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Abstract: We derive some asymptotics for a new approach to curve estimation proposed
by Mrázek et al. [3] which combines localization and regularization. This methodology has
been considered as the basis of a unified framework covering various different smoothing
methods in the analogous two-dimensional problem of image denoising. As a first step for
understanding this approach theoretically, we restrict our discussion here to the least-squares
distance where we have explicit formulas for the function estimates and where we can derive
a rather complete asymptotic theory from known results for the Priestley-Chao curve esti-
mate. In this paper, we consider only the case where the bias dominates the mean-square
error. Other situations are dealt with in subsequent papers.

This paper is a corrected and extended version of a previous preliminary report.
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1 Introduction

We consider data generated from the nonparametric regression model

fj = µ(xj) + εj, j = 1, . . . , N, (1)

where ε1, . . . , εN are independent and identically distributed with mean 0 and finite variance
σ2 and xj = j

N
, j = 1, . . . , N, form an equidistant grid on the unit interval [0, 1]. Mrázek

et al. [3] have described a general approach for image denoising which, by combining local-
ization and regularization, includes most of the known image denoising algorithms like local
smoothing or nonlinear diffusion filtering. Estimating the function µ(x) at the grid points
x1, . . . , xN from the data f1, . . . , fN generated by (1) is the one-dimensional analogon of the
image denoising problem. Mrázek et al. [3] propose to solve this problem by minimizing a
target function like

Q(u) =
N∑

i,j=1

ΨD(|ui − fj|2)wD(|xi − xj|2) +
λ

2

N∑
i,j=1

ΨS(|ui − uj|2)wS(|xi − xj|2)

w.r.t. u = (u1, . . . , uN)T .

Let u(x) denote the function estimate of µ(x) which we first consider only at x1, . . . , xN .
ΨD, ΨS are penalizing functions measuring the fit of u(x) to the observations f1, . . . , fN and
the smoothness of u(x) resp. The spatial weighting functions wD, wS guarantee a local-
ization effect, and λ ≥ 0 balances between smoothness and the quality of the fit. To get
some first insight into the asymptotic properties of the resulting estimates u1, . . . , uN for
µ(x1), . . . , µ(xN), we investigate the following special case:

ΨD(s2) = s2, ΨS(s2) = s2, wD(x2) = Kh(x) =
1

h
K(

x

h
), wS(x2) = Lg(x) =

1

g
L(

x

g
)

where the kernels K and L are nonnegative, symmetric functions on R and the bandwidths
h, g > 0 can be chosen to control the smoothness of the function estimate together with the
balancing factor λ. Therefore, we consider minimizing

Q(u) =
N∑

i,j=1

(ui − fj)
2Kh(xi − xj) +

λ

2

N∑
i,j=1

(ui − uj)
2Lg(xi − xj). (2)

We call the resulting estimate u a regularized local least-squares estimate.

For λ = 0, we immediately get from ∂
∂ui

Q(u) = 0, i = 1, . . . , N, that ui = µ̃(xi, h), i =
1, . . . , N, where µ̃(x, h) is the classical Nadaraya-Watson kernel regression estimate (compare,
e.g., Härdle [2])

µ̃(x, h) =
µ̂(x, h)

p̂K(x, h)
with (3)

µ̂(x, h) =
1

N

N∑
j=1

fjKh(x− xj), p̂K(x, h) =
1

N

N∑
j=1

Kh(x− xj).

As p̂K(x, h) converges to 1 for the equidistant xi, the Nadaraya-Watson estimate µ̃(x, h) and
the Priestley-Chao estimate µ̂(x, h) are asymptotically equivalent.
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2 Asymptotic expansion

The main goal of this section is to show that the regularized local least-squares estimate,
which we get by minimizing (2), is closely related asymptotically for N →∞ to the simple
Priestley-Chao estimate (Priestley and Chao, [4]) with bandwidth h where, however, the
regularization parameter λ provides an additional tool for fine tuning the properties of the
estimate. As a first step, we show that the solution of (2) has an explicit representation in
terms of the Priestley-Chao estimate. For convenience, we use the following notation for the
values of this estimate at the grid points xi, i = 1, . . . , N :

µ̂ = (µ̂1, . . . , µ̂N)T with µ̂i = µ̂(xi, h), i = 1, . . . , N.

Proposition 1 Let p̂L(x, g) be defined analogously to p̂K(x, h) with L, g replacing K,h, and
let p̂λ(x, h, g) = p̂K(x, h) + λp̂L(x, g). Let Λ denote the N × N-matrix with entries Λi,j =
1
N

Lg(xi − xj), and let P̂ denote the N × N-diagonal matrix with entries P̂ii = p̂λ(xi, h, g).

Then, if P̂ − λ Λ is invertible, the solution of (2) is given as

u = {P̂ − λΛ}−1µ̂. (4)

Proof: Setting the partial derivatives of Q(u) w.r.t. uk, k = 1, . . . , N, to 0, we get

0 = 2
N∑

j=1

(uk − fj)Kh(xk − xj) + 2λ
N∑

j=1

(uk − uj)Lg(xk − xj), k = 1, . . . , N,

where we have used the symmetry of Lg. Therefore, we have for k = 1, . . . , N,

uk

{
N∑

j=1

Kh(xk − xj) + λ

N∑
j=1

Lg(xk − xj)

}

= λ

N∑
j=1

ujLg(xk − xj) +
N∑

j=1

fjKh(xk − xj)

which, using the definition of p̂K , p̂L and µ̂, implies the assertion.

Now, we want to prove that the estimate u, given by (4), is consistent in a certain sense
if N → ∞. First, we investigate the asymptotic behaviour of p̂K(x, h). If the xj would be
i.i.d. random variables, then p̂K would be the well-known Rosenblatt-Parzen estimate of
their common probability density (compare, e.g., Silverman, [6]). In our case, x1, . . . , xN are
equidistant and behave similar to uniform random variables, i.e. in particular p̂K(x, h) → 1
under appropriate assumptions. We consider throughout the paper only kernels satisfying

(A1) a) K is a nonnegative, symmetric kernel function with compact support [−1, +1].

b)
∫

K(y)dy = 1

c) K is Lipschitz continuous with Lipschitz constant CK .

