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Abstract. In this paper we investigate a family of partial di�eren-tial equations (PDEs) for image processing which can be regarded asisotropic nonlinear di�usion with an additional factor on the right-handside. The one-dimensional analogues to this �lter class have been moti-vated as scaling limits of one-dimensional adaptive averaging schemes.In 2-D, mean curvature motion is one of the most prominent examplesof this family of PDEs. Other representatives of the �lter class combineproperties of curvature motion with the enhanced edge preservation ofPerona-Malik di�usion. It becomes appearent that these PDEs require acareful discretisation. Numerical experiments display the di�erences be-tween Perona-Malik di�usion, classical mean curvature motion and theproposed extensions. We consider, for example, enhanced edge sharpness,the question of morphological invariance, and the behaviour with respectto noise.
1 Introduction
Mean curvature motion and nonlinear di�usion �ltering are classical methodsin image processing for which feature directions in the image are important.Usually the two prominent directions for the local geometry in the image arethe direction of the level line or isophote (along an edge) and its orthogonaldirection, the 
owline (across an edge). Choosing the amount of di�usion alongthese two directions appropriately gives a various range of di�erent methods [1{3]. The earliest examples go back to the 1960s when Gabor proposed a methodfor deblurring of electron microscopy images [4, 5].A prominent example where we only have di�usion along edges is meancurvature motion (MCM). Its theoretical properties have �rst been investigatedby Gage, Hamilton and Huisken [6{8] in the 1980s. In the context of imageprocessing, it �rst appeared in [9, 10]. Two nonlinear extensions of MCM areproposed by Alvarez et al. [11], or by Sapiro with the so-called self-snakes [12].Nonlinear di�usion has �rst been proposed for image processing by Peronaand Malik in 1990 [13]. Especially in its regularised variant by Catt�e et al. [14]it has become one of the standard tools for image denoising and simpli�cation



in the meantime. The decomposition of the Perona-Malik approach in di�usionalong gradient and normal direction is used to clearify its properties [15].A general formulation for such �lters which respect more general featuredirections is given by Carmona and Zhong [16]. They discuss di�erent waysto determine the local feature directions in practice, for example with secondorder derivatives or Gabor �lters. The corresponding techniques are not onlyapplied to grey value images, but there are also extensions to the vector-valuedcase by Tschumperl�e and Deriche [17]. They use so-called oriented Laplacians,that means weighted sums of second derivatives of an image in two orthogonaldirections.The goal of the present paper is to investigate a class of PDEs for image pro-cessing which combine denoising capabilities of Perona-Malik �ltering with curveshrinkage properties of mean curvature motion. The proposed model is the 2-Dgeneralisation of a one-dimensional equation considered in [18] as scaling limit ofadaptive averaging schemes. We are going to relate this �lter class to previouslyknown techniques and analyse its properties with numerical experiments.The paper is organised as follows: The following Section 2 reviews some ofthe classical directional depending �lters mentioned above to introduce the topic.Section 3 then introduces our model, which will be called generalised mean cur-vature motion (GMCM). In Section 4, we discuss some aspects of discretisationas this turns out to be a crucial question for this �lter class. We display practicalproperties of all presented methods in Section 5 with several numerical exam-ples and compare them to classical models. Section 6 concludes the paper witha summary and some questions of ongoing research.
2 Classical Directional Depending Filters
In this section, we review some well known �lters which depend on the localfeature directions. Fig. 1 gives an impression of the properties of several �lteringmethods. Nonlinear di�usion �ltering as introduced by Perona and Malik [13]

Fig. 1. Classical PDE-based �lters. Left:Original image, 300�275 pixels, with Gaussiannoise (standard deviation � = 50). Second left: Perona-Malik �ltering, � = 6, t = 75.Second right: Mean curvature motion, t = 50. Right: Self-snakes, � = 10, t = 50.



