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Abstract

Autonomous Driving benefits strongly from a 3D recon-
struction of the environment in real-time, often obtained via
stereo vision. Semi-Global Matching (SGM) is a popular
method of choice for solving this task which is already in use
for production vehicles. Despite the enormous progress in
the field and the high level of performance of modern meth-
ods, one key challenge remains: stereo vision in automo-
tive scenarios during weather conditions such as rain, snow
and night. Current methods generate strong temporal noise,
many disparity outliers and false positives on a segmenta-
tion level. They are addressed in this work. We formulate a
temporal prior and a scene prior, which we apply to SGM
and Graph Cut. Using these priors, the object detection
rate improves significantly on a driver assistance database
of 3000 frames including bad weather while reducing the
false positive rate. We also outperform the ECCV Robust
Vision Challenge winner, iSGM, on this database.

1. Introduction

Stereo has been an active area of research for decades.

Recent years have shown a trend towards global stereo al-

gorithms that optimize the disparity map jointly, rather than

individually for each pixel [26]. The Middlebury database

[26] is a good resource of available stereo algorithms, but

its scene complexity is limited. A more challenging bench-

mark is the KITTI database [9], comprising of some 200 im-

age pairs of street scenes. It still under-represents the chal-

lenges for vision-based advanced driver assistance systems

that should operate at all weather and illumination condi-

tions, such as rain, snow, night, and combinations thereof.

These scenarios are the focus of our work.

In the light of increasing autonomy of future vehicles,

such scenarios have to be mastered. Work on benchmark-

ing such scenarios has just recently started. The Heidel-

berg HCI dataset 1 was the first data set covering challeng-

1http://hci.iwr.uni-heidelberg.de/Benchmarks

ing weather scenarios, however, without supplying ground

truth. The Ground Truth Stixel Dataset [23] contains a set

of rainy highway scenes with sparse ground truth labels for

the free space.

For driver assistance, the immediate surroundings of the

car that limit the free space should be detected at all times

but without mistakenly detecting a structure within the free

space. A successful choice for solving this challenging task

in real-time is Semi-Global Matching [14] (SGM), which

can also be found in the top 10 of the KITTI benchmark.

Even SGM cannot measure image parts that are, for

example, occluded by the windshield wiper, although the

scene was clearly measured in the previous frame. Also,

SGM has a uniform disparity distribution for outlier dispar-

ities which automatically generates a peak towards nearby

3D points.

To counteract against these two observations we intro-

duce two types of priors:

Temporal prior: In image sequence analysis most of

the scene content is seen several times when operating at

high frame rates. We use the 3D reconstruction obtained

via camera geometry and disparity map from the previous

frame, predict it into the future considering the ego-motion

and assuming a predominantly static world, and use the re-

sult as a temporal prior.

Scene prior: When looking at outlier disparity distribu-

tions, e.g. in the KITTI database, we see a roughly uni-

form distribution. Due to the hyperbolic nature of the

disparity-distance relation, the disparity outliers occur more

frequently in the nearby 3D volume. Unfortunately, this is

the area where false positives hurt the most: right in front

of the ego-vehicle where immediate action has to be taken

to avoid collisions. We counterbalance this effect by intro-

ducing a 3D scene prior that expects a more uniform distri-

bution in 3D space.

In this paper, we first transfer the excellent engineering

approach of SGM into a probabilistic formulation, main-

taining successful similarity measures and smoothness pa-

rameters. Then, we integrate new priors to improve stereo,

solve the optimization problem with Graph Cut [2] (GC),
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Figure 1. Two consecutive frames (top and bottom) of a rainy highway scene with windshield wiper passing. From left to right, the images

are: left image, right image, color-coded stereo reconstruction (red=near ... green=far, no color=invalid) using GraphCut, and stereo using

Graph Cut with priors. Large red blobs indicate nearby objects that lead to potential false positive objects. Figures are best viewed in color.

and transfer the priors back to SGM. Transferring SGM

into a probabilistic formulation helps in understanding how

to incorporate the priors in a Bayesian sense. Summariz-

ing, the main contributions of this paper are: the transfer of

SGM into a Bayesian Framework and solving it via GC; the

introduction of efficient and effective temporal and scene

priors, applicable to many stereo algorithms; and a careful

evaluation of the new algorithm variants on KITTI data and

on a 3000-frames highway database with manually labeled

ground truth that includes adverse weather conditions. We

also perform the transfer of the new priors back into SGM,

maintaining efficiency.