In the following, we use the abbreviations

VK =

∫
z2K(z)dz, QK =

∫
K2(z)dz
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for the second moment and the L2-norm of a kernel K which both are finite under (A1)
a), c). We could relax the assumptions of symmetry and compactness of the support of
K, but we want to keep our arguments simple in this paper. Due to the same reason, we
mainly neglect boundary effects, which could be dealt with as in section 4.4 of Härdle [2],
by restricting our attention to x ∈ [h, 1 − h]. Asymptotically, this will have no effect as we
shall have h → 0 for N →∞ anyhow.

Sometimes, we need to extend assumption (A1) with the following conditions

d) K(±1) = 0.

e) K is decreasing in [0, 1].

f) K ∈ C2(−1, +1) with bounded second derivative K ′′.

g) K ′′ is Lipschitz continuous, and K ′(±1) = 0.

In the following, we will frequently approximate a Riemann sum by the corresponding inte-
gral. For reference, we, therefore, state the following Lemma:

Lemma 1 a) Let g(y) be Lipschitz continuous on [0, 1] with Lipschitz constant C. Then,
∣∣∣∣
∫ 1

0

g(y)dy − 1

N

N∑
j=1

g(xj)

∣∣∣∣ ≤
C

N
.

b) Let g ∈ C2(a, b). Then, for x′j = a + j(b− a)/M, i = 0, . . . , M,

∣∣∣∣
1

b− a

∫ b

a

g(y)dy − 1

M

M∑
j=1

g(x′j)

∣∣∣∣ ≤
(b− a)2

12M2
sup

a<z<b
|g′′(z)|+ 1

2M
|g(b)− g(a)|

Proof: a) By the mean-value theorem of integration there are yj ∈ [xj−1, xj], j = 1, . . . , N,
where x0 = 0, such that, using xj − xj−1 = 1

N
for all j,

∣∣∣∣
∫ 1

0

g(y)dy − 1

N

N∑
j=1

g(xj)

∣∣∣∣ =

∣∣∣∣
N∑

j=1

{
∫ xj

xj−1

g(y)dy − 1

N
g(xj)}

∣∣∣∣

=

∣∣∣∣
N∑

j=1

{g(yj)− g(xj)} 1

N

∣∣∣∣

≤ 1

N

N∑
j=1

C|yj − xj| ≤ C

N

b) The assertion is a version of the Euler-Maclaurin formula (compare, e.g., [7], ch. 3.2). Let
B1(x) = x− 1

2
, B2(x) = x2 − x + 1

6
be the first two Bernoulli polynomials. We first consider

the case a = 0, b = 1. Using integration by parts twice, we get
∫ 1

0

g(y)dy = B1(y)g(y)
∣∣1
0
− 1

2
B2(y)g′(y)

∣∣1
0
+

1

2

∫ 1

0

B2(y)g′′(y)dy

=
1

2
{g(1) + g(0)} − 1

12
{g′(1)− g′(0)}+

1

2

∫ 1

0

B2(y)g′′(y)dy

=
1

2
{g(1) + g(0)}+

1

2

∫ 1

0

{x2 − x}g′′(y)dy

=
1

2
{g(1) + g(0)} − 1

12
g′′(ξ)
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for some ξ ∈ (0, 1), using x2−x ≤ 0 in [0, 1] and the mean-value theorem of integration. We
now consider a = 0, b = M , and we apply this argument repeatedly for each subinterval of
length 1 to get

∫ M

0

g(y)dy =
M∑
i=1

∫ i

i−1

g(y)dy =
1

2

M∑
i=1

{g(i) + g(i− 1)} − 1

12

M∑
i=1

g′′(ξi)

=
M∑
i=1

g(i)− 1

2
{g(M)− g(0)} − 1

12

M∑
i=1

g′′(ξi)

for some ξi ∈ (i − 1, i), i = 1, . . . , M . For general a, b, the assertion now follows from
substituting y 7→ a + y(b− a)/M .

As an immediate consequence, we have

Corollary 1 a) Assuming (A1), a)-c), for the kernel K, we have

|1− p̂K(x, h)| ≤ CK
1

Nh2
for all x ∈ [h, 1− h].

b) Assuming additionally (A1), d), f) for the kernel K, we have

|1− p̂K(x, h)| = O

(
1

N2h2

)
uniformly in x ∈ [h, 1− h].

Proof: a) follows immediately from Lemma 1 a) with g(y) = Kh(x − y) as the Lipschitz
constant of Kh is CK/h2.

For b), we set n0 = min{k; xk ≥ x − h}, nM = max{k; xk ≤ x + h} such that M =
nM − n0 ≤ 2Nh. We apply Lemma 1 b) to a = n0/N, b = nM/N, b − a = M/N such that
x′j = a + j(b− a)/M = a + j/N = xn0+j and get

∣∣∣∣
∫ b

a

Kh(x− y)dy − 1

M

M∑
j=1

Kh(x− x′j)

∣∣∣∣

≤ M

12N3
sup

a<z<b
| 1

h3
K ′′(

x− z

h
)|+ 1

2N
|Kh(x− b)−Kh(x− a)|

Using that the support of Kh(x− ·) is [x− h, x + h], that a, b differ from x− h resp. x + h
by at most 1/N and using that K is Lipschitz continuous and Kh(x− (x± h)) = 0 we get

∣∣∣∣
∫ +1

−1

K(z)dz − 1

N

N∑
j=1

Kh(x− xj)

∣∣∣∣ ≤
M

12N3h3
sup
|z|<1

|K ′′(z)|+ O
( 1

N2h2

)
.

The assertion follows from M ≤ 2Nh.

