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Abstract

We discuss existence and regularity results for multi-channel images in
the setting of isotropic and anisotropic variants of the TV-model

1 Introduction

In our note we consider a multi-channel image
f:Q=RY f=(f ., ), N>1,
defined on a bounded Lipschitz domain 2 C R™, n > 1, and try to denoise f by
applying a minimization procedure
A 9 :
Iu) := [ F(Vu)dz + B lu — f|* dx — min, (1.1)
Q Q

where the minimizer u : © — R is sought in a suitable class of mappings
w : Q — RY depending on the growth of the prescribed density F. We will
mainly concentrate on more regular variants F'(Vu) (being convex and of linear
growth) of the total variation TV-density |Vu|. More precisely, we consider two
cases:

e The isotropic case: F(Vu) = ¢(trace (VuVuT)).

e The anisotropic case: F(Vu) = tracep (VuVuT).



The notions of isotropy and anisotropy are motivated by the corresponding gra-
dient descent evolutions which are diffusion-reaction equations: the isotropic
setting leads to a diffusion process with a scalar-valued diffusivity, while the
anisotropic case uses a matrix-valued diffusion tensor [33].

Our goal is to prove existence, regularity and approximation results in both
cases for functions ¢ : [0,00) — [0, 00) of the principle form

Vel+s—e,e>0
o(s) = or , s> 0. (1.2)

q),u(\/g)> K >1

For details including an explanation of the terminology we refer to Section 2 and
Section 3, respectively.

Let us now have a closer look on the history of the problem and its variants
studied in image analysis. While there has been a long tradition of using reg-
ularization methods in the context of ill-posed problems [30], early quadratic
regularization approaches for image analysis problems go back to the 1980s [7].
These concepts have been generalised to energies with non-quadratic regularizing
functions F' that are either convex [28] or nonconvex [25]. They can be related
to the nonlinear diffusion filter of Perona and Malik [26]. It is fairly straight-
forward to extend this diffusion filter to vector-valued images in the isotropic
case [23] and to establish corresponding energies. For matrix-valued data sets,
isotropic nonquadratic models have been pioneered in [31]. Anisotropic regular-
ization approaches for vector-valued images have been introduced in [33], and
their matrix-valued counterparts have been considered first in [32].

The popular TV-regularization approach of Rudin et al. [27] uses the total
variation seminorm as regularizing function F'(Vu). An early extension of the
TV-regularizer to color images has been considered in [16]|, and numerous varia-
tions of this idea using different channel couplings have been proposed within the
last two decades; see e.g. [19] and the references therein. A TV-regularization
approach for matrix-valued images goes back to [17]. In [6] an anisotropic but
rotationally invariant extension of the TV-regularizer has been introduced. For
further references and a review on the large body of work on TV-regularization
in image analysis we refer to [15].



2 Isotropic Regularization

In this section we discuss the following version of the variational problem (1.1)

Ju] = /gp(trace (VuVu™)) dz + A / lu — f|*dz — min in WHH(Q,RY)

2
Q Q

(2.1)

with a given function f : Q — R for which we require
feL*(QRY). (2.2)
We recall that €2 is a bounded Lipschitz domain in R™ and that A\ denotes some
positive number. In what follows, | - | is the Euclidean norm of vectors and
matrices, in particular we have |Vu| = trace (VuVuT)l/Q for Vu = ((%uz)iijz

Hence we can write J[u| as
A 2
T = [o(Vul) dz + 5 [ Ju— fPde
Q Q
with (s) := ¢(s?). On the data f we can even impose an extra side condition
like
flx) e K (2.3)

for a closed convex subset of RY | e.g. we can study the case (N = m?, R™*™ :=space
of (m X m)-matrices)

K=8":= {A = (ai’j)lgi’jgm e R™™ . Qi = Qj, Z,j = 1, e, m,

Y ity = aléf for all € € Rm},

1,j=1

where o > 0 is fixed. Thus K consists of all symmetric (m x m)-matrices A
being a-positive (semi-)definite. Concerning the density ) : R — [0,00) our
assumptions are as follows (and of course partially can be weakened, compare
section 3):

