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Abstract. In this paper we investigate a family of partial differen-
tial equations (PDEs) for image processing which can be regarded as
isotropic nonlinear diffusion with an additional factor on the right-hand
side. The one-dimensional analogues to this filter class have been moti-
vated as scaling limits of one-dimensional adaptive averaging schemes.
In 2-D, mean curvature motion is one of the most prominent examples
of this family of PDEs. Other representatives of the filter class combine
properties of curvature motion with the enhanced edge preservation of
Perona-Malik diffusion. It becomes appearent that these PDEs require a
careful discretisation. Numerical experiments display the differences be-
tween Perona-Malik diffusion, classical mean curvature motion and the
proposed extensions. We consider, for example, enhanced edge sharpness,
the question of morphological invariance, and the behaviour with respect
to noise.

1 Introduction

Mean curvature motion and nonlinear diffusion filtering are classical methods
in image processing for which feature directions in the image are important.
Usually the two prominent directions for the local geometry in the image are
the direction of the level line or isophote (along an edge) and its orthogonal
direction, the flowline (across an edge). Choosing the amount of diffusion along
these two directions appropriately gives a various range of different methods [1-
3]. The earliest examples go back to the 1960s when Gabor proposed a method
for deblurring of electron microscopy images [4, 5].

A prominent example where we only have diffusion along edges is mean
curvature motion (MCM). Its theoretical properties have first been investigated
by Gage, Hamilton and Huisken [6-8] in the 1980s. In the context of image
processing, it first appeared in [9,10]. Two nonlinear extensions of MCM are
proposed by Alvarez et al. [11], or by Sapiro with the so-called self-snakes [12].

Nonlinear diffusion has first been proposed for image processing by Perona
and Malik in 1990 [13]. Especially in its regularised variant by Catté et al. [14]
it has become one of the standard tools for image denoising and simplification



in the meantime. The decomposition of the Perona-Malik approach in diffusion
along gradient and normal direction is used to clearify its properties [15].

A general formulation for such filters which respect more general feature
directions is given by Carmona and Zhong [16]. They discuss different ways
to determine the local feature directions in practice, for example with second
order derivatives or Gabor filters. The corresponding techniques are not only
applied to grey value images, but there are also extensions to the vector-valued
case by Tschumperlé and Deriche [17]. They use so-called oriented Laplacians,
that means weighted sums of second derivatives of an image in two orthogonal
directions.

The goal of the present paper is to investigate a class of PDEs for image pro-
cessing which combine denoising capabilities of Perona-Malik filtering with curve
shrinkage properties of mean curvature motion. The proposed model is the 2-D
generalisation of a one-dimensional equation considered in [18] as scaling limit of
adaptive averaging schemes. We are going to relate this filter class to previously
known techniques and analyse its properties with numerical experiments.

The paper is organised as follows: The following Section 2 reviews some of
the classical directional depending filters mentioned above to introduce the topic.
Section 3 then introduces our model, which will be called generalised mean cur-
vature motion (GMCM). In Section 4, we discuss some aspects of discretisation
as this turns out to be a crucial question for this filter class. We display practical
properties of all presented methods in Section 5 with several numerical exam-
ples and compare them to classical models. Section 6 concludes the paper with
a summary and some questions of ongoing research.

2 Classical Directional Depending Filters

In this section, we review some well known filters which depend on the local
feature directions. Fig. 1 gives an impression of the properties of several filtering
methods. Nonlinear diffusion filtering as introduced by Perona and Malik [13]

Fig. 1. Classical PDE-based filters. Left: Original image, 300 x 275 pixels, with Gaussian
noise (standard deviation o = 50). Second left: Perona-Malik filtering, A = 6, t = 75.
Second right: Mean curvature motion, ¢t = 50. Right: Self-snakes, A = 10, t = 50.



uses the evolution of an image u under the PDE

U(,O) =f,
Opu = div (g(|Vu|)Vu) (1)

where the given initial image is denoted by f and the evolving one by u. Usually
homogeneous Neumann boundary conditions d,u = 0 are considered, i. e. the
derivative in the normal direction of the boundary is zero. For all PDE methods
in this paper, we have the same initial and boundary conditions, and we therefore
do not state them explicitly for each equation in the following. Following the
ideas in [15,16] we decompose the diffusion into two parts acting in orthogonal
directions. We consider the two local orientations of an image:
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is the direction of the gradient or steepest ascent, that means across an edge in
the image. Orthogonal to the gradient we have the direction of the level set
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which points locally along an edge. In the following considerations we want to
decompose a diffusion process into diffusion along and across image edges. For
this reason we need the second derivatives of the image in the directions ¢ and
7, namely
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With these equations we follow Alvarez et al. [15] and decompose the Perona-
Malik equation into two diffusion components acting in direction £ and n:

Ou = g(|Vul)uge + (9(IVul) + ¢'(IVul)[Vul) uyy (6)

We see that on the one hand, the factor g(]Vu|) can reduce the velocity of the
diffusion close to an edge (when the gradient is large). On the other hand, the
first derivative of g in the second summand makes backward diffusion in direction
n possible. This gives the filter the capability of edge enhancement.
Starting from (6), Carmona and Zhong [16] proposed a more general evolution
equation
Apu = c(auyy + buge) (7)

where the function ¢ controls the whole amount of smoothing, and a and b weight
this smoothing between the two feature directions. Carmona and Zhong let the



functions a, b, and ¢ as given by the Perona and Malik equation (6) and focus on
different ways to choose the local feature directions £ and 5. For example, they
use eigenvectors of the Hessian of u or Gabor filters.

In contrast to their approach, we are going to modify the function ¢ and leave
n and ¢ as given in (2) and (3). We will not focus on different choices of ¢ and
7 in this paper, although it is clear that this could also be combined with our
modified functions ¢. We are going to see with numerical examples that even
small changes in ¢ can change the filtering behaviour significantly.

Although this was not mentioned by Carmona and Zhong, mean curvature
motion (MCM) can be obtained by choosing special parameters in their general
filter class. It only performs smoothing in the direction £ of the isophotes in the
image:

. Vu
O = uge = |Vu|div <|VU) . (8)

There are some very useful properties of this technique [6—10]: First it is contrast
invariant. Furthermore, it makes non-convex shapes convex and obeys a shape
inclusion principle. Convex shapes are shrunken to circular points and finally
vanish. In filtering time ¢ = %rQ, a circle of radius r and everything inside has
vanished. Nevertheless, mean curvature motion has the disadvantage to blur the
edges during the evolution.

In the context of segmentation, Sapiro [12] proposed the so-called self-snakes
which can be understood as nonlinear extension of mean curvature motion. The
corresponding equation is

Vu
Oru = |Vuldi Vu|) = 9
pu = [Ty (o(9u) ) )
and allows for sharper edges. This can be explained by a decomposition of the
equation in a curvature motion term and a shock filtering term making edges
sharper.

3 Generalised Mean Curvature Motion

After reviewing some classical filtering methods in the last section, we now in-
troduce the approach we will focus on in this paper. First we spend some words
on the derivation of the general model, coming from adaptive averaging schemes.
Then we interpret the appearing PDE with respect to the classical models. The
study of important special cases obtained by several choices for the diffusivity-
type function g in the model concludes this section.

3.1 Derivation of the Model

The starting point for our derivations in this section is the consideration of
adaptive averaging schemes
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in [18]. It is explained in detail there that a scaling limit of this averaging scheme
leads to the so-called accelerated nonlinear diffusion equation

1
Ou = o(0aul) 0z (9(|0zul|)Opu) . (11)

The only difference of this equation to a classical Perona-Malik model is the
factor m on the right-hand side. This factor is understood as acceleration
of the process in the following sense: If we are in an almost constant region, the
derivative of w is small, and the factor is close to 1. This does not change the
evolution very much. On the other hand, at the position of an edge, we have a
large derivative of u, and the factor is becoming much larger than 1. This leads
to a higher evolution velocity close to an edge.

There is no unique way to generalise (11) to two or more dimensions. As
described in [18], considering a 2-D weighted averaging scheme as starting point
and taking the scaling limit leads to an anisotropic diffusion equation including
a diffusion tensor.

In this paper, we generalise (11) in a different way to 2-D: We replace the first
derivative of u in (11) by a gradient and the outer derivative by the divergence.
This directly leads to the PDE
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Ou = mdlv(gﬂVuDVu) , (12)

which will be called generalised mean curvature motion (GMCM) here. To justify
this name, consider the special case g(s) = % to obtain the standard mean
curvature motion equation (8). This already indicates that the additional factor
on the right-hand side changes the behaviour compared to the Perona-Malik
model more than in the 1-D case.

3.2 Interpretation

From the decomposition of the Perona-Malik filter in (6), we immediately derive
that generalised mean curvature motion (12) can be decomposed as

AL
Oru = uge + <1 + g(vu)) ) o (13)
= uge + a(|Vul) uyy, (14)

That means we have a mean curvature motion equation with an additional
diffusive component in orthogonal direction 7 which is steered by the factor

a(s) :=1+ g;((z))s. As argument s, the factor depends on the norm of the gradi-

ent |Vu|. We will discuss later how the choice of ¢ influences the behaviour of



this factor a(s). The basic idea is that the filter performs shrinkage of level lines
in the sense of mean curvature motion while the second term keeps edges sharp
during the evolution.

