare the following halftone types against
each other [Kip01, CR11]:

• Early low-budget desktop inkjet printers such as the Hewlett-Packard
Deskjet 550c supported the three-colour CMY model. If the user
wanted to print in colour, he had to exchange the black-only cartridge
by a CMY-only cartridge. Today, these printers are largely squeezed
out of the market by modern four-colour printers, and have been
relegated to a niche existence for pocket printers such as the Hewlett-
Packard PhotoSmart A310.

• The CMYK model is among the most frequently used colour models,

7.7. EXPERIMENTS 273

and can be found in all sorts of printers from cheap inkjet printers such
as the Canon Pixma i560, via business-scale colour laser printers like
the Kyocera FS-C5200DN, up to mass-production printing machines.

• Recently, more and more ‘asymmetric’ colour models find their way
into the desktop printer market. By adding additional colours such
as red, green, or blue to the classical spectrum, the manufacturers try
to extend the colour gamut for a more ‘brilliant’ colour impression.
While Canon frequently provides additional red end green inks for its
printers such as the Pixma iP8500, Epson usually supports additional
red and blue inks in its professional level printers such as the Stylus
Photo R1800. Apart from this, suppliers often add different inks for
matte and glossy black (Canon), or transparent glossy finish (Epson).
However, the arising redundancy can easily be resolved by the context
on the page. While glossy colour is preferred for photographs, matte
colour is typically used to print text. Hence, we only focus on the
theoretical concepts of the colour models CMY-RG-K and CMY-
RB-K, but do not go into detail about the technical realisation.

• Finally, we also repeat this experiment for the CMY-RGB-K model
which is the standard for high-end printing machines for large scale
production.

Before we see the results of the experiment, let us briefly remark how to
obtain ‘asymmetric’ colour models. We start with an interaction matrix
as for the ‘full’ CMY-RGB-K model, and delete the columns and rows
for the colours which are not present. In addition, we must allow these
missing colours to be approximated by subtractive colour mixing. This
results in a zero entry for primary colour pairs which are able to reproduce
the missing secondary colours. The interaction matrices resulting from these
considerations are given in Figure 7.34.

The results of this experiment are shown by Figure 7.35 on an image
of hands with a Rubik’s cube. Viewed on a computer screen, all of these
results approximate the image very well. As a critical aspect for real print-
ing purposes, the hues of the saturated patches on the cube, as well as
of the hands are very well preserved. One should note that this prop-
erty is not self-evident. Other techniques often suffer from tonal shifts, in
particular if the different colour layers are processed and printed indepen-
dently [SGBW10, Kip01]. The two ‘asymmetric’ halftones are expectedly
more coarse than the CMY halftone due to the much smaller number of
particles, but do not exceed the coarseness of the CMY-RGB-K halftone.
This shows that electrostatic halftoning is very well suited as a preprocess-

274 CHAPTER 7. HALFTONING

�a

C M Y R G K

C 2 0 1 1 1 1
M 0 2 1 1 1 1
Y 1 1 2 1 1 1
R 1 1 1 2 1 1
G 1 1 1 1 2 1
K 1 1 1 1 1 2 �b

C M Y R B K

C 2 1 0 1 1 1
M 1 2 1 1 1 1
Y 0 1 2 1 1 1
R 1 1 1 2 1 1
B 1 1 1 1 2 1
K 1 1 1 1 1 2

Figure 7.34: Interaction matrices for a. the CMY-RG-K model, and b. the
CMY-RB-K model.

ing stage for real printing processes, independent of the colour model that
the printer hardware supports.

Second Order Screening

Let us now have a look on the results of the second order screening extension
that was discussed in Section 7.4.7. Important quality criteria for halftoning
are the good representation of all grey values and the rotational invariance
of the method. To this end, we take the image of a 2-D Gaussian (depicted
in Figure 7.36) and compare conventional halftones of it against a second
order result. While the two classical results are assembled of points with
area AS = 1 and AL = 3, respectively, the second order result consists of a
mixture of these two classes in the ratio wS = 2/3 to wL = 1/3. Figure 7.36
shows the three halftones together with zoom-ins into the centre regions.

Let us first regard the halftones from a normal distance. Visually, the
second order screen looks very similar to the classical result with small par-
ticles. This is due to the fact that many particles are still chosen from the
set of small particles while the few large particles smoothly integrate into
this concept without creating striking artefacts. This changes slightly if we
consider dark regions, as shown in the zoom-ins. Here, the combination of
both particle classes cannot fill spaces as good as if only small particles are
used. Instead, the blank area arising from this setup is about the same as
for the large-only configuration. To this end, the result obtained by sec-
ond order screening lies qualitatively in between the two extremal cases of
small and large dots. This meets our expectations and requirements of the
method. Moreover, all results show no directional bias. Since the original
image is rotationally symmetric, this fact hints at a good rotational invari-
ance of electrostatic halftoning, and in particular of second order screening.

As a next experiment, we consider the application of second order screen-

7.7. EXPERIMENTS 275

�a �b

�c �d

�e �f
Figure 7.35: Comparison of halftones for different colour models that are used
by real printers. a. Original, b. CMY, c. CMYK, d. CMY-RG-K, e. CMY-RB-K,
f. CMY-RGB-K.

276 CHAPTER 7. HALFTONING

�a �b

�c �d

�e �f �g
Figure 7.36: Second order screening with particles in two sizes. a. Gaussian ker-
nel, halftones with b. small dots, c. large dots, and d. both types simultaneously.
e–g. Zoom-ins into centres of b–d, respectively.

7.7. EXPERIMENTS 277

�a �b �c

�d �e �f

Figure 7.37: Second order screening with particles in two sizes. a. Original
image. b–c. Electrostatic halftones with small and large particles, respectively.
d–f Second order screen: Only the large particles, additional random 90% of
small particles, complete result.

ing to an image which contains flat regions, slopes, and textures. This gives
a good impression of the behaviour of second order screening on real-world
images. Moreover, we are going to test the quality of the result considering
random dot loss. Thus, we also gain insights about the applicability of this
technique to real printing processes.

Figure 7.37 shows the image The skull bisected and sectioned by
Leonardo da Vinci. As for the previous experiment, the original was

278 CHAPTER 7. HALFTONING

halftoned with small (1) and large (3) dots, as well as by second order
screening using both classes in the ratio 2/3 to 1/3. The overall visual im-
pression is very similar to the one obtained in the previous experiment.
Compared to the small-only rendering, the presence of large dots does not
noticeably impair the quality of the result. This is in particular visible in
regions with fine structures, such as for the cracks at the side of the skullcap.
These fine lines are well-preserved in both the small and the second order
rendering, while they vanish completely in the result with large particles.

Surprisingly, this property even carries over if we assume that the print-
ing device is subject to dot loss. In Figure 7.37 (bottom centre), the second
order screen has been randomly thinned by 10% of all small particles. Con-
sequently, this image looks noisier than the full screen. However, compared
to the result obtained with an exclusive use of large particles, more small
structures are still visible. As an example, consider again the fine cracks in
the skullcap, the handwriting at the bottom of the image, or the shading
in the opened paranasal sinus. This shows that it is still beneficial to use a
second order screening method while accepting the loss of a certain amount
of small particles, rather than printing only larger dots that a device is able
to reproduce reliably. This holds even more if we create a halftone for a
whole class of printers out of which only a few are subject to dot loss at a
particular scale. Remember that dot loss is often related to the darkness of
a neighbourhood. Although points were selected by a uniform distribution
over the image, missing particles in dark areas are perceived much more
striking than in bright areas — where they appear much more frequently
in real printing processes.

In order to understand the advantageous behaviour of this second or-
der screening extension, consider the bottom left part of Figure 7.37. As
an extremal case, all small particles have been removed. Still, the remain-
ing large particles contain most of the features present in the traditional
halftone with the same particle size. Hence, small particles are only needed
to preserve the average grey value, and to complement this very good result
by the fine structures that cannot be represented at this scale. Whenever
small particles get lost, details disappear, the image becomes noisy, and the
average grey value is changed. However, the overall impression of the image
is preserved.

As a next experiment, we check whether this impression can be con-
firmed by a numerical analysis. In the same spirit as done in Section 7.7.2,
we convolve the two two classic halftones and the full second order screen
from Figure 7.37 with Gaussian Kσ of different standard deviations σ. We
compare them to the blurred original. Figure 7.38 depicts the PSNR of the
difference. As expected, the graph for the second order screen lies between

7.7. EXPERIMENTS 279

 0

 25

 50

 75

 100

 0 5 10 15

P
S

N
R

σ

Small
2nd order

Large

Figure 7.38: PSNR of halftones for the skull image smoothed by a Gaussian
Kσ against the smoothed original. Depicted are halftones with small and large
particles, as well as a second order screen with both types in the ratio 2/3 to 1/3.

the graphs for the traditional halftones. This result indicates that second
order screening does not introduce errors other than those arising from the
particular dot sizes. On medium and large scales, second order screening
is closer to halftoning with small dots than to halftoning with large dots.
This confirms our impression that fine structures are much better preserved
than possible by only using large dots. However, this is different for small
standard deviations. In these cases, the local variation introduced by the
few larger particles dominates the representation such that the second order
screen is only slightly better than a halftone with large dots.

Let us now explore the effect of the priority weight C (see Figure 7.5)
on the quality of the result. To this end, we halftone an image of a tonal
ramp from black to white and observe the change from C = 1 via C = 2 to
C = 4. In addition, we see what happens if we set a similar prioritisation
to the small particles, i.e. weight them with CS = 2. This is shown in
Figure 7.39. In order to see the differences between the variants better, it
additionally depicts excerpts for small and large particles from each result.

In a direct visual comparison, the version with C = 2 and no prioriti-
sation of small particles provides the best quality. The overall result looks
smooth, large particles are quite uniformly distributed, and the arising gaps
are homogeneously filled. This changes if we decrease C to 1. Here, large
particles are no longer forced to distribute evenly, such that they form
striking clusters in all parts of the image. The other extreme, increasing C,
causes small particles to cluster. Because this change happens on a much

280 CHAPTER 7. HALFTONING

(
1 1
1 1

) (
2 1
1 1

)

(
1 1
1 2

) (
2 1
1 2

)

(
1 1
1 4

) (
2 1
1 4

)
Figure 7.39: Effect of weights on the main diagonal of the interaction matrix.
Each experiment is depicted with its pointwise multiplication matrix, the full
result, and the excerpts for large and small particles, respectively.

7.7. EXPERIMENTS 281

smaller scale, these artefacts are not as striking to the human eye. Still,
we can observe ‘unnatural’ structures in the midrange area for C = 4. In
order to avoid such fine clusters, one could argue that it makes sense to
introduce an additional weight to distribute small particles more evenly.
This is shown in the right column of Figure 7.39. Although this modifica-
tion indeed remedies the problem, it introduces new artefacts by aligning
small particles too closely around larger ones. Such ‘cogwheel’-like struc-
tures arise independently of the weight C on the large particles. Albeit this
appearance could be desired for specific applications, it creates artificial dot
overlaps which cause a grey value to be rendered too bright. Moreover, we
see that whenever small particles are priorised, large particles are no longer
aligned in an optimal pattern (cf. top right subfigure). Since these larger
discs dominate the visual impression of an image, such irregular structures
lead to a more noisy appearance.

Finally, let us have a look on multi-class second order screening. As
an example, we consider three classes of particles, and apply an interaction
matrix as in Figure 7.6. The small particles occupy wS = 2/3 of the overall
black area, the medium class wM = 2/9, and the small class wL = 1/9. This
ratio was chosen because of aesthetic reasons. A smaller partition of large
particles introduces a wrong saliency, while a larger amount does not leave
enough freedom for small particles to fill the arising spaces. Still, it remains
to evaluate which sizes the particles should have to obtain pleasing results.
Figure 7.40 shows examples for the skull image from Figure 7.37. In order
to understand the problems arising for small and for large variations, we
consider one average choice and two extremal cases. To this end, we use
dots with areas (AS, AM, AL) ∈ {(1.0, 1.5, 2.0), (1.0, 2.0, 4.0), (1.0, 3.0, 6.0)}.
In Figure 7.40, we also see magnifications to the teeth of the skull. This
gives us a good basis of evaluation for both uniform and textured regions.

If all particles differ only marginally in size, they assemble results of a
comparable quality as in the classical framework (cf. Figures 7.37, 7.40).
This property makes such a setup interesting for applications in which a dif-
ferent point size is desired for purely technical reasons and where differences
should not be spotted by the observer. However, the true strength of second
order screening arises usually for sets of particles with a higher variation
in size. Hence, we additionally analyse a setup in which the huge particles
have a 6 times larger area than the smallest ones. As it turns out, such
a scenario poses new problems, as is shown in Figure 7.40: striking gaps
occur around large particles. This is a not an artefact of the algorithm but
a fundamental problem which cannot even be remedied by choosing differ-
ent amounts of particles. In order to represent the average grey value, each
particle is surrounded by a white ring whose size depends on the grey value

282 CHAPTER 7. HALFTONING

�a �b �c

�d �e �f
Figure 7.40: Second order screening with three classes covering 2/3, 2/9, 1/9 of
the total area. a. Little variation in sizes (1.0, 1.5, 2.0). b. Medium variation
(1.0, 2.0, 4.0). c. Large variation (1.0, 3.0, 6.0). d–f. Zoom-ins into mouth region
of a–c, respectively.

of the underlying image and on the size of the particle. This can easily be
understood if we consider a grey value of 0.5 and assume particles to align
in a honeycomb pattern. The ring as the difference between the imagined
hexagonal cell and the particle must cover the same area as the particle
itself. This basic property is the reason for the artefacts we observe. If
small particles and large particles meet, the white ring belonging to a large
dot touches a dense area of small particles. With respect to them, however,
the space is much to wide. This creates the illusion of a supposedly wrong
representation of the original image.

Note that this problem is further intensified in dark regions, where dif-
ferent grids for medium and large particles clash. This is well visible in the

7.7. EXPERIMENTS 283

left half of the magnification in Figure 7.40. Since these artefacts are very
similar to the ‘cracks’ discussed in Section 7.4.4, we can again apply a per-
turbation to partly remedy this sub-problem. Alternatively, we can modify
the ratios of classes or the priority weights in the interaction matrix. How-
ever, any of these changes impairs the measurable quality by introducing
additional noise, but cannot solve the underlying problem.

As a consequence of this experiment, the variance between the sizes of
the particles should always be kept within a certain range. One example for
such a setup is given by the choice (1, 2, 4) in Figure 7.40. On the one hand,
we have particles that can clearly be distinguished in size. On the other
hand, the overall result still looks smooth and largely free of noise. The
insights gathered in this experiment are again of great importance when
it comes to second order screening with more than three classes. As we
know that we cannot distinguish particles if they do not differ significantly
in size, and that the range between smallest and largest is limited, it does
not make sense to extend second order screening to an arbitrary number of
classes. This holds in particular as each class is required to find a relatively
regular grid structure, and these grids are likely to clash. Thus, a higher
number of classes usually poses additional challenges rather than creating
better results.

Multi-Class Sampling

Multi-class sampling fundamentally relies on the parameter ϕ (see (7.36)
and (7.39)) which describes the balance between a ‘good’ distribution of the
whole point set and a ‘good’ distribution of each subset. In Section 7.4.8,
we have seen that these constraints are mutually exclusive and cannot be
fulfilled simultaneously. Instead, we can only find an optimal compromise
in which both constraints are least violated. From (7.39) in Section 7.4.8,
we have the intuition that we should chose ϕ = 1. Then, the weighted
block diagonal matrix and the non-overlap map have the same influence
such that the whole set should be equally optimised to any of the subsets.
Let us confirm this assumption by an experiment. Since ϕ describes a ratio,
we account for this fact by choosing values from {0, 0.2, 1, 5, 100}. In order
to keep the system simple, we only regard two subsets, each containing only
one size of particles, and consider a uniform image.

The results of this experiment are shown in Figure 7.41. For ϕ = 1, we
obtain a homogeneous distribution for both the overall set of points and
each of the two subsets. However, this converged solution does not reveal
the typical hexagonal structures that we know from standard halftoning,
and which we expect in this case as well. Instead, the two colours arrange

284 CHAPTER 7. HALFTONING

ϕ = 0.0

ϕ = 0.2

ϕ = 1.0

ϕ = 5.0

ϕ = 100.0

Figure 7.41: Influence of the weight ϕ on single order multi-class sampling of a
uniform image. Small ϕ cause clusters in individual uniform subsets, while large
ϕ generate clusters in the total set.

7.7. EXPERIMENTS 285

in a rectangular checkerboard pattern. Such arrangement is neither optimal
for either of the individual sets nor the overall set, but it seems to represent
the best compromise.

If we chose ϕ much smaller, the overall set is better approximated.
Among the set of all particles, the familiar hexagonal structures appear.
However, this comes at the cost of a bad representation of the individual
sets. In each of these sets, particles form striking clusters which are even
well visible in the joint plot. The opposite is the case if we choose ϕ very
large. In such cases, the single sets are very well represented, but the total
set is clustered. This is because particles of different colours are no longer
interested in an interaction with each other such that there are no significant
changes in the equilibrium of forces if two particles of different colour move
closer to each other. This causes ‘worm’-like artefacts in the plot.

To this end, we can draw two conclusions from this experiment. One is
that ϕ ≈ 1 is a good choice if our application requires a good distribution
of both the individual sets of points and the total set. Nevertheless, we also
see that the model possesses a parameter that lets us choose which of the
two requirements is more important for the particular application. Assume
a plane is to be textured with different patches of grass. One could include
wild flowers, while the other does not. In such cases, we are most probably
more interested in covering the whole plane rather than distributing the
patches with flowers in a strict checkerboard alternation to those without.
Hence, we probably want to chose ϕ < 1. If in contrast, we are interested
to place two less correlated classes of objects, such as trees and cattle into
a meadow, ϕ > 1 might be the better choice. This can cause cows to be
placed underneath a tree, while still, we require that they are placed with
a sufficient distance to the trunk.

As a next experiment, we extend the previous case by objects with dif-
ferent sizes. To this end, we sample the same density as before by particles
in two colours and two sizes. The corresponding interaction matrix for this
case is shown in Figure 7.8. Since we expect the choices for the multi-colour
weight ϕ and the size priority C to carry over, we only consider the case
for ϕ = 1 and C = 2. From the result, we expect

• the overall set,

• its partition of large particles,

• the individual sets, and

• their partition of large particles

to be ‘well’ distributed. This evaluation is shown in Figure 7.42. As ex-
pected, all renderings look very smooth. In particular, neither of the ex-

286 CHAPTER 7. HALFTONING

�a �b �c

�d �e �f
Figure 7.42: Second order multi class sampling of a uniform density. a. Com-
plete result, and d. its partition of big dots. b–c, e–f. Red and blue subsets of
a and d, respectively.

cerpts reveals striking artefacts that hint at the presence of a second class,
or size of particles. Finally, let us remark that we can still have ϕ and C
as free parameters if we are interested in results that are specially biased
towards particular applications. The effects of either of the parameters on
the result are then perceptually similar to those evaluated for the single
parameters in terms of the previous experiments.