P e C*(R), ¢ (—y) = ¥(y),1(0) =0, (2.4)
W' (y)] < v, (2.5)
V(y) = valy| — vs, (2.6)
V'(y) >0 (2.7)



for all y € R and with constants vy, 5 > 0, v3 € R. Thus

F(p) =¢(|pl),p € RV, (2.8)

is a strictly convex energy density of linear growth including examples like (¢ > 0)

F(p) :== /2 +|p|2 —¢, p e RN, (2.9)

and (u > 1)

F(p) == ®u(Ipl), // +r)Fdrds, pe RPN t>0.  (2.10)

Recall that we have the following explicit formulas for the functions @,

1 11 11
£t EH 1)
s L7 by L) —ia—2 "7 oo

Oy(t) =t —In(1+¢), t >0,

(I)u(t) =

and from (2.11) we infer that ®, approximates the TV-density in the sense that

lim (p — 1)@, (|p|) = |p|. p € R, (2.12)

H—+00

As a matter of fact — under the above assumptions on the data — problem (2.1) in
general fails to have a solution in the Sobolev space W (€2, R") and we therefore
pass to the relaxed variant of (2.1) formulated in the space BV (Q, RY) of vector-
valued functions with finite total variation (see e.g. [2], [24] for a definition and
further properties of this space). The relaxed variational problem then reads

A
:/w(]V“wD do + L - |[Vw|(Q) + 5 / lw — fI*dz
Q Q (2.13)
— min in BV(Q,RY), ¢/ := lim ¢/(y) € (0, 00),
Yy—00
where Vw = V*wL™ + V*w is the Lebesgue decomposition of the tensor-valued
Radon measure Vw in its regular and singular part w.r.t. Lebesgue’s measure

L™, For details concerning the relaxation procedure the reader is referred e.g.
to [10-12,20,22,29]. We wish to note that

Jw] = K[w)] for all w € W1(Q,RY), (2.14)
moreover, by standard embedding theorems (compare [1] and [2]) the finiteness

of [, |w— fI?dz for w € WHH(Q,RY) or w € BV(Q,RY) is only guaranteed if
n = 2. Let us now state our first result:



Theorem 2.1

Assume that we have (2.2), (2.8) for the data f with K C RY closed and convex.
Then the minimization problem (2.13) admits a unique solution u € BV (Q,RN).
The minimizer respects the side-condition (2.3), i.e. we have the “mazimum
principle”

u(z) € K for almost all x € . (2.15)
Moreover it holds
inf  Klu| = inf Jw] (2.16)
u€BV (Q,RN) weWL1(QRN)

with J defined in (2.1).

Remark 2.1

We emphasize that in (2.13) the unconstrained problem is considered, i.e. we
do not impose the condition w(zx) € K a.e. on the comparison functions w €
BV (Q,RY). It just turns out that the unconstrained minimizer u satisfies a kind
of maximum-principle better known as convex-hull-property.

Concerning the regularity of the minimizer we have

Theorem 2.2
Under the assumptions and with the notation from Theorem 2.1 we tmpose the
following additional requirements on the data f and :

feL®Q,RN), (2.17)
(14 <min{ S )}

o ' (2.18)
) 00} <oy

for all t > 0 with positive constants vy, vs and with exponent p > 1. Then, in the
case

<2, (2.19)

problem (2.1) has a solution in the space WH(Q,RY). Moreover, u has Hélder
continuous first derivatives in the interior of €.



Remark 2.2 i) From (2.18) it follows that the density F' introduced in (2.8) is
w-elliptic in the sense of

laf?

1+ |p|

va(1+1Ipl) "lgl* < D*F(p)(q,q) < vs , p,q € RN, (2.20)

We remark that example (2.9) satisfies (2.20) with exactly p = 3, whereas F'
from (2.10) satisfies (2.20) precisely with the given value of .

ii) W.r.t. regularity results the bound on p stated in (2.19) is rather optimal,
since even in the case n = 1 = N there are counterexamples of singular
solutions, if the case u > 2 is considered. We refer the reader to [21].

