
Level-Set Methods for Tensor-Valued Images

Christian Feddern Joachim Weickert Bernhard Burgeth

Mathematical Image Analysis Group
Faculty of Mathematics and Computer Science

Saarland University, Building 27
66041 Saarbrücken, Germany

email:
�
feddern, weickert, burgeth � @mia.uni-saarland.de

Abstract

Tensor-valued data are becoming more and more important
as input for todays image analysis problems. This has been
caused by a number of applications including diffusion ten-
sor (DT-) MRI and physical measurements of anisotropic be-
haviour such as stress-strain relationships, interia and per-
mittivity tensors. Consequently, there arises the need to fil-
ter and segment such tensor fields. In this paper we extend
three important level set methods to tensor-valued data. To
this end we first generalise Di Zenzo’s concept of a struc-
ture tensor for vector-valued images to tensor-valued data.
This allows us to derive formulations of mean curvature mo-
tion and self-snakes in the case of tensor-valued images. We
prove that these processes maintain positive semidefiniteness
if the initial matrix data are positive semidefinite. Finally we
present a geodesic active contour model for segmenting ten-
sor fields. Since it incorporates information from all chan-
nels, it gives a contour representation that is highly robust
under noise.

1 Introduction

Starting with Osher and Sethian’s pioneering work [28],
level set methods have become a fundamental tool in im-
age processing, computer vision and computer graphics
[25, 26, 36, 38]. They make use of a number of interesting
partial differential equations (PDEs) including mean curva-
ture motion [1], self-snakes [36] and geodesic active con-
tours [7, 22].

While such methods have been extended in various ways
to higher dimensions, surfaces and vector-valued data, there
are hardly any attempts so far to use them for processing
tensor-valued data sets. However, such data sets are becom-
ing increasingly important for three reasons:

1. Novel medical imaging techniques such as diffusion
tensor magnetic resonance imaging (DT-MRI) have
been introduced [31]. DT-MRI is a 3-D imaging
method that yields a diffusion tensor in each voxel.
This diffusion tensor describes the diffusive behaviour

of water molecules in the tissue. It can be represented
by a positive semidefinite ����� matrix in each voxel.

2. Tensors have shown their use as a general tool in im-
age analysis, segmentation and grouping [16, 24]. This
also includes widespread applications of the so-called
structure tensor in fields ranging from motion analysis
to texture segmentation; see e.g. [2, 34].

3. A number of scientific applications require the visu-
alisation and processing of tensor fields [39]. The
tensor concept is a common physical description of
anisotropic behaviour, especially in solid mechanics
and civil engineering (e.g. stress-strain relationships,
inertia tensors, diffusion tensors, permittivity tensors).

The search for good smoothing techniques for DT-MRI data
and related tensor fields is a very recent research area. Sev-
eral authors have addressed this problem by smoothing de-
rived expressions such as the eigenvalues and eigenvectors
of the diffusion tensor [12, 32, 40] or rotationally invari-
ant scalar-valued expressions [29, 47]. Also for fiber track-
ing applications, most techniques work on scalar- or vector-
valued data [5, 42]. Some image processing methods that
work directly on the tensor components use linear [45] or
nonlinear [19] techniques that filter all channels indepen-
dently, thus performing scalar-valued filtering again. Non-
linear variational methods for matrix-valued filtering with
channel coupling have been proposed both in the isotropic
[40] and in the anisotropic setting [44]. Related nonlinear
diffusion methods for tensor-valued data have led to the no-
tion of a nonlinear structure tensor [44] that has been used for
optic flow estimation [4], texture discrimination and track-
ing [3]. To the best of our knowledge, however, no level-set
methods have been proposed so far that work directly on the
tensor data.

The goal of the present paper is to introduce three level-
set methods for analysing and processing tensor fields. They
can be regarded as tensor-valued extensions of mean curva-
ture motion, self-snakes and geodesic active contours. The
key ingredient for this generalisation is the use of a struc-
ture tensor for matrix-valued data. It may be regarded as a



generalisation of Di Zenzo’s edge detector for vector-valued
images [13]. For simplicity, we restrict ourselves to the case
of � ��� matrix fields, but most of the concepts can also be
generalised to higher dimensions.