The rest of the paper is organized as follows. Sec-

tion 2 covers related work in stereo to incorporate priors.

Section 3 covers our GC approach driven by a successful

SGM engine, embedding it in a probabilistic framework.

In Section 4 we detail how to incorporate the priors in

this Bayesian framework and how to implement them ef-

ficiently. Section 5 shows results for GC, SGM and the new

priors on a 3000-frames database with challenging highway

driving scenes. With this, false positive point statistics and

detection rates are presented on pixel and intermediate level

for the stereo variants introduced in this paper.

2. Related Work

We limit ourselves to related work in stereo vision us-

ing priors or temporal stereo. ”Prior” in the context used

here means prior information that is independent of the im-

age information in the current stereo pair. We do not ad-

dress the options of smoothness priors. In [6], a sparse

point cloud obtained from structure-from-motion is used

as a scene prior to render reconstructions deviating from

the sparse result less likely. Scene priors using merely the

distribution of disparity values have not been used before.

Shape priors are popular in multi-view stereo (see e.g. [27]).

Planarity and orthogonality have been exploited as priors

several times, e.g. in [18].

Temporal priors have been investigated previously. Most

work covered so-called scene flow approaches, where dis-

parity and flow are estimated simultaneously based on the

current and previous image pair, e.g. [17]. Similarly, space-

time stereo uses multiple time steps to simultaneously esti-

mate position and motion [3]. A fast version is 6D-Vision,

introduced in [5] and which has also been applied to dense

data [24]. In contrast to these approaches, we do not attempt

to estimate both stereo and motion but want to use 3D in-

formation from previous time steps to support the current

stereo computation. There are also several works in opti-

cal flow estimation using priors, such as the assumption of

a static world [20], [29]. Classic works in optical flow al-

ready exploited more than two frames several decades ago

[1], [21].

The problem of temporally consistent stereo has recently

been addressed several times. Larsen et al. [19] use belief

propagation in space and time to generate a temporal con-

sistent stereo result. The method is designed for view inter-

polation in offline use and runs 15 minutes per frame. Re-

ichardt et al. [25] use an adaptive support weight stereo ap-

proach with bilateral filtering, also in the time domain. The

method runs fast on a GPU with high memory demands.

The method closest to our temporal prior approach is the

work of Gehrig et al. [7]. It uses an iconic Kalman filter

to filter the disparities, assuming a static world and predict-

ing the data with known ego-motion. A disparity map is

generated in one step and modified in a second step. Our

method also assumes a static world and makes use of ego-

motion, but the temporal prior is applied as part of a single

disparity optimization step and hence the algorithm is able

to recover from ambiguous matches resulting in better per-

formance under adverse conditions (see Line 5 in Table 2).

3. Semi-Global Matching vs. Graph Cut
3.1. Semi-Global Matching

Roughly speaking, SGM [14] performs an energy min-

imization on multiple independent 1D paths crossing each

pixel and thus approximates a 2D connectivity. After cost

accumulation the classic winner-takes-all approach is ap-

plied. The energy consists of three parts: a data term for
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similarity, a small penalty term for slanted surfaces that

change the disparity slightly (parameter P1), and a large

penalty smoothness term for depth discontinuities (P2).

Many stereo algorithms favor the choice of an adaptive

smoothness penalty that depends on the image gradient (e.g.

[14]) because it gives better object boundaries. We keep our

smoothness penalty constant because it performs better on

bad weather data (see Line 6 in Table 2).