Concerning the proofs we just note that Theorem 2.2 is a direct consequence of
the results obtained in [11], [13] and [29], whereas the existence part of Theorem
2.1 has been established in a very general framework in [22]. It therefore remains
to justify (2.15) for the unique solution u of problem (2.13). We need the following
observation.

Lemma 2.1
Consider a closed convex subset K of RN and let 7 : RN — K denote the nearest-
point-projection onto K, which means that yo := w(y) is the unique solution of

—yo| = inf |y — z|. 2.21
|y = yol = inf |y — 2| (2.21)
The point yo is characterized through the variational inequality
(y—v0) - (v—10) <0 YveK. (2.22)
Moreover, the mapping m is non-expansive, which means

Im(y) — 7 ()| < ly—y| Vy,y € RV. (2.23)

Let us briefly comment on (2.23): by (2.22) we have

(y—7m(y)) - (7(y") —7(y)) <0

as well as

thus



and therefore

7(y) —7()P < (y—y) - (x(y) — = (y)),
which implies (2.23).

Now, if f satisfies (2.3), we obtain from Lemma 2.1

m(w) = fl = |m(w) =7 (f)] < [w— f]

a.e. on € for any measurable function w : Q — RY, thus 7(u) = u and thereby
(2.15) holds for our BV -solution of problem (2.13) (recall that we have unique-
ness), provided we can show that

[o(venw)) do + o Vo r@)@) < [ w(Voul) do+ v 90l@) (2.9

holds for w € BV (Q,RY). Inequality (2.24) can be obtained along the lines of
the proof of Theorem 1 in [9], however, since the arguments used in this paper
are rather technical, we prefer to give a more direct proof of (2.15). For § > 0

let Fs(p) := g]p|2 + F(p), p € RN with F from (2.8) and consider the unique

solution of the problem
A 2 P 1,2 N
Jslw] := [ Fs(Vw)dz + 5 |lw — f|°dz — min in WH5(Q,RY). (2.25)
Q Q

From [22], (4.14), it follows that us is a K-minimizing sequence converging e.g.
in L'(Q,RY) and a.e. on 2 to our K-minimizer u. As remarked above we deduce
from (2.3) and (2.23) the validity of

m(us) — fI*de < [ Jus — f]*da,
[y

Q

whereas from Lemma B.1 in [8] it follows
|0, (m(us))| < Lip(m)[0,us| = [0, us]
a.e. on ), v =1,...,n. This yields (s := m(us))
/2

n 1/2 n 1
\Viis| = (Z |aya5|2> < (Z |8,,u5|2) = |V
v=1 v=1

and the structure of Fjy finally implies Js[us] < Js[us|, thus @5 = us by uniqueness.
Recalling the convergence us — u a.e., m(us) = us implies our claim v = w(u). O

Coming back to the convergence property of the functions (1 — 1)@, stated in
formula (2.12) we have the following approximation property of the regularized
problems towards the TV-case.



Theorem 2.3

Let ¥ := (u— 1)®, with ®, from (2.10) and let u, € BV (Q,RY) denote the
unique minimizer of the functional K defined in (2.13) corresponding to this
choice of U (note that V. = 1), compare Theorem 2.1. Then it holds

n
[ — ullr@ryy =0 Vp < —] (2.26)

and
u, — u in L*(,RY) (2.27)

as jr — 0o, where u is the unique minimizer (“T'V-solution®) of the problem

/|Vu| + % / lu — f|*dz — min in BV (Q,RY). (2.28)

Remark 2.3

Clearly a version of Theorem 2.3 also holds for the choice V(s) = /€2 + 5% — ¢,
e > 0, with corresponding solutions u. for which we have the convergences (2.26)
and (2.27) as e ] 0.