Our paper is organised as follows. In Section 2 we in-
troduce the generalised structure tensor for matrix fields. It
is then used in Section 3 for designing a mean curvature
type evolution of tensor-valued data. We prove that this
process preserves the positive semidefiniteness of the initial
data. Modifying tensor-valued mean curvature motion by
a suitable edge stopping function leads us to tensor-valued
self-snakes. They are discussed in Section 4. In Section 5,
we use the self-snake model in order to derive geodesic ac-
tive contour models for tensor fields. Algorithmic details are
sketched in Section 6, and experiments are presented in Sec-
tion 7. The paper is concluded with a summary in Section
8.

2 Structure Analysis of Tensor-
Valued Data

In this section we generalise the concept of an image gradient
to the tensor-valued setting. This may be regarded as a tensor
extension of Di Zenzo’s method for vector-valued data [13].

Let us consider some � ��� tensor image �����	� 
����������� where
the indices �	������� specify the tensor channel. We would like to
define an ”edge direction” for such a matrix-valued function.
In the case of some scalar-valued image ���������� , we would
look for the direction � which is orthogonal to the gradient
of a Gaussian-smoothed version of � :��� ���! "�$# (1)

where � #&% �(' #�) � and
' # denotes a Gaussian with stan-

dard deviation * . Gaussian convolution makes the struc-
ture detection more robust against noise. The parameter *
is called noise scale.
In the general tensor-valued case, we cannot expect that all
tensor channels yield the same edge direction. Therefore we
proceed as follows. Let �+#+� �	� 
 be a Gaussian-smoothed ver-
sion of �$�� 
 . Then we define the edge direction as the unit
vector � that minimises

, ���� % � -. �0/21 -.
�/31 ����4 5� #$� �� 
 � -� ���76 -. �8/31 -.
�/21  5� #$� �� 
  5�9�#$� �� 
;: �=< (2)

This quadratic form is minimised, when � is eigenvector to
the smallest eigenvalue of the structure tensor

> �� "� # � % � -. �8/31 -.
�/31  5� #$� �� 
  "� �#+� �	� 
 < (3)

The trace of this matrix can be regarded as a tensor-valued
generalisation of the squared gradient magnitude:

tr
> �� 5�+#�� � -. �8/31 -.
�/21@?  "�$#+� �	� 
 ? - < (4)

The matrix
> �A "� # � will allow us to generalise a number of

level-set methods to the tensor-valued setting. Indeed, ex-
tending the ideas in [11] to the matrix-valued case, one my
even define level sets of matrix-valued as the integral curves
of the eigenvector directions to the smallest eigenvalue.

3 Mean Curvature Motion

In this section we introduce a tensor-valued mean curvature
motion. To this end, we first have to sketch some basic ideas
behind scalar-valued mean curvature motion.

We start with the observation that the Laplacian of an
isotropic linear diffusion model may be decomposed into
two orthogonal directions B�CD FE and GIHJ FE :K�L E � K�MNM EFO K�P;P E (5)� KRQ�Q E"O K�S;S E (6)

where
KRQ�Q E describes smoothing parallel to edges and

K�S;S
smoothes perpendicular to edges. Mean curvature motion
(MCM) uses an anisotropic variant of this smoothing process
by permitting only smoothing along the level lines:KRL E � KRQ�Q E (7)

This can be rewritten asK L E � ?  7E ? div T  FE
?  FE ?

U < (8)

Alvarez et al. have used this evolution equation for denoising
highly degraded images [1]. It is well-known from the math-
ematical literature [14, 17, 20] that under MCM convex level
lines remain convex, nonconvex ones become convex, and in
finite time they vanish by shrinking to circular points (a point
with a circle as limiting shape). Interestingly, mean curva-
ture motion plays a similar role for morphology as linear
diffusion does in the context of linear averaging. While iter-
ated and suitably scaled convolutions with smoothing masks
approximate linear diffusion filtering, it has been shown that
iterated classic morphological operators such as median fil-
tering are approximating MCM [18]. Similar approximation
results can also be established in the vector-valued setting
[8].