As a next step, we investigate the asymptotic behaviour of µ̂ as an estimate of (µ(x1), . . . , µ(xN))T .
We assume

(A2) a) µ is twice continuously differentiable
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b) µ′′(x) is Hoelder continuous on [0, 1] with exponent β, i.e. for some β > 0, H < ∞
|µ′′(x)− µ′′(y)| ≤ H|x− y|β for all x, y ∈ [0, 1]

The following asymptotic expansions for bias and variance of the Priestley-Chao estimate is
well known. We only use assumption (A2b) to get a slightly more precise assertion about the
remainder of the bias which will turn out to be useful later on, and we add a more detailed
statement about the asymptotic covariance of estimates at different locations.

Proposition 2 Assuming (A1), a)-f), and (A2), we have for the Priestley-Chao estimate
µ̂(x, h), based on (1), for N →∞, h → 0 such that Nh3 →∞ :

i) bias µ̂i = E µ̂i − µ(xi) = h2

2
µ′′(xi)VK + O(h2+β) uniformly in xi ∈ [h, 1− h], where the

main remainder term is

r(x, h) =
h2

2

∫
K(z)z2{µ′′(x− ϑhz)− µ′′(x)}dz = O(h2+β)

uniformly in x.

ii) var µ̂i = E(µ̂i − E µ̂i)
2 = σ2

Nh
QK + O( 1

N3h3 ) uniformly in xi ∈ [h, 1− h].

iii) mse µ̂i = E(µ̂i−µ(xi))
2 = σ2

Nh
QK+ h4

4
{µ′′(xi)}2V 2

K+O(h4+β) uniformly in xi ∈ [h, 1−h].
In particular,

µ̂i − µ(xi) → 0 in probability.

iv) cov (µ̂i, µ̂k) = 0 if |xi − xk| > 2h, and
cov (µ̂i, µ̂k) = σ2

Nh

∫
K(z)K(z+ xi−xk

h
)dz+O( 1

N3h3 ) uniformly in xi, xk ∈ [h, 1−h], else.

If µ does not satisfy the smoothness condition (A2) everywhere, then Proposition 1 still
holds in every subinterval [a, b] ⊂ [0, 1] where (A2) is satisfied, as is obvious from the proof.
So, if µ jumps in x∗, but otherwise is smooth enough, the assertions of the Proposition hold
uniformly in xi, xk ∈ [h, x∗ − h] ∪ [x∗ + h, 1− h].

Proof: a) We use the common decomposition of mean-squared error into variance and
squared bias

mse µ̂i = E(µ̂(xi, h)− µ(xi))
2 = var µ̂(xi, h) + {bias µ̂(xi, h)}2.

We have uniformly in x ∈ [h, 1− h]

var µ̂(x, h) =
1

N2

N∑
j=1

K2
h(x− xj) var fj

=
σ2

N

∫
K2

h(x− y)dy + O(
1

N3h3
)

=
σ2

Nh

∫
K2(z)dz + O(

1

N3h3
)
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using the same argument as in the proof of Corollary 1 b) with K2
h(x−y) instead of Kh(x−y).

Moreover, by the same argument, now for Kh(x− y)µ(y),

bias µ̂(x, h) = E µ̂(x, h)− µ(x)

=
1

N

N∑
j=1

Kh(x− xj)µ(xj)− µ(x)

=

∫
K(z){µ(x− hz)− µ(x)}dz + O(

1

N2h2
)

=

∫
K(z)(−hz)dz µ′(x) +

∫
K(z)

h2z2

2
µ′′(x− θhz)dz + O(

1

N2h2
)

=
h2

2
VKµ′′(x) +

h2

2

∫
K(z)z2{µ′′(x− θhz)− µ′′(x)}dz + O(

1

N2h2
)

with θ = θ(z) ∈ [0, 1], again uniformly in x ∈ [h, 1 − h]. We have used Assumption (A2)
together with a Taylor expansion of µ and symmetry of K. By Hoelder continuity of µ, the
middle term on the right-hand side is of order O(h2+β), which is asymptotically larger than
the last term on the right-hand side as Nh3 →∞.

Combining the bias and variance expansion, we get

mse µ̂i =
σ2

Nh
QK +

h4

4
(µ′′(xi))

2V 2
K + O(h4+β),

as, again due to assuming Nh3 →∞, the remainder in the variance expansion is of smaller
order than O(h4+β).

b) Analogously to a), we conclude using the independence of the fj.

cov(µ̂(x, h), (µ̂(x′, h)) =
σ2

N2

N∑
j=1

Kh(x− xj)Kh(x
′ − xj)

=
σ2

Nh

∫
K(z)K(z +

x− x′

h
)dz + O(

1

N3h3
).

By compactness of the support of K, we have for |x−x′| > 2h that Kh(x−xj)Kh(x
′−xj) = 0

and, therefore, cov (µ̂(x, h), µ̂(x′, h)) = 0.

We need the following generalization of Corollary 1 a) which takes care of the boundary
effects:

Corollary 2 Assuming (A1), a)-e), we have

i) |1− p̂K(x, h)| ≤ CK
1

Nh2 for h ≤ x ≤ 1− h

ii) min{1
2
, 1− 1

2
CK(1− x

h
)2} − CK

1
Nh2 ≤ p̂K(x, h) ≤ 1 + CK · 1

Nh2 for 0 ≤ x ≤ h

iii) min{1
2
, 1− 1

2
CK(1− 1−x

h
)2} − CK

1
Nh2 ≤ p̂K(x, h) ≤ 1 + CK · 1

Nh2 for 1− h ≤ x ≤ 1
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Proof: i) follows from Corollary 1 a). By Lemma 1 a), we have for 0 ≤ x ≤ h :

|
∫ 1

0

Kh(x− y)dy − 1

N

N∑
j=1

Kh(x− xj)| ≤ CK · 1

Nh2
.

Now,
∫ 1

0
Kh(x−y)dy =

∫ 1−x
h

− x
h

K(z)dz = 1−∫ − x
h

−1
K(z)dz = 1−∫ 1

x
h

K(z)dz using the symmetry

of K. By symmetry and nonnegativity of K, the right-hand side is in [1
2
, 1]. As K(1) = 0

and K is Lipschitz continuous, K(z) ≤ CK(1− z) for 0 ≤ z ≤ 1, i.e.
∫ 1

0

Kh(x− y)dy ≥ 1− CK

∫ 1

x
h

(1− z)dz = 1− CK
1

2
(1− x

h
)2

ii) follows. iii) can be shown analogously.