There is also another way of understanding the process: Having the equation
Au = ugg + Uy, in mind, we can rewrite this as

g'(IVul)[Vu|

Oy = Au+ Upp -
! g(|Vul) "

(15)
In this form, we see that the generalised mean curvature motion can be under-
stood as linear diffusion with an additional shock term for edge enhancement.
While classical Perona-Malik filtering slows down the linear diffusion part near
edges by the factor g(|Vul), the velocity of this part is constant for generalised
mean curvature motion.

3.3 Choices for the Function g

After specifying the general framework, we now focus on several choices of the
function g and give some first insight in the expected behaviour of the corre-
sponding methods.

Perona-Malik diffusivity. Let us choose the classical diffusivity function

—1
g(s) = (1 + i—Z) proposed by Perona and Malik [13]. This diffusivity is espe-

cially interesting because it is capable of switching between forward and back-
ward diffusion adaptively. In this case we have

_ . 9(s)s 52
a(s) = 1+ o) 1—2‘924_/\2 (16)

which immediately shows that —1 < a(s) < 1 for all s € R. In a region where
|Vu| is small, we have forward diffusion. That means the whole process (13) acts
like linear diffusion there. Close to an edge, we have forward diffusion along the
edge and backward diffusion across the edge. This explains the edge-preserving
behaviour which can be observed at the practical results in Section 5.

An example with unbounded backward diffusion. Another frequently

used diffusivity function is g(s) = exp (—%) which has also been proposed by

Perona and Malik [13]. In the classical nonlinear diffusion approach, it has the
same properties as the function discussed above. In our case we obtain a(s) =
1- i—z We have a(s) <1 for all s € R, but a is not bounded from below. That
means in theory there would be no limit for the amount of backward diffusion
in a pixel where |Vu| is very large. We see that similar diffusion properties do
not imply a similar behaviour in the corresponding GMCM model. Nevertheless,
this special example is of rather theoretical interest, since for realistic values of
|Vu| and A, the values exp (|[Vu|?/A?) and exp (—|Vu|?/A?) differ by so many
orders of magnitude that a numerical treatment gets very complicated.
Special case: Constant diffusion velocity in both directions. So far,
we have chosen the amount of diffusion in direction n adaptively depending on



the gradient magnitude of the evolving image |Vu|. Now we consider the case
that the diffusion in direction 7 has a constant velocity. This is equivalent to

_ 1. 96)s
a(s) = 1+ FONE eER . (17)

We see that this condition is satisfied for the family of functions g(s) = % for
p > 0 where we have a(s) = 1 — p. The corresponding equation is given by

Vu
Oiu = |Vul? div (|V |p> = uge + (1 —p) wyy - (18)

For p = 1, we have the special case of mean curvature motion. In the experimen-
tal section, we are going to take a closer look at the behaviour of this filtering
family for several integer values of p.

Historical remark. A certain special case of this family of methods has
been proposed already in 1965 by Gabor in the context of electron microscopy
[4]. Later on, his approach has been reviewed and brought into the context of
contemporary image analysis [5]. Rewriting his approach in our notation gives
the equation

u = f- <fm7 f55> (19)

for an initial image f and a filtered version u. The quantity p is derived from
the application. We rewrite this equation as

%(u—f) = fee —3fum - (20)

The left-hand side of (20) can be interpreted as finite difference approximation
of a time-derivative. That means, Gabor’s approach (19) can be seen as one step
in an Euler forward time-discretisation of (18) with p = 4 and time step size T =

%2. Due to limited computational tools, the approach was rather theoretically
motivated than used in practice at that time.

4 Discretisation

This section describes one possibility of discretising generalised mean curvature
motion (13). In our first practical examples, it turns out that the question of
finding a suitable discretisation is very important for this kind of equations.