Figure 7.43 shows a first-order sampling of two overlapping Gaussians,
sampled with 435 particles per colour. This experiment is very similar
to the one performed by Wei [Wei10] but uses a larger image domain to
better demonstrate the behaviour towards small grey values. Compared to
the original work, electrostatic halftoning creates much more homogeneous
results, as can particularly be seen in the centres of the Gaussians and
in the transition region between both colours. Moreover, both sampling
clouds possess an almost circular shape, regardless of the intersection with
the differently coloured cloud. This is a clear benefit over the approach
of Wei, which places several outliers in the region dominated by the other
colour (see [Wei10, Figure 1]).

Now that we evaluated the principle properties of multi-class halftoning,
let us see some examples in which rendering has been exchanged by some

7.7. EXPERIMENTS 287

Figure 7.43: First-order sampling of two overlapping Gaussians.

more advanced operator. As a first application, we take a look on automatic
texture generation. To this end, we distribute sprites on a 2-D image plane.
The arising new image can then be used to texture the floor of large outdoor
scenes or as an individual texture to objects such as clothing.

We begin with a simple setup that has a similar motivation as the last
experiment but uses more complex sprites in two sizes. Figure 7.44 shows
two intersecting density ramps from fully populated to empty. In the hor-
izontal direction, this ramp is sampled with dandelions, in the vertical di-
rection with daisies. The result shows that the properties we have seen for
simple circles as elements carry over to more complex, yet almost circular
real-world objects. In the top left corner, both flower types jointly fill the
region such that both individual types are well visible, but the grass does
not show through. On the main diagonal, we still have an equal distribu-
tion of both types, but the more we go to the bottom right corner, the
more grass becomes visible. Finally, we observe a smooth transition from
one class into the other while our view approaches the bottom left or top
right corners. These characteristics indicate that electrostatic halftoning is
profoundly applicable to sampling tasks with real-world objects.

As a next experiment, we want to explore the behaviour of this system
for sprites with more complex, i.e. not necessarily circular, shapes. To this
end, we generate images of pizzas with different covering patterns made up

288 CHAPTER 7. HALFTONING

Figure 7.44: Two intersecting density ramps with daisies (vertical) and dande-
lions (horizontal) in two sizes, each.

from salami, mushrooms, and ham in three different sizes, each. This is
shown in Figure 7.45. The corresponding input density is always given in
the bottom left corner of the results, with cyan indicating salami, magenta
denoting mushrooms, and yellow representing ham. In the first part, we
use a constant density for all three channels. Its rendered result looks very
realistic and can hardly be distinguished from a real photograph. In par-
ticular, one does not immediately recognise that each type of ingredient is
only made up from at most three different sprites which are rotated and
scaled. Moreover, there is only a small amount of the pastry visible, which
is mostly due to the imperfectly round shape of the used objects. This is a
clear criterion of quality. The next example shows the rendering of a colour
circle. It demonstrates how well each pair of colours mixes, and how well
each individual colour can cover the base. While the circular slices of salami
almost densely cover the designated area and also interleave well with other
ingredients, this is different for the two other classes. As it turns out, mush-

7.7. EXPERIMENTS 289

Figure 7.45: Multi-class sampling: Putting ingredients on Pizza. All piz-
zas are generated from sprites of salami (User:vagabondvince310, flickr.com,
CC-BY), mushrooms (User:cyclonebill, flickr.com, CC-BY-SA), and ham
(User:fugutabetai shyashin, flickr.com, CC-BY-NC-SA) in three different sizes.
The input densities in CMY coding are given in the bottom left corners.

290 CHAPTER 7. HALFTONING

rooms perform particularly bad in this respect which is a direct consequence
of their complex shape. The sampling process is unaware of the orienta-
tion and coverage of each sprite and can thus not optimise and adapt these
parameters. Apart from this principle issue, the overall result again looks
photo-realistic, although the pattern is more artificial than in the previous
rendering. Thirdly, we use an input density that fades from a state in which
all classes of sprites are separated into a uniform mixture of all classes. To
this end, we observe sharp transition edges between the different parts in
the lower quarter, which dissolve more and more to form a distribution sim-
ilar to the one in the first example. Because of the constraint that favours
a good distribution of the largest instance of each class, we spot even some
of these large objects in the upper half. To conclude this experiment, let
us briefly focus on the fourth result from Figure 7.45. Depicting the logo
of Saarland University, it demonstrates an extreme example for the multi-
tude of possibilities of multi-class sampling. This particular application is
simple from the perspective of sampling, since classes are not required to
mix. Nevertheless, it is impressive to see that the depicted owl is clearly
recognisable, although the sprites are relatively large. This gives rise to a
series of new applications, such as the creation of photo-realistic print ads
with the logo of the company embedded into an image of the product that
is being advertised.

Finally, let us perform an outlook to the multitude of applications of
electrostatic multi-class sampling for digital object placement. This re-
quirement arises in computer graphics when it comes to the generation of a
large heterogeneous cloud of 3-D meshes which still follow a certain distri-
bution. Using this method, we can generate simple scenes such as realistic
natural ecosystems or even highly complex distributions such as spectators
of a huge rock concert with multiple stages. As a simple example from the
perspective of sampling, we want to construct a forest consisting of beeches
and pines in different sizes which are homogeneously distributed on the im-
age plane. Figure 7.46 shows the results of this experiment. We start with
a two-class two-size distribution of points as in Figure 7.42. Using a cus-
tom import script to the modelling software Blender [Hes07], a tree mesh
is placed at each of these points. Each mesh is then scaled to its desired
size and rotated around the Z axis to avoid reoccurring patterns from any
perspective. Figure 7.46 shows screenshots of the untextured but shaded
model during the layout phase. The first view shows the same bird view
perspective as the point plot, while the other depicts the forest as seen from
the bottom edge. The last picture in this series shows a possible result of
how this forest can look like in an animation or video game. It has been
obtained by the built-in raytracer from Blender using a slight additional

7.7. EXPERIMENTS 291

�a �b

�c

�d
Figure 7.46: Object placement by electrostatic multi-class sampling. a. Lo-
cations. b. Sampled with 3-D meshes of pines and beeches (CC-BY, Yorik van
Havre). c. Ditto, viewed from the side. d. Rendered with Blender using realistic
textures and illumination.

292 CHAPTER 7. HALFTONING

post-processing such as tonemapping. Although only two different meshes
are used, the forest looks very much photo-realistic. It fills the designated
area homogeneously, but does not show any artefacts that could reveal its
nature of being automatically generated.

7.7.4 Runtime

Let us now evaluate and compare the runtimes of electrostatic halftoning
algorithms. Since hundreds to thousands of iterations are required to have
the system converge to a very good result, the overall runtimes of all al-
gorithms depend most crucially on the time required for one iteration. In
turn, this particular runtime depends only on the configuration of particles,
since attractive forces are already precomputed in the initialisation phase,
and their values can be accessed directly. To this end, we take a varying
number of particles, distribute them uniformly on a sufficiently large image,
and compute the runtime of direct summation on CPU and GPU, and of
NFFT-based fast summation on both CPU and GPU. As motivated by the
experiments in Section 7.7.2, the latter were run with a quality parame-
ter m̃ = 5. A runtime comparison with different quality settings is given
in the next section. In order to perform a fair comparison, all algorithms
were hand-optimised and compiled using optimisation level 3 with auto-
vectorisation (SSE). CPU algorithms are executed on one core of an Intel
Core2 Duo E8200 clocked with 2.66GHz, while GPU algorithms are run on
an NVidia GeForce GTX 480 on the same machine. Throughout the exper-
iments, no swapping occurred such that all benchmarks were obtained on
physical memory.

Table 7.2 shows the absolute runtime of the algorithms for one iteration,
as well as their relative speedups. The ‘Speedup’ rows correspond to the
parallelisation gain within a particular method, while the ‘Speedup’ column
refers to the acceleration by choosing the fast summation technique over the
direct summation method. The ‘Total Speedup’ denotes the overall gain
from the CPU-based direct summation approach to the GPU-based fast
summation technique.

Due to the high number of particle-particle interactions, the CPU-based
direct summation-algorithm is relatively slow. On about 1 million particles,
it takes almost 2.5 hours to perform 1 iteration — which is much too long
for practical applications, considering that more than 100 iterations are
required to obtain a good solution. A full run of the algorithm requires
several weeks and can approach the order of several months if a very high
quality is required.

If we parallelise this algorithm for execution on the GPU, this already

7.7. EXPERIMENTS 293

Table 7.2: Runtime comparison for 1 iteration with different numbers of parti-
cles and corresponding speedup factors. All times are given in seconds. Speedup
factors describe the parallelisation benefit (vertical), the difference between run-
time classes (horizontal), and the overall improvement of the fast summation
GPU method over the original CPU direct summation technique (total).

Particles Direct Fast Speedup Total Speedup

CPU 2.12 0.84 2.54
16 384 GPU 0.03 0.02 1.62

Speedup 70.67 41.12 104.38

CPU 33.90 3.65 9.28
65 536 GPU 0.43 0.07 6.69

Speedup 78.84 56.00 519.85

CPU 542.64 14.74 36.81
262 144 GPU 6.62 0.28 24.06

Speedup 81.97 53.58 1 972.48

CPU 8 853.46 57.95 152.78
1 045 876 GPU 103.61 1.20 86.17

Speedup 85.45 48.20 7 363.50

yields a speedup of about 80. The runtime for one iteration is reduced
to less than 2 minutes, which allows for a convenient use of the algorithm
for real-world images. High-quality results can be obtained in only a few
hours. This result is particularly interesting if we recall that the structure of
the algorithm remains very simple, even after the parallelisation. It allows
to easily incorporate new concepts such as colour halftoning, second-order
screening, or multi-class sampling without increasing the runtime by much.

For large numbers of particles, we can exploit the lower runtime com-
plexity of fast summation algorithms. Compared to direct summation on
the CPU, the CPU-based fast summation method yields speedups from
about 2.5 for 16 thousand particles, to 150 for 1 million particles. By this,
it even outperforms the GPU direct summation algorithm for more than
about 600 000 particles.

As is expected, the best performance can be obtained by using a parallel
GPU-based fast summation algorithm. It obtains a speedup of about 50
over the CPU-based variant. Unsurprisingly, this factor is lower than for
direct summation. While for the direct summation approach, many oper-
ations are exclusively executed in fast shared memory, the fast summation

294 CHAPTER 7. HALFTONING

approach works largely on the slow global memory. Unlike direct summa-
tion, it even consists of parts with highly incoherent memory patterns such
as they arise for the computation of the operators B and B> (cf. Sec-
tion 7.6). In these cases, single values spread over the whole image domain
are read or written. In these premises, a factor 50 is a substantive and also
unexpected parallelisation gain.

Finally, let us consider the overall improvement in runtime between the
CPU-based direct summation technique and the GPU-based fast summa-
tion technique. Given 1 million particles, one iteration requires only little
more than one second, compared to more than 8 800 seconds for the simple
algorithm. This corresponds to a speedup factor higher than 7 000. Even
for moderate particle numbers, astonishing speedups can be obtained, such
as almost 2 000 for a quarter million particles, or still 100 for as few as
16 000 particles.

The absolute runtime of the fast summation approach is also much
lower than reported runtimes for many competing methods from the lit-
erature. The technique of Balzer et al. in its standard parametrisation
with 1 024 points per site takes 17 minutes until convergence for 20 000 par-
ticles [BSD09]. In the same time, we can perform 34 000 iterations with
electrostatic halftoning, which leads to much more accurate results. The
approach of Secord computes a set of 40 000 dots in 20 minutes [Sec02].
Since this corresponds to 24 000 iterations with electrostatic halftoning,
and because its results are worse than the ones obtained with the capacity-
constrained approach of Balzer et al., the method presented in this chapter
performs much better. Finally, Li et al. proposed a fast parallel implemen-
tation of the capacity-constrained voronoi tesselation, which is about 10
times faster than the original algorithm [LNW+09]. Since the quality of the
results is already surpassed by several hundreds of iterations of electrostatic
halftoning, we obtain a much better quality with the 3 600 iterations of the
fast summation technique that are possible in the same time.

Recently, Fattal presented a method which yields reasonably good re-
sults in a much lower runtime than electrostatic halftoning [Fat11]. Even on
a CPU this method is about 10 times faster than the fast summation method
for electrostatic halftoning on the GPU. This comes at a higher approxi-
mation error, which is comparable to the one of the capacity-constrained
method by Balzer et al. With these characteristics, Fattal’s method might
currently be more interesting for certain real-time applications than electro-
static halftoning, in particular when such applications do not require results
in a particularly high quality. On a long term, however, this multi-scale ap-
proach can also turn into a great chance for electrostatic halftoning. We
have seen earlier in this chapter that a good initialisation helps to accelerate

7.7. EXPERIMENTS 295

the runtime of our algorithms. Hence, we could apply a similar strategy as
in [Fat11] to break down the problem hierarchically and to initialise with the
solution from coarser scales. By this, it is likely that electrostatic halfton-
ing manages to compute much more accurate results than the approach
from [Fat11] in the same time.

If we now have a look on the scaling behaviour of the algorithms as
shown in Figure 7.47a, we can clearly distinguish the complexity classes of
O(M2) in the number of particles M for the direct summation approaches
and O(M logM) for fast summation. Because of a strong dominance of
linear contributions such as the convolutions involved in the operators B
and B>, the latter graphs even appear linear. In the next section, we
go more into detail about this issue. However, the previously mentioned
computational overhead for the fast summation algorithms also causes them
to perform worse for a small amount of particles. This is shown in a zoom-
in to the bottom left part of the graph. Up to about 11 500 particles, the
much simpler direct summation algorithms require clearly less time for the
same number of interactions. The characteristic staircasing in the graph
of the GPU direct summation algorithm is caused by its parallelisation
layout. 4 096 particles are clustered in one block grid, such that each edge
corresponds to additional kernel launches by the CPU.

A second interesting measure apart from the runtime per iteration is the
initialisation time. All presented algorithms must precompute the field of
attractive forces. Besides this, the fast summation approaches additionally
precompute the kernel and transform it to the frequency space. More-
over, the CPU variant also precomputes samples for the functions ϕ and
ψ which the GPU variant evaluates on the fly during the iterations. The
time requirements for this initialisation are shown in Figure 7.48. Over-
all initialisation times are depicted with solid lines. Dashed lines (for fast
summation) indicate the time required to compute the attractive forces.
We should be aware that the latter procedure is fully exchangeable with
the initialisation of a direct summation approach. It does not matter if we
precompute the attractive field by direct or fast summation, the outcome
is always the same. The surplus initialisation times for the fast summation
methods, in contrast, are an integral component of this type of algorithm.
They depend only on the number of pixels, and must always be performed
if we want to start fast summation iterations later on.

In general, the runtime of the initialisation confirms our insights ob-
tained in the runtime evaluation for one iteration. This is not surprising,
as it does not matter for the runtime if two pixels or if two particles inter-
act with each other. As before, it is thus advisable to compute attractive
forces by FFTs unless the image contains less than about 11 500 pixels. As

296 CHAPTER 7. HALFTONING

�a
 0

 20

 40

 60

 80

 100

0.0M 0.1M 0.2M 0.3M 0.4M 0.5M 0.6M 0.7M 0.8M 0.9M 1.0M

se
co

nd
s

particles

CPU Direct GPU Direct

CPU Fast

GPU Fast

�b
0

2

4

6

8

10

12

14

16

18

20

0k 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 11k 12k 13k 14k 15k

m
ill

is
ec

on
ds

particles

CPU Direct

GPU Direct

CPU Fast

GPU Fast

Figure 7.47: Runtime comparison for different halftoning algorithms. a. Full
plot up to 1 million particles, and b. zoom into the bottom left corner of a.

7.7. EXPERIMENTS 297

�a
 0

 50

 100

 150

 200

 250

0.0M 0.1M 0.2M 0.3M 0.4M 0.5M 0.6M 0.7M 0.8M 0.9M 1.0M

se
co

nd
s

pixels

CPU Direct GPU Direct

CPU Fast: Total

CPU Fast: F(A)GPU Fast: Total, F(A)

�b
 0

 1

 2

 3

 4

 5

0.0M 0.1M 0.2M 0.3M 0.4M 0.5M 0.6M 0.7M 0.8M 0.9M 1.0M

se
co

nd
s

pixels

CPU Direct

GPU Direct

CPU Fast: Total

CPU Fast: F(A)

GPU Fast: Total

GPU Fast: F(A)

Figure 7.48: Comparison of the initialisation times for different halftoning al-
gorithms. Solid lines denote total initialisation times, dashed lines (NFFT only)
show the partition required to compute attractive forces. a. Complete plot,
b. Zoom-in into lower part.

298 CHAPTER 7. HALFTONING

Table 7.3: Runtime of fast summation on the GPU in milliseconds depending
on the quality parameter m̃, with 1 048 576 pixels and particles, each.

m̃ 1 2 3 4 5 6

1 Iteration 197.92 342.54 546.23 829.77 1 195.28 1 642.11
Initialisation 821.10 1 269.01 1 905.80 2 874.26 3 954.40 5 308.70

a new component, however, we observe significant time overheads for fast
summation algorithms which is needed to prepare the following iterations.
For the fast summation algorithm, this time even increases significantly as
soon as a power of 4 in the number of pixels is reached. This is because
the image plane in the frequency space grows likewise, but the radial kernel
cannot be efficiently evaluated and sampled in parallel. A large array of
either of these sizes is thus still filled on the CPU and then uploaded to the
GPU, which in turn creates a runtime behaviour as can be seen here.

Finally, let us remark that physical memory limitations pose a funda-
mental problem to the fast summation algorithms. On 32-bit CPUs and
modern graphics cards, neither of these algorithms can currently be applied
to images larger than 1 0242 pixels, or to images that contain more than
about 1 million particles. This problem is partly solved already by the rise
of 64-bit architectures such that we can expect machines and graphics cards
to come with much more memory in the near future, However, there is still
the need for an improved memory management of fast algorithms. This is
particularly true because the direct summation approaches are capable of
much larger sets of particles and pixels. Apart from a few intermediate vari-
ables, they only require three vectors, each containing elements consisting
of two float positions. Two of these vectors contain the old and the new
particle locations, while the third vector contains the attractive forces of the
image. If we assume as many dots as pixels, a direct summation algorithm
can handle up to 65 million particles. However, it would also require about
5 days to perform one iteration on our GPU. On the CPU, it even requires
more than one year per iteration. This quick comparison again shows that
the direct summation algorithm is infeasible for larger amounts of parti-
cles. Hence, the high memory requirements of fast summation methods can
certainly be considered one of the most needed features to be addressed in
future work.