Hirschmueller et al. [16] achieved very good perfor-

mance SGM using the Hamming distance of images trans-

formed with a 9x7 Census as similarity criterion [30]. Other

investigations (e.g. [15], [11]) have confirmed this finding.

We apply this similarity criterion throughout our work.

In order to identify and exclude occlusions,

Hirschmueller [14] performs one SGM run with the

left image as the reference image and another run with the

right image as the reference image. Disparities that deviate

by more than 1 pixel between the two results are removed

(RL-consistency check).

3.2. Graph Cut

Graph Cut (GC) is the method of choice for an effi-

cient near-optimal solution to multi-label problems. The

first known GC stereo algorithm was introduced by Boykov

et al. [2]. For our investigations, we use the implementa-

tion from [4] without label costs. There are two variants

of GC: alpha-expansion and swap-label. The first algo-

rithm requires a metric, while the second can also operate

on semi-metrics.

3.3. Drawing Parallels Between Semi-Global
Matching with Graph Cut

We apply the same smoothness potential to GC as is

used in Semi-Global Matching in order to model slanted

surfaces such as the street well. However, good parameter

choices for SGM (P1 = 20, P2 = 100) represent only a

semi-metric since they violate the condition: P2 ≤ 2P1.

We use the alpha-expansion algorithm and approximate the

original potential function, assigning intermediate penalties

for deviations between 2 and 4 pixel in our case. As an al-

ternative, one can apply the swap-label algorithm since it is

able to deal with semi-metrics. We compared the two op-

tions, obtained slightly better performance and faster run-

time with the alpha-expansion version, and use this variant

for the remainder of this paper.

We also use the SGM data cost function. The Hamming

distance HAM of the Census-transformed images can be

represented in a Bayesian approach as a probability distri-

bution:

p(cli, cri|di) ∝ e−λHAM(cli,cri−di
), (1)

where cli/cri represents the Census string for the i-th pixel

in the left/right image and di the disparity at that pixel.

To achieve comparable performance without changing the

SGM parameters, one has to multiply the GC data costs by

the number of SGM paths (here, 8). Also, the connectivity

of the graph in GC has to be increased to an 8-neighborhood

to reflect the diagonal paths of SGM. Note that we do not
attempt to model the independent 1D paths of SGM in a

probabilistic framework. Instead, we maintain the same

data and smoothness terms in GC and assume that SGM

approximates the 2D optimum well.

Examining image pairs that have visually no outliers

in the disparity maps, we actually obtain a distribution of

Hamming distances for the correct disparities that closely

resembles a Laplacian distribution with λ = 4.58 and 1.3%
standard error of the fit. Similar results are obtained from

the KITTI training set [9] with known ground truth. This

gives us the weighting term between the Census costs and

the upcoming stereo priors and confirms the assumption of

the probability distribution of the data costs being Lapla-

cian.

For reference, we run GC and SGM with the same pa-

rameters, the same data term, and the same right-left check

mechanism. Sub-pixel interpolation is not performed since

robustness, not accuracy, is our main concern. On good

weather data, the two variants exhibit very little difference

with a minimal visual advantage for GC. This can be ex-

pected since GC performs a full 2D optimization. An ex-

ample is shown in Figure 2.

Figure 2. Standard traffic scene overlaid with disparity result SGM

(left) and GC right. Red pixels are near, green far away.

4. Temporal Prior and Scene Prior

In adverse weather, a stereo algorithm that relies solely

on the image data has intrinsic performance limits due to

image noise or disturbances of the optical path. Additional

priors are able to stabilize disparity maps in such situations.

4.1. Incorporation of the Priors

To understand how the priors are incorporated we de-

scribe our stereo task in a probabilistic fashion and extend

it with the new priors. We seek the disparity map D that

maximizes the probability

p(D|D̂, IL, IR, Pscene) ∝ p(D̂, IL, IR, Pscene|D) · p(D),
(2)
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where IL/IR is the left/right image, D̂ the predicted dispar-

ity map from the previous frame, and Pscene the scene prior.

p(D) represents the smoothness term.