Let hi,hs > 0 be the pixel distance in z- and y-direction and Ny(i) the
indices of the direct neighbouring pixels in direction d to the pixel with index i.
Let u¥ denote the grey value of pixel 1 at the time step k. We start with the grey
values of the given initial image u? := f;. Let further g* ~ g(|Vu(z;)|) denote
an approximation to the welghtlng function evaluated at pixel i. We have used
the approximation

Vute] |3 Z b (21)
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This approximation yields better results for (13) than standard central differ-
ences. Similar to [19] we use a finite difference scheme with harmonic averaging
of the diffusivity approximations:

u; ifgt=0
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Why this scheme is very stable in practice can be seen by a simple equivalent
reformulation of the scheme for gF # 0:
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Under the assumption that ¢ is a non-negative function, we have 0 < k + F
This allows us to see that for sufficiently small time step size 7 < * the 1terat10n
step (23) yields a convex combination of grey values from the old tlme step. We
conclude that min; f; < u¥ < max; f; for all ¥ € N and all 4, i. e. the process

satisfies a maximum-minimum principle:

5 Numerical Experiments

In this section we study the properties of generalised mean curvature motion
with some practical examples. In Fig. 2 we compare the results of Perona-Malik
filtering with mean curvature motion and generalised mean curvature motion.
It is clearly visible that GMCM offers a combination of the properties of MCM
with Perona-Malik filtering: On the one hand, the contrast parameter A gives us
the opportunity to distinguish between smoothed and preserved sharp edges as
known from Perona-Malik filtering. On the other hand, the objects are shrunken
to points and vanish at finite time as known from mean curvature motion.

Fig. 2. Comparison of different filtering techniques. Left: Original image, 256 x 256 pix-
els. Second left: Perona-Malik filtering, A = 10. Second right: Mean curvature motion.
Right: Generalised mean curvature motion (12) with g(s) = (1+s>/\* ) , A = 10.
Stopping time in all examples: ¢ = 200.




In our second experiment, we compare the behaviour of equation (18) for
different values of p. Fig. 3 shows the results of the application to the same test
image. We see that p = 1 yields blurred results while p > 2 leads to sharp edges.
Some basic properties of mean curvature motion are also satisfied here: At this
example we see that non-convex objects are getting convex and shrink in finite
time. Further, for larger p it is possible that corners are also kept longer in the
iterations, the process of making objects circular is slowed down. That means
objects are getting smaller during evolution while the shape is preserved longer
than for mean curvature motion.

We have already mentioned that one important property of mean curvature
motion is the morphological invariance. We use a test image composed out of
four circles with different contrast to the background (see Fig. 2) to determine
the contrast dependence of generalised mean curvature motion (18). We see that
for p = 2,4,6, 10 the four circles in one filtering result always have very similar
size. This means, for constant regions, the contrast in this example does hardly
influence the shrinkage time. We know from Fig. 3 that these processes tend
to segment images into constant regions after a few steps. Further we notice
that the stopping times for shrinkage of the circles changes strongly with p. Our
experience which is also confirmed by a larger number of experiments is that the
stopping time is smallest for p = 4 and increases rapidly for larger p.

In Fig. 5, we see how joint denoising and curve shrinking is possible with
generalised mean curvature motion. In this example, it is possible to obtain
sharp edges even for a highly noisy test image. At the same time, the process
shrinks circles with a comparable velocity to mean curvature motion. We see
that self-snakes also denoise the image, but do not shrink it even for a larger
stopping time.

6 Conclusions

We have investigated a family of partial differential equations which is moti-
vated by the consideration of adaptive averaging schemes. This family comprises
mean curvature motion as prominent special case and earns properties related to
level line shrinkage from this filter. On the other hand, its close relationship to
Perona-Malik filtering explains that it is capable of smoothing edges selectively
with a contrast parameter. Numerical examples have shown the properties of sev-
eral representants of the filter family. It is clearly visible that linear generalised
mean curvature motion yields much sharper results than classical mean cur-
vature motion and keeps its interesting properties. Nonlinear generalised mean
curvature motion combines Perona-Malik filtering with curve shrinkage. Ques-
tions of ongoing research include other ways to discretise the equations without
the harmonic mean as well as theoretical properties such as shape inclusion and
shrinkage times.

Acknowledgements. We gratefully acknowledge partly funding by the Deut-
sche Forschungsgemeinschaft (DFG), project WE 2602/2-2.



Fig. 3. Comparison of the evolution (18) for different values of p. Rows from top to
bottom: p = 1,2,4,10. Left column: t = 5. Middle column: t = 100. Right column:
t = 1000.



Fig. 4. Contrast dependency of a discrete version for the constant generalised mean

curvature motion (18). Left: p = 2,t = 375. Second left: p = 4,t = 312.5. Second right:
p=6,t=375. Right: p= 10, ¢ = 625.

Mean curvature motion Generalised MCM Self-snakes

Fig. 5. Joint denoising and curvature motion. Top left: Original image, 256 x 256
pixels. Top right: Original image with Gaussian noise, standard deviation o = 200.
First column: MCM, t = 12.5,50. Second column: Generalised mean curvature motion
(12), g(s) = (1 + 32/)\2)71, t = 12.5,50. Third column: Self-snakes, A = 10,¢ = 50, 100.
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