uses the evolution of an image u under the PDE
u(�; 0) = f ;@tu = div (g(jruj)ru) (1)

where the given initial image is denoted by f and the evolving one by u. Usuallyhomogeneous Neumann boundary conditions @nu = 0 are considered, i. e. thederivative in the normal direction of the boundary is zero. For all PDE methodsin this paper, we have the same initial and boundary conditions, and we thereforedo not state them explicitly for each equation in the following. Following theideas in [15, 16] we decompose the di�usion into two parts acting in orthogonaldirections. We consider the two local orientations of an image:
� := rujruj = 1qu2x + u2y

�uxuy
� (2)

is the direction of the gradient or steepest ascent, that means across an edge inthe image. Orthogonal to the gradient we have the direction of the level set
� := ru?jru?j = 1qu2x + u2y

��uyux
� ; (3)

which points locally along an edge. In the following considerations we want todecompose a di�usion process into di�usion along and across image edges. Forthis reason we need the second derivatives of the image in the directions � and�, namely
u�� = uxxu2y � 2uxuyuxy + uyyu2xu2x + u2y and (4)
u�� = uxxu2x + 2uxuyuxy + uyyu2yu2x + u2y : (5)

With these equations we follow Alvarez et al. [15] and decompose the Perona-Malik equation into two di�usion components acting in direction � and �:
@tu = g(jruj)u�� + (g(jruj) + g0(jruj)jruj) u�� (6)

We see that on the one hand, the factor g(jruj) can reduce the velocity of thedi�usion close to an edge (when the gradient is large). On the other hand, the�rst derivative of g in the second summand makes backward di�usion in direction� possible. This gives the �lter the capability of edge enhancement.Starting from (6), Carmona and Zhong [16] proposed a more general evolutionequation @tu = c(au�� + bu��) (7)
where the function c controls the whole amount of smoothing, and a and b weightthis smoothing between the two feature directions. Carmona and Zhong let the



functions a; b, and c as given by the Perona and Malik equation (6) and focus ondi�erent ways to choose the local feature directions � and �. For example, theyuse eigenvectors of the Hessian of u or Gabor �lters.In contrast to their approach, we are going to modify the function c and leave� and � as given in (2) and (3). We will not focus on di�erent choices of � and� in this paper, although it is clear that this could also be combined with ourmodi�ed functions c. We are going to see with numerical examples that evensmall changes in c can change the �ltering behaviour signi�cantly.Although this was not mentioned by Carmona and Zhong, mean curvaturemotion (MCM) can be obtained by choosing special parameters in their general�lter class. It only performs smoothing in the direction � of the isophotes in theimage:
@tu = u�� = jruj div� rujruj

� : (8)
There are some very useful properties of this technique [6{10]: First it is contrastinvariant. Furthermore, it makes non-convex shapes convex and obeys a shapeinclusion principle. Convex shapes are shrunken to circular points and �nallyvanish. In �ltering time t = 1

2r2, a circle of radius r and everything inside hasvanished. Nevertheless, mean curvature motion has the disadvantage to blur theedges during the evolution.In the context of segmentation, Sapiro [12] proposed the so-called self-snakeswhich can be understood as nonlinear extension of mean curvature motion. Thecorresponding equation is
@tu = jrujdiv�g(jruj) rujruj

� (9)
and allows for sharper edges. This can be explained by a decomposition of theequation in a curvature motion term and a shock �ltering term making edgessharper.
3 Generalised Mean Curvature Motion
After reviewing some classical �ltering methods in the last section, we now in-troduce the approach we will focus on in this paper. First we spend some wordson the derivation of the general model, coming from adaptive averaging schemes.Then we interpret the appearing PDE with respect to the classical models. Thestudy of important special cases obtained by several choices for the di�usivity-type function g in the model concludes this section.
3.1 Derivation of the Model