7.7. EXPERIMENTS 299

7.7.5 Quality-Based Runtime for Fast Summation

The runtime of the NFFT-based fast summation algorithm depends on the
choice of the quality parameter m̃. Hence, it is interesting to compare the
runtimes for different quality settings to obtain a feeling for the tradeoff
between accuracy and runtime. Table 7.3 depicts the times for one itera-
tion and for the initialisation phase. It shows that the runtime for m̃ = 3,
which corresponds to a ‘good’ solution, is more than two times lower than
for m̃ = 5, the ‘perfect’ solution. Depending on the application, it can
thus make sense to admit a small error in the result to obtain results much
faster. This holds in particular if we recall that the PSNR for m̃ = 3 is
not significantly worse than for the direct summation approach (cf. Fig-
ure 7.19). Consequently, the much lower absolute runtime also affects the
speedup factor compared to the naive approach. Given 1 0242 particles, it
grows from 7 363.50 for m̃ = 5 to 16 208.30 for m̃ = 3.

7.7.6 CUDA Performance Profiling

Finally, let us briefly measure the time consumption of individual sub-tasks
during the execution of both presented GPU algorithms. This analysis
reveals typical bottlenecks of the algorithms and helps to identify and ap-
proach these issues with future developments. To this end, we use the
CUDA profiler with halftoning runs on both the GPU direct summation
and fast summation methods. Although this data was obtained on 100 it-
erations and 10 shaking procedures, all graphs are normalised to 1 iteration
and 1 shaking step. Contributions are coloured red if they scale with the
number of iterations, blue if they are a one-off expense, yellow if they con-
cern shaking, and green if they cover the one-off data transfer between GPU
and CPU. As a sample problem, we use the Trui image from Figure 7.11,
which contains 65 536 pixels and 30 150 particles.

Figure 7.49 shows the profiling of the direct summation run. Due to
the quadratic scaling in the numbers of pixels and particles, the double as
high number of pixels compared to particles, and the slightly higher time
requirements per pixel, the initialisation phase dominates the time needed
for one iteration. While these two numbers are one order of magnitude
apart, the times for shaking and memory copy operations even vanish in
this scale. They are between 3 and 5 orders of magnitude below the one for
initialisation and become only visible if we rescale the time axis. One should
note that shaking incorporates two kernels, the randomiser and a shift unit,
which are coalesced in this plot. Hence, this plot again nicely shows both
the simplicity and the computational complexity of this algorithm. In par-

300 CHAPTER 7. HALFTONING

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F (A)
F (R

)
C
opy H

-D

Shaking

C
opy D

-H

C
opy D

-D

s
e

c
o

n
d

s

1 Iteration
Initialisation

Shaking
Copy CPU/GPU

0.0

0.5

1.0

1.5

2.0

C
opy H

-D

Shaking

C
opy D

-H

C
opy D

-D
m

ill
is

e
c
o

n
d

s

Figure 7.49: Module comparison for the GPU direct summation algorithm on
Trui. Kernels are grouped to show runtime requirements of each operator. The
inset shows zoom-ins to the bottom right corner.

ticular, we see that the overall runtime of the process is consumed by the
two essential kernels for repulsion and attraction, which are already highly
optimised and consist of only very few instructions. Since these kernels
are highly memory-bound, there is no significant performance gain to be
expected unless the memory bandwidth of graphics cards changes funda-
mentally.

If we perform the same experiment for the fast summation algorithm,
this general impression changes. For this algorithm, we have a total of
34 different kernels that are involved in this process. In order to make
Figure 7.50 more intuitively readable, however, these kernels are collapsed
to 15 meaningful units. As an interesting side remark, we should note that
this happens only for the right half of the diagram anyway such that the
overall statement of this visualisation remains valid. As can be seen in the
plot, the operators B and B> make up about 79% of the runtime for one
iteration. This is due to the complex memory patterns involved in this
method: Data loads from random positions can only be efficiently achieved
if the data already resides in the texture cache. For random stores, this is
even more severe as writes are potentially coinciding between threads. Thus,

7.7. EXPERIMENTS 301

0

2

4

6

8

10

12

14

16

18

B T B FFT
N
earfield

FFT T

D C
opy H

-D

D T Fastsum
 F (R

)

Fastsum
 F (A)

C
opy D

-H

C
opy D

-D

N
earfield Setup

Shaking

U
pdate

m
ill

is
e

c
o

n
d

s

1 Iteration
Initialisation

Shaking
Copy CPU/GPU

Figure 7.50: Module comparison for the GPU fast summation algorithm on
Trui. Kernels are grouped to show runtime requirements of each operator.

writes can not efficiently be cached. To this end, this major bottleneck
can only be resolved if either the support for random loads and stores
is significantly enhanced by graphics cards manufacturers or if additional
regularity assumptions on the data hold. While the first could for instance
be improved by larger caches on the device, the latter was already addressed
for special cases in the literature [SSNH08, Gre08, GD08].

Compared to the direct summation approach, the initialisation of the
process requires significantly less time than one iteration. The main reason
for this observation is given by the use of FFTs which are much faster than
NFFTs. Moreover, the FFTs applied in this context work on a much smaller
rectangular domain than the ones used by an NFFT. This is because of the
oversampling ñ = αN with 2 6 α < 4 that is necessary to keep the approx-
imation error low (see Section 7.6.2). However, even in the initialisation
phase requires one NFFT, as is indicated by the blue runtime partition for
B. It relates to the fact that the coefficients for the far-field kernel must be
transformed into the frequency domain to be later used during convolution.

A surprising result can be observed for the measurements for the near-
field computation. Both the setup and the evaluation phase for the near-
field map possess a fairly low workload compared to the full process. This
exceeds our expectations since setting up a nearfield map requires many,

302 CHAPTER 7. HALFTONING

potentially conflicting, random writes into the image, while the evaluation
consists of an integration over a neighbourhood in a texture. Still, it seems
that this good performance is related to the medium charge density for Trui
and to the fact that each particle reads a 2-D patch which is in large parts
cached. To this end, the heuristic approach with a data-parallel hash map
can clearly be seen to pay off in the overall runtime.

7.8 Summary

In this chapter, we developed and explored a new method that uses elec-
trostatic forces between particles to create halftones in a very high quality.
In its basic form, it finds a continuous distribution of uniform points that
approximates a given image. By simple modifications, this system can be
adapted to output points on a discrete grid, to use points with different sizes
or colours, and to optimise the output with respect to visual preferences
such as an artificial irregularity, or an enhancement of edges. Moreover, the
method can easily be applied for importance sampling purposes, where it
serves as a highly accurate tool for object placement or texture generation.

Today, electrostatic halftoning constitutes the best halftoning technique
in the literature, both in the discrete and in the continuous domain. This
success is unimaginable without the highly efficient algorithms presented in
this chapter. A simple direct-summation CPU implementation is not only
too slow for real-world applications, it is also too slow to perform research on
this topic. If one iteration on 1 million particles requires about 2.5 hours,
1 000 iterations take 100 days. With new efficient numerics and a fast
parallel GPU implementation, however, the same results can be obtained
within 20 minutes. This corresponds to a speedup of more than 7 000. By
this, the algorithm even outperforms less accurate methods such as the
capacity-constrained approach of Balzer et al. [BSD09] by several orders of
magnitude in runtime. If we consider applications which do not necessarily
require optimal solutions, but which work with very good approximations
as well, the speedup over the naive approach even grows to more than
16 000. One important ingredient to obtain this speedup is given by the
newly developed massively parallel NFFT algorithm. It is the first GPU-
based method for this purpose which does not require special structural
arrangements of nodes. Because the NFFT is nowadays a widely used tools
for many areas of research and applications, the new algorithm has a broad
applicability far beyond the field of halftoning.

Still, there seems to be space for improvements. Fast summation meth-
ods still require comparably much memory, which is a problem for really

7.8. SUMMARY 303

large datasets. Online data compression schemes or data localisation meth-
ods could improve this bottleneck. Besides, it can make sense to neglect the
mutual influence of particles if they are very far apart, in particular if we
are considering domain sizes beyond those captured in this chapter. This
simplification can open doors for the application of electrostatic halftoning
on large scales such as on full DIN A4 pages in high resolution. Moreover, it
might be interesting to extend the model by additional terms or constraints
that extend its range of applicability. One interesting feature that gained
importance in recent times is the support of structure-aware primitive ori-
entations. Such extension allowed to use rotationally asymmetric rendering
primitives, which enables electrostatic halftoning to be used for hatching, or
for the placement of objects such as peppers on the pizza [Hae90, SHS02].
A second feature from which the model would benefit is a modification that
allows the temporally stable processing of video data, potentially with prior
knowledge of the underlying geometry of the scene [USS11]. In the moment,
image sequences can only be processed on a per-frame basis, which causes
primitives to be placed to new positions in every frame, and thus to make
such videos appear noisy. Thirdly, it would be nice to extend the model to
arbitrary manifolds [MGW05, GPS11]. Such an extension enables electro-
static halftoning to be used for texture generation for all kinds of complex
shaped objects. Finally, the runtime of the proposed algorithms can po-
tentially be reduced if they are embedded into a hierarchic framework as
proposed in [Fat11]. This change could allow to carry over the quality of
electrostatic halftoning to real-time applications. Given the flexibility and
intuitive design of our algorithms, we can be confident that all these ideas
are realisable with moderate effort.

To this end, the work presented in this chapter lays the practical founda-
tions for a whole class of algorithms with applications in image processing,
computer vision, and graphics. It shows that hardware-accelerated algo-
rithms do not only offer a way to accelerate problems that are already
sufficiently developed and evaluated, but they are also very well suited to
accelerate the modelling and testing processes. The speedup provided by
GPU-based algorithms reimburses for all of their shortcomings such as being
more tedious to design and modify. It motivates to move GPU algorithms
from their niche existence at the end of the modelling and design process
right into its centre, and to use them as tools for our everyday work. Once
they are designed, they can even be comfortably used and customised by
users without a profound training in low-level programming. Since powerful
graphics cards are relatively cheap compared to an equally efficient cluster
of CPUs, and because they are today included in many modern desktop
computers, GPU-based algorithms no longer constitute a pet project for a

304 CHAPTER 7. HALFTONING

selected community. Instead, they provide an efficient way to use all com-
puting resources of a computer. Designing data-parallel algorithms for the
GPU should thus be experienced as an ordinary style of scientific program-
ming, just as it is with CPU-based algorithms today.

Chapter 8
Summary and Outlook

A horse never runs so fast
as when he has other horses to catch up and outpace.

Ovid

8.1 Overview

In this thesis, we have explored many different facets of GPU-accelerated
algorithms for visual computing. Starting with the selection of suitable
numerics, we have developed fast GPU-based algorithms for PDE-based
image processing and computer vision, as well as for halftoning and sam-
pling. This design process has been driven by the selection and development
of efficient but intuitive concepts. As a result, our collection of algorithms is
not specialised to limited applications, but creates a general framework for
essential techniques in visual computing. This allows to carry over the good
runtime of our algorithms even to new, potentially more complex models.

Let us first summarise the contributions of this thesis. In the next
section, we are then going to draw conclusions from this work, and examine
these contributions critically with respect to their influence on the area of
visual computing.

We have started our work with the analysis of the simplest PDE in this
field: Homogeneous diffusion [Iij59]. Although this method is very well
understood and there are a multitude of different numerical approaches to
its solution in the literature, there does not seem to exits a comprehensive
comparison between these methods so far. This makes it hard to find an
optimal GPU-based algorithm for this purpose. As a step towards the

305

306 CHAPTER 8. SUMMARY AND OUTLOOK

solution of this deficiency, we have selected six important representatives,
and have complemented them with two new approaches which are tailored
for the application to parallel hardware. For all of these techniques, we have
designed highly optimised GPU-based algorithms, which we have evaluated
with respect to their quality and runtime performance.

While there are significant differences among the algorithms, we can
clearly determine our parallel recursive filter based on [Hal06b] to yield
the best performance on the GPU for moderate and large stopping times.
Compared to the CPU, our GPU-based method obtains speedups of more
than 130 which allows to process images up to a size of 4 096×4 096 pixels in
realtime – regardless of the chosen stopping time. For very small stopping
times, the discrete convolution with a Gaussian kernel turns out to be even
more efficient than this technique.

Despite its simplicity, our novel extended box filter [GGBW11] is almost
as fast as recursive filtering, although the quality of its results is slightly
worse. In return, it is much easier to implement and optimise, such that it
provides a convenient alternative whenever the implementation effort should
be kept small.

In context of edge and coherence enhancing anisotropic diffusion [Wei98,
Wei11a], we have discovered the fast explicit diffusion (FED) technique
by Grewenig et al. [GWB10] as an efficient but simple solver for GPU-
based algorithms [GZG+10]. Even with a very data-intensive discretisation
scheme, our algorithm obtains speedups up to a factor 16. Assuming a
stopping time T = 500, our algorithm still obtains real-time performance
up to an image size of about 512×512 pixels. If we disregard approximative
algorithms such as the parallel bilateral filter from [SKB+11], our technique
seems to represent the fastest algorithm for anisotropic diffusion.

This performance of FED can be carried over to PDE-based image in-
painting. Despite the raising importance of fast algorithms in this field, our
algorithm seems to be the first anisotropic diffusion inpainting technique
on the GPU. Its cascadic FED implementation runs more than ten times
faster than the most efficient method on the CPU [SWB09]. While our
algorithm still requires more than one second to solve a typical anisotropic
image-based inpainting problem in the size 1 024×1 024 pixels, it is an im-
portant step towards applications such as real-time anisotropic image in-
painting. Moreover, its flexibility allows our algorithm to be specialised to
homogeneous diffusion inpainting, where it is among the fastest GPU-based
approaches from the literature.

In the field of optic flow, we have designed one of the fastest yet very
accurate algorithms in the literature. At the time of the first publication, it
ranked on sixth place with respect to the approximation quality in the Mid-

8.1. OVERVIEW 307

dlebury benchmark, and obtained the lowest runtime among the top 10 of
most accurate algorithms. Although it lost this position to newer methods
in the meantime, it still represents the fastest method among the top 30
techniques. Compared to the original CPU-based method from [ZBW+09],
our implementation [GZG+10] obtains a speedup of more than 40 without
a significant decrease in quality.

One of the most significant impacts of the work conducted in this thesis
are given for electrostatic halftoning. Our GPU-based algorithms [SGBW10,
GSWT11] run 50–80 times faster than the corresponding algorithms on the
CPU. In this context, we have developed the first unconstrained algorithm
for the non-equidistant Fourier transform (NFFT) on GPUs, and have pro-
posed the first GPU-based fast summation technique that sets up on this
numerical scheme. Compared to a straightforward reference implementa-
tion of electrostatic halftoning on the CPU, our NFFT-based algorithm
obtains a runtime improvement of more than 7 000. By that, it is not only
faster than other, less accurate methods from the literature, but also lays
the foundation for the extensive research that we have performed in this
field.

Our dithering outperforms all other discrete halftoning methods from
the literature when it comes to the approximation quality of the original im-
age. In the continuous setting, electrostatic halftoning can be individually
tuned towards individual sizes of rendering primitives. A fundamental prob-
lem to all point-based halftoning processes, the saturation of dark images
regions, has been solved by a theoretically justified dot-overlap model. Elec-
trostatic halftoning is also the first method in the literature which allows
an freely adjustable trade-off between the mutually exclusive requirements
of a good approximation quality on the one hand, and of a high visual
quality on the other hand. For a further visual improvement, it is easily
possible to enhance edges or other coherent structures in the halftone. This
allows our approach to emulate the visual appearance of other methods
from the literature, while still providing lower approximation errors than
those techniques.

The high quality of electrostatic halftoning also carries over to settings
with multiple colours, sizes of inkblots, or both. Due to technical reasons,
such scenarios inevitably lead to new shortcomings such as a reduced reso-
lution of the results. However, our flexible model allows to counterbalance
the influences of all contributions. This guarantees a high quality, even un-
der complicated conditions. As it turns out, our concepts carry over to the
application in multi-class sampling. In this respect, our method is the first
technique to generate an optimal distribution of objects of different kind
and colour according to a transparent set of overlap-and-exclusion rules.

308 CHAPTER 8. SUMMARY AND OUTLOOK

8.2 Conclusions

The runtimes and speedups of our algorithms are impressive, but they also
represent a relatively volatile measure. For applications such as optic flow,
we have already observed a series of tremendous improvements in the liter-
ature which also affect the runtime of the process. Moreover, the develop-
ment of new hardware will soon allow for even faster algorithms, or larger
problem sizes.

Instead, there are many general ideas, insights, and impulses which may
remain valid on a longer term. One important contribution seems to be the
introduction of FED and FJ to the field of general purpose computing on
GPUs. Because of their favourable scaling behaviour and algorithmically
simple structure, these solvers can efficiently be applied even to complicated
problems. This is not only frequently reflected in our own research, but is
also confirmed by other works from the literature [BAR11].

The high flexibility and transparency to the modeller is a general con-
cept that we find throughout this thesis. It does not only hold for our
FED- and FJ-based algorithms for PDE-based models, but also for our
highly optimised linear diffusion algorithm which can efficiently be used for
pre-smoothing purposes in this context, and for the GPU-based fast sum-
mation algorithm described in Chapter 7. All our efficient GPU-based algo-
rithms are compatible to each other, and can be combined to more complex
frameworks. Even for people that are inexperienced with GPU program-
ming, it is easy to write a CPU-sided program which calls the respective
GPU kernels instead of performing tasks directly on the CPU. This is also
a result of our design decisions to adapt our algorithms to common and
versatile concepts such as the energy minimisation via the Euler-Lagrange
framework. Hence, our new abstraction layer offers significant performance
improvements without the need to learn new programming concepts.

This is also interesting for a faster pace in research. There are many
modern algorithms in visual computing which are much more accurate than
their predecessors, but which also take considerably more time to find a
solution. Where it is not possible to optimise parameters on a smaller test
example, it takes a long time for a researcher to judge the quality of a new
method, and to compare it against other techniques in the field. Because our
GPU-based methods all provide a quality which is almost indistinguishable
from their corresponding method on the CPU, it is convenient to use the
faster GPU-based algorithms for rapid prototyping.

One particular example for the use of fast algorithms during the design
of algorithms is our novel technique of electrostatic halftoning. Given the
CPU-based hardware at the time, it would not have been possible to de-

8.3. FUTURE WORK 309

sign the multitude of extensions which established electrostatic halftoning
as one of the most accurate techniques for dithering, non-photorealistic ren-
dering, and sampling. This includes in particular recent developments such
as multi-class and multi-size sampling. The availability of algorithms which
solve the arising problems in few minutes instead of several days helped to
open this entirely new field of research. The results of electrostatic halfton-
ing can again be used to improve many other fields of visual computing
with respect to the quality of their results: Exciting examples for this mul-
titude off applications are image compression, non-photorealistic rendering
with arbitrary primitives, re-lighting, high dynamic range imaging, texture
generation, or object placement.