If we want to use a MCM-like process for processing
tensor-valued data �A�+�� 
V� , it is natural to replace the second
directional derivative

KRQ�Q E in (7) by
K�WXW E , where � is the

eigenvector to the smallest eigenvalue of the structure tensor> �A FEY� . This leads us to the evolutionK L E �	� 
 � K WXW E �	� 
 (9)E �� 
 �	�3���Y� � � � � �� 
 �	�3����� (10)



for all tensor channels �	������� . Note that this process synchro-
nises the smoothing direction in all channels. It may be re-
garded as a tensor-valued generalisation of the vector-valued
mean curvature motion proposed by Chambolle [10] and its
modifications by Sapiro and Ringach [37]. The synchronisa-
tion of channel smoothing is also a frequently used strategy
in vector-valued diffusion filtering [15, 43, 41].

Preservation of Positive Semidefiniteness of the Tensor
Field under Mean Curvature Motion. A number of tensor-
valued data sets reveal additional properties such as positive
semidefiniteness. Hence it would be desirable that an im-
age processing method does not destroy this property. Let
us now prove that twice differentiable solutions of MCM on
the unbounded domain � � - ��� � �XO���� do preserve the posi-
tive semidefiniteness of the initial data. We are optimistic
that the reasoning below can also be extended to more gen-
eral solution concepts such as viscosity solutions.

The tensor field � �	�����Y�
	�� � �EY�� 
��	�����Y�
	���� satisfying the
evolution equation (9) is associated with the scalar-valued
function representing the smaller eigenvalue �� ��� �	�3���Y�
	�� of
the matrix �"������=��	�� at the point ������Y��	�� and the well-known
Rayleigh-quotientE�R������Y��	�� � � � �"������Y��	�� � � (11)

where
��� � � - with H � H ���

. Let ����R�������
� � be a local
minimum of the function � � ��� . Choosing

�
as a suitable

eigenvector we obtainE����	���R�������
� � � � � ��� ����R�������
� �X< (12)

Assume in equation (7) that B � � � - is equal to the nor-
malised vector � referred to in (9) as the eigenvector of the
structure tensor

> �� 7E9� at the minimum point �	� � ��� � �
� � ,
that is, the direction of the isoline of the tensor field. Thanks
to the linearity of the differential operators involved, E � sat-
isfies �E � � L � �E � � Q�Q for any

��� � � - < (13)

A minimum is always a point of convexity, which implies
for twice differentiable functions � that Hess � �7��!���������
� ���
is positive semidefinite. Hence in view of (12), (13) we haveK L � � ��� �	���R�������
� � � K Q�Q � � ��� �	�"����������� �� B � Hess �#� � ��� ����R�������
� ����B$ �

(14)

if B represents the direction of the isoline of the correspond-
ing tensor field at the point �	� � ��� � ��� � . In other words: at a
minimum point the smallest eigenvalue �!� ��� of the matrix in
that point is increasing in time. This in turn implies preser-
vation of positivity of the smallest eigenvalue. Hence the
positive semidefiniteness of the initial tensor field is main-
tained.

4 Self-Snakes

In [35], Sapiro has proposed a specific variant of MCM that
is well-suited for image enhancement. This process which he

names self-snakes introduces an edge-stopping function into
mean curvature motion in order to prevent further shrinkage
of the level lines once they have reached important image
edges. In the scalar-valued setting, a self-snake E��	�3���Y�
	�� of
some image ���������� is generated by the evolution processK L E � ?  7E ? div T&%9� ?  7E ? - �  FE

?  FE ?
U � (15)E��	�3���Y� � � � ���	�3�����X� (16)

where % is a decreasing function such as the Perona-Malik
diffusivity [30]

%9� ?  FE ? - � % �
�

� O ?  7E ? -(' � - < (17)

In order to make self-snakes more robust under noise it is
common to replace %9� ?  FE ? - � by its Gaussian-regularised
variant %Y� ?  FE # ? - � . Self-snakes have been advocated as al-
ternatives to nonlinear diffusion filters [46], they can be used
for vector-valued images [35], and related processes have
also been proposed for filtering 3-D images [33].

Using the product rule of differentiation, we may rewrite
Equation (15) asKRL E � %9� ?  FE=# ? - � KRQ�Q E5O  "�J�)%9� ?  FE=# ? - ���� FE3< (18)

This formulation suggests a straightforward generalisation
to the tensor-valued setting. All we have to do is to replace

?  FEY# ? - by tr
> �A FEY#�� , and

K�Q�Q
by

K�WXW
where � is the eigen-

vector to the smallest eigenvalue of
> �� 7E9� . This lead us to

the following tensor-valued evolution:K L E �� 
 � %9� tr > �A FE # ��� K WXW E �	� 
O  � �)%9� tr > �� FE # ������ FE �	� 
 � (19)E=�� 
��	�3���Y� � � � �$�� 
��	�3�����X< (20)

We observe that the main difference to tensor-valued MCM
consists of the additional term  � �)%9� tr > �A FEY#������  7EY�� 
 . It
can be regarded as a shock term [27] that is responsible for
the edge-enhancing properties of self-snakes.