Decomposing this with the assumption of the image data

and the priors to be independent we obtain

p(D̂, IL, IR, Pscene|D) ∝ p(IL, IR|D)·p(D̂|D)·p(Pscene|D).
(3)

The first term is the Census data term, the second one the

temporal prior term and the third one the scene prior term.

The first term has been introduced in the previous sec-

tion, the latter two are detailed in the following. All above

terms are carefully normalized to one to obtain their relative

weights automatically, without additional parameter tuning.

4.2. Temporal Prior

The temporal prior addresses situations where the distur-

bances of the optical path change frequently due to image

noise (night), atmospheric effects (rain, snow) or blockage

(wiper passes). More persistent effects such as fog, back-

light and reflections are not addressed.

The assumption of a known ego-motion makes the tem-

poral prior very efficient to implement since every disparity

is only dependent on the predicted disparity at the same im-

age location:

p(D̂|D) =
∏

i

p(d̂i|di) =
∏

i

((1−pout)N (di, σd)+pout·U).
(4)

N is the normal distribution of d̂i with mean di and stan-

dard deviation σd as parameters (N ∝ e−(di−d̂i)
2/2σ2

d ), U
the uniform distribution, and pout is the outlier probabil-

ity for the prediction to be wrong, due to wrong disparity,

wrong ego-motion, or violation of the static-world assump-

tion. This mixture model of Gaussian distribution and uni-

form distribution has been observed frequently when com-

paring to ground truth data (e.g. [22]).

To obtain our predicted disparity, we use the camera pa-

rameters to project every disparity from the previous frame

into the world and transform the 3D world point into the

current camera coordinate system using ego-motion infor-

mation. Then, the point is projected back into the image

with a new disparity value entered in the nearest image co-

ordinate. This produces a predicted disparity map with tol-

erable holes due to the warping step (Figure 3 top left). In

adverse weather conditions, a high percentage of outliers

occur. Most of them can be removed by applying the RL-

consistency check. This check is applied before the warp-

ing step to reduce the number of erroneous disparities to be

warped.

4.2.1 Using Flow Information to Obtain Static-World
Confidence

Applying this temporal prior term to our algorithm as is

would cause deterioration in scenes with moving objects.

Similar to [20], which uses ego-motion and a static-world

assumption to initialize optical flow, we use sparse optical

flow measurements to find regions where this static-world

assumption fails. However, we do not follow the idea of us-

ing flow directly since the results are too unstable in bad

weather scenes. Instead, a check of the static-world as-

sumption via optical flow is performed to determine a tem-

poral prior confidence ctp (Figure 3 bottom right).

With the assumption of a static world, we can compute

an optical flow field using just ego-motion and disparity in-

formation (Figure 3 top right). We can also compute optical

flow in the classical sense, using the previous and the cur-

rent grayvalue images as inputs (Figure 3 top center). If the

world is static, the two methods should produce compatible

results.

A comparison of the outputs from the above two methods

yields the flow residual image Rf (Figure 3 bottom left).

This information is used for the temporal prior extending

p(D̂|D) to p(D̂, Rf |D) maintaining above decomposition

properties. The residual flow is used to determine a confi-

dence ctp for the temporal prior, replacing σd in Equation 4

with σd/ctp, confirmed by statistics from traffic scene data.

We explicitly try to keep the influence of optical flow infor-

mation small since we want to address difficult situations

where flow is even harder to measure than stereo. Note that,

for the RL-consistency check, we need to compute optical

flow two times: once on the left and once on the right image.

In our implementation, we use a sparse, robust and effi-

cient optical flow method [28] and apply a 5x5 dilation to

densify it (Figure 3 top middle). If areas have no flow mea-

surement, we set ctp = 0.9 to allow more smoothing. Be-

fore generating the confidence image we enter inconsistent

flow vectors with more than 2px deviation into the confi-

dence map with ctp = 0, reflecting the fact that these re-

gions are likely to be flow occlusions and hence cannot be

measured. The other flow residuals (rf ) are converted to

confidences cts,rf via

ctp,rf (i) = e
−r2f (i)/σ

2
rf . (5)

We choose σrf = 2 to reflect flow inaccuracy. An example

confidence image is shown in Figure 3 bottom right (white

represents high confidence).