Another important result with respect to further research is the scaling
behaviour of our new algorithms. Although all of them obtained a speedup
over their respective CPU counterparts, this performance gap is particu-
larly high for some algorithms such as for linear diffusion or halftoning.
This information helps to estimate the potential that the design of a GPU-
aided algorithm bears, and allows to set it into relation with the workload
accompanied with this process.

Besides the aforementioned general insights, this work has presented a
high number of smaller contributions to the various fields of visual comput-
ing. One dominant example are our thorough surveys of modern algorithms
for linear diffusion and halftoning. While in the latter case, there exist sev-
eral overviews on traditional methods [Uli87, Kip01], our comparison seems
to be the first that also considers a large range of recent techniques. More-
over, there does not even seem to be such comparison for homogeneous
diffusion algorithms in the literature so far. This is very surprising if we
consider the omnipresence of this technique and the multitude of different
algorithms for this purpose. The survey performed in this thesis should be
understood as the first step towards a comprehensive analysis, although the
statement of such evaluation may finally look different on other architec-
tures. Our CPU-based experiment suggests that our novel extended box
filter may play a more important role there.

8.3 Future Work

Although this work gives many insights and answers various questions, there
are several aspects which may substantially benefit from future research.
In Chapters 4–6, we have designed several parabolic and elliptic solvers for
PDE-based image processing and computer vision. Our FED- and FJ-based
algorithms are highly optimised to the particular problem, while they still

310 CHAPTER 8. SUMMARY AND OUTLOOK

preserve their flexibility. However, it would be presumptuous to assume
that they represent the optimal solution to each of these problems. This
becomes particularly obvious if we look back to the much simpler problem
of homogeneous diffusion, were there is a large number of fundamentally dif-
ferent approaches. Given the higher parameter-dependency and memory-
boundedness of nonlinear techniques, it is likely that a similar variety of
methods also exists for these methods. However, a sound analysis and eval-
uation of the most promising alternatives to FED and FJ is time-consuming.
On the one hand, it is possible to focus further investigations on fast numer-
ical solvers such as (preconditioned) conjugate gradient schemes [Mei05] or
primal-dual approaches for diffusion-reaction processes [ZPB07, WTP+09].
On the other hand, it is also worthwhile to evaluate the potential of fast
approximative solutions such as it is obtained for a dynamical adaptation
of the stencil size during the iteration [JCW09].

The Fast Jacobi solver [Wei11b] may play an important role in this
process. Its characteristics proved to yield much better results than FED
for the elliptic equations arising in optic flow computations. It is likely
that this performance carries over to other elliptic processes, where FJ or
cascadic FJ on the GPU could provide an efficient alternative to sequential
CPU-based schemes such as cascadic successive over-relaxation. In this
context, it should be evaluated how the coupling weight c between the FED
time steps and the FJ relaxation parameters can be chosen such that the
process provides an optimal runtime while still guaranteeing the numerical
stability of the process.

A similar discussion should also be started for homogeneous diffusion.
While we have already evaluated numerous techniques in Chapter 3, it is
not said that the optimal method with respect to approximation quality and
runtime is among these selected representatives. In general, we have found
that the key to a good runtime on GPUs is given by a reduction of the al-
gorithmic structure to only a few sweeps. This suggests to experiment with
more techniques which have similar characteristics. Besides recursive filters
with less processing steps [YvV95], this includes techniques such as inte-
gral images [BSB10]. A new, potentially faster approach than our recursive
filter that sets up on such ideas was recently proposed in [NMLH11].

In context of homogeneous diffusion, it could also be interesting to in-
vestigate the applicability of our novel extended box filter further. While
it performs worse than recursive filters on the GPU, it seems to be equally
well suited for application on the CPU. Hence, it is also interesting to see
whether there are other hardware platforms on which similar ideas could
lead to a significant performance gain. This affects in particular hybrid
architectures such as the Cell processor, and vector processors.

8.3. FUTURE WORK 311

Despite this large number of suggestions, it seems that the new elec-
trostatic halftoning method still provides the highest potential for exciting
improvements. One property that can not be expressed by our halfton-
ing approach yet is a truly anisotropic behaviour. This prevents a use of
our new technique for stroke-based non-photorealistic rendering, so-called
hatching, and restricts its applicability for object placement or texture gen-
erations. Once it is possible to rotate primitives according to their shape,
it will be possible to optimally place peppers on pizza, or flower motives
with stalk onto cloth. Moreover, it might become possible to tap fields of
artistic rendering, such as the visualisation of faces with objects such as
fruits [Ghi11].

The work described by this thesis should also be complemented by a
comprehensive evaluation of potential application fields for electrostatic
halftoning. There are many potential applications, but most of them are
today governed by competing methods. Even though our method requires
more time to find a solution, the quality of its results is usually much
higher. This advantage can be the key to significant improvements in PDE-
based image compression [BBBW09], in high dynamic range imaging and
realistic illumination [CD01, ARBJ03], as well as for automatic texture
generation [LD05].

Future work on electrostatic halftoning should also be concerned with
lower memory requirements on the one hand, and with efficient numer-
ics or approximative solutions on the other hand. Our work has defined
new levels for the accuracy of halftoning and blue noise sampling, but suf-
fers still from a high computational workload and a massive memory con-
sumption. Different numerical schemes such as the fast multipole method
(FMM) [GD08] can slightly change its absolute runtime, but not the run-
time class or the memory requirements. Instead, it may be interesting to see
if the quick drop-off of the potential function can be exploited to perform
a real decomposition of the image domain. This may lead to fully sepa-
rable approximative solutions, and could open doors for the application of
electrostatic halftoning to huge point sets as they occur for the printing of
large pages and posters. An alternative solution can be fast approximative
multigrid techniques such as the one from [Fat11], which is also much more
conservative with respect to its memory footprint. It remains to see if such
approaches can yield a similar quality as electrostatic halftoning.

Appendix A
Proofs

A proof tells us where to concentrate our doubts.

Morris Kline

A.1 Linear Diffusion

Proof 1 (for Theorem 3.1).

By (3.73), it follows that

σ2
G = σ2 − dL

2 − h2

12
. (A.1)

We apply (3.72) for L and obtain

σ2
G = σ2 − dh2

(
2

⌊√
12 σ2

dh2 +1−1

2

⌋
+ 1

)2

− 1

12
, (A.2)

In order to give a lower bound for the term b·c, we distinguish two cases,
based on whether √

12 σ2

dh2 + 1− 1

2

?

> 1 (A.3)

⇔ σ2
?

>
2

3
dh2 (A.4)

⇔ L
?
> h . (A.5)

313

314 APPENDIX A. PROOFS

The latter equivalence follows from (3.72).

Case L > h:

σ2
G = σ2 − dh2

(
2

⌊√
12 σ2

dh2 +1−1

2

⌋
+ 1

)2

− 1

12
(A.6)

< σ2 − dh2

(
2

(√
12 σ2

dh2 +1−1

2
− 1

)
+ 1

)2

− 1

12
(A.7)

= σ2 − dh2

(√
12 σ2

dh2 + 1− 2

)2

− 1

12
(A.8)

= σ2 − dh2
12 σ2

dh2 + 1− 4
√

12 σ2

dh2 + 1 + 4− 1

12
(A.9)

=
dh2

3

(√
12

σ2

dh2
+ 1− 1

)
(A.10)

(A.11)

Since both terms are positive, it follows that

σG <

√√√√dh2

3

(√
12

σ2

dh2
+ 1− 1

)
. (A.12)

Case L 666 h:

σ2
G = σ2 − dh2 (2 · 0 + 1)2 − 1

12
(A.13)

= σ2 (A.14)

Hence, σG = σ. Finally, let us note that by (3.72), L > h. As a consequence,
the latter case is equivalent to L = h. This finishes our proof.

�

Proof 2 (for Theorem 3.2).

By symmetry considerations, we see that the expectation value of EΛ is

A.1. LINEAR DIFFUSION 315

zero. For the variance σ2(EΛ) of one (non-iterated) box kernel, it follows

σ2(EΛ) =
l+1∑

k=−(l+1)

(EΛ)hk · (hk − 0)2 (A.15)

=
l∑

k=−l

h

Λ
(hk)2 + hw (−(hl + h))2 + hw(hl + h)2 (A.16)

=
2h3

Λ

l∑
k=1

k2 + 2h3w(l + 1)2 (A.17)

(3.82)
=

h3

3Λ

(
2l3 + 3l2 + l + 6α(l + 1)2

)
. (A.18)

By Bienaymé’s formula, we obtain the variance σ2(Ed
Λ) for the iterated

extended box kernel as the sum of single variances [Kre05]. This concludes
the proof.

�

Proof 3 (for Theorem 3.3).

Let L = h(2l + 1) with l ∈ N0. We regard both limiting cases Λ→ L+ and
Λ→ (L+ 2h)− separately, and write α = Λ−L

2h
(by (3.76)).

Case Λ→ (L+ 2h)−:

lim
Λ→(L+2h)−

σ2(Ed
Λ) = lim

Λ→(L+2h)−

dh3

3Λ

(
2l3 + 3l2 + l + 6

Λ− L
2h

(l + 1)2

)
(A.19)

=
dh3

h(3L+ 6)
(2l3 + 3l2 + l + 6(l + 1)2) (A.20)

=
dh2

6l + 9
(2l3 + 9l2 + 13l + 6) (A.21)

= dh2(
1

3
l2 + l +

2

3
) (A.22)

= d
h2((2l + 3)2 − 1)

12
(A.23)

= d
(L+ 2h)2 − h2

12
(A.24)

= σ2(Bd
L+2h) (A.25)

316 APPENDIX A. PROOFS

Case Λ→ L+:
Let us show that for Λ = L, the iterated extended box filter Ed

Λ is equal
to the iterated conventional box filter Bd

L. To this end, we denote L by
h(2l′ + 1) in order to distinguish l′ from the l in Λ = h(2l + 1 + 2α). Note
that for Λ = L, it holds that

l =

⌊
Λ

2h
− 1

2

⌋
(A.26)

=

⌊
h(2l′ + 1)

2h
− 1

2

⌋
(A.27)

= bl′c (A.28)

= l′ , (A.29)

and

w =
1

2

(
1

h
− 2l + 1

h(2l + 1)

)
(A.30)

=
1

2
· 0 (A.31)

= 0 . (A.32)

It follows that Ed
Λ = Bd

L if Λ = L, which implies that limΛ→L+ σ2(Ed
Λ) =

σ2(Bd
L). To this end, Ed

Λ is a consistent generalisation of Bd
L with respect

to Λ.

�

Proof 4 (for Theorem 3.4).

We can deduce an approximation of the continuous setting by computing
the limit of σ2(Ed

Λ) for the grid spacing h → 0. Since we are interested in
the order of consistency, we must consider the variance in (3.83) and rewrite
it:

σ2(Ed
Λ) =

(2hl)3

12Λ
+ dh

(2hl)2

4Λ
+ dh2 2hl

6Λ
+ 2dh3α

Λ
(l2 + 2l + 1) (A.33)

= d
(2hl)3

12Λ
+ dh(1 + 2α)

(2hl)2

4Λ
+ dh2(1 + 12α)

2hl

6Λ
+ dh3 2α

Λ
.

(A.34)

A.1. LINEAR DIFFUSION 317

Now we replace 2hl by Λ− (1 + 2α)h and get for the first three terms:

d
(Λ− (1 + 2α)h)3

12Λ
=

dΛ2

12
− dh

4
(1 + 2α)Λ (A.35)

+
dh2

4
(1 + 2α)2 +O(h3), (A.36)

dh(1 + 2α)
(Λ− (1 + 2α)h)2

4Λ
=

dh

4
(1 + 2α)Λ− dh2

2
(1 + 2α)2 +O(h3),

(A.37)

dh2(1 + 12α)
Λ− (1 + 2α)h

6Λ
=

dh2

6
(1 + 12α) +O(h3). (A.38)

The fourth term can be written as

dh3 2α

Λ
= 2dh3w . (A.39)

Because w is bounded to w ∈ [0, 1), we obtain:

σ2(Ed
Λ) =

dΛ2

12
− h2 · d

12

(
12α2 − 12α + 1

)
+O(h3). (A.40)

Thus, the consistency order is O(h2) and we can state that

lim
h→0

σ2(Ed
Λ) = d

Λ2

12
= d

Λ
2∫

−Λ
2

1

Λ
· x2dx = d

∞∫
−∞

BΛ(x)x2dx = σ2(Bd
Λ).

(A.41)

�

Proof 5 (for Theorem 3.5).

From the dependency of l from Λ as given in (3.76), as well as from the
additional conditions

• h < Λ < 3h,

• l being integer, and

• 0 6 α < 1,

we deduce that l = 0. This consequence matches our intuition, since we
aim at constructing an extended box kernel with only one central weight.
Moreover, since we do not iterate the extended box filter, we have d = 1.

318 APPENDIX A. PROOFS

Plugging l = 0 and d = 1 into (3.83) yields:

σ2(EΛ) = h3 6α

3h(1 + 2α)
(A.42)

⇔ α =
1

2 h2

σ2(EΛ)
− 2

. (A.43)

Let us now compute the outer weights (EΛ)h of the kernel. By (3.78)
and (3.79), they are given by (EΛ)h = hw with w = 1

2

(
1
h
− 2l+1

Λ

)
:

(EΛ)h =
h

2

(
1

h
− 2l + 1

Λ

)
(A.44)

=
h

2

(
1

h
− 1

1 + 2α

)
(A.45)

=
1

2

(
1 + 2α− 1

1 + 2α

)
(A.46)

=
α

1 + 2α
. (A.47)

Using (A.43) in (A.47) leads to:

(EΛ)h =

1

2 h2

σ2(EΛ)
−2

1 + 2 1

2 h2

σ2(EΛ)
−2

(A.48)

=
1

2 h2

σ2(EΛ)
− 2 + 2

(A.49)

=
σ2(EΛ)

2h2
. (A.50)

By (3.6), the operator for the 1-D explicit scheme has off-diagonal entries
τ/h2. This value equals (EΛ)h if and only if

τ

h2
=
σ2(EΛ)

2h2
(A.51)

⇔ σ2(EΛ) = 2τ . (A.52)

Let us now check if the diagonal entries of the second-order finite difference
approximation of (I + τA) equal (EΛ)0 under these conditions. Again

A.2. HALFTONING 319

by (3.78) and (A.43), we have

(EΛ)0 =
1

1 + 2α
(A.53)

=
1

1 + 1

1 h2

σ2(EΛ)
−1

(A.54)

=

h2

σ2(EΛ)
− 1

h2

σ2(EΛ)
− 1 + 1

(A.55)

= 1− σ2(EΛ)

h2
(A.56)

(3.6)
= 1− 2

τ

h2
. (A.57)

Hence, (EΛ)0 equals the diagonal entry of a second-order finite difference
approximation for (I + τA) from (3.6). This finishes our proof.

�

A.2 Halftoning

Proof 6 (for Theorem 7.1).

Without loss of generality, let us assume unit area for particles, i.e. πr2 = 1.
The radius of each particle is thus given by

r =

√
1

π
. (A.58)

Let us now compute the real distances between particles. Kepler’s con-
jecture tells us that a hexagonally-close packing (HCP) are the densest
arrangement that can be obtained. Hence, this setting fulfils the perfect-
ness assumption posed on P . Under the special assumption of a regular
grid in 2-D, Kepler’s conjecture has been proven by Lagrange [Lag73]. As
we want to compute the maximal overlap, we fully saturate the image, i.e.
put as many particles inside as possible. Assuming an domain Ω = R2,
this comes down to a regular tiling of the image with hexagons of unit size
AHex = 1. This is visualised in Figure A.1a.

Since the area of a hexagon is given by [BSMM08]

AHex =
3
√

3

2
r2

Hex , (A.59)

320 APPENDIX A. PROOFS

�a

rr

r'Hex

Hex

a

�b

φ
h

a

S

Figure A.1: Overlap of particles. a. Honeycomb pattern with a particle overlay
as arising for dark images. b. Zoom on one overlap area.

the halved distance r′Hex to the neighbouring hexagon is given as the height
of the equilateral triangle with edge length rHex:

r′Hex = sin 60◦ · rHex (A.60)

(A.59)
=

√
3

2
·
√

2√
3 4
√

3
(A.61)

=
1√
2 4
√

3
(A.62)

We now place two particles in distance 2r′Hex to each other, and draw
circles with radii r around them. We call the segment between the two
intersection points of the circles a and recognise it as the chord of one of
the circles. Since (a/2)2 + r2 = r2

Hex, the height h of the circular segment
that is cut off by a is given by

h = r −
√
r2 − a2

4
. (A.63)

By (A.58) and by knowing that h = r − r′Hex, we can compute a as√
1

π
− a2

4
=

1√
2 4
√

3
(A.64)

⇔ 1

π
− a2

4
=

1

2
√

3
(A.65)

⇒ a =

√
4

π
− 2√

3
. (A.66)

A.2. HALFTONING 321

Let us now use a to compute the angle ϕ of the triangle spanned by the two
intersection points and the centre of the circle in the central point. Since

sin ϕ
2

sin 90◦
=

a
2

r
, (A.67)

we obtain

ϕ = 2 arcsin
a

2
√

1
π

(A.68)

= 2 arcsin

√
1− 2π

4
√

3
(A.69)

≈ 35.53◦ (A.70)

Finally, we compute the area S of the circular segment (i.e. half-overlap)
by [BSMM08]:

S =
1

2π

(πϕ

180◦
− sinϕ

)
, (A.71)

and since each particle overlaps with six other particles, we obtain

6S ≈ 0.0372 = 0.0372(r2π). (A.72)

Since A = AHex, this is the same area which remains uncovered.
It remains to show that above a certain grey value, the rendering is

mass-preserving. Given an optimal distribution of particles, the closest
arrangement we can find without overlaps is again the HCP. If we decrease
the grey value, i.e. move particles closer together, they will overlap and
spoil the grey value, but if we move them further away, they will always
cover the right area. Thus, we try to compute the grey value corresponding
to this setting.

In the HCP, we thus take the triangle between the centres of three
neighbouring circles and denote its area by A∆. Within this triangle, there
are three sectors of 1

6
the area of a circle, each. We thus compute the

coverage in this case, and denote the triangle’s height by h′:

3
6
πr2

A∆

=
πr2

2h′r
=

πr2

2
√

3r2
(A.73)

=
π

2
√

3
≈ 0.9069 (A.74)

Thus, above a grey value of 1−0.9069 = 0.0931, the rendering of an ideally
distributed point set is mass-preserving.

�

322 APPENDIX A. PROOFS

Proof 7 (for Theorem 7.2).