The starting point for our derivations in this section is the consideration ofadaptive averaging schemes
u0i = fi ;



uk+1i = g ����uki+1�ukih ����uki+1 + g ����uki�1�ukih ����uki�1
g ����uki+1�ukih ����+ g ����uki�1�ukih ���� (10)

in [18]. It is explained in detail there that a scaling limit of this averaging schemeleads to the so-called accelerated nonlinear di�usion equation
@tu = 1g(j@xuj) @x (g(j@xuj)@xu) : (11)

The only di�erence of this equation to a classical Perona-Malik model is thefactor 1g(j@xuj) on the right-hand side. This factor is understood as accelerationof the process in the following sense: If we are in an almost constant region, thederivative of u is small, and the factor is close to 1. This does not change theevolution very much. On the other hand, at the position of an edge, we have alarge derivative of u, and the factor is becoming much larger than 1. This leadsto a higher evolution velocity close to an edge.There is no unique way to generalise (11) to two or more dimensions. Asdescribed in [18], considering a 2-D weighted averaging scheme as starting pointand taking the scaling limit leads to an anisotropic di�usion equation includinga di�usion tensor.In this paper, we generalise (11) in a di�erent way to 2-D: We replace the �rstderivative of u in (11) by a gradient and the outer derivative by the divergence.This directly leads to the PDE
@tu = 1g(jruj) div (g(jruj)ru) ; (12)

which will be called generalised mean curvature motion (GMCM) here. To justifythis name, consider the special case g(s) = 1s to obtain the standard meancurvature motion equation (8). This already indicates that the additional factoron the right-hand side changes the behaviour compared to the Perona-Malikmodel more than in the 1-D case.
3.2 Interpretation

From the decomposition of the Perona-Malik �lter in (6), we immediately derivethat generalised mean curvature motion (12) can be decomposed as
@tu = u�� + �1 + g0(jruj)jrujg(jruj)

� u�� (13)
= u�� + a(jruj)u�� : (14)

That means we have a mean curvature motion equation with an additionaldi�usive component in orthogonal direction � which is steered by the factora(s) := 1 + g0(s)sg(s) . As argument s, the factor depends on the norm of the gradi-ent jruj. We will discuss later how the choice of g in
uences the behaviour of



this factor a(s). The basic idea is that the �lter performs shrinkage of level linesin the sense of mean curvature motion while the second term keeps edges sharpduring the evolution.There is also another way of understanding the process: Having the equation�u = u�� + u�� in mind, we can rewrite this as
@tu = �u+ g0(jruj)jrujg(jruj) u�� : (15)

In this form, we see that the generalised mean curvature motion can be under-stood as linear di�usion with an additional shock term for edge enhancement.While classical Perona-Malik �ltering slows down the linear di�usion part nearedges by the factor g(jruj), the velocity of this part is constant for generalisedmean curvature motion.
3.3 Choices for the Function g

After specifying the general framework, we now focus on several choices of thefunction g and give some �rst insight in the expected behaviour of the corre-sponding methods.
Perona-Malik di�usivity. Let us choose the classical di�usivity function

g(s) = �1 + s2�2��1 proposed by Perona and Malik [13]. This di�usivity is espe-cially interesting because it is capable of switching between forward and back-ward di�usion adaptively. In this case we have
a(s) = 1 + g0(s)sg(s) = 1� 2 s2s2 + �2 (16)

which immediately shows that �1 � a(s) � 1 for all s 2 R. In a region wherejruj is small, we have forward di�usion. That means the whole process (13) actslike linear di�usion there. Close to an edge, we have forward di�usion along theedge and backward di�usion across the edge. This explains the edge-preservingbehaviour which can be observed at the practical results in Section 5.
An example with unbounded backward di�usion. Another frequentlyused di�usivity function is g(s) = exp�� s2