Remark 2.4

Adopting the ideas presented after formula (3.17) in [10] it might be possible to
improve the convergences (2.26), (2.27) towards

Hh_{f)lo [ty — ul[ 2 ry) = 0.
Proof of Theorem 2.3: It holds (see formula (2.11))
z/ |Véw|dx — . / (1+ |V“w|)_wr2 do — LE”(Q)
w—2 p—2

Q

+ [Vw|(Q /|f wl*dr, w e BV(Q,RY), u> 2,
and from Ku,] < K[0] we directly infer

sup /\V“uu| do + |Vu,|(Q /]uu flPdz 3 < o0, (2.29)

where we have used that

1 _
—2/(1+|V“uu|) "2z = 0 as p — .
M_



Clearly (quoting BV-compactness) we can deduce from (2.29) the existence of
u € BV(Q,RY) such that (at least for a subsequence)

_ n
e, — U||LP(Q,RN) —0,p< 1

w, — @ in L2(Q,RY) and (2.30)

uy, — U a.ce.

holds as u — oo. By lower semi-continuity of the total variation and by using
Fatou’s lemma or quoting u, — u in L* we find

S >\ J— 2 . . A 2
— — < — i
/Wu!—l— 2/]u f|° dx h/fnmf /WuuH— 2/]% f|*dx
Q Q Q Q

= lim inf Ku,] < liminf K[u]

U—>00 U—>00

A
— [19ul+5 [l fP
Q Q

where we have used the K-minimality of the u,. Thus @ is a TV-minimizer,
hence u = @ by the unique solvability of (2.28) and (2.30) is true not only for a
subsequence which proves (2.26) and (2.27). O

Remark 2.5

We leave it as an exercise to the reader to show that the statements of Theorems
2.1 and 2.3 remain valid if the quantity % [, lu— f|*dx is replaced by 5 [, w(u—
f)dx with w : RN — [0, 00) being strictly convez, e.g. we may choose

w(y) =2+ |y2—¢, >0, y e RY,

or w(y) = |y|P with ezponent p > 1. Of course (2.27) then has to be replaced
with u,, — w in LY (Q,RY) in the first case and u,, — u in LI(Q,RY) in the
second case, where ¢ := max{p,"/n-1}.

Remark 2.6

If for a given set of data f it is desirable to have smoothness of the reqularizer
u on a subset ' of Q, whereas on the complement of Q' non-smoothness of u
seems to be natural, then such a behaviour can be generated by considering non-
autonomous densities of the form

F(a, V) = ()@, (19l) + (1 - (@)@, (| V)

with p € (1,2) and v € (2,00) large. Here n is a smooth function on §) such
that 0 < n < 1 and with the property n = 1 on €Y. For details we refer to the

paper [14].



Remark 2.7
We note that our discussion can easily be extended to isotropic models of super-
linear growth. To be precise we consider the problem (compare (2.1))

/CDM(|VU|) dz + % / lu — f|*dz — min (2.31)
Q Q

but now with the choice p < 1, where in case u = 1 the correct class for (2.31) is
the Orlicz-Sobolev space W (Q, RY) generated by the function h(t) == tIn(1+1t),
t > 0, (compare [1]) and for values p < 1 problem (2.31) is well posed in the
Sobolev space WHP(QRN), p:=2— > 1. In both cases (2.51) admits a unique
solution u satisfying u(z) € K, if [ has this property (with K C RY closed and
conver), moreover, it holds u € CH*(Q, RN) for any o € (0,1). Some details and
further references concerning the superlinear case are presented in [14].

3 Anisotropic regularization

We start with some preliminaries concerning the definition of the densities F' we
now have in mind where for notational simplicity we consider the quadratic case
for which n = N. The general situation is briefly discussed in Remark 3.1. For
matrices p € R™" let

J(p) = pp" ((pT)ij = pji), (3.1)

and observe that J(p) is symmetric and positive semidefinite with eigenvalues
0 <oi(p) <...<on(p). We introduce the numbers

Ai(p) == Voi(p) (3.2)

which correspond to the eigenvalues of \/J(p) and are known as the singular
values of the matrix p. The following observation of Ball (see Theorem 6.1 in [4])
and compare [3|, Theorem 5.1 on p. 363 for a complete proof in any dimension
n) is of crucial importance

Lemma 3.1

Consider a function p : [0,00) — [0,00) which is conver and increasing. Then
the mapping

F:R"™ — R, p+ trace ,0(\/ J(p)) = Zp()\i(p)), p e R, (3.3)

s a convex function on the space R™*™.