The existence of the integral from (7.19) is trivial on Ω \ Nε(pm), where
Nε(pm) denotes a square of halved side length ε around pm, and 0 < ε� 1.
This follows immediately from the boundedness of the integrand and the
finite extent of Ω. Using that u(x) ∈ [0, 1] holds for all x, let us show that
the integral also exists onNε(pm). This is not self-evident, since the integral
could diverge around pm due to a vanishing denominator of the integrand.
Without loss of generality, we substitute u in (7.19) as u′(x) = (1− u(x))
and obtain ∫

Ω

u′(x)(x− pm)

‖x− pm‖2 dx . (A.75)

The result of this integral yields a force vector acting at a particle residing
in pm. It suffices to show the absolute convergence of the integral over the
(Euclidean) norm of the integrand, since this property implies the integrand
to be absolutely integrable. As a consequence, the integral from (A.75)
exists as well and is absolutely convergent.

∫ pm,x+ε

pm,x−ε

∫ pm,y+ε

pm,y−ε

∥∥∥∥∥ u′(a, b)
(
a−pm,x
b−pm,y

)
(a− pm,x)2 + (b− pm,y)2

∥∥∥∥∥ db da (A.76)

6
∫ pm,x+ε

pm,x−ε

∫ pm,y+ε

pm,y−ε
|u′(a, b)|

∥∥∥∥∥
(
a−pm,x
b−pm,y

)
(a− pm,x)2 + (b− pm,y)2

∥∥∥∥∥ db da (A.77)

u′61

6
∫ pm,x+ε

pm,x−ε

∫ pm,y+ε

pm,y−ε

∥∥∥∥∥
(
a−pm,x
b−pm,y

)
(a− pm,x)2 + (b− pm,y)2

∥∥∥∥∥ db da (A.78)

=

∫ pm,x+ε

pm,x−ε

∫ pm,y+ε

pm,y−ε

√
(a− pm,x)2 + (b− pm,y)2

((a− pm,x)2 + (b− pm,y)2)2 db da (A.79)

=

∫ pm,x+ε

pm,x−ε

∫ pm,y+ε

pm,y−ε

1√
(a− pm,x)2 + (b− pm,y)2

db da (A.80)

(∗)
=

∫ pm,x+ε

pm,x−ε

[
ln

(
2

(√
(a− pm,x)2 + (b− pm,y)2 + b− pm,y

))]pm,y+ε

pm,y−ε
da

(A.81)

=

∫ pm,x+ε

pm,x−ε

(
ln

(√
(a− pm,x)2 + ε2 + ε

)
− ln

(√
(a− pm,x)2 + ε2 − ε

))
da (A.82)

A.2. HALFTONING 323

(∗)
[
(a− pm,x) ln

(√
(a− pm,x)2 + ε2 + ε

)
+ ε ln(2)

+ ε ln

(√
(a− pm,x)2 + ε2 + a− pm,x

)
− a
]pm,x+ε

pm,x−ε

−
[
(a− pm,x) ln

(√
(a− pm,x)2 + ε2 − ε

)
− ε ln(2)

− ε ln

(√
(a− pm,x)2 + ε2 + a− pm,x

)
− a
]pm,x+ε

pm,x−ε
(A.83)

= ε ln(
√

2ε+ ε) + ε ln(
√

2ε+ ε)− ε
+ ε ln(

√
2ε+ ε)− ε ln(

√
2ε− ε)− ε

− ε ln(
√

2ε− ε) + ε ln(
√

2ε+ ε) + ε

− ε ln(
√

2ε− ε)− ε ln(
√

2ε− ε) + ε (A.84)

= 4ε ln

(√
2ε+ ε√
2ε− ε

)
(A.85)

= 4ε ln

(√
2 + 1√
2− 1

)
(A.86)

< 7.06 ε . (A.87)

The equalities marked with (∗) were obtained by a computer algebra sys-
tem (WolframAlpha). We conclude this proof with the observation that
the integral from (A.76) exists. By 8.2.3.3 (4) in [BSMM08], integrals of
type (A.75) exist as well. As a consequence, the attractive force acting on
a particle never approaches infinity.

�

Proof 8 (for Theorem 7.3).

We consider a circular area of radius r with uniform charge density 1, and
a particle m with unit charge at pm = pc −

(
0
n

)
in distance n > r from the

centre pc of the circle. This is visualised in Figure A.2. Without loss of
generality, we can rotate the system such that the x coordinates of pm and
pc are equal.

We want to compute the attractive force F (A) acting on this particle.
By symmetry of the left and right semi-circles, we see that the x component
of F (A) cancels out. We thus need to compute its y component only, and
integrate the contributions over the area of the circular disc. This area is
given by all points p ∈ {pc +

(
x
y

)
| x2 + y2 6 r2}. We thus regard two

324 APPENDIX A. PROOFS

pc

r

n

pppcpp

pmpp
F

R()
FF

F
A()

FF

Figure A.2: Sketch for Proof 8. A circular area with radius r and a point charge
that takes just the negative charge of the area are electrically neutral to external
charges.

cascaded integrals, one of which runs in y direction from −r to +r, and
one which integrates the contributions in x direction on the cut through
the circle at the respective y coordinate. The distance vector from pm to
the respective points is given by the difference (pc +

(
x
y

)
)− pm =

(
x

n+y

)
:

F (A)
y =

∫ r

−r

∫ √r2−y2

−
√
r2−y2

1∥∥∥(x
n+y

)∥∥∥ · n+ y∥∥∥(x
n+y

)∥∥∥dxdy (A.88)

=

∫ r

−r

∫ √r2−y2

−
√
r2−y2

1√
x2 + (n+ y)2

· n+ y√
x2 + (n+ y)2

dxdy (A.89)

(∗)
=

∫ 1

−1

2

∫ r
√

1−y2

0

n+ ry

x2 + (n+ ry)2
· r dxdy (A.90)

= 2r

∫ 1

−1

∫ r
√

1−y2

0

n+ ry

x2 + (n+ ry)2
dxdy (A.91)

In the step marked by (∗), we substitute the interval boundaries for the
outer interval by ϕ(s) = rs (‘backwards’). The second integral is simplified
by using symmetry of the circle. After pulling r out of this integral, it is of
form a

∫
dx

x2+a2 , and by 21.5.1.3 (57) in [BSMM08], its primitive is given by
arctan x

a
:

F (A)
y = 2r

∫ 1

−1

[
arctan

(
x

n+ ry

)]r√1−y2

0

dy (A.92)

A.2. HALFTONING 325

Since arctan(0) = 0, we obtain

F (A)
y = 2r

∫ 1

−1

arctan

(
r
√

1− y2

n+ ry

)
dy (A.93)

Using the assumption that n > r > 0, and passing the integral above into
a computer algebra system (Waterloo Maple 13) yields

F (A)
y = 2r · πr

2n
(A.94)

=
πr2

n
. (A.95)

As a second step, let us assume there is a particle at pc which has just the
(negative) charge of the circular region. Since the area of the circle is given
by A = πr2 and the area is uniformly charged with density 1, the particle
has a charge of −πr2. The repulsive force on the test charge in pm is thus
given by

F (R) =
−πr2

‖pm − pc‖
· pm − pc
‖pm − pc‖

. (A.96)

Again, since pm,x − pc,x = 0, let us only consider its y component:

F (R)
y =

−πr2

√
02 + n2

· n√
02 + n2

(A.97)

=
−πnr2

n2
(A.98)

=
−πr2

n
. (A.99)

We finish this part with the observation that F
(A)
y + F

(R)
y = 0, and thus

F (A) +F (R) = 0. This shows that a particle in the centre of a homogeneous
circular region neutralises it with respect to external particles, if their charge
equals the negative charge of the area. This finishes the proof.

�

Proof 9 (for Theorem 7.4).

In order to compensate for uncovered partitions of the image, let us analyse
how large these regions are. Since Theorem 7.4 requires a perfect sampling
operator, we can assume particles to be aligned in a honeycomb pattern. In
analogy to Proof 6, we note that overlaps occur only if the circular disc that

326 APPENDIX A. PROOFS

represents a particle is larger than the incircle. If it equals the circumcircle,
the area is rendered in a fully black tone.

To this end, let us use the notation from Figure A.1a. Assuming the
interesting case r > r′Hex, we can express the circular segment S cut off by a
as the difference between the circular sector spanned by ϕ and the triangle,
i.e.

S =
ϕ

2π
· πr2 − r′Hex ·

a

2
. (A.100)

Since (a
2

)2

+ r′2Hex = r2 , (A.101)

we can write
a

2
=
√
r2 − r′2Hex (A.102)

and use (A.102) to rewrite the second term of (A.100) to obtain

S =
ϕ

2π
· πr2 − r′Hex

√
r2 − r′2Hex . (A.103)

Moreover, we also know that

a

2
= r′Hex · tan

(ϕ
2

)
. (A.104)

Resolving (A.104) for r′Hex and inserting it into (A.101) yields

r′2Hex

(
1 + tan2

(ϕ
2

))
= r2 (A.105)

⇒ ϕ = 2 arctan

(√
r2

r′2Hex

− 1

)
. (A.106)

Hence, we can also rewrite the first term of (A.103) and obtain

S = arctan

(√
r2

r′2Hex

− 1

)
r2 − r′Hex ·

(√
r2 − r′2Hex

)
(A.107)

Let us now express the total overlap 6S relative to the area of one circle,
and call this the relative loss l.

l =
6S

πr2
=

6

π

(
arctan

(√
r2

r′2Hex

− 1

)
− r′Hex

r
·

(√
1− r′2Hex

r2

))
(A.108)

=
6

π

(
arctan

(√
1

c2
− 1

)
− c
√

1− c2

)
(A.109)

A.2. HALFTONING 327

Note that we substitute
r′Hex

r
=: c. This makes sense since r is a free

parameter and r′Hex depends on r and on the grey value of the image. The
ratio c thus allows us to regard the problem independent of the scale, i.e.
the absolute error.

Let us forget the loss for a moment and consider the case r 6 r′Hex in
which the rendering works as expected. Here, we obtain the grey value g
as the quotient of the area of the circular disc and the hexagon it covers:

g =
A

AHex

(A.59)
=

πr2

3
√

3
2

(
2√
3
r′Hex

)2 (A.110)

=
πr2

2
√

3r′2Hex

(A.111)

=
π

2
√

3
· 1

c2
. (A.112)

If the rendering worked well in dark areas, we would also expect such g in
these cases. In other words, the relative loss l just describes the deviation of
the true grey value x from the desired grey value g. The relative remainder
1 − l thus denotes the fraction of the area that is still rendered. Since the
area and the grey value depend linearly on each other, we can express x as

x = g(1− l) =
π

2
√

3
· 1

c2
·

(
1− 6

π

(
arctan

(√
1

c2
− 1

)
− c
√

1− c2

))
.

(A.113)
At this point, we can switch the roles of action and reaction: Considering

a certain grey value x shall be obtained, which grey value g would we need to
sample? Since (A.113) depends only on x and c, we can solve it numerically
for c assuming a desired x. Since the function is not monotonic, we can use
that we are only interested in

r′Hex 6 r 6 rHex (A.114)

⇔ 1 6
1

c
6

2√
3

(A.115)

⇔ 1 > c >

√
3

2
(A.116)

(the equivalence follows from (A.60)). Finally, we use c in (A.112) to obtain
g. To finish this proof, let us check the global mass preservation of the pro-
cess given that a tonemapping as in (7.28) is applied. Regions with a grey
value below π

2
√

3
are rendered correctly by Theorem 7.1, since T (x) = x.

328 APPENDIX A. PROOFS

Above this threshold, the grey value preservation follows by construction
from (A.113) and (A.112). Using the initial requirement of a perfect sam-
pling operator, this local mass preservation carries over to the global case.

�

Bibliography

Own Publications

[BCGV11] M. Breuß, E. Cristiani, P. Gwosdek, and O. Vogel. An adap-
tive domain-decomposition technique for parallelisation of the
fast marching method. Applied Mathematics and Computation,
218:32–44, September 2011.

[GBW08] P. Gwosdek, A. Bruhn, and J. Weickert. High performance
parallel optical flow algorithms on the Sony PlayStation 3. In
O. Deussen, D. Keim, and D. Saupe, editors, Proc. 13th In-
ternational Fall Workshop Vision, Modeling and Visualisation
2008, pages 253–262, Konstanz, Germany, October 2008. AKA,
Heidelberg, Germany.

[GBW10] P. Gwosdek, A. Bruhn, and J. Weickert. Variational optic
flow on the Sony PlayStation 3 – accurate dense flow fields for
real-time applications. Journal of Real-Time Image Processing,
5(3):163–177, September 2010.

[GGBW11] P. Gwosdek, S. Grewenig, A. Bruhn, and J. Weickert. Theo-
retical foundations of Gaussian convolution by extended box
filtering. In A.M. Bruckstein and B. ter Haar Romeny, editors,
Scale Space and Variational Methods in Computer Vision, vol-
ume 6667 of Lecture Notes in Computer Science, pages 447–458.
Springer, Berlin, Germany, 2011.

[GSWT11] P. Gwosdek, C. Schmaltz, J. Weickert, and T. Teuber. Fast
electrostatic halftoning. Journal of Real-Time Image Process-
ing, December 2011. Online First.

[GZG+10] P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. We-
ickert. A highly efficient GPU implementation for variational
optic flow based on the Euler-Lagrange framework. In Proc.

329

330 BIBLIOGRAPHY

3rd ECCV Workshop Computer Vision with GPUs, Heraklion,
Greece, September 2010. Springer, Berlin, Germany.

[LZGW11] A. Luxenburger, H. Zimmer, P. Gwosdek, and J. Weickert. Fast
PDE-based image analysis in your pocket. In A.M. Bruckstein
and B. ter Haar Romeny, editors, Scale Space and Variational
Methods in Computer Vision, volume 6667 of Lecture Notes in
Computer Science, pages 544–555. Springer, Berlin, Germany,
2011.

[SGBW10] C. Schmaltz, P. Gwosdek, A. Bruhn, and J. Weickert. Electro-
static halftoning. Computer Graphics Forum, 29(8):2313–2327,
December 2010.

[SGW11] C. Schmaltz, P. Gwosdek, and J. Weickert. Multi-class
anisotropic electrostatic halftoning. Computer Graphics Fo-
rum, October 2011. Early View.

[TSG+11] T. Teuber, G. Steidl, P. Gwosdek, C. Schmaltz, and J. Weick-
ert. Dithering by differences of convex functions. SIAM Journal
on Imaging Sciences, 4(1):79–108, January 2011.

Other References

[AD96] V. Aurich and U. Daub. Bilddatenkompression mit ge-
planten Verlusten und hoher Rate. In B. Jähne, P. Geißler,
H. Haußecker, and F. Hering, editors, Proc. 18. DAGM-
Symposium, Informatik Aktuell, pages 138–146, Heidelberg,
Germany, September 1996. Springer, Berlin.

[Ado99] Adobe Systems Inc. PostScript Language Reference. Addison-
Wesley, Reading, MA, 3rd edition, February 1999.

[ADSW02] L. Alvarez, R. Deriche, J. Sánchez, and J. Weickert. Dense
disparity map estimation respecting image derivatives: a PDE
and scale-space based approach. Journal of Visual Communi-
cation and Image Representation, 13(1/2):3–21, 2002.

[Adv11] Advanced Micro Devices, Incorporated. AMD Accelerated Par-
allel Processing OpenCL Programming Guide, August 2011.
Online: http://developer.amd.com/sdks/AMDAPPSDK/

http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf

BIBLIOGRAPHY 331

assets/AMD_Accelerated_Parallel_Processing_OpenCL_

Programming_Guide.pdf, Retrieved 11-09-22.

[AHAS08] Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshan.
GpuCV: A GPU-accelerated framework for image process-
ing and computer vision. In G. Bebis, R. Boyle, B. Parvin,
D. Koracin, P. Remagnino, F. Porikli, J. Peters, J. Klosowski,
L. Arns, Y.K. Chun, T.-M. Rhyne, and L. Monroe, editors, Ad-
vances in Visual Computing, volume 5359 of Lecture Notes in
Computer Science, pages 430–439. Springer, Berlin, Germany,
2008.

[AL96] J. Allebach and Q. Lin. Fm screen design using dbs algorithm.
In Proceedings of 3rd IEEE International Conference on Image
Processing, volume 3, pages 549–552. IEEE Press, September
1996.

[App85] Andrew W. Appel. An efficient program for many-body simu-
lation. SIAM Journal on Scientific and Statistical Computing,
6(1):85–103, January 1985.

[ARBJ03] S. Agarwal, R. Ramamoorthi, S. Belongie, and H.W. Jensen.
Structured importance sampling of environment maps. ACM
Transactions on Graphics (Proc. SIGGRAPH ’03), 22(3):605–
612, 2003.

[AU10] W. Arendt and K. Urban. Partielle Differenzialgleichungen:
Eine Einführung in analytische und numerische Methoden.
Spektrum Akademischer Verlag, Heidelberg, Germany, 2010.

[BA83] P. J. Burt and E. H. Adelson. The Laplacian pyramid as a
compact image code. IEEE Transactions on Communications,
31:532–540, 1983.

[BA96] M. J. Black and P. Anandan. The robust estimation of multiple
motions: parametric and piecewise smooth flow fields. Com-
puter Vision and Image Understanding, 63(1):75–104, January
1996.

[Bar78] M. S. Bartlett. An Introduction to Stochastic Processes with
Special Reference to Methods and Applications. Cambridge
University Press, Cambridge, UK, third edition, 1978.

http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf

332 BIBLIOGRAPHY

[BAR11] R. Ben-Ari and G. Raveh. Variational depth from defocus in
real-time. In C. Sagiv, editor, Proc. 3rd Workshop on GPUs
for Vision (in conjunction with ICCV 2011), Barcelona, Spain,
November 2011. To appear.

[BAS10] R. Ben-Ari and N. Sochen. Stereo matching with Mumford-
Shah regularization and occlusion handling. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
32(11):2071–2084, 2010.

[Bay73] B.E. Bayer. An optimum method for two-level rendition of
continuous-tone pictures. In Proc. IEEE International Confer-
ence on Communications, volume 26, pages 2611–2615. IEEE
Press, 1973.

[BBBW09] Z. Belhachmi, D. Bucur, B. Burgeth, and J. Weickert. How to
choose interpolation data in images. SIAM Journal on Applied
Mathematics, 70(1):333–352, 2009.

[BBPW04] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High ac-
curacy optic flow estimation based on a theory for warping.
In T. Pajdla and J. Matas, editors, Computer Vision – ECCV
2004, volume 3024 of Lecture Notes in Computer Science, pages
25–36. Springer, Berlin, 2004.

[BC03] G. Beylkin and R. Cramer. A multiresolution approach to
regularization of singular operators and fast summation. SIAM
Journal on Scientific Computing, 24(1):81–117, 2003.

[BCR91] G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet trans-
forms and numerical algorithms I. Communications on Pure
and Applied Mathematics, 44(2):141–183, 1991.

[BD96] F.A. Bornemann and P. Deuflhard. The cascadic multigrid
method for elliptic problems. Numerische Mathematik, 75:135–
152, 1996.