Proposition 2 describes the asymptotic behaviour of µ̂ which is related to the final estimate
u by (4). To get the asymptotic properties of u, we have to investigate the matrix factor
of (4). First, we show that Λ is uniformly of order 1/

√
g for all N ≥ 1 w.r.t. the common

matrix norm ||Λ|| = sup||z||=1 ||Λz||. As an immediate consequence, Λt is of order g−t/2 for all

integer t ≥ 1. Additionally, we have that P̂−1 is approximately I/(1 + λ), where I denotes
the N × N identity matrix, if it is applied to vectors which are 0 in certain coordinates
corresponding to the boundary. We again use the abbreviation QL =

∫
L2(u)du.

Lemma 2 Let K,L satisfy (A1), a)-e). Let N →∞, h, g → 0, Nh2, Ng2 →∞

i) ||Λ||2 ≤ 1

g

∫
L2(u)du−

∫
|u|L2(u)du + O

(
1

Ng3

)
=

QL

g
+ O(1) + O

(
1

Ng3

)

ii) ||Λt||2 ≤
(

QL

g

)t

+ O

(
1

gt−1

)
+ O

(
1

Ng2+t

)

iii) ||P̂−1|| is uniformly bounded for all N large enough.

iv) Let K, L satisfy additionally (A1), f). Then, for z ∈ RN with zj = 0 for all

j < N(h + g), j > N −N(h + g), we have

||P̂−1z− 1

1 + λ
z|| ≤ δN ||z|| with δN = O(

1

N2h2
) + O(

λ

N2g2
).

Proof: i) Note that Λ is a symmetric matrix, and let η, e be the largest (in absolute value)
eigenvalue and a corresponding unit eigenvector of Λ. Then,

||Λ||2 = η2 = ||Λe||2 =
N∑

j=1

(Λe)2
j =

N∑
j=1

( N∑

k=1

Λjkek

)2

≤
N∑

j=1

( N∑

k=1

Λ2
jk

)( N∑

k=1

e2
k

)
=

N∑

j,k=1

Λ2
jk =

1

N2

N∑

j,k=1

L2
g(xj − xk)

=

∫ 1

0

∫ 1

0

1

g2
L2

(v − w

g

)
dvdw + O

( 1

Ng3

)
=

∫ 1/g

0

∫ 1/g

0

L2(y − z)dydz + O
( 1

Ng3

)

=

∫
L2(u)

∫
1[0,g−1](z)1[−u,g−1−u](z)dzdu + O

( 1

Ng3

)

=

∫
L2(u)

(
1

g
− |u|

)
du + O

( 1

Ng3

)
,
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where we have used the Cauchy-Schwarz inequality for getting line 2 and Lemma 1 a) for
getting line 3.

ii) Using the notation of i), ηt, e are the largest eigenvalue of the symmetric matrix Λt and
a corresponding unit eigenvector. Therefore, for Ng2 →∞,

||Λt||2 = ||Λ||2t ≤ 1

gt

(
QL + O(g) + O

( 1

Ng2

))t

=

(
QL

g

)t

+ O
( 1

gt−1

)
+ O

( 1

Ng2+t

)

iii) By Corollary 2, for some constant c we have p̂λ(xj, h, g) = P̂jj ≥ c > 0 uniformly in
j = 1, . . . , N, for all large enough N . Therefore, for any unit vector z

||P̂−1z||2 =
N∑

j=1

z2
j

p̂λ(xj, h, g)2
≤ 1

c2
||z||2 =

1

c2
.

iv) If max(h, g) ≤ x ≤ 1−max(h, g), we have by Corollary 1 b)

|1− p̂K(x, h)| = O
( 1

N2h2

)
, |1− p̂L(x, g)| = O

( 1

N2g2

)
.

As, by Corollary 2, p̂K and p̂L are uniformly bounded from below by a positive constant for
N large enough, we have uniformly for all those x∣∣∣∣

1

p̂λ(x, h, g)
− 1

1 + λ

∣∣∣∣ ≤ δN .

Therefore, as all xj which correspond to nonvanishing zj satisfy this condition

||P̂−1z− 1

1 + λ
z||2 =

N∑
j=1

∣∣∣∣
1

p̂λ(xj, h, g)
− 1

1 + λ

∣∣∣∣
2

z2
j ≤ δ2

N ||z||2

As P̂−1 is bounded and λΛ is asymptotically negligible if λ/
√

g → 0, we can expand the
factor of µ̂ in (4) for some given integer t ≥ 1 to

{P̂ − λΛ}−1 = {I − λ P̂−1Λ}−1P̂−1

=

{ t∑
n=0

λn
(
P̂−1Λ

)n
}

P̂−1 + O
(
λt+1||(P̂−1Λ)t+1P̂−1||).

where the remainder term is of order (λ/
√

g)t+1 by Lemma 2 ii) and iii). Therefore, we have

u =

{ t∑
n=0

λn
(
P̂−1Λ

)n
P̂−1 + O

(
λt+1

√
gt+1

)}
µ̂ =

{
P̂−1

t∑
n=0

λn
(
ΛP̂−1

)n
+ O

(
λt+1

√
gt+1

)}
µ̂

or, coordinatewise, as µ̂i is stochastically bounded by Proposition 2 and Chebyshev’s in-
equality uniformly in {i; xi ∈ [h, 1− h]}

ui =
1

p̂λ(xi, h, g)
µ̂(xi, h)

+
1

p̂λ(xi, h, g)

t∑
n=1

λn

Nn

∑
j1,...,jn

Lg(xi − xj1)

p̂λ(xj1 , h, g)

Lg(xj1 − xj2)

p̂λ(xj2 , h, g)
. . .