10



Remark 3.1

For the sake of notational simplicity, we have restricted ourselves to the case of
quadratic matrices. However, we would like to indicate how our results can be
adapted to the general case of n x N matrices with N # n with the help of of
Lemma 3.1.

i) First we assume N < n. Let p € RN and J(p) = pp! € R¥™. As
before, we denote the eigenvalues of \/J(p) by A1 (p), .., \n(p) and now define
F :R™N 5 R through the formula

F:R"N SR, p— Z,o(/\i(p))

i=1
where p : [0, 00) — [0, 00) is as in Lemma 3.1. Then we define F : R™" — R
according to (3.3). Now consider the linear embedding € : RN — R™™,
which acts on an (n x N)-matriz p by adding (n — N) zero-columns. Then
we observe ppt = E(p)E(p)T for p € RN and the converity follows from
the formula F(p) = f(f(p)) and the convexity of F.

i) The case N > n can be treated in the same manner: let now € : RN —
RN*N denote the embedding which adds N —n zero-rows to a matriz p €
RN define F : RN — R as above and F : RN*N — R according to (5.3)
(with “n” replaced by “N”). Then E(p)E(p)T = pp” &0, where O denotes the
(N —n) x (N —n)-zero matriz and F(E(p)) = F(p)+ (N —n)p(0) is a convez
function by Lemma 3.1, and hence so is F.

iii) Since the linear map &€ is smooth in both cases, we can apply this strategy
to extend our results concerning differentiability in Section 4 to the non-
quadratic case.

Remark 3.2

Note, that the general version of Lemma 3.1 as it is found in [3] states, that if
¢ : R™ = R is symmetric and convez, then ® : R™™ — R, p — p(A1(p), ..., Au(p))
15 also convex. The necessity of symmetry is the reason, why we have to apply
the same function p to each of the eigenvalues \; in (3.3).

Definition 3.1 (anisotropic energy densities of linear growth). Let ¢ : [0, 00) —
[0,00) denote an increasing and convex function satisfying in addition

Clt — C9 S ¢(t) S Cgt + ¢4 (34)
with constants ¢1,c3 > 0, ¢o, ¢4 € R. Then the mapping (recall (3.1)-(3.3))
Fy :R™™ = R, F, = tracey(VJ), (3.5)

is termed the anisotropic energy density of linear growth generated by ).

11



This terminology is justified by

Lemma 3.2
In the notation of Definition 3.1 the convex function Fy : R™™ — [0, 00) satisfies

cilpl —c; < Fy(p) < cslp| +cj, p € R™", (3.6)

with constants c¢i,ci > 0, c¢3,¢; € R, |p| denoting the Euclidean (=Frobenius)
norm of the matriz p.

Proof of Lemma 3.2: From (3.5) together with (3.4) it follows

n n

3 (i) — ) < S v () < - (eship) + ),

=1 =1 i=1

hence

>~
=N
—
=
[l
i
Q
=
=
[l
—+
=
2%
o
D
=
S
N
[l
=
o

which means
cs Y Aip) < lpl <) Nilp)
i=1 i=1

with positive numbers ¢s, ¢g. This immediately implies (3.6). ]

Example 3.1 (anisotropic TV-density). Letting ¢(t) := ¢, ¢ > 0, in formula
(3.5) we obtain

Fry(p) = Z Xi(p), p € R™™. (3.7)

Note that the isotropic TV-density is just the quantity |p| = (> i, i(p)Q)l/ ’
t

A
Example 3.2 (regularized TV-densities). For > 1 we let ¢(t) := (1),
with @, from (2.10) and define

F, = (1 — )trace @, (V). (3.8)
With a slight abuse of notation we can also consider

F.:=trace Ve2 + J, € > 0 (3.9)
which means that 1. (¢) := v/&2 + {2 in formula (3.5).