[Ben75] J.L. Bentley. Multidimensional binary search trees used for
associative searching. Communications of the ACM, 18(9):509–
517, September 1975.

[BFB94] J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance
of optical flow techniques. International Journal of Computer
Vision, 12(1):43–77, February 1994.

BIBLIOGRAPHY 333

[BH86] J. Barnes and P. Hut. A hierarchical O(n log n) force-
calculation algorithm. Nature, 324:446–449, December 1986.

[BL77] Jr. B.F. Logan. Information in the zero crossings of band-
pass signals. Bell Systems Technical Journal, 56:487–510, April
1977.

[BLF+07] J. Beyer, C. Langer, L. Fritz, M. Hadwiger, S. Wolfsberger, and
K. Bühler. Interactive diffusion-based smoothing and segmen-
tation of volumetric datasets on graphics hardware. Methods
of Information in Medicine, 46(3):270–274, 2007.

[BM58] G. E. P. Box and Mervin E. Muller. A note on the generation
of random normal deviates. Annals of Mathematical Statistics,
29(2):610–611, January 1958.

[BPT88] M. Bertero, T. A. Poggio, and V. Torre. Ill-posed problems in
early vision. Proceedings of the IEEE, 76(8):869–889, August
1988.

[Bra99] R. Bracewell. The Fourier Transform and Its Applications.
McGraw-Hill, New York, NY, 3rd edition, 1999.

[Bri88] E.O. Brigham. The fast Fourier transform and its applications.
Prentice-Hall signal processing series. Prentice Hall, 1988.

[Bru10] A. Bruhn. Normalised convolution for efficient image inpaint-
ing. Personal communication, 2010.

[BS08] P. Babenko and M. Shah. MinGPU: A minimum GPU library
for computer vision. Journal of Real-Time Image Processing,
3(4):255–268, April 2008.

[BSB10] A. Bhatia, W.E. Snyder, and G. Bilbro. Stacked integral im-
age. In Proc. 2010 IEEE International Conference on Robotics
and Automation, pages 1530–1535, Anchorage, AK, May 2010.
IEEE Computer Society.

[BSCB00] M. Bertalmı́o, G. Sapiro, V. Caselles, and C. Ballester. Image
inpainting. In Proc. SIGGRAPH ’00, pages 417–424, 2000.

[BSD09] M. Balzer, T. Schlömer, and O. Deussen. Capacity-constrained
point distributions: A variant of Lloyd’s method. ACM Trans-
actions on Graphics, 28(3):86:1–8, 2009.

334 BIBLIOGRAPHY

[BSL+11] S. Baker, D. Scharstein, J.P. Lewis, S. Roth, M.J. Black, and
R. Szeliski. A database and evaluation methodology for optical
flow. International Journal of Computer Vision, 92(1):1–31,
2011.

[BSMM08] I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Mühlig,
editors. Taschenbuch der Mathematik. Verlag Harri Deutsch,
Frankfurt am Main, Germany, 2008.

[But05] T. Butz. Fourier Transformation for Pedestrians. Springer,
December 2005.

[BW05] A. Bruhn and J. Weickert. Towards ultimate motion estima-
tion: Combining highest accuracy with real-time performance.
In Proc. Tenth International Conference on Computer Vision,
volume 1, pages 749–755, Beijing, China, October 2005. IEEE
Computer Society Press.

[BWF+05] A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and
C. Schnörr. Variational optical flow computation in real-time.
IEEE Transactions on Image Processing, 14(5):608–615, May
2005.

[Can86] J. Canny. A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
8:679–698, 1986.

[CAO09] J. Chang, B. Alain, and V. Ostromoukhov. Structure-aware
error diffusion. ACM Transactions on Graphics, 28(5):162:1–
162:8, December 2009.

[CBAB97] P. Charbonnier, L. Blanc–Féraud, G. Aubert, and M. Bar-
laud. Deterministic edge-preserving regularization in computed
imaging. IEEE Transactions on Image Processing, 6(2):298–
311, 1997.

[CCL69] F.W. Campbell, R.H.S. Carpenter, and J.Z. Levinson. Visi-
bility of aperiodic patterns compared with that of sinusoidal
gratings. Journal of Physiology, 204:283–298, 1969.

[CD01] J. Cohen and P. Debevec. LightGen plugin for HDR Shop.
Online: http://gl.ict.usc.edu/HDRShop/lightgen/, 2001.
Retrieved 2010-03-25.

http://gl.ict.usc.edu/HDRShop/lightgen/

BIBLIOGRAPHY 335

[Cha04] A. Chambolle. An algorithm for total variation minimization
and applications. Journal of Mathematical Imaging and Vision,
20(1–2):89–97, 2004.

[Cla61] C. E. Clark. Importance sampling in monte carlo analyses.
Operations Research, 9(5):603–620, September 1961.

[CLSY93] J.-C. Chen, D. Lu, J.S. Sadowsky, and K. Yao. On importance
sampling in digital communications. i. fundamentals. IEEE
Journal on Selected Areas in Communications, 11(3):289–299,
April 1993.

[CN93] T.J. Cullip and U. Neumann. Accelerating volume reconstruc-
tion with 3D texture hardware. Technical Report TR93-027,
University of North Carolina at Chapel Hill, Chapel Hill, NC,
1993.

[Coo86] R. Cook. Stochastic sampling in computer graphics. ACM
Transactions on Graphics, 5(1):51–72, January 1986.

[Cor11] NVidia Corporation. NVidia Performance Primitives. Online:
http://developer.nvidia.com/npp, Retrieved: 2011-09-25,
2011.

[CR11] CNet Reviews. Printers. Online: http://reviews.cnet.com/
computer-printers/?sa=1105299&tag=topPanelArea.1,
2011. Retrieved 2011-04-06.

[Cro84] F.C. Crow. Summed-area tables for texture mapping. Com-
puter Graphics (Proc. SIGGRAPH ’84), 4(9):207–212, 1984.

[CSHD03] M.F. Cohen, J. Shade, S. Hiller, and O. Deussen. Wang tiles for
image and texture generation. ACM Transactions on Graphics
(Proc. SIGGRAPH ’03), 22(3):287–294, 2003.

[CT65] J.W. Cooley and J.W. Tukey. An algorithm for the machine
calculation of complex Fourier series. Mathematics of Compu-
tation, 19:297–301, 1965.

[Der87a] R. Deriche. Separable recursive filtering for efficient multi-scale
edge detection. In Proc. International Workshop on Industrial
Applications of Machine Intelligence and Vision, Roppongi,
Yokyo, Japan, February 1987. IEEE Computer Society. Out
of print, cited in [Der87b].

http://developer.nvidia.com/npp
http://reviews.cnet.com/computer-printers/?sa=1105299&tag=topPanelArea.1
http://reviews.cnet.com/computer-printers/?sa=1105299&tag=topPanelArea.1

336 BIBLIOGRAPHY

[Der87b] R. Deriche. Using canny’s criteria to derive a recursively imple-
mented optimal edge detector. International Journal of Com-
puter Vision, 1(2):167–187, 1987.

[DHL+98] O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr,
and P. Prusinkiewicz. Realistic modeling and rendering of
plant ecosystems. Computer Graphics (Proc. SIGGRAPH ’98),
pages 275–286, 1998.

[dJ07] J. de Jong. Gaussian blur in GIMP com-
pared to Photoshop. Online: http://

www.gimpusers.com/forums/gimp-developer/

6172-gaussian-blur-in-gimp-compared-to-photoshop,
November 2007. Retrieved 2010-02-01.

[EG01] J.H. Elder and R.M. Goldberg. Image editing in the contour
domain. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(3):291–296, March 2001.

[EJ10] P. Étoré and B. Jourdain. Adaptive optimal allocation in strat-
ified sampling methods. Methodology and Computing in Ap-
plied Probability, 12(3):335–360, 2010.

[EK91] R. Eschbach and K. T. Knox. Error-diffusion algorithm with
edge enhancement. Journal of the Optical Society of America
A, 8(12):1844–1850, 1991.

[Els61] L. E. Elsgolc. Calculus of Variations. Pergamon, Oxford, 1961.

[EVB01] J. Eberspächer, H-J. Vögel, and C. Bettstetter. GSM Global
System for Mobile Communication. Teubner, Leipzig, third
edition, 2001.

[Fat11] R. Fattal. Blue-noise point sampling using kernel density
model. ACM Transactions on Graphics (Proc. SIGGRAPH
’11), 28(3):48:1–10, 2011.

[Fel08] M. Felsberg. On the relation between anisotropic diffusion and
iterated adaptive filtering. In G. Rigoll, editor, Pattern Recog-
nition, volume 5096 of Lecture Notes in Computer Science,
pages 436–445. Springer, Berlin, 2008.

[FG87] W. Förstner and E. Gülch. A fast operator for detection and
precise location of distinct points, corners and centres of cir-
cular features. In Proc. ISPRS Intercommission Conference

http://www.gimpusers.com/forums/gimp-developer/6172-gaussian-blur-in-gimp-compared-to-photoshop
http://www.gimpusers.com/forums/gimp-developer/6172-gaussian-blur-in-gimp-compared-to-photoshop
http://www.gimpusers.com/forums/gimp-developer/6172-gaussian-blur-in-gimp-compared-to-photoshop

BIBLIOGRAPHY 337

on Fast Processing of Photogrammetric Data, pages 281–305,
Interlaken, Switzerland, June 1987.

[FHH93] D. J. Field, A. Hayes, and R. F. Hess. Contour integration
by the human visual system: Evidence for a local “association
field”. Vision Research, 33(2):173–193, 1993.

[FJ90] D. J. Fleet and A. D. Jepson. Computation of component im-
age velocity from local phase information. International Jour-
nal of Computer Vision, 5(1):77–104, August 1990.

[FJ05] M. Frigo and S.G. Johnson. The design and implementation
of FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005.

[Flo97] L. Florack. Image Structure, volume 10 of Computational
Imaging and Vision. Kluwer, Dordrecht, 1997.

[FMA05] J. Fung, S. Mann, and C. Aimone. OpenVIDIA: Parallel GPU
computer vision. In H. Zhang, T.-S. Chua, R. Steinmetz, M.S.
Kankanhalli, and L. Wilcox, editors, Proc. 13th ACM Interna-
tional Conference on Multimedia, pages 849–852, Singapore,
November 2005. ACM.

[FPZ03] R. Fergus, P. Perona, and A. Zisserman. Object class recog-
nition by unsupervised scale-invariant learning. In Proc. 2003
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, volume 2, pages 264–271, Madison, WI,
June 2003. IEEE Computer Society Press.

[FS76] R. W. Floyd and L. Steinberg. An adaptive algorithm for
spatial grey scale. In Proc. Society of Information Display,
volume 17, pages 75–77, 1976.

[FS02] M. Fenn and G. Steidl. FMM and H-matrices: A short in-
troduction to the basic idea. Technical Report TR-2002-008,
Department for Mathematics and Computer Science, Univer-
sity of Mannheim, Germany., 2002.

[FS04] M. Fenn and G. Steidl. Fast NFFT based summation of radial
functions. Sampling Theory in Signal and Image Processing,
3(1):1–28, 2004.

[Fv06] O. Fialka and M. Čad́ık. FFT and convolution performance
in image filtering on GPU. In Proc. 10th IEEE Conference on

338 BIBLIOGRAPHY

Information Visualization, pages 609–614, Washington, DC,
2006. IEEE Computer Society Press.

[GBAL06] A.J. González, J. Bacca, G.R. Arce, and D.L. Lau. Alpha
stable human visual system models for digital halftoning. Pro-
ceedings of SPIE, 6057, February 2006.

[GBW09] M. Ghodstinat, A. Bruhn, and J. Weickert. Deinterlacing
with motion-compensated anisotropic diffusion. In D. Cremers,
B. Rosenhahn, A. Yuille, and F. Schmidt, editors, Statistical
and Geometrical Approaches to Visual Motion Analysis, vol-
ume 5604 of Lecture Notes in Computer Science, pages 91–106,
Berlin, 2009. Springer.

[GD08] N. A. Gumerov and R. Duraiswami. Fast multipole meth-
ods on graphics processors. Journal of Computational Physics,
227(18):8290–8313, September 2008.

[Gen79] W. Gentzsch. Numerical solution of linear and non-linear
parabolic differential equations by a time-discretisation of third
order accuracy. In Proc. Third GAMM Conference on Numeri-
cal Methods in Fluid Mechanics, pages 109–117. Vieweg, 1979.

[Ghi11] G. Ghimpeteanu. Non-photorealistic rendering of 2D images.
Master’s thesis, Faculty of Mathematics and Computer Sci-
ence, Saarland University, Saarbrücken, Germany, 2011.

[GHS99] P. Glasserman, P. Heidelberger, and P. Shahabuddin. Asymp-
totically optimal importance sampling and stratification for
pricing path-dependent options. Mathematical Finance,
9(2):117–152, 1999.

[GK80] K. Glashoff and H. Kreth. Vorzeichenstabile differenzenver-
fahren für parabolische anfangswertaufgaben. Numerische
Mathematik, 35(3):343–354, 1980.

[GLD+08] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and
J. Manferdelli. High performance discrete Fourier transforms
on graphics processors. In Proc. 2008 ACM/IEEE Conference
on Supercomputing, pages 2:1–2:12. IEEE Press, 2008.

[GO96] G. Golub and J.M. Ortega. Scientific computing: Eine
Einführung in das wissenschaftliche Rechnen und die parallele
Numerik. Teubner, Stuttgart, Germany, 1996.

BIBLIOGRAPHY 339

[Göd05] D. Göddeke. GPGPU–Basic math tutorial. Technical Report
300, Fachbereich Mathematik, Universität Dortmund, Novem-
ber 2005.

[Goo51] W.M. Goodall. Television by pulse code modulation. Bell
Systems Technical Journal, 30:33–49, 1951.

[Gou85] A.R. Gourlay. Implicit convolution. Image and Vision Com-
puting, 3(1):15–23, February 1985.

[GPS11] M. Gräf, D. Potts, and G. Steidl. Quadrature errors, discrep-
ancies and their relations to halftoning on the torus and the
sphere. Technical Report 2011-05, Fakultät für Mathematik,
Technical University of Chemnitz, Chemnitz, Germany, 2011.

[GR87] L. Greengard and V. Rokhlin. A fast algorithm for particle
simulations. Journal of Computational Physics, 73(2):325–348,
December 1987.

[Gre08] A. Gregerson. Implementing fast MRI gridding on
GPUs via CUDA. NVidia Whitepaper, Online:
http://cn.nvidia.com/docs/IO/47905/ECE757_Project_

Report_Gregerson.pdf, 2008. Retrieved 2011-04-11.

[GRS93] R. Geist, R. Reynolds, and D. Suggs. A Markovian frame-
work for digital halftoning. ACM Transactions on Graphics,
12(2):136–159, 1993.

[GT08] H. Grossauer and P. Thoman. GPU-based multigrid: Real-
time performance in high resolution nonlinear image process-
ing. In A. Gasteratos, M. Vincze, and J. K. Tsotsos, editors,
Computer Vision Systems, volume 5008 of Lecture Notes in
Computer Science, pages 141–150. Springer, Berlin, 2008.

[GW08] R. C. Gonzalez and R. E. Woods. Digital image processing.
Pearson Prentice Hall, third edition, 2008.

[GWB10] S. Grewenig, J. Weickert, and A. Bruhn. From box filtering
to fast explicit diffusion. In M. Goesele, S. Roth, A. Kuijper,
B. Schiele, and K. Schindler, editors, Pattern Recognition, vol-
ume 6376 of Lecture Notes in Computer Science, pages 533–
542. Springer, Berlin, 2010.

http://cn.nvidia.com/docs/IO/47905/ECE757_Project_Report_Gregerson.pdf
http://cn.nvidia.com/docs/IO/47905/ECE757_Project_Report_Gregerson.pdf

340 BIBLIOGRAPHY

[GWL+03] N. Goodnight, C. Woolley, G. Lewin, D. Luebke, and
G. Humphreys. A multigrid solver for boundary value problems
using programmable graphics hardware. In Proc. ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics Hardware
(HWWS 03), pages 102–111, Aire-la-Ville, Switzerland, 2003.
Eurographics Association.

[GWW+08] I. Galić, J. Weickert, M. Welk, A. Bruhn, A. Belyaev, and H.-P.
Seidel. Image compression with anisotropic diffusion. Journal
of Mathematical Imaging and Vision, 31(2–3):255–269, July
2008.

[Hac85] W. Hackbusch. Multigrid Methods and Applications. Springer,
New York, 1985.

[Hac99] W. Hackbusch. A sparse matrix arithmetic based on H-
matrices. Part I: Introduction to H-matrices. Computing,
62:89–108, 1999.

[Hae90] P. Haeberli. Paint by numbers: Abstract image representa-
tions. Computer Graphics (Proc. SIGGRAPH ’90), 24(4):207–
214, 1990.

[Hal60] J. H. Halton. On the efficiency of certain quasi-random se-
quences of points in evaluating multi-dimensional integrals.
Numerische Mathematik, 2(1):84–90, 1960.

[Hal06a] D. Hale. The Mines Java toolkit. Online: http://inside.

mines.edu/~dhale/jtk/, 2006. Retrieved 2011-05-27.

[Hal06b] D. Hale. Recursive Gaussian filters. Technical Report CWP-
546, Center for Wave Phenomena, Colorado School of Mines,
CO, 2006.

[Ham07] M.J. Hammel. The Artist’s Guide to GIMP Effects. No Starch
Press, first edition, August 2007.

[Han05] K.M. Hanson. Halftoning and Quasi-Monte Carlo. In K. M.
Hanson and F. M. Hemez, editors, Sensitivity Analysis of
Model Output, pages 430–442. Los Alamos Research Library,
2005.

[Har11] M. Harris. Optimising parallel reduction in CUDA. Talk
slides, online: http://developer.download.nvidia.com/

http://inside.mines.edu/~dhale/jtk/
http://inside.mines.edu/~dhale/jtk/
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf

BIBLIOGRAPHY 341

compute/cuda/1_1/Website/projects/reduction/doc/

reduction.pdf, Retrieved: 2011-09-23, 2011.

[HD07] F. Huguet and F. Devernay. A variational method for scene
flow estimation from stereo sequences. In Proc. 11th Inter-
national Conference on Computer Vision, pages 1–7, Rio de
Janeiro, Brazil, 2007. IEEE Computer Society Press.

[HE81] R. Hockney and J. Eastwood. Computer simulation using par-
ticles. McGraw-Hill, New York, NY, 1981.

[Hen07] J. Hensley. Close to the metal. ACM SIGGRAPH
Course on GPGPU: General-Purpose Computation on
Graphics Hardware. Talk slides, online: http://http:

//developer.amd.com/media/gpu_assets/Hensley-Close_

to_the_Metal(Siggraph07_GPGPUCourse).pdf, Retrieved:
2011-09-25, 2007.