Lg(xjn−1 − xjn)

p̂λ(xjn , h, g)
µ̂(xjn , h)

+Op

(
λt+1

√
gt+1

)
. (5)

9



We neglect the boundary and consider only xi with

max(h, g) + tg ≤ xi ≤ 1−max(h, g)− tg. (6)

Then, as Lg has support [−g, g], we have max(h, g) ≤ xjn ≤ 1 − max(h, g) for all jn, n =
1, . . . , t, corresponding to the nonvanishing terms in the n-fold sum of (5). Therefore, we
may apply Lemma 2 iv) to replace p̂λ(xjn , h, g) by 1 + λ in (5), and we get

ui =
1

1 + λ

{
µ̂(xi, h) +

t∑
n=1

λn

(1 + λ)n
µ̂n+1(xi, h, g)

}
+ R∗

N,i (7)

=
1

1 + λ

t∑
n=0

λn

(1 + λ)n
µ̂n+1(xi, h, g) + R∗

N,i

where the remainder term R∗
N,i is Op(λ

t+1/
√

gt+1) + Op(δN) uniformly in all i satisfying (6).
Here, we define µ̂1(x, h, g) = µ̂(x, h) and, for n ≥ 1,

µ̂n+1(x, h, g) =
1

Nn

∑
j1,...,jn

Lg(x− xj1)Lg(xj1 − xj2) . . . Lg(xjn−1 − xjn)µ̂(xjn , h)

=
1

Nn+1

∑

j1,...,jn,`

Lg(x− xj1)Lg(xj1 − xj2) . . . Lg(xjn−1 − xjn)Kh(xjn − x`)f`

=
∑

`

γ
(n)
` (x, h, g)f` + µ̂n(x, h, g) = ν̂n+1(x, h, g) + µ̂n(x, h, g)

where, for n ≥ 1,

γ
(n)
` (x, h, g) =

1

Nn+1

∑
j1,...,jn

Lg(x− xj1)Lg(xj1 − xj2) . . . Lg(xjn−1 − xjn)Kh(xjn − x`)

− 1

Nn

∑
j1,...,jn−1

Lg(x− xj1)Lg(xj1 − xj2) . . . Lg(xjn−2 − xjn−1)Kh(xjn−1 − x`).

We can calculate the weights γ
(n)
` also recursively from

γ
(1)
` (x, h, g) =

1

N2

∑
j

Lg(x− xj)Kh(xj − x`)− 1

N
Kh(x− x`),

γ
(n)
` (x, h, g) =

1

N

∑
j

Lg(x− xj)γ
(n−1)
` (xj, h, g), n ≥ 2. (8)

Writing as abbreviation ϑ = λ/(1 + λ) such that 1 − ϑ = 1/(1 + λ), we get from (7) and
ν̂n(x, h, g) = µ̂n(x, h, g) − µ̂n−1(x, h, g), n ≥ 2, and setting for convenience ν̂1(x, h, g) =

10



µ̂1(x, h, g) = µ̂(x, h)

ui = (1− ϑ)
t∑

n=0

ϑnµ̂n(xi, h, g) + R∗
N,i

= (1− ϑ)
t∑

n=1

ϑn

n+1∑

k=1

ν̂k(xi, h, g) + R∗
N,i

= (1− ϑ)
t∑

k=0

ν̂k+1(xi, h, g)
t∑

n=k

ϑn + R∗
N,i

=
t∑

k=0

ϑk(1− ϑt+1−k)ν̂k+1(xi, h, g) + R∗
N,i. (9)

As we already know the asymptotic behaviour of ν̂1 = µ̂, we have to investigate that of
ν̂n, n ≥ 2. The first step is to look at the weights γ

(n)
` .

Lemma 3 For n ≥ 1

γ
(n)
` (x, h, g) = O(

g

Nh2
) uniformly in h + ng ≤ x ≤ 1− (h + ng),

γ
(n)
` (x, h, g) = 0 if |x− x`| > h + ng.

Proof: For n = 1, the assertion follows analogously to Lemma A2 of Franke and Härdle [1].
For n ≥ 2, we get it straightforwardly by induction, applying the recursion (8).

Proposition 3 Assume that K and L satisfy (A1), a)-g), and that µ satisfies (A2). Then,
if h, g → 0, Ng4, Nh4 → ∞ for N → ∞ we have for all n ≥ 1 uniformly in h + ng ≤ x ≤
1− (h + ng)

i) var ν̂n+1(x, h, g) = O(
g2

Nh3
) + O(

g3

Nh4
).

ii) Eν̂n+1(x, h, g) =
∑

`

γ
(n)
` (x, h, g)µ(x`) = bias µ̂L(x, g) + o(g2),

where µ̂L denotes the Priestley-Chao estimate with kernel L instead of K.

Proof: a) As in the proof of (A7) of Franke and Härdle [1], we get, using Lemma 3,

Nh var(
∑

l

γ
(n)
l (x, h, g)fl) = Nh E(

∑

l

γ
(n)
l (x, h, g)εl)

2 ≤ c
(h + ng)g2

h3

for some constant c > 0. i) follows.

b) We first show ii) for n = 1 similar to the proof of Theorem 1, part d) of Franke and

Härdle [1]. In this part of the proof, we use the abbreviation γ` = γ
(1)
` . We have

11



Eν̂2(x, h, g) =
∑

`

γ`(x, h, g)µ(x`)

=
1

N2

∑

`,j

Lg(x− xj)Kh(xj − x`)µ(x`)− 1

N

∑

`

Kh(x− x`)µ(x`)

=
1

N

∑
j

Lg(x− xj)

{
1

N

∑

`

Kh(xj − x`)µ(x`)− µ(xj)

}

+
1

N

∑
j

Lg(x− xj)µ(xj)− µ(x)−
{

1

N

∑

`

Kh(x− x`)µ(x`)− µ(x)

}

= bL(x, g) +
1

N

∑
j

Lg(x− xj)b(xj, h)− b(x, h) (10)

with b(x, h) = bias µ̂(x, h), bL(x, g) = bias µ̂L(x, g). Using (A1) f), (A2) we have that b(x, h)
is twice continuously differentiable with derivative

b′′(x, h) =
1

Nh3

∑

`

K ′′(
x− x`

h
)µ(x`)− µ′′(x).