2�2� which has also been proposed byPerona and Malik [13]. In the classical nonlinear di�usion approach, it has thesame properties as the function discussed above. In our case we obtain a(s) =1� s2�2 . We have a(s) � 1 for all s 2 R, but a is not bounded from below. Thatmeans in theory there would be no limit for the amount of backward di�usionin a pixel where jruj is very large. We see that similar di�usion properties donot imply a similar behaviour in the corresponding GMCM model. Nevertheless,this special example is of rather theoretical interest, since for realistic values ofjruj and �, the values exp �jruj2=�2� and exp ��jruj2=�2� di�er by so manyorders of magnitude that a numerical treatment gets very complicated.
Special case: Constant di�usion velocity in both directions. So far,we have chosen the amount of di�usion in direction � adaptively depending on



the gradient magnitude of the evolving image jruj. Now we consider the casethat the di�usion in direction � has a constant velocity. This is equivalent to
a(s) = 1 + g0(s)sg(s) = c 2 R : (17)

We see that this condition is satis�ed for the family of functions g(s) = 1sp forp > 0 where we have a(s) = 1� p. The corresponding equation is given by
@tu = jrujp div� rujrujp

� = u�� + (1� p)u�� : (18)
For p = 1, we have the special case of mean curvature motion. In the experimen-tal section, we are going to take a closer look at the behaviour of this �lteringfamily for several integer values of p.

Historical remark. A certain special case of this family of methods hasbeen proposed already in 1965 by Gabor in the context of electron microscopy[4]. Later on, his approach has been reviewed and brought into the context ofcontemporary image analysis [5]. Rewriting his approach in our notation givesthe equation
u = f � �22

�f�� � 13f��
� (19)

for an initial image f and a �ltered version u. The quantity � is derived fromthe application. We rewrite this equation as6�2 (u� f) = f�� � 3f�� : (20)
The left-hand side of (20) can be interpreted as �nite di�erence approximationof a time-derivative. That means, Gabor's approach (19) can be seen as one stepin an Euler forward time-discretisation of (18) with p = 4 and time step size � =�2
6 . Due to limited computational tools, the approach was rather theoreticallymotivated than used in practice at that time.
4 Discretisation
This section describes one possibility of discretising generalised mean curvaturemotion (13). In our �rst practical examples, it turns out that the question of�nding a suitable discretisation is very important for this kind of equations.Let h1; h2 > 0 be the pixel distance in x- and y-direction and Nd(i) theindices of the direct neighbouring pixels in direction d to the pixel with index i.Let uki denote the grey value of pixel i at the time step k. We start with the greyvalues of the given initial image u0i := fi. Let further gki � g(jru(xi)j) denotean approximation to the weighting function evaluated at pixel i. We have usedthe approximation

jru(xi)j �
vuut 2X

d=1
X

j2Nd(i)
(uj � ui)22h2d : (21)



This approximation yields better results for (13) than standard central di�er-ences. Similar to [19] we use a �nite di�erence scheme with harmonic averagingof the di�usivity approximations:
uk+1i =

8><
>:

uki if gki = 0
uki + 1gki

2X
d=1

X
j2Nd(i)

2
1gkj + 1gki

ukj � ukih2d else (22)
Why this scheme is very stable in practice can be seen by a simple equivalentreformulation of the scheme for gki 6= 0:

uk+1i = uki + 2X
d=1

X
j2Nd(i)

2gkjgkj + gki
ukj � ukih2d : (23)

Under the assumption that g is a non-negative function, we have 0 � gkjgkj+gki � 1.
This allows us to see that for su�ciently small time step size � � 1

8 the iterationstep (23) yields a convex combination of grey values from the old time step. Weconclude that minj fj � uki � maxj fj for all k 2 N and all i, i. e. the processsatis�es a maximum-minimum principle:
5 Numerical Experiments
In this section we study the properties of generalised mean curvature motionwith some practical examples. In Fig. 2 we compare the results of Perona-Malik�ltering with mean curvature motion and generalised mean curvature motion.It is clearly visible that GMCM o�ers a combination of the properties of MCMwith Perona-Malik �ltering: On the one hand, the contrast parameter � gives usthe opportunity to distinguish between smoothed and preserved sharp edges asknown from Perona-Malik �ltering. On the other hand, the objects are shrunkento points and vanish at �nite time as known from mean curvature motion.