12



Let us now discuss variational problems in the anisotropic linear growth setting:
as usual we consider data

fe LR (3.10)
for a bounded Lipschitz domain €2 C R™. For u : 2 — R" we let
81u1 oo Glu"

Vu = (Vu'..Vu") = : :
oput ... Ou"
whenever this (n x n)-matrix is defined (in a weak sense). We have (compare
(3.1))

J(Vu) = VuVu" = (ju - 0ju)

1<i,j<n’

7. denoting the scalar product in R, and by Lemma 3.2 the variational problem

Jy[u] == /F¢(Vu) dx+%/|u — fI?dz — min (3.11)
0 0
is well defined on the Sobolev space W!(2, RY) for any function ¢ as in Defi-

nition 3.1 and for arbitrary choice of A > 0. As explained in Section 2 we have
to pass to the relaxed version of (3.11) which reads (s denotlng the density

|Vs
of the measure V*w with respect to the measure |V°w|)

Kyw] = /F¢(V“w) dx—i—/qu’ (%) d|Viuw| +%/|w — fI?dx — min
Q Q

(3.12)

in BV (Q,R"). Here our notation is introduced after (2.13), and we refer the
reader to Theorem 5.47 (and the subsequent remarks) in [2], in particular,

0 N F¢(tp) nxn
FP(p) = lim —=, p € R"™,

is the recession function of Fw, which here takes the form (compare (3.7))

F*(p) = lim Z)\ m 20 )FTV( ). (3.13)

t—o00 t~>oo

Noting that \; <|p|> = |113‘)\ (p), we may therefore write for w € BV (2, R")

fr () )
= fim =~ ( ) w) = Jim 7 <ZA)

13

(3.14)



where in the last line we apply the convex function Fry (compare (3.7)) to the
matrix-valued measure V*w in the sense of [18] and calculate the total mass of

the resulting nonnegative measure. For the particular case ¢(t) = ¢ the functional
(3.12) reduces to

a - ) S’UJ é w— 2 T
Kry[w /ZA (Vew dx+/<;)\l> (V )+29/\ fI? da, -
weBV(Q,R”).

We further like to remark that in formulas (3.13) and (3.14) the quantity tlim @
—00
can be replaced by (compare (2.13))

T /
o= i V0,
provided ¢ satisfies (2.4)-(2.7). After these preparations we can state

Theorem 3.1
Let 1 : [0,00) — [0,00) denote a convex and increasing function of linear growth
as stated in (3.4) and consider the density

Fy(p) := trace@/)(\/ppT), p € R™™
being defined in formulas (3.3) and (3.5).

a) The variational problem (see (3.12))
Ky — min in BV (Q,R")
admits a unique solution u € BV (2, R™). It holds

Klu] = inf J,
4= 2y Pl

with Jy from (3.11).

b) Let = (n—1)®,, i.e. Fy =F, with F,, from (3.8), where pn > 1. Consider
the corresponding version of (3.12), i.e.

K fw] = /(u—1)§;¢“(&( dx+/<2)\> +%/|w—f|2da:

Q
— min in BV (Q,R")

with unique solution w,. Then it holds

n
Jup = ullp@rmy = 0, p < T

14



u, —u — 0 in L*(Q,R") and a.e.

as i — oo, where uw € BV (Q,R"™) is the unique TV-solution, i.e. the unique
minimizer of the energy Kry defined in (3.15).

c) Fore >0 let Y(t) == .(t) .= Ve2 +12,t >0, in (3.12), i.e. we look at the
problem

/Z\/€2+)\ Vaw2dx+/<2)\> +%/!w_f‘2dx
Q
— min in BV(£,R")

with corresponding solution u.. Then we have

n
|l ue — UHLP(Q,]R“) —0,p< 1

u; —u — 0 in L*(Q,R™) and a.e.
as € — 0, where u is the solution of (see (3.15))
Kry — min in BV(,R").
Proof of Theorem 3.1: a) Let u; denote a K -minimizing sequence from

BV (Q,R"). Lemma 3.2 (compare inequality (3.6)) in combination with the defi-
nition of Ky then yields

sip |Vug|(€), s%p ||| 2(0rn) < 00,

hence, quoting BV -compactness, u, —: u in L'(Q, R™) for some u € BV (2, R")
and a subsequence of u,. Moreover, we may assume that u, — u a.e. on {2 and