Using Taylor’s formula with remainder in Lagrangian form we get, recalling that Lg(x−xj) =
0 for |x− xj| > g,

∣∣∣∣
1

N

∑
j

Lg(x− xj)b(xj, h)− b(x, h)

∣∣∣∣

≤
∣∣∣∣
1

N

∑
j

Lg(x− xj){b(xj, h)− b(x, h)}
∣∣∣∣ + |b(x, h)|O( 1

N2g2

)

≤ |b′(x, h)|
∣∣∣∣
1

N

∑
j

Lg(x− xj){xj − x}
∣∣∣∣

+ sup
|z−x|≤g

|b′′(z, h)| g2

2

1

N

∑
j

Lg(x− xj) + |b(x, h)|O( 1

N2g2

)
,

where we have used Corollary 1 b) and (A1), b) for the kernel L in getting the first inequality.
Applying this argument again to the last line and an analogous result for the kernel −uL(u)
for the second line we get

∣∣∣∣
1

N

∑
j

Lg(x− xj)b(xj, h)− b(x, h)

∣∣∣∣

≤ |b′(x, h)|
∣∣∣∣− g

∫
L(u) u du + O

( 1

N2g2

)∣∣∣∣

+ sup
|z−x|≤g

|b′′(z, h)| g2

2

(
1 + O

( 1

N2g2

))
+ |b(x, h)|O( 1

N2g2

)

= sup
|z−x|≤g

|b′′(z, h)|O(g2) + (|b′(x, h)|+ |b(x, h)|)O( 1

N2g2

)
(11)
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by symmetry of L. From Proposition 2, we know b(x, h) = O(h2). For the first derivative of
the bias, we have, applying Lemma 1 a) to g(z) = K ′(x−z

h
)µ(z),

|b′(x, h)| =

∣∣∣∣
1

Nh2

∑

`

K ′(
x− x`

h
)µ(x`)− µ′(x)

∣∣∣∣

=

∣∣∣∣
1

h2

∫
K ′(

x− u

h
)µ(u)du− µ′(x)

∣∣∣∣ + O
( 1

Nh3

)

=

∣∣∣∣
∫

K(z){µ′(x− hz)− µ′(x)}dz

∣∣∣∣ + O
( 1

Nh3

)

≤ O(h1+β)

∫
K(z)|z|dz sup

z
|µ′′(z)|+ O

( 1

Nh3

)
= O(h1+β) + O

( 1

Nh3

)

where we have used integration by parts, (A1) d) and substitution for getting the third line
and Taylor expansion of µ′ as well as symmetry of K and (A2), b) for getting the last line.
Analogously, we get, using (A1) g)

|b′′(x, h)| =
∣∣∣∣
∫

K(z){µ′′(x− hz)− µ′′(x)}dz

∣∣∣∣ + O
( 1

Nh4

)
= O(hβ) + O

( 1

Nh4

)
,

using again (A2), b), i.e. Hoelder continuity of µ′′. Finally, we get from (11)

∣∣∣∣
1

N

∑
j

Lg(x− xj)b(xj, h)− b(x, h)

∣∣∣∣ = o(g2) (12)

which, together with (10), implies ii) for n = 1.

c) For n ≥ 2, we get ii) by induction. We assume that ii) holds for n − 1, and we get for
h + ng ≤ x ≤ 1− (h + ng)

∑

`

γ
(n)
` (x, h, g)µ(x`) =

1

N

∑
j

Lg(x−xj)Eν̂n(xj, h, g) =
1

N

∑
j

Lg(x−xj)
{
bL(xj, g)+ o(g2)

}

by (8), as for all xj with nonvanishing Lg(x − xj) we have h + (n − 1)g ≤ x ≤ 1 − (h +
(n − 1)g). The remainder on the right-hand side is, again by Lemma 1 b), of order {1 +
O(1/(N2g2)}o(g2) = o(g2), and the first term is

{
1

N

∑
j

Lg(x− xj)bL(xj, g)− bL(x, g)

}
+ bL(x, g) = o(g2) + bL(x, g)

by the same arguments as in proving (12) with bL(·, g) replacing b(·, h).

By Proposition 3, we have uniformly for all h + tg ≤ x ≤ 1− (h + tg), 1 ≤ n ≤ t,

ν̂n+1(x, h, g) = E ν̂n+1(x, h, g) + ν̂n+1(x, h, g)− E ν̂n+1(x, h, g)

= bias µ̂L(x, g) + o(g2) +

(
1 +

√
g

h

)
Op

(
g

h

1√
Nh

)
.

In this paper, we consider only the situation where the last part is neglible to the first one
which, by Proposition 2 a), is of order O(g2). For that purpose, we either have to assume
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g = O(h), Nh3g2 →∞ or h = o(g), Nh4g →∞. Then, we get from (9) with remainder term
R∗∗

N,i = R∗
N,i + o(ϑg2)

ui = (1− ϑt+1)µ̂(xi, h) +
t∑

k=1

ϑk(1− ϑt+1−k)ν̂k+1(xi, h, g) + R∗
N,i

= (1− ϑt+1)µ̂(xi, h) +
t∑

k=1

ϑk(1− ϑt+1−k)bias µ̂L(xi, g) + R∗∗
N,i

= (1− ϑt+1)µ̂(xi, h) +
{
ϑ

1− ϑt

1− ϑ
+ tϑt+1

}
bias µ̂L(xi, g) + R∗∗

N,i

= µ̂(xi, h) +
ϑ

1− ϑ
bias µ̂L(xi, g) + RN,i (13)

setting RN,i = R∗∗
N,i + Op(ϑ

t+1). We summarize this to the main result of this section:

Theorem 2.1 Let K,L satisfy (A1), a)-g), and let (A2) hold. Then, for N →∞, h, g, λ →
0, such that λ = O(gs) for some s > 1/2, Nh4 → ∞, Ng4 → ∞, and either g =
O(h), Nh3g2 →∞ or h = o(g), Nh4g →∞.