Fig. 2. Comparison of di�erent �ltering techniques. Left: Original image, 256�256 pix-els. Second left: Perona-Malik �ltering, � = 10. Second right: Mean curvature motion.Right: Generalised mean curvature motion (12) with g(s) = `1 + s2=�2´
�1, � = 10.Stopping time in all examples: t = 200.



In our second experiment, we compare the behaviour of equation (18) fordi�erent values of p. Fig. 3 shows the results of the application to the same testimage. We see that p = 1 yields blurred results while p � 2 leads to sharp edges.Some basic properties of mean curvature motion are also satis�ed here: At thisexample we see that non-convex objects are getting convex and shrink in �nitetime. Further, for larger p it is possible that corners are also kept longer in theiterations, the process of making objects circular is slowed down. That meansobjects are getting smaller during evolution while the shape is preserved longerthan for mean curvature motion.We have already mentioned that one important property of mean curvaturemotion is the morphological invariance. We use a test image composed out offour circles with di�erent contrast to the background (see Fig. 2) to determinethe contrast dependence of generalised mean curvature motion (18). We see thatfor p = 2; 4; 6; 10 the four circles in one �ltering result always have very similarsize. This means, for constant regions, the contrast in this example does hardlyin
uence the shrinkage time. We know from Fig. 3 that these processes tendto segment images into constant regions after a few steps. Further we noticethat the stopping times for shrinkage of the circles changes strongly with p. Ourexperience which is also con�rmed by a larger number of experiments is that thestopping time is smallest for p = 4 and increases rapidly for larger p.In Fig. 5, we see how joint denoising and curve shrinking is possible withgeneralised mean curvature motion. In this example, it is possible to obtainsharp edges even for a highly noisy test image. At the same time, the processshrinks circles with a comparable velocity to mean curvature motion. We seethat self-snakes also denoise the image, but do not shrink it even for a largerstopping time.
6 Conclusions
We have investigated a family of partial di�erential equations which is moti-vated by the consideration of adaptive averaging schemes. This family comprisesmean curvature motion as prominent special case and earns properties related tolevel line shrinkage from this �lter. On the other hand, its close relationship toPerona-Malik �ltering explains that it is capable of smoothing edges selectivelywith a contrast parameter. Numerical examples have shown the properties of sev-eral representants of the �lter family. It is clearly visible that linear generalisedmean curvature motion yields much sharper results than classical mean cur-vature motion and keeps its interesting properties. Nonlinear generalised meancurvature motion combines Perona-Malik �ltering with curve shrinkage. Ques-tions of ongoing research include other ways to discretise the equations withoutthe harmonic mean as well as theoretical properties such as shape inclusion andshrinkage times.
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Fig. 3. Comparison of the evolution (18) for di�erent values of p. Rows from top tobottom: p = 1; 2; 4; 10. Left column: t = 5. Middle column: t = 100. Right column:t = 1000.



Fig. 4. Contrast dependency of a discrete version for the constant generalised meancurvature motion (18). Left: p = 2; t = 375. Second left: p = 4; t = 312:5. Second right:p = 6; t = 375. Right: p = 10; t = 625.

Mean curvature motion Generalised MCM Self-snakes
Fig. 5. Joint denoising and curvature motion. Top left: Original image, 256 � 256pixels. Top right: Original image with Gaussian noise, standard deviation � = 200.First column: MCM, t = 12:5; 50. Second column: Generalised mean curvature motion(12), g(s) = `1 + s2=�2´

�1, t = 12:5; 50. Third column: Self-snakes, � = 10; t = 50; 100.
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