/|H—f|2dxSliminf/|uk—f|2dx
k—ro0
Q Q

follows from Fatou’s Lemma (or from uz — u in L?*(2)). According to Theorem
5.47 in [2] and the remarks stated after this theorem the functional

w /F¢(V“w) dx+/Fg> (%) d|V*ul
Q Q

15



is lower semi-continuous with respect to L!(€, R")-convergence. Here we make
essential use of Ball’s convexity result Lemma 3.1 implying the convexity of F),.
Altogether we have

Kw{ ] < llmlanw[’U,k]

k—o0

thus @ is Ky-minimizing. Uniqueness of the minimizer is immediate, all other
claims follow along the lines of Theorem 2.1.

For part b) and ¢) we refer to Theorem 2.3 and Remark 2.3. []

4 Differentiable models

Concerning the regularity properties of the minimizer u € BV (2, R") from The-
orems 2.1 and 3.1, it is desirable to consider energy densities F' which are suffi-
ciently smooth. Namely we would like to have F' € C*(R™*"). To this end, we
consider a slight modification of the function F' from (3.3) by setting

Z@D( 2+ a,(pP) (4.1)

for some ¢ > 0, with o; as usual denoting the eigenvalues of pp? and ) : R —
[0,00) is a convex and increasing function which satisfies (cf. (2.4)-(2.7))

Y € C*(R),

U(—y) =¥(y), ¥(0) =0,

W' ()| <,

b(y) > vyl — vs, ¥ (y) >0,
with v, 9,14 > 0, v3 € R. As for the map p — (o1(p), ..., 0n(p)), which is not

immediately seen to be differentiable, we can once more benefit from a result by
John Ball in [5] which gives us the desired smoothness. Precisely we have

(4.2)

Theorem 4.1
The density F* being defined in (4.1) is convex and C? on R™".

Remark 4.1

As we have already mentioned in Remark 3.1 1ii), the above result can easily be
adjusted to the non-quadratic case f: Q — RN for N # n.

Proof of Theorem 4.1:

16



With the notation from (3.3) and (3.5) we have
F*(p) = trace s (V') J = J(p) = pp",

ie. F*(p)=>1, J(Ai(p)), if we set

W(t) =1 <m> .

Since 1; fulfills the requirements imposed on p of Lemma 3.1, the convexity of F*
follows. We use the notation from [5], Section 5. Let

E :=S8" (symmetric (n X n)-matrices),
I'p := {diagonal matrices in E'},
v;(A) := i-th eigenvalue of A € F, (4.3)

H:Tp=R"S (ty,...t,) = > ({*/62 + t?) .
i=1

Obviously, H € C*(R"). But then, Theorem 5.5 on p. 717 in [5], implies that
also

Vs

hiS'S A Hui(A), ... on(A))
is of class C2? on S" (= R*™~1/2) Now note that

F*(p) — h(ppT), pe Rnxn
and since the map p — pp? is obviously smooth, this shows F* € C*(R™*"). [

Remark 4.2
The symmetry of the function H is essential for establishing both convezity and
differentiability of our models. In particular we cannot generalize our model to

S Wi (\4/8 + tf) with distinct 1;’s for each i € {1,...,n}.

Theorem 4.2
Let 1 satisfy (4.2) and define F* according to (4.1).

a) F* grows linearly in the sense of inequality (3.6).

b) The relazation of

/F*(Vu) dz + % / lu — f|*dz — min in WHH(Q,R™) (4.4)
Q Q

17



with f € L*(Q,R™), A > 0, is given by

/F*(Va da + ¥l (Zx\) )—I—%/|u—f|2dx—>m1n
0

J (4.5)
in BV (Q,R")

and is uniquely solvable. (Here we have abbreviated ., = lim ¢'(s) =

S5—00
lim @ )
§—00
c¢) Let us in addition assume that F* satisfies
|D*F*(p)| < (4.6)

1+Ip|

for some constant vy > 0. Then, if Q' C Q and [ € VV;E(Q’ R™), we have
€ WA (Y, R™) for the unique solution u of (4.5).

loc

Corollary 4.1
If the data f are chosen from the space W,"*(Q, R™) and F* satisfies (4.6), then
(4.4) is solvable in WHH(Q, R™).