4.2.2 Considering Ego-Motion Uncertainties

So far we assumed perfect ego-motion. Slight rotational

ego-motion errors are noticeable especially at depth edges.

In order to efficiently deal with such ego-motion errors, we
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Figure 3. Highway scene from Figure 1 with intermediate results for temporal prior: warped disparity image due to ego-motion (top

left), optical flow result (top middle), computed flow with static-world assumption (top right), residual flow based on above flows (bottom

left), disparity gradient of the predicted disparity (bottom middle) and final temporal prior confidence image (bottom right). The resulting

disparity image is shown in Figure 1 on the right. Note the fewer outliers compared to classic GC stereo in Figure 1.

also reduce the temporal prior confidence at depth disconti-

nuities:

ctp,dd(i) =
1

π
·(arctan(dslope·(∇dref−|∇di|))+π

2
), (6)

where ∇dref is a constant representing the acceptable dis-

parity gradient for smoothing (1 in our case), dslope = 5
determines the slope of the confidence, and ctp,dd is the

confidence based on disparity edges. This parametrization

ensures that slanted surfaces such as the street and fronto-

parallel surfaces are still temporally smoothed but the re-

gions around disparity discontinuities are not smoothed. A

3x3-Sobel operator is used for the gradients which leads to

3px margins that are not smoothed at depth discontinuities.

A depth edge detection result is shown in Figure 3 bottom

middle. The final confidence is just a multiplication of the

single parts: ctp = ctp,rf · ctp,dd (Figure 3 bottom right).

4.3. Scene Prior

Many types of scene priors are conceivable and some

have been discussed in the related work section. We choose

a simple prior that assumes that all observed world points

are equally distributed in 3D space (p(z) = const.). The

perspective projection counterbalances this effect towards a

uniform disparity distribution, so we use disparity data from

highway scenes to fit a disparity distribution that can model

both uniform disparity distributions (α = 0 in Equation 7)

and uniform distance distribution (α = 1).

Like the temporal prior, the scene prior can also be de-

composed pixel-wise. For every pixel, the scene prior prob-

ability is computed with

p(Pscene|di) ∝ 1

((di + 1)di)α
for di ≥ dmin. (7)

Due to normalization problems, one has to limit this as-

sumption to a finite range, a maximum distance. For dis-

tances corresponding to disparities smaller than dmin, the

prior probability is set to p(Pscene|dmin). α is determined

to be 0.29 with 10% standard error of the fit. Again, this

only adds a unary term to the data cost volume and is

efficient to implement. Roughly speaking, we introduce

a slight slant towards small disparities into the data term

to prefer small disparity values in ambiguous cases. It

is straightforward to add more complex and pixel/region-

specific priors (e.g. sky on top of the image, street and/or

objects in the lower part) in the same way.

All probabilities introduced above are transferred to log-

likelihood energies [10] and these energies are fed into the

GC engine from [4]. The priors are easily transferred back

to SGM since only the data term is affected.

5. Results
5.1. Results on the KITTI Dataset

We tested our approach on the KITTI dataset. However,

no adverse weather conditions are present in the data, so

we can only verify that the temporal and scene prior does

not decrease the performance. In addition, the basic stereo

benchmark does not include stereo sequences but 10 addi-

tional frames before the evaluated stereo pair are available

in the multi-view extension without ego-motion data. We

used this data and determined ego-motion crudely assum-

ing only longitudinal motion for the selected scenes.