Then, with t = max{[5/(2s − 1)] + 1, 4} the smallest integer satisfying s − 1
2
− 5

2t
> 0 and

t ≥ 4, we have uniformly for all i satisfying h + tg ≤ xi ≤ 1− (h + tg)

i) ui = µ̂(xi, h) + λ bias µ̂L(xi, g) + op(λg2) + Op

(
1

N2h2

)
.

ii) bias ui = E ui − µ(xi) = 1
2

{
h2VK + λ g2VL

}
µ′′(xi) + o(λg2) + O(h2+β) + O

(
1

N2h2

)
.

iii) var ui = E(ui − Eui)
2 = σ2

Nh
QK + o

(
λg2√
Nh

)
+ o(λ2g4) + O

({
1

Nh

}5/2)

iv) mse ui = E (ui − µ(xi))
2 = 1

4

{
h2VK + λ g2VL

}2{µ′′(xi)}2 + σ2

Nh
QK + O(h4+β)

+ o(λg2) max
{

1√
Nh

, h2 + λg2
}

Proof: i) follows immediately from replacing ϑ by λ/(1 + λ) in (13) and looking at the
remainder term

RN,i = Op

( λt+1

√
gt+1

)
+ Op

( 1

N2h2

)
+ Op

( λ

N2g2

)
+ o(λg2) + Op(λ

t+1).

By the choice of t and the assumption on λ, the first and the last term both are op(λg2).
For the third term, this also holds as Ng2 →∞.

Using a dominated convergence argument, we get from i)

E ui − µ(xi) = bias µ̂(xi, h) + λ bias µ̂L(xi, g) + o(λg2) + O
( 1

N2h2

)

=
h2

2
µ′′(xi)VK + O(h2+β) + λ

g2

2
µ′′(xi)VL + λo(g2) + O

( 1

N2h2

)

by Proposition 2 i).
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As the bias of µ̂L(xi, g) is not random and using

µ̂(xi, h)− Eµ̂(xi, h) = Op(
1√
Nh

)

by Proposition 2, we have

var ui = var µ̂(xi, h) + O(
1√
Nh

)
(
o(λg2) + Op

( 1

N2h2

))
+ o(λ2g4)

by Proposition 2 ii) and using Nh →∞.

Finally, iv) follows from mse ui = var ui + (bias ui)
2 by applying ii) and iii) and neglecting

remainder terms which are of smaller order under our rate assumptions.

3 Applications

Once we have the asymptotic equivalence of the regularized least-squares estimate and the
shifted Priestley-Chao estimate given by Theorem 2.1 i), we can exploit it to answer var-
ious questions showing up in the practice of curve estimation or, analogously, in the two-
dimensional case of image denoising. As an illustration, we derive here the asymptotic
distribution of the function estimate which allows to quantify the reliability of the estimate
or to test if the observed data are a noisy version of a given curve resp. image µ.

If we are not only interested in point estimates ui for the function values µ(xi), but also
in confidence intervals which provide information about the reliability of the estimates ui,
we need an asymptotically valid approximation of the probability distribution of ui. For
that purpose, we prove asymptotic normality of our function estimates which may also be
used for constructing hypothesis tests for comparing functions. As the grid points xi, where
we observe data and where we calculate estimates ui, depend on N , we have to extend our
method to estimates u(x) of the function of interest µ(x) at an arbitrary fixed location x.
We may interpolate the estimates ui at xi, i = 1, . . . , N, smoothly by, e.g., splines, but let
us first consider the case where we just define

u(x) = ui for xi−1 < x ≤ xi, i = 1, . . . , N,

with x0 = 0.

Theorem 3.1 Under the assumptions of Theorem 2.1 we have

i)

bias u(x) = E u(x)− µ(x) =
1

2

{
h2VK + λ g2VL

}
µ′′(x) + RN

with remainder RN = o(λg2) + O
(

h2

Nβ

)
+ O(h2+β) + O

(
1

N2h2

)
+ O( 1

N
) uniformly in

h + tg ≤ x ≤ 1− (h + tg)− 1
N

.

ii) If, additionally, λ2h = O( 1
Ng4 )

√
Nh

(
u(x)− E u(x)

)
→d N (0, σ2QK) for N →∞.
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Proof: For given x, we choose the sequence i(N) depending on N such that xi(N)−1 < x ≤
xi(N) for all N . Then, u(x) = ui(N). We remark that xi(N) satisfies the uniformity condition
on xi in Theorem 2.1 if h + tg ≤ x ≤ 1− (h + tg)− 1

N
.

i) By assumption (A2), we have µ(xi(N))−µ(x) = O( 1
N

), µ′′(xi(N))−µ′′(x) = O( 1
Nβ ) uniformly

in x ∈ (0, 1). Therefore, by Theorem 2.1 ii)

bias u(x) = bias ui(N) + µ(xi(N))− µ(x)

= bias ui(N) + O(
1

N
)

=
1

2

{
h2VK + λ g2VL

}
µ′′(xi(N)) + o(λg2) + O(h2+β) + O

( 1

N2h2

)
+ O(

1

N
)

=
1

2

{
h2VK + λ g2VL

}
µ′′(x) + O

( 1

Nβ
max(h2, λg2)

)

+o(λg2) + O(h2+β) + O
( 1

N2h2

)
+ O(

1

N
),

and i) follows.

ii) Using (1), the centered Priestley-Chao estimate µ̂(xi(N), h)− E µ̂(xi(N), h) is the sample
mean of the zero mean random variables YNj = εjKh(xi(N) − xj), j = 1, . . . , N . Using
assumption (A1), a)-c) on the kernel K, it is easy to check that these random variables
satisfy the Lindeberg condition, and we get by the Lindeberg-Feller central limit theorem
for triangular arrays of random variables (compare section 1.9.3 of Serfling [5]) that

µ̂(xi(N), h)− E µ̂(xi(N), h) =
1

N

N∑
j=1

YNj (14)

is asymptotically normal with mean 0 and variance

B2
N = var

(
µ̂(xi(N), h)