With only minor modifications, it is possible to extend the
semidefiniteness preservation proof for tensor-valued MCM
also to the case of tensor-valued self-snakes.

5 Active Contour Models

Active contours [21] play an important role in interactive im-
age segmentation, in particular for medical applications. The
underlying idea is that the user specifies an initial guess of
an interesting contour (organ, tumour, ...). Then this contour
is moved by image-driven forces to the edges of the object
in question.

So-called geodesic active contour models [7, 22] achieve
this by applying a specific kind of level set ideas. They
may be regarded as extensions of the implicit snake mod-
els in [6, 23]. In its simplest form, a geodesic active con-
tour model consists of the following steps. One embeds the



user-specified initial curve � � ���V� as a zero level curve into
a function ���	������� , for instance by using the distance trans-
formation. Then � is evolved under a PDE which includes
knowledge about the original image � :KRL E � ?  FE ? div T&%9� ?  �� # ? - �  FE

?  FE ?
U � (21)E��	�3���Y� � � � ����������;� (22)

where % inhibits evolution at edges of � . One may choose de-
creasing functions such as the Perona–Malik diffusivity (17).
Experiments indicate that, in general, (21) will have nontriv-
ial steady states. The evolution is stopped at some time � ,
when the process does hardly alter anymore, and the final
contour � is extracted as the zero level curve of E��	����� � .

To extend this idea to tensor valued data � �	� 
 , we propose
to use tr � > �A �� # ��� as argument of the stopping function % .K L E � ?  FE ? div T&%Y� tr > �A �� # ���  FE

?  FE ?
U < (23)

Note that, in contrast to the processes in the previous section,
this equation is still scalar-valued, since the goal is to find
a contour that segments all channels simultaneously. The
active contour evolution for this process may be rewritten asKRL E � %Y� tr > �A �� #���� KRQ�Q EO  "�J�)%9� tr > �� �� #������� FE3� (24)E2������=� � � � ���	�3�����X< (25)

Since a tensor-valued image involves more channels than a
scalar-valued one, we can expect that this additional infor-
mation stabilises the process when noise is present. Our ex-
periments in Section 7 will confirm this expectation.

6 Numerical Approaches

Our implementation is based on explicit finite difference
schemes for the evolutions (9), (19) and (24). For computing
the structure tensor of a matrix field, we replaced the deriva-
tives by central differences. Gaussian convolution was per-
formed in the spatial domain with a sampled renormalised
Gaussian

' # that has been truncated at � ��* . Its symmetry
and separability has been used to accelerate the convolution.
Since the structure tensor is a � �"� matrix, one can compute
its eigenvectors analytically.

The time derivative in the evolution PDEs has been
replaced by a forward difference, and discretisations of
second-order directional derivatives are based on the formulaK�WXW E �
	 - K�MNM E"O � 	 � KRMVP E5O�� - K�P;P E3� (26)

where � � � 	 ��� � - denotes a unit vector. Spatial derivativesK�MVM E ,
K�MVP E and

K�P;P E are approximated by central differ-
ences.

The shock terms of type  � %  FE involve first order spa-
tial derivatives. In this case we have used central differences

for approximating  % and upwind discretisations for  7E .
For more details on upwind schemes for level set ideas we
refer to [28].

Our experiments have shown that the resulting explicit
schemes are stable for time step sizes �� � < ��� when the
pixel size is set to 1.

7 Experiments

Figure 1: Edge detection with a structure tensor for matrix-
valued data. (a) Top left: Original 2-D tensor field extracted
from a 3-D DT-MRI data set by using the channels � � � � � ,� � � ��� , �A��� � � and �A��� ��� . Each channel is of size ����� � ����� .
The channels � � ����� and ����� � � are identical for symmetry rea-
sons. (b) Top right: Same image with 30 % noise. (c) Bot-
tom left: Trace of the structure tensor of the original data.
( * � �

). (d) Bottom right: Trace of the structure tensor from
the noisy image ( * � � ).