We limit our evaluation to interesting examples of the

training set focusing on moving objects (cars, pedestrians,

cyclists) that violate our static world assumption. One sim-

ple scene (image pair 162) is included for reference. The

stereo data is interpolated according to the KITTI devel-

opment kit. Table 1 summarizes the results. We see little

difference in false pixel statistics with advantages to using a

temporal prior, similar for the disparity density before back-
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image pair number 162 045 057 164

SGM (error) 6.2% 8.6% 18.3% 7.0%

SGM temp prior 5.8% 8.2% 14.8% 6.2%

SGM (density) 93.7% 90.4% 92.3% 91.9%

SGM temp prior 95.7% 92.6% 94.9% 93.8%

Table 1. False pixel rates of selected scenes on the KITTI training

set. False pixels deviate by more than 3px to the ground truth

(KITTI default), stereo density refers to the percentage of valid

disparities .

ground interpolation.

5.2. Results on the Ground Truth Stixel Dataset

An appropriate database for testing our priors must con-

tain adverse weather scenarios. The Ground Truth Stixel

Dataset [23] advertised on the KITTI web page fulfills this

requirement. It contains mostly rainy highway scenes with

blurred windshield, wiper passes, and spray water behind

passing cars. A few good weather scenes are included to

make sure no undesired effects on normal scenes occur.

The data is annotated with an intermediate representation

called stixels, thin rectangular sticks with upright orienta-

tion that contain image positions and disparities for objects

or structures. This way, about 10% of the disparities in the

image are labeled. The stixel algorithm as introduced in

[22] is computed and our stereo algorithm variants serve as

input. A stixel example image with input stereo image (left)

is shown in Figure 4 center.

A percentage of false positive points is computed using

the driving corridor, an area in the scene directly in front

of the car, 2m in width and 2m in height. The corridor is

calculated from the car’s current position using ego-motion

data, describing an area that the car covers one second into

the future. This volume is free of any protruding struc-

tures; those stixels that occupy the volume are false posi-

tives. Similarly, any triangulated world point that lies within

the corridor is counted as a false positive point. To compute

a detection rate for the stixels, we use ground truth data that

covers a distance of about 50m, counting all stixels within

3σd to the ground truth as true positives.

Table 2 shows the results on this 3000-frames database.

All considered algorithms use the same Census data term

as explained in Section 3.3. As a baseline, SGM and

GC are shown in the first two lines. GC performs slightly

worse, probably due to the Median filter in SGM post-

processing. As additional baseline serves iterative SGM

introduced in [13] which performed best on the Robust Vi-

sion Challenge2. It delivers slightly better results than basic

SGM. Baselines that exploit temporal information such as

6D-Vision[24] and stereo integration [7], fed with the SGM

2http://hci.iwr.uni-heidelberg.de//Static/challenge2012/

baseline, can outperform the SGM baseline but fall back

clearly to the priors introduced here. With the scene prior

(ScenePrior), both false positive point rate and false posi-

tive stixel numbers drop by factor of five. With a temporal

prior (TempPrior), we see both a reduction of false positives

and an increase in detection rate. Much of the increase in

detection rate is attributed to the fact that this prior helps in-

painting old stereo data when the windshield wiper passes

(rightmost column). Additionally applying the scene prior

(TempScenePrior) leads to even lower false positive rates

while maintaining excellent detection rate. Note the similar

performance of SGM and GC with priors. This combination

of both priors yields the lowest false positive stixel numbers

and performs similar to [23], where stereo confidence infor-

mation is used in addition (SGM conf) at a much higher

detection rate. This confidence is obtained from the quality

of the disparity sub-pixel fit.

For the temporal prior, we set σd = 1 and pout = 0.2, a

slightly pessimistic outlier rate determined from false pos-

itive point statistics in very challenging scenarios. We set

dmin = 5 for the scene prior (i.e. 50m maximum dis-

tance). Note that all parameters choices correspond to sen-

sor properties (disparity noise, optical flow noise, measure-

ment range) or are determined from statistics.