)
=

σ2

Nh
QK + O(

1

N3h3
)

uniformly in x ∈ [h+tg, 1−(h+tg)− 1
N

] by part a) of the proof of Proposition 2. Multiplying

the left hand-side of (14) with
√

Nh and using Slutsky’s Theorem (compare section 1.5.4 of
Serfling [5]), we get a sequence of random variables with the non-degenerate limit distribution
N (0, σ2QK). By Theorem 2.1 i), using, again, Slutsky’s Theorem, we get

√
Nh

(
u(x)− E u(x)

)
=
√

Nh
(
ui(N) − E ui(N)

)

=
√

Nh
(
µ̂(xi(N), h)− E µ̂(xi(N), h)

)
+ op

(
λg2

√
Nh

)
+ O

( 1√
N3h3

)

→d N (0, σ2QK),

Finally, we consider linear interpolation of the estimates ui at xi, i = 1, . . . , N, as an alterna-
tive. Analogously, we could as well use, e.g., higher-order splines for an even more smooth
interpolation. Here, we define for x ≥ x1

u(xi) = ui, i = 1, . . . , N, u(x) = (1− θ)ui−1 + θui for xi−1 ≤ x ≤ xi, i = 1, . . . , N,
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with 0 ≤ θ = N(x − xi−1) ≤ 1 depending on x and N . Then, we get the following result
analogous to Theorem 3.1:

Theorem 3.2 Under the assumptions of Theorem 2.1 we have

i)

bias u(x) = E u(x)− µ(x) =
1

2

{
h2VK + λ g2VL

}
µ′′(x) + RN

with remainder RN as in Theorem 3.1 uniformly in h + tg ≤ x ≤ 1− (h + tg)− 1
N

.

ii) If, additionally, λ2h = O( 1
Ng4 )

√
Nh

(
u(x)− E u(x)

)
→d N (0, σ2QK) for N →∞.

Proof: For given x, we choose the sequence i(N) depending on N such that xi(N)−1 < x ≤
xi(N) for all N . Then, u(x) = (1 − θ)ui(N)−1 + θui(N). We remark that xi(N)−1, xi(N) satisfy
the uniformity condition on xi in Theorem 2.1 if h + tg ≤ x ≤ 1− (h + tg)− 1

N
.

a) Using (1), the centered Priestley-Chao estimate µ̂(xi(N), h)− E µ̂(xi(N), h) is the sample
mean of the zero mean random variables YNj = εjKh(xi(N) − xj), j = 1, . . . , N . Using
assumption (A1), a)-c), on the kernel K, it is easy to check that these random variables
satisfy the Lindeberg condition, and we get by the Lindeberg-Feller central limit theorem
for triangular arrays of random variables (compare section 1.9.3 of Serfling [5]) that

µ̂(xi(N), h)− E µ̂(xi(N), h) =
1

N

N∑
j=1

YNj (15)

is asymptotically normal with mean 0 and variance

B2
N = var

(
µ̂(xi(N), h)

)
=

σ2

Nh
QK + O(

1

N3h3
)

uniformly in x ∈ [h + tg, 1− (h + tg)− 1
N

] by part a) of the proof of Proposition 2. Multi-

plying the left hand-side of (15) with
√

Nh and using Slutsky’s Theorem (compare section
1.5.4 of Serfling [5]), we get a sequence of random variables with the non-degenerate limit
distribution N (0, σ2QK). The same result, of course, holds for xi(N)−1 instead of xi(N).

b) By Theorem 2.1 i), using, again, Slutsky’s Theorem, we get

√
Nh

(
u(x)− E u(x)

)

=
√

Nh
(
(1− θ)(ui(N)−1 − E ui(N)−1) + θ(ui(N) − E ui(N))

)

=
√

Nh
(
(1− θ)[µ̂(xi(N)−1, h)− E µ̂(xi(N)−1, h)] + θ[µ̂(xi(N), h)− E µ̂(xi(N), h)]

)

+op

(
λg2

√
Nh

)
+ O

( 1√
N3h3

)

→d N (0, v),
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as the sum of two asymptotically normal random variables is again asymptotically normal.
We only have to calculate the asymptotic variance v, i.e. the limit of

Nh var
(
(1− θ)µ̂(xi(N)−1, h) + θµ̂(xi(N), h)

)
= Nh(1− θ)2var µ̂(xi(N)−1, h)

+ Nh θ2var µ̂(xi(N), h) + 2Nh θ(1− θ) cov(µ̂(xi(N)−1, h), µ̂(xi(N), h))

The first two terms coincide asymptotically with (1 − θ)2σ2QK + θ2σ2QK by a). For the
third term, we use that by Proposition 2 iv) and as xi(N) − xi(N)−1 = 1

N

σ2

Nh

∫
K(z)K(z +

1

Nh
)dz + O(

1

N3h3
) =

σ2

Nh
QK + O(

1

N2h2
) + O(

1

N3h3
)

by assumption (A1), a)-f). We conclude

v = (1− θ)2σ2QK + θ2σ2QK + 2(1− θ)θσ2QK = σ2QK ,

and ii) follows.

c) By assumption (A2), we have µ(xi(N)) − µ(x) = O( 1
N

), µ′′(xi(N)) − µ′′(x) = O( 1
Nβ ) and

correspondingly for xi(N)−1 uniformly in x ∈ (0, 1). Therefore,

bias u(x) = (1− θ) bias ui(N)−1 + θ bias ui(N) + (1− θ) µ(xi(N)−1) + θ µ(xi(N))− µ(x)

= (1− θ) bias ui(N)−1 + θ bias ui(N) + O(
1

N
)

Moreover, by Theorem 2.1 ii),

bias ui(N) =
1

2

{
h2VK + λ g2VL

}
µ′′(xi(N)) + o(λg2) + O(h2+β) + O

( 1

N2h2

)

=
1

2

{
h2VK + λ g2VL

}
µ′′(x) + O(

h2

Nβ
) + o(λg2) + O(h2+β) + O

( 1

N2h2

)
,

and analogously for xi(N)−1. We conclude i).
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