[Hes07] R. Hess, editor. The Essential Blender: Guide to 3D Creation
with the Open Source Suite Blender. No Starch Press, Septem-
ber 2007.

[Hol26] L.A. Holman. The Graphic Process, a Series of Actual Prints.
Charles E. Goodspeed & Co., Boston, MA, 1926.

[How10] M. Howison. Comparing gpu implementations of bilateral and
anisotropic diffusion filters for 3d biomedical datasets. Techni-
cal Report LBNL-3425E, Lawrence Berkeley National Labora-
tory, Berkeley, CA, 2010.

[HS81] B. Horn and B. Schunck. Determining optical flow. Artificial
Intelligence, 17:185–203, 1981.

[Iij59] T. Iijima. Basic theory of pattern observation. In Papers of
Technical Group on Automata and Automatic Control. IECE,
Japan, December 1959. In Japanese.

[IKN98] L. Itti, C. Koch, and E. Niebur. A model of saliency-based
visual attention for rapid scene analysis. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20(11):1254–1259,
November 1998.

[Ilb00] P.W.M. Ilbery. U.S. patent No. 6,124,844, 2000.

http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://http://developer.amd.com/media/gpu_assets/Hensley-Close_to_the_Metal(Siggraph07_GPGPUCourse).pdf
http://http://developer.amd.com/media/gpu_assets/Hensley-Close_to_the_Metal(Siggraph07_GPGPUCourse).pdf
http://http://developer.amd.com/media/gpu_assets/Hensley-Close_to_the_Metal(Siggraph07_GPGPUCourse).pdf

342 BIBLIOGRAPHY

[JCW09] S. Jeschke, D. Cline, and P. Wonka. A GPU Laplacian solver
for diffusion curves and poisson image editing. ACM Transac-
tions on Graphics (Proc. SIGGRAPH Asia ’09), 28(5):116:1–8,
2009.

[JJN76] J. F. Jarvis, C. N. Judice, and W. H. Ninke. A survey of
techniques for the display of continuous tone pictures on bilevel
displays. Computer Graphics and Image Processing, 5:13–40,
1976.

[JLR07] K. Johansson, P. Lundberg, and R. Ryberg. A Guide to
Graphic Print Production. Wiley, second edition, 2007.

[Joh28] J.B. Johnson. Thermal agitation of electricity in conductors.
Physical Review, 32(1):97, July 1928.

[JR76] J. F. Jarvis and C. S. Roberts. A new technique for displaying
continuous tone images on a bilevel display. IEEE Transactions
on Communications, 24:891–898, 1976.

[JW07] W.-K. Jeong and T. Whitaker. A fast iterative method for a
class of Hamilton-Jacobi equations on parallel sytems. Techni-
cal Report UUCS-07-010, School of Computing, University of
Utah, UT, April 2007.

[KA02] S.H. Kim and J.P. Allebach. Impact of HVS models on model-
based halftoning. IEEE Transactions on Image Processing,
11(3):258–269, March 2002.

[Kan99] H.R. Kang. Digital color halftoning. SPIE/IEEE series on
imaging science & engineering. SPIE Press, 1999.

[KCDL06] J. Kopf, D. Cohen-Or, O. Deussen, and D. Lischinski. Recur-
sive Wang tiles for real-time blue noise. ACM Transactions on
Graphics, 25(3):509–518, 2006.

[Khr10] Khronos Group. The OpenCL Specification, June 2010.
Online: http://www.khronos.org/registry/cl/specs/

opencl-1.0.48.pdf, Retrieved 11-09-22.

[Kip01] H. Kipphan. Handbook of print media: Technologies and pro-
duction methods. Springer, 2001.

http://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf

BIBLIOGRAPHY 343

[KK95] S. Krishnan and L. V. Kalé. A parallel adaptive fast mul-
tipole algorithm for n-body problems. In K. Gallivan, edi-
tor, Proc. 1995 International Conference on Parallel Process-
ing, volume 3, pages 46–51, Urbana-Champain, IL, 1995. CRC
Press, Inc.

[KK03] T. Kollig and A. Keller. Efficient illumination by high dynamic
range images. In P. Christensen and D. Cohen-Or, editors,
EGRW ’03: Proceedings of the 14th Eurographics Workshop
on Rendering, pages 45–50, Aire-la-Ville, Switzerland, 2003.
Eurographics Association.

[KKP09] J. Keiner, S. Kunis, and D. Potts. Using nfft 3 – a software
library for various nonequispaced fast fourier transforms. ACM
Transactions on Mathematical Software, 36(4):19:1–23, 2009.

[KM79] L. Kuhn and R. A. Myers. Ink-jet printing. Scientific Ameri-
can, 240(4):162–178, April 1979.

[Kno89] K.T. Knox. Edge enhancement in error diffusion. In Paper
Summaries from The Society for Imaging Science and Tech-
nology, 42nd Annual Conference, pages 310–313, Boston, May
1989.

[Knu87] D.E. Knuth. Digital halftones by dot diffusion. ACM Trans-
actions on Graphics, 6(4):245–273, 1987.

[Kre05] U. Krengel. Einführung in die Wahrscheinlichkeitstheorie und
Statistik. Aufbaukurs Mathematik. Vieweg, 2005.

[KS80] J.F. Kaiser and R.W. Schafer. On the use of the Io-sinh win-
dow for spectrum analysis. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 28(1):105–107, February 1980.

[KW93] H. Knutsson and C.-F. Westin. Normalized and differential
convolution: Methods for interpolation and filtering of incom-
plete and uncertain data. In Proc. 1993 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition,
pages 515–523, New York, NY, 1993. IEEE Computer Society
Press.

[KZ96] R. Klette and P. Zamperoni. Handbook of Image Processing
Operators. Wiley, New York, 1996.

344 BIBLIOGRAPHY

[LA08] D.L. Lau and G.R. Arce. Modern digital halftoning. Signal
Processing and Communications Series. CRC Press, 2008.

[Lag73] J. L. Lagrange. Œvres de Lagrange. Gauthier-Villars, January
1873.

[LAG98] D.L. Lau, G.R. Arce, and N.C. Gallagher. Green-noise digital
halftoning. Proceedings of the IEEE, 86:2424–2444, December
1998.

[LD05] A. Lagae and P. Dutré. A procedural object distribution func-
tion. ACM Transactions on Graphics (Proc. SIGGRAPH ’05),
24(4):1442–1461, 2005.

[Les06] P.M. Lester. Visual communication: Images with messages.
Thomson Wadsworth, Belmont, CA, 4th edition, 2006.

[Lim69] J.O. Limb. Design of dither waveforms for quantized visual sig-
nals. Bell Systems Technical Journal, 48(7):2555–2582, 1969.

[Lin90] T. Lindeberg. Scale-space for discrete signals. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 12:234–
254, 1990.

[Lin94] T. Lindeberg. Scale-Space Theory in Computer Vision.
Kluwer, Boston, 1994.

[LK73] B. Lippel and M. Kurland. The effect of dither on luminance
quantization of pictures. IEEE Transactions on Communica-
tion Technology, 19(6):879–888, 1973.

[LK81] B. Lucas and T. Kanade. An iterative image registration tech-
nique with an application to stereo vision. In Proc. Seventh
International Joint Conference on Artificial Intelligence, pages
674–679, Vancouver, Canada, August 1981.

[LK11] W. Lin and C.-C.J. Kuo. Perceptual visual quality metrics: A
survey. Journal of Visual Communication and Image Repre-
sentation, 22(4):297–312, May 2011.

[LKC+10] V.W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A.D.
Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P. Ham-
marlund, R. Singhal, and P. Dubey. Debunking the 100x GPU
vs. CPU myth: An evaluation of throughput computing on

BIBLIOGRAPHY 345

CPU and GPU. ACM SIGARCH Computer Architecture News
(Proc. ISCA ’10), 38(3):451–460, June 2010.

[LNW+09] H. Li, D. Nehab, L.-Y. Wei, P. Sander, and C.-W. Fu. Fast ca-
pacity constrained voronoi tessellation. Technical Report MSR-
TR-2009-174, Microsoft Research, 2009.

[Low04] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60(2):91–110, 2004.

[MA03] K. Moreland and E. Angel. The FFT on a GPU. In Proc. ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics Hard-
ware (HWWS 03), pages 112–119, Aire-la-Ville, Switzerland,
2003. Eurographics Association.

[Mar82] D. Marr. Vision. Freeman, San Francisco, 1982.

[MBO92] B. Merriman, J. Bence, and S. Osher. Diffusion generated mo-
tion by mean curvature. In J. E. Taylor, editor, Computational
Crystal Growers Workshop, Selected Lectures in Math, pages
73–83. American Mathematical Society, Providence, RI, 1992.

[MBWF11] M. Mainberger, A. Bruhn, J. Weickert, and S. Forchhammer.
Edge-based image compression of cartoon-like images with ho-
mogeneous diffusion. Pattern Recognition, 44(9):1859–1873,
September 2011.

[Mei05] A. Meister. Numerik linearer Gleichungssysteme: Eine
Einführung in moderne Verfahren. Vieweg+Teubner, second
edition, 2005.

[Mer40] Mergenthaler Linotype Company. Linotype machine principles,
1940.

[Mes06] D. Meschede. Gerthsen Physik. Springer, 23th edition, March
2006.

[MF92] M. McCool and E. Fiume. Hierarchical Poisson disk sam-
pling distributions. In K.S. Booth and A. Fournier, editors,
Proc. Conference on Graphics Interfaces ’92, pages 94–105,
San Francisco, CA, 1992. Morgan Kaufmann.

346 BIBLIOGRAPHY

[MGW05] M.D. Meyer, P. Georgel, and R.T. Whitaker. Robust particle
systemsfor curvature dependent sampling of implicit surfaces.
In Proc. 2005 International Conference on Shape Modeling and
Applications, pages 124–133. IEEE Computer Society, 2005.

[MH80] D. Marr and E. Hildreth. Theory of edge detection. Proceedings
of the Royal Society of London, Series B, 207:187–217, 1980.

[MM98] S. Masnou and J.-M. Morel. Level lines based disocclusion. In
Proc. 1998 IEEE International Conference on Image Process-
ing, volume 3, pages 259–263, Chicago, IL, October 1998.

[MP95] S. Mann and R.W. Picard. On being ‘undigital’ with digital
cameras: Extending dynamic range by combining dierently ex-
posed pictures. In Proc. 48th IS&T Annual Conference, pages
442–448, Washington,DC, May 1995.

[MP08] J. McCann and N.S. Pollard. Real-time gradient-domain paint-
ing. ACM Transactions on Graphics (Proc. SIGGRAPH ’08),
27(3):93:1–8, 2008.

[MPS+09] D. Mitzel, T. Pock, T. Schoenemann, , and D. Cremers. Video
super resolution using duality based tv-l1 optical ow. In J. Den-
zler, G. Notni, and H. Süße, editors, Pattern Recognition, vol-
ume 5748 of Lecture Notes in Computer Science, pages 432–
441. Springer, Berlin, 2009.

[MS00] M. Mascagni and A. Srinivasan. Algorithm 806: SPRNG:
A scalable library for pseudorandom number generation.
ACM Transactions on Mathematical Software, 26(3):436–461,
September 2000.

[Mur36] K. Murray. Half-tone engravings easily made with ordinary
camera. Popular Science Monthly, 129(3):76–79, 1936.

[MW09] M. Mainberger and J. Weickert. Edge-based image compres-
sion with homogeneous diffusion. In Xiaoyi Jiang and Nicolai
Petkov, editors, Proc. 13th International Conference on Com-
puter Analysis of Images and Patterns, volume 5702 of Lecture
Notes in Computer Science, pages 476–483. Springer, Berlin,
September 2009.

[Näs84] R. Näsänen. Visibility of half-tone dot textures. IEEE Trans-
actions on Systems, Man, and Cybernetics, 14:920–924, 1984.

BIBLIOGRAPHY 347

[NE86] H.-H. Nagel and W. Enkelmann. An investigation of smooth-
ness constraints for the estimation of displacement vector fields
from image sequences. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 8:565–593, 1986.

[Ngu07] H. Nguyen, editor. GPU Gems 3. Addison–Wesley Profes-
sional, August 2007.

[NMLH11] D. Nehab, A. Maximo, R.S. Lima, and H. Hoppe. GPU-
efficient recursive filtering and summed area tables. ACM
Transactions on Graphics (Proc. SIGGRAPH Asia ’11), 30(6),
2011. To appear.

[Nor60] E. Norman. A discrete analogue of the Weierstrass transform.
Proceedings of the American Mathematical Society, 11(596–
604), 1960.

[NVi10a] NVidia Corporation. NVidia CUDA CUFFT Library, 3.1
edition, May 2010. Online: http://developer.download.

nvidia.com/compute/cuda/3_1/toolkit/docs/CUFFT_

Library_3.1.pdf, Retrieved 10-11-24.

[NVi10b] NVidia Corporation. NVidia CUDA CURAND Li-
brary, 3.2 edition, August 2010. Online: http:

//developer.download.nvidia.com/compute/cuda/3_

2/toolkit/docs/CURAND_Library.pdf, Retrieved 10-11-24.

[NVi11a] NVidia Corporation. Getting started with CUDA SDK
samples, May 2011. Online: http://developer.download.

nvidia.com/compute/DevZone/docs/html/doc/release/

Getting_Started_With_CUDA_SDK_Samples.pdf, Retrieved
11-08-04.

[NVi11b] NVidia Corporation. NVidia CUDA Programming
Guide, 4th edition, March 2011. Online: http:

//developer.download.nvidia.com/compute/cuda/4_

0_rc2/toolkit/docs/CUDA_C_Programming_Guide.pdf,
Retrieved 11-06-21.

[Nyq28] H. Nyquist. Thermal agitation of electric charge in conductors.
Physical Review, 32(1):110–113, July 1928.

[OBW+08] A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot,
and D. Salesin. Diffusion curves: A vector representation for

http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/CUFFT_Library_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/CUFFT_Library_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/CUFFT_Library_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CURAND_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CURAND_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CURAND_Library.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/doc/release/Getting_Started_With_CUDA_SDK_Samples.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/doc/release/Getting_Started_With_CUDA_SDK_Samples.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/doc/release/Getting_Started_With_CUDA_SDK_Samples.pdf
http://developer.download.nvidia.com/compute/cuda/4_0_rc2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/4_0_rc2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/4_0_rc2/toolkit/docs/CUDA_C_Programming_Guide.pdf

348 BIBLIOGRAPHY

smooth-shaded images. ACM Transactions on Graphics (Proc.
SIGGRAPH ’08), 27(3):92:1–8, 2008.

[OH95] V. Ostromoukhov and R.D. Hersch. Artistic screening. In
Proc. SIGGRAPH ’95, pages 219–228, New York, NY, August
1995.

[ON95] M. Otte and H.-H. Nagel. Estimation of optical flow based
on higher-order spatiotemporal derivatives in interlaced and
non-interlaced image sequences. Artificial Intelligence, 78:5–
43, 1995.

[Ope11] OpenCV dev team. The OpenCV Reference Manual, August
2011. Online: https://code.ros.org/svn/opencv/trunk/

opencv/doc/opencv2refman.pdf, Retrieved 11-09-25.

[Ost01] V. Ostromoukhov. A simple and efficient error-diffusion al-
gorithm. In E. Fiume, editor, Proc. SIGGRAPH 2001, Com-
puter Graphics Proceedings, Annual Conference Series, pages
567–572, Los Angeles, CA, August 2001.

[Par62] E. Parzen. On estimation of a probability density function
and mode. Annals of Mathematical Statistics, 33(3):1065–1076,
1962.

[Pat07] N.S. Patil. Fast implementation of anisotropic diffusion using
the CUDA technology on the GPU GeForce 8800 gtx. Mas-
ter’s thesis, Graduate Faculty, Rensselaer Polytechnic Insti-
tute, Troy, NY, December 2007.

[PB94] Yachin Pnueli and Alfred M. Bruckstein. Digi
Dürer. The Visual

Computer, 10(5):277–292, 1994.

[PBH+11] T. Pock, H. Bischof, S. Heber, R. Ranftl, M. Unger, and
M. Werlberger. GPU4Vision. Online: http://gpu4vision.

icg.tugraz.at/, Retrieved: 2011-09-23, 2011.

[Per85] K. Perlin. An image synthesizer. Computer Graphics (Proc.
SIGGRAPH ’85), 19(3):287–296, 1985.

[PH10] M. Pharr and G. Humphreys. Physically Based Rendering:
From Theory to Implementation. Morgan-Kaufmann, second
edition, July 2010.

https://code.ros.org/svn/opencv/trunk/opencv/doc/opencv2refman.pdf
https://code.ros.org/svn/opencv/trunk/opencv/doc/opencv2refman.pdf
http://gpu4vision.icg.tugraz.at/
http://gpu4vision.icg.tugraz.at/

BIBLIOGRAPHY 349

[PM87] P. Perona and J. Malik. Scale space and edge detection us-
ing anisotropic diffusion. In Proc. IEEE Computer Society
Workshop on Computer Vision, pages 16–22, Miami Beach,
FL, November 1987. IEEE Computer Society Press.

[Pod07] V. Podlozhnyuk. Parallel mersenne twister. NVidia Whitepa-
per, Online: http://developer.download.nvidia.com/

compute/cuda/sdk/website/C/src/MersenneTwister/doc/

MersenneTwister.pdf, 2007. Retrieved 2011-04-14.

[PQW+08] W.-M. Pang, Y. Qu, T.-T. Wong, D. Cohen-Or, and P.-A.
Heng. Structure-aware halftoning. ACM Transactions on
Graphics, 27(3):89:1–89:8, August 2008.

[PR04] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algo-
rithms, 51(2):122–144, 2004.

[Pra98] R. Prasad. Universal Wireless Personal Communications.
Artech House, Norwood, MA, 1998.

[PST00] D. Potts, G. Steidl, and M. Tasche. Fast Fourier transforms for
non-equispaced data: A tutorial. In J. J. Benedetto and P. J.
S. G. Ferreira, editors, Modern Sampling Theory: Mathematics
and Applications, Applied and Numerical Harmonic Analysis,
chapter 12, pages 251–274. Birkhäuser Boston, December 2000.

[PTG94] W. Purgathofer, R. F. Tobler, and M. Geiler. Forced random
dithering: Improved threshold matrices for ordered dithering.
In Proceedings of 1st IEEE International Conference on Image
Processing, volume 2, pages 1032–1035, Austin, Texas, Novem-
ber 1994. Also in Graphics Gems 5, p 297–301.

[Pus11] S. Pushkarev. 3d nonlinear diffusion filtering on GPUs us-
ing an AOS scheme. Master’s thesis, Faculty of Mathematics
and Computer Science, Saarland University, Saarbrücken, Ger-
many, 2011.