5.3. Results for an Adverse Weather Dataset

We also applied our new priors to several types of ad-

verse weather conditions with 12bit/pixel imagery at 25Hz

computing 128 disparity steps. Figure 5 shows results for

a night and rain scene just before the windshield wiper

passes. The basic GC is shown on the left, GC with tempo-

ral smoothness in the middle and the combination of tem-

poral and scene prior on the right. The red blobs above the

car disappear and the holes in the street are partially filled

with priors. In Figure 6 we show a result for SGM and for

SGM with priors.

We annotated some parts in above challenging scenes

with ground truth (mainly cars and traffic signs) and de-

termined a false positive point rate and detection rate as de-

scribed above. Table 3 summarizes the results for differ-

ent scenarios comparing SGM with both priors to the SGM

baseline. The false positive rate drops dramatically while

the detection rate is even higher.

The computational overhead to compute the priors is

small. With little optimization and the maximum approx-

imation for the disparity distribution (e.g. [12]), the runtime

is 30ms additional computation time for both stereo pri-

ors, excluding optical flow which is computed on an FPGA.

Timings are for a Core(TM) i7 PC on images downscaled

by a factor of two, resulting in 512x160px.
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Figure 4. Input disparity image (left) and resulting stixel representation (middle). The labeled ground truth is shown in blue on the right,

the corridor in red.

false positive points/stixels detection rates

% fp point #fp #fp frames all % w/ wiper %

SGM 0.23 1243 261 85.7 60.2

GC 0.25 2211 316 85.7 61.2

iSGM 0.22 3072 182 84.4 65.0

6D-Vision 0.20 923 166 84.0 51.8

StereoIntegration 0.38 5442 945 82.4 82.4

SGM AdaptiveP2 0.50 1439 546 82.9 53.0

SGM conf [23] n.a. 107 45 80.2 n.a.

GC ScenePrior 0.05 375 123 83.7 57.2

GC TempPrior 0.04 652 165 88.4 82.6
GC TempScenePrior 0.01 143 59 87.3 80.2

SGM ScenePrior 0.04 220 80 83.5 56.2

SGM TempPrior 0.03 658 141 88.5 82.6

SGM TempScenePrior 0.01 229 63 87.0 78.6

Table 2. Comparison of false positive point rates, false positive stixels (fp), number of frames with false positives (fp frames), and detection

rates on the Ground Truth Stixel Database. The combination of both priors yields the best overall result for SGM and GC.

Figure 5. Night-time and rain traffic scene. Stereo reconstruction (red=near ... green=far) for the scene using GC (left), GC with Temporal

Prior (center) and with both priors (right). Large red blobs indicate nearby objects leading to potential false positive objects.

Figure 6. Rain scene (top) and snow scene. Stereo reconstruction (red=near ... green=far) for this scene using SGM (left), SGM with

Temporal Prior (center) and with both priors (right). Large red blobs indicate nearby objects leading to potential false positive objects.

6. Conclusions and Future Work
We have presented a temporal and scene prior, incorpo-

rated both into Graph Cut and Semi-Global Matching that is

able to reduce false positive rates in driver assistance scenar-

ios while even increasing detection rate. The probabilistic

problem formulation allowed us to integrate the priors effi-

ciently into the data term applicable to any stereo algorithm.

Future work will further explore the idea of scene priors,

e.g. on per-pixel level. In addition, we want to integrate the

shown priors in real-time systems (e.g. [8]) to enhance au-

tonomous driving. Finally, combining the priors with stereo

confidence is another promising line of research.
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false positive points/stixels detection rates

% fp point #fp #fp frames all % w/ wiper %

rain and night 0.02 (3.15) 24 (2502) 5 (308) 95.5 (92.2) n.a.(n.a.)

rain and day 0.04 (0.76) 26 (279) 9 (60) 76.2 (67.1) 65.3 (38.5)

snow and day 0.00 (0.12) 1 (18) 1 (10) 95.2 (94.1) 97.9 (64.4)

Table 3. false positive point/stixel rates (fp) and detection rates for different scenarios using SGM TempScenePrior - SGM baseline in () .
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