Remark 4.3
As usual Theorem 4.2 and Corollary 4.1 extend to the non-quadratic case f :
Q — RN for N # n via Remark 3.1.

Remark 4.4
oA ) (Vou) the convex function p — > Ni(p) is applied to the matriz-
=1

i=1

valued measure V*u which yields a positive Radon measure on €2, whose total
mass enters in (4.5). We refer to the comments after formula (5.14).

Proof of Theorem 4.2: Ad a): cf. the proof of Lemma 3.2;

Ad b): see Theorem 3.1 and note (cf. (3.13)) that

(£°) (p) - —hmlF* (tp) = oon(\/ > Ul (ZA> (p)
()\Z-(p) := eigenvalues of \/g? =+oi(p )

This implies (cf. (3.7))
(F*)Oo(p) = Y. Frv(p).

18



Ad ¢): let wlo.g f € W *(Q,R"). In all the following calculations we have

loc
to replace u with the sequence of regularizers us (cf. (2.25) and compare [22]

for more details), however, for notational simplicity we drop the index 4, i.e.
F*(p) = F}(p) == |p|* + F*(p) and u = u; is the unique solution of

A
/F;(Vw) dz + 3 / |w — f|*dz — min in W(Q,R™).
0 QO

From the minimality of u along with F* € C? it follows (using summation
convention w.r.t. the index «)

/D2F*(Vu) (0aVu, V(7°0qu)) dz = A/@a(nzaau) (u— f)dez,
Q Q

where n € C§°(R2), spt n C Bagr(zg) with 0 < n < 1 and n = 1 on Bg(xg) for
some xo € ) and some radius R > 0 s.t. Bag(zo) C 2 . Hence

/ D*F*(Vu) (10, Vu,nd,Vu) dz + / D*F*(Vu)(0.Vu, Vi @ ,u) dx
Q Q
+)\/n2|Vu|2dx: A/?f@au-@afdx
Q Q
and thus
/DQF*(VU) (10aVu, 10, Vu) dz + A / n?|Vul? dw
Q

Q

=\ / 120t - O f dz — / D?F*(Vu)(0.Vu, Vi @ Oou) de (47
Q

Q
= T1 + TQ.

The integral T} can be estimated by Young’s inequality through

|71 < c(e, A)/T]z]Vf\de—l—)\5/772\Vu|2d:c < (e, A, R)—i—)\s/?ﬂVu\de.
Q 9] 9]

Choosing ¢ = 1/2 and absorbing terms on the left-hand side of (4.7), we obtain

/D2F*(Vu) (10aVu, N0, Vu) dz + % /772\Vu|2 dr < ¢(R) + Ts.
0 0
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Now, for Ty, we apply the Cauchy-Schwarz inequality to the bilinear form D? F*(Vu)
observing

D*F*(Vu) (0,Vu, Vi* @ Oqu) = 2D*F*(Vu) (n0aVu, Vi ® Oau)
and obtain after an application of Young’s inequality the following result:

T <c(e) / D*F*(Vu)(Vn ® O4u, Vi @ Ou) da
9)

(4.8)
+5/D2F*(Vu) (10aVu, 10, Vu) dz.
Q

Choosing ¢ = 1/2, the second term on the right-hand side of (4.8) can be absorbed
in the left-hand side of (4.7). For estimating the first term on the right-hand side
of (4.8), we need our additional assumption (4.6) on D?F* which yields:

/ D*F*(Vu)(Vn ® Oau, Vi @ Oqu) d
0

(4.9)
< c/DQF*(Vu) (Vu, Vu) dr < c/ (1 + ]Vu]) dx

with a suitable constant ¢ uniformly with respect to the (invisible) parameter 6.
Consequently, (4.7) yields a uniform (in §) bound for [, |Vu|* dz, which concludes
the proof of Theorem 4.2. O
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