[Rad68] C.M. Rader. Discrete Fourier transforms when the number of
data samples is prime. Proceedings of the IEEE, 56:1107–1108,
1968.

[RB85] W.T. Reeves and R. Blau. Approximate and probabilistic algo-
rithms for shading and rendering structured particle systems.
Computer Graphics (Proc. SIGGRAPH ’85), 19(3):313–322,
1985.

http://developer.download.nvidia.com/compute/cuda/sdk/website/C/src/MersenneTwister/doc/MersenneTwister.pdf
http://developer.download.nvidia.com/compute/cuda/sdk/website/C/src/MersenneTwister/doc/MersenneTwister.pdf
http://developer.download.nvidia.com/compute/cuda/sdk/website/C/src/MersenneTwister/doc/MersenneTwister.pdf

350 BIBLIOGRAPHY

[RBK98] H.A. Rowley, S. Baluja, and T. Kanade. Neural network-based
face detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(1):23–38, January 1998.

[Ree83] W. T. Reeves. Particle systems — a technique for modeling a
class of fuzzy objects. ACM Transactions on Graphics, 2(2):91–
108, April 1983.

[Rey87] C. W. Reynolds. Flocks, herds, and schools: A distributed be-
havioral model. Computer Graphics (Proc. SIGGRAPH ’87),
21(4):25–34, 1987.

[RFSB10] J. Rosner, H. Fassold, P. Schallauer, and W. Bailer. Fast gpu-
based image warping and inpainting for frame interpolation.
In V. Skala and E.M. Hitzer, editors, Proc. Computer Graph-
ics, Computer Vision and Mathematics (GraVisMa) Work-
shop, pages D83:1–6, Brno, Czech Republic, September 2010.
UNION Agency Science Press.

[Ril09] D. Riley. GPU processing methods for machine vision.
Project whitepaper for the Advanced Computer Graphics
class at the University of Maryland, Baltimore County,
online: http://www.cs.umbc.edu/~olano/635s09/d17.pdf,
Retrieved: 2011-07-05, April 2009.

[Rob62] L.G. Roberts. Picture coding using pseudo-random noise. IRT
Transactions on Information Theory, 8(2):145–154, February
1962.

[RS01] M. Rumpf and R. Strzodka. Nonlinear diffusion in graph-
ics hardware. In Proc. Joint Eurographics – IEEE TCVG
Symposium on Visualization, Ascona, Switzerland, May 2001.
Springer.

[Rum88] S.M. Rump. Algorithms for verified inclusions – Theory and
practice. Perspectives in Computing, 19:109–126, 1988.

[SA85] R. L. Stevenson and G. R. Arce. Binary display of hexagonally
sampled continuous-tone images. Journal of the Optical Society
of America A, 2(7):1009–1013, March 1985.

[Saa03] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM,
Philadelphia, second edition, 2003.

http://www.cs.umbc.edu/~olano/635s09/d17.pdf

BIBLIOGRAPHY 351

[SAG03] V. Surazhsky, P. Alliez, and C. Gotsman. Isotropic remeshing
of surfaces: A local parameterization approach. In Proc. 12th
International Meshing Roundtable, 2003.

[SAH91] E. P. Simoncelli, E. H. Adelson, and D. J. Heeger. Probability
distributions of optical flow. In Proc. 1991 IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition, pages 310–315, Maui, HI, June 1991. IEEE Computer
Society Press.

[SBD81] R. Shaw, P. D. Burns, and J. C. Dainty. Particulate model for
halftone in electrophotography. I. Theory and II. Experimental
verification. Proceedings of the SPIE, 310:137–150, 1981.

[SC94] R. Szeliski and J. Coughlan. Hierarchical spline-based image
registration. In Proc. 1994 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages 194–201,
Seattle, WA, June 1994. IEEE Computer Society Press.

[Sch11] C. Schmaltz. Additive choice of the non-overlap weight for
multi-class halftoning and sampling. Personal communication,
2011.

[Sec02] A. Secord. Weighted Voronoi stippling. In Proc. 2nd Interna-
tional Symposium on Non-Photorealistic Animation and Ren-
dering, pages 37–43. ACM Press, 2002.

[Sen11] A. Senefelder. The invention of lithography. The Fuchs & Lang
Manufacturing Company, New York, NY, 1911.

[Shi91] P. Shirley. Discrepancy as a quality measure for sample dis-
tributions. In Proc. Eurographics ’91, pages 183–194. Elsevier
Science Publishers, 1991.

[SHS02] A. Secord, W. Heidrich, and L. Streit. Fast primitive distri-
bution for illustration. In S. Gibson and P. Debevec, editors,
Proc. 13th Eurographics Workshop on Rendering, pages 215–
226. Eurographics Association, 2002.

[SKB+11] A. Schwarzkopf, T. Kalbe, C. Bajaj, A. Kuijper, and M. Goe-
sele. Volumetric nonlinear anisotropic diffusion on GPUs. In
A.M. Bruckstein and B. ter Haar Romeny, editors, Scale Space
and Variational Methods in Computer Vision, volume 6667 of
Lecture Notes in Computer Science, pages 555–566. Springer,
Berlin, Germany, 2011.

352 BIBLIOGRAPHY

[Smi04] G.D. Smith. Numerical solution of partial differential equa-
tions: Finite difference methods. Oxford University Press, New
York, NY, third edition, 2004.

[SNFJ97] J. Sporring, M. Nielsen, L. Florack, and P. Johansen, edi-
tors. Gaussian Scale-Space Theory, volume 8 of Computational
Imaging and Vision. Kluwer, Dordrecht, 1997.

[Soi99] P. Soille. Morphological Image Analysis. Springer, second edi-
tion, 1999.

[SP01] X. Sun and N. P. Pitsianis. A matrix version of the fast mul-
tipole method. SIAM Review, 43(2):289–300, February 2001.

[Sri02] R. Srinivasan. Importance sampling: Applications in commu-
nications and detection. Springer, Berlin, 2002.

[SRLB08] D. Sun, S. Roth, J. P. Lewis, and M. J. Black. Learning op-
tical flow. In D. Forsyth, P. Torr, and A. Zisserman, editors,
Computer Vision – ECCV 2008, Part III, volume 5304 of Lec-
ture Notes in Computer Science, pages 83–97. Springer, Berlin,
2008.

[SSG+08] M. Silberstein, A. Schuster, D. Geiger, A. Patney, and J.D.
Owens. Efficient computation of sum-products on gpus through
software-managed cache. In Proc. 22nd Annual International
Conference on Supercomputing (ICS ’08), pages 309–318, New
York, NY, 2008. ACM.

[SSNH08] T.S. Sørensen, T. Schaeffter, K.Ø. Noe, and M.S. Hansen. Ac-
celerating the nonequispaced fast Fourier transform on com-
modity graphics hardware. IEEE Transactions on Medical
Imaging, 27(4):538–547, April 2008.

[Sto66] T. G. Stockham. High speed convolution and correlation.
In Proc. 1966 Spring Joint Computer Conference, volume 28,
pages 229–233, Washington, 1966. Spartan Books.

[Stu81] P. Stucki. MECCA – a multiple error correcting computation
algorithm for bilevel image hardcopy reproduction. Technical
Report RZ1060, IBM Research Lab, Zurich, Switzerland, 1981.

[Sul03] R. Sullivan. 100 photographs that changed the world. Life
Books, New York, NY, 2003.

BIBLIOGRAPHY 353

[SW87] I. Simpson and L. Wood. The encyclopedia of drawing tech-
niques. Headline, 1987.

[SWB09] C. Schmaltz, J. Weickert, and A. Bruhn. Beating the quality of
JPEG 2000 with anisotropic diffusion. In J. Denzler, G. Notni,
and H. Süße, editors, Pattern Recognition, Lecture Notes in
Computer Science, pages 452–461, Berlin, 2009. Springer.

[SWD05] S. Schenke, B.C. Wünsche, and J. Denzler. GPU-based vol-
ume segmentation. In Proc. 2005 Conference on Image and
Vision Computing New Zealand (IVCNZ ’05), pages 31:1–
6, Dunedin, New Zealand, November 2005. Published on-
line: http://pixel.otago.ac.nz/ipapers/31.pdf, retrieved
2011-09-23.

[TA77] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill–Posed
Problems. Wiley, Washington, DC, 1977.

[TK91] C. Tomasi and T. Kanade. Detection and tracking of point
features. Technical Report CMU-CS-91-132, Carnegie Mellon
University, April 1991.

[TOS01] U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Aca-
demic Press, San Diego, 2001.

[TP84] O. Tretiak and L. Pastor. Velocity estimation from image se-
quences with second order differential operators. In Proc. Sev-
enth International Conference on Pattern Recognition, pages
16–19, Montreal, Canada, July 1984.

[TS06] B. Triggs and M. Sdika. Boundary conditions for Young - van
Vliet recursive filtering. IEEE Transactions on Signal Process-
ing, 54(5):1–2, May 2006.

[Tyr96] E.E. Tyrtyshnikov. Mosaic-skeleton approximation. Calcolo,
33:47–57, 1996.

[Uli87] R. A. Ulichney. Digital Halftoning. Massachusetts Institute of
Technology, Cambridge, MA, 1987.

[Uli88] R. A. Ulichney. Dithering with blue noise. Proceedings of the
IEEE, 76(1):56–79, January 1988.

http://pixel.otago.ac.nz/ipapers/31.pdf

354 BIBLIOGRAPHY

[USS11] T. Umenhoffer, L. Szécsi, and L. Szirmay-Kalos. Hatch-
ing for motion picture production. EUROGRAPHICS 2011,
30(2):533–542, 2011.

[VBZ+10] L. Valgaerts, A. Bruhn, H. Zimmer, J. Weickert, C. Stoll, and
C. Theobalt. Joint estimation of motion, structure and geom-
etry from stereo sequences. In K. Daniilidis, P. Maragos, and
N. Paragios, editors, Computer Vision – Proc. 11th European
Conference on Computer Vision, volume 6314 of Lecture Notes
in Computer Science, pages 568–581, Heraklion, Greece, 2010.
Springer, Berlin, Germany.

[vdBV96] C. J. van den Branden Lambrecht and O. Verscheure. Per-
ceptual quality measure using a spatio-temporal model of the
human visual system. Proceedings of the SPIE, 2668:450–461,
January 1996.

[vMAF+08] J.A. van Meel, A. Arnold, D. Frenkel, S.F. Portegies Zwart, and
R.G. Belleman. Harvesting graphics power for MD simulations.
Molecular Simulation, 34(3):259–266, 2008.

[VO08] D. Vanderhaeghe and V. Ostromoukhov. Polyomino-based dig-
ital halftoning. In Pedro Isáıas, editor, IADIS International
Conference on Computer Graphics and Visualization 2008,
pages 11–18, July 2008.

[Vog95] C. R. Vogel. A multigrid method for total variation-based im-
age denosing. Computation and Control IV, 20:323–331, 1995.

[vR09] D.U. von Rosenberg. Methods for the numerical solution of
partial differential equations. Elsevier, 5th edition, 2009.

[WA85] A. B. Watson and A. J. Ahumadra, Jr. Model of human visual-
motion sensing. Journal of the Optical Society of America A,
2(2):322–342, February 1985.

[WB02] J. Weickert and T. Brox. Diffusion and regularization of vector-
and matrix-valued images. In M. Z. Nashed and O. Scherzer,
editors, Inverse Problems, Image Analysis, and Medical Imag-
ing, volume 313 of Contemporary Mathematics, pages 251–268.
AMS, Providence, 2002.

[WE98] R. Westermann and T. Ertl. Efficiently using graphics hard-
ware in volume rendering applications. Computer Graphics
(Proc. SIGGRAPH ’98), 169–177, 1998.

BIBLIOGRAPHY 355

[Wei98] J. Weickert. Anisotropic Diffusion in Image Processing. Teub-
ner, Stuttgart, 1998.

[Wei10] L.-Y. Wei. Multi-class blue noise sampling. ACM Transactions
on Graphics (Proc. SIGGRAPH ’10), 29(4):79(1–8), 2010.

[Wei11a] J. Weickert. Edge and coherence enhancing diffusion. Personal
communication, 2011.

[Wei11b] J. Weickert. Fast Jacobi. Personal communication, 2011.

[Wei11c] J. Weickert. A novel discretisation for anisotropic diffusion.
Personal communication, 2011.

[Wei11d] J. Weickert. Osmosis. Personal communication, 2011.

[Wel86] W. M. Wells. Efficient synthesis of Gaussian filters by cascaded
uniform filters. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 8(2):234–239, March 1986.

[Wit83] A. P. Witkin. Scale-space filtering. In Proc. Eighth Interna-
tional Joint Conference on Artificial Intelligence, volume 2,
pages 945–951, Karlsruhe, West Germany, August 1983.

[Wor08] S.P. Worley. Atomicexch(float) does not work - is it a bug? On-
line: http://forums.nvidia.com/index.php?showtopic=

79464&pid=451309&mode=threaded&start=#entry451309,
2008. Retrieved 2011-04-12.

[WS01a] J. Weickert and C. Schnörr. A theoretical framework for con-
vex regularizers in PDE-based computation of image motion.
International Journal of Computer Vision, 45(3):245–264, De-
cember 2001.

[WS01b] J. Weickert and C. Schnörr. Variational optic flow computa-
tion with a spatio-temporal smoothness constraint. Journal of
Mathematical Imaging and Vision, 14(3):245–255, May 2001.

[WSW08] M. Welk, G. Steidl, and J. Weickert. Locally analytic schemes:
A link between diffusion filtering and wavelet shrinkage. Ap-
plied and Computational Harmonic Analysis, 24(195–224),
2008.

http://forums.nvidia.com/index.php?showtopic=79464&pid=451309&mode=threaded&start=#entry451309
http://forums.nvidia.com/index.php?showtopic=79464&pid=451309&mode=threaded&start=#entry451309

356 BIBLIOGRAPHY

[WTP+09] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and
H. Bischof. Anisotropic Huber-L1 optical flow. In Proc. 20th
British Machine Vision Conference, London, UK, September
2009. British Machine Vision Association.

[XJM10] L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving
optical flow estimation. In Proc. 2010 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition,
pages 1293–1300. IEEE Computer Society Press, 2010.

[YvV95] I.T. Young and L.J. van Vliet. Recursive implementation of the
Gaussian filter. Signal Processing, 44:139–151, January 1995.

[ZBW+09] H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado,
B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. In
D. Cremers, Y. Boykov, A. Blake, and F. R. Schmidt, editors,
Energy Minimization Methods in Computer Vision and Pattern
Recognition (EMMCVPR), volume 5681 of Lecture Notes in
Computer Science, pages 207–220. Springer, Berlin, 2009.

[ZBW11a] H. Zimmer, A. Bruhn, and J. Weickert. Freehand HDR imaging
of moving scenes with simultaneous resolution enhancement.
Computer Graphics Forum (Proc. EUROGRAPHICS 2011),
30(2):405–414, April 2011.

[ZBW11b] H. Zimmer, A. Bruhn, and J. Weickert. Optic flow in harmony.
International Journal of Computer Vision, 93(3):368–388, July
2011.

[ZF03] B. Zhou and X. Fang. Improving mid-tone quality of variable-
coefficient error diffusion using threshold modulation. ACM
Transactions on Graphics, 22(3):437–444, 2003.

[ZN10] X. Zhuge and K. Nakano. Halftoning via error diffusion using
circular dot-overlap model. International Journal of Digital
Content Technology and its Applications, 4(6):8–17, September
2010.

[ZPB07] C. Zach, T. Pock, and H. Bischof. A duality based approach for
realtime TV-L1 optical flow. In F. A. Hamprecht, C. Schnörr,
and B. Jähne, editors, Pattern Recognition, volume 4713 of
Lecture Notes in Computer Science, pages 214–223. Springer,
Berlin, 2007.

	Contents
	Introduction
	Motivation
	Goals
	Outline

	CUDA
	Graphics Processing Units
	Performance
	The GPU as a Coprocessor
	Memory Model

	CUDA Programming Model
	General Concepts
	Textures
	Atomic Operations
	Algorithmic Optimisation Techniques

	Runtime Measurement

	Homogeneous Diffusion
	Motivation
	Introduction to Homogeneous Diffusion
	Classical Numerics
	Explicit Linear Diffusion
	Implicit Linear Diffusion
	Spatial Convolution
	Multiplication in the Frequency Domain
	Recursive Filtering
	Iterated Box Filtering

	Numerical Improvements
	Box Filtering with Correction
	Extended Box Filtering

	Efficient GPU-Based Algorithms
	Explicit Linear Diffusion
	Implicit Linear Diffusion
	Spatial Convolution
	Multiplication in the Frequency Domain
	Recursive Filtering
	Iterated (Extended) Box Filtering

	Experiments
	Ground Truth
	Parameter Configuration
	Quality Comparison
	Runtime

	Summary

	Anisotropic diffusion
	Motivation
	Edge and Coherence Enhancing Diffusion
	Fast Explicit Diffusion
	Implementation on a GPU
	Experiments
	Visual Comparison
	Runtime Scaling on Image Size
	Runtime Scaling on Stopping Time
	Runtime Comparison to CPU

	Summary

	PDE-Based Image Inpainting
	Motivation
	Image Inpainting
	Cascadic FED
	GPU-Based Algorithm
	FED
	Resampling

	Experiments
	Quality and Parameters
	Runtime

	Application: Realtime Video Inpainting
	Scenario
	Semantic and Analytic Image Compression
	Implementation
	Examples
	Efficiency

	Conclusion

	Optic Flow
	Introduction
	Variational Optic Flow
	Complementary Optic Flow
	Energy Minimisation via theEuler-Lagrange Framework
	Warping

	Numerical Solution
	Fast Explicit Diffusion
	Fast Jacobi
	Cascadic Application

	Implementation on the GPU
	Experiments
	Quality
	Runtime

	Interactive Real-Time Application
	Summary and Conclusion

	Halftoning
	Motivation
	Point-Based Halftoning
	Rendering
	Sampling
	Sampling + Rendering = Halftoning?

	Electrostatic Halftoning
	Repulsion
	Attraction
	Towards an Iterative Scheme

	Modifications and Extensions
	Dithering
	Point Size Adjustment
	Grey Value Correction
	Jittering for Stippling
	Edge Enhancement
	Colour Halftoning
	Second Order Screening
	Multi-Class Sampling

	Direct Summation Algorithm
	Attraction
	Repulsion
	Transporting Particles
	Additional Features

	Fast Summation Algorithm
	Repulsion by Fast Summation
	Non-Equispaced Fast Fourier Transform
	Near-Field Evaluation
	Attraction

	Experiments
	Examples
	Evaluation of Quality
	Modifications and Extensions
	Runtime
	Quality-Based Runtime for Fast Summation
	CUDA Performance Profiling

	Summary

	Summary and Outlook
	Overview
	Conclusions
	Future Work

	Proofs
	Linear Diffusion
	Halftoning

	Bibliography