The test image we used for our experiments was obtained
from an MRI data set of a human brain. We have extracted
a 2-D section from the 3-D data. The 2-D image consists of
four quadrants which show the four tensor channels of a � ���
matrix. Each channel has a resolution of ����� � ����� pixels.
The top right channel and bottom left channel are identical
since the matrix is symmetric. To test the robustness under
noise we have replaced 30 % of all data by noise matrices:
The angle of their eigensystem was uniformly distributed in
� � ���� , and their eigenvalues are uniformly distributed in the
range � � � � ���(� . We applied all our methods to both the origi-
nal image and the noisy image.

Figure 1 demonstrates the use of tr
> �� 5� # � for detecting

edges in tensor-valued images. We observe that this method
gives good results for the original data set. When increas-



Figure 2: Tensor-valued mean curvature motion. Left col-
umn, from top to bottom: Original tensor image of size����� � ����� , at time 	 � ��� , at time 	 � ��� � . Right column,
from top to bottom: Same experiment with 30 % noise.

Figure 3: Tensor-valued self-snakes ( * � � , � � � ). Left
column, from top to bottom: Original tensor image of size����� � ����� , at time 	 � ��� , at time 	 � ��� � . Right column,
from top to bottom: Same experiment with 30 % noise.

ing the noise scale * , it is also possible to handle situations
where massive noise is present.

In our next experiment we applied the tensor-valued mean
curvature model to the test images. As can be seen in the first
column of Figure (2), the results look very similar to evolu-
tions that one experiences with scalar-valued mean curvature
motion: Level lines become convex and shrink towards cir-
cles before they vanish in finite time. This indicates that our
method is a good extension to tensor-valued data. The sec-
ond column of Figure (2) shows the same algorithm applied
to the noisy image. As expected it possesses a high robust-
ness to noise. Large evolution times give nearly identical
results for the original and the noisy images.

The results for the tensor-valued self-snake algorithm are
shown in Figure 3. They look similar to the MCM results,
but they offer better sharpness at edges due to the additional
shock term. On the other hand, noise is more noticeable than
with mean curvature motion. This effect resembles the dif-
ference between linear and nonlinear diffusion filters. The

nonlinear diffusivity that is responsible for sharp edges may
also misinterpret high-gradient noise as an edge that deserves
to be preserved. This drawback may be circumvented by
choosing a sufficiently large noise scale * ; see also [9] for
related ideas in the context of diffusion filtering.

Finally, we applied our active contour model to the same
tensor data sets. The goal was to extract the contour of the
human brain shown on the original image. Figure 4 shows
the temporal evolution of the active contours. First one no-
tices that the evolution is slower in the noisy case. This is
caused by the fact that noise creates large values in the trace
of the structure tensor. This in turn slows down the evolution.
For larger times, however, both results become very similar.
This shows the high noise robustness of our active contour
model for tensor-valued data sets. A comparison with an un-
coupled active contour model in the bottom row of Figure 4
illustrates the superiority of the proposed channel coupling.



Figure 4: Tensor-valued geodesic active contours ( * � � ,
� � �

). Left column, from top to 3rd line: Tensor image of
size ������� ����� including contour at time 	 � �

, 	 ��� � �
and 	 ��� � ��� . Right column, from top to 3rd line: Same
experiment with 30 % noise. Bottom left: Uncoupled active
contours for the original image, 	 ��� � ��� . Bottom right:
Ditto for the noisy image.

8 Summary and Conclusions

In this paper we have described how the scalar-valued level
set methods based on mean curvature motion, self-snakes
and geodesic active contour models can be extended to
tensor-valued data. We have shown that evolutions un-
der tensor-valued mean curvature motion or tensor-valued
self-snakes give positive semidefinite results for all posi-
tive semidefinite initial tensor fields. Experiments illustrate
that the proposed tensor-valued methods inherit characteris-
tic properties of their scalar-valued counterparts, but, by us-
ing tensor-valued input data, they robustness under noise im-
proves. This is a result from the fact that all tensor channels
simultaneously contribute to the calculation of the structure
tensor that steers the process. We are currently extending our
2-D implementations to 3-D data sets and we are investigat-
ing efficient numerical schemes for this purpose.
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