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Abstract

The relations between wavelet shrinkage and nonlinear diffusion for discon-
tinuity-preserving signal denoising are fairly well-understood for single-scale
wavelet shrinkage, but not for the practically relevant multiscale case. In
this paper we show that 1-D multiscale continuous wavelet shrinkage can be
linked to novel integrodifferential equations. They differ from nonlinear diffu-
sion filtering and corresponding regularisation methods by the fact that they
involve smoothed derivative operators and perform a weighted averaging over
all scales. Moreover, by expressing the convolution-based smoothed derivative
operators by power series of differential operators, we show that multiscale
wavelet shrinkage can also be regarded as averaging over pseudodifferential
equations.

1 Introduction

Wavelet shrinkage and nonlinear diffusion filtering constitute two important classes
of discontiuity-preserving denoising methods for signals and images. The research
on both filtering techniques started in the early 1990s, and meanwhile the proposed
methods are relatively well understood and often used in practice.

During the last years there has been a growing interest in analysing the relations
between wavelet-based methods and methods based on partial differential equations
(PDEs) such as diffusion filters and their corresponding variational approaches 1.
This includes both works in the continous [2, 6, 7, 10, 11, 15, 28, 40] and in the
discrete setting [13, 29, 30, 41, 46]. Let us now focus on some examples that are
particularly relevant in the context of the present paper.

In the continuous setting, a variational formulation for wavelet shrinkage has
been presented by Chambolle et al. [6, 7]. This makes it possible to understand
wavelet shrinkage as an image smoothing scale-space. Since the scale-space concept
originated from diffusion equations [23, 48], this already points out some structural
similarities. Nevertheless, a direct comparison between the scale-space properties
remained still open. Bredies et al. [3] show the equivalence of variational wavelet
shrinkage to abstract pseudodifferential evolution equations. One open question in
practice is the connection of these pseudodifferential equations to well-known image
processing methods such as nonlinear diffusion of Perona-Malik type.

Equivalence results between methods of both classes have also been shown for
discrete problems and under certain conditions [41, 30]. For example, discrete soft
Haar wavelet shrinkage on the finest scale is equivalent to total variation flow and
total variation diffusion [41]. Under more general assumptions, for other diffusivities
or with other kinds of wavelets, one still can show close relationships [30, 45]. These
ideas are based on the fact that discrete wavelets on the finest scale approximate
derivatives. The derivative order is determined by the number of vanishing moments
of the discrete filters. An open question in this context is what happens if we

1Sometimes wavelet shrinkage and PDE-based denoising methods are also used in combination
[4, 8, 12, 20, 21, 26].



take coarser scales than only the finest one into consideration. In this context
only experimental results are available [31]: They indicate that iterations within
nonlinear diffusion implementations play a similar role as performing shift-invariant
wavelet shrinkage at multiple scales. So far, however, no results have been derived
that may be helpful in understanding the differences between both techniques.

The goal of the present paper is to address the before mentioned open questions.
To this end we consider wavelet shrinkage in the practically relevant multiscale set-
ting. For the sake of simplicity we focus on 1-D signals and we analyse the continu-
ous shrinkage framework only. The key observation that we exploit in our paper is
the fact that, for wavelets with a finite number of vanishing moments, the wavelet
transform can be understood as applying a smoothed derivative operator [27, p.
167]. Thus, wavelet shrinkage on a single scale is closely related to a diffusion type
equation where all appearing spatial derivatives are regularised with a convolution
kernel. Going from a single scale to multiple scales introduces a further integration,
yielding a novel integrodifferential equation derived from wavelet shrinkage. More-
over, we express convolution with a smoothing kernel by a power series of differential
operators. This allows us to regard multiscale wavelet shrinkage as an averaging of
pseudodifferential equations over a continuum of scales. These results make the an-
alytical reasons for the differences between continuous multiscale wavelet shrinkage
on one side and nonlinear diffusion and its corresponding variational regularisation
on the other side explicit: They are caused by the presence of additional integration
scales, smoothing operators and differential operators of higher order.

Our paper is organised as follows: Section 2 introduces some useful notations
and summarises the classical continuous wavelet shrinkage approach, while Section 3
gives a brief introduction of diffusion filtering techniques. The idea of understanding
wavelets as smoothed derivative operators, which is crucial for the remainder of the
paper, is explained in Section 4. With this knowledge, Section 5 describes how
wavelet shrinkage can be interpreted as approximation to a novel integrodifferential
evolution equation. In Section 6 we are going to present a corresponding energy
functional that uses both smoothed derivative operators within the penaliser and
integration over all scales. The link to pseudodifferential operators is discussed
in Section 7. Section 8 concludes the paper with a summary and sketches some
problems for ongoing and future research.

2  Wavelet Shrinkage

This section sketches the ideas behind wavelet shrinkage in a mathematical formu-
lation that is suitable for our further considerations.

Wavelet shrinkage became popular by the work of Donoho and Johnstone [18].
The general idea is to transform the data to a representation that allows to reduce
noise in a straightforward way, namely by diminishing the modulus of the wavelet
coefficients. Especially the low computational complexity of the wavelet transform
has made such approaches highly interesting for signal and image processing appli-
cations. As shown in [6, 7, 3], continuous wavelet shrinkage can be understood as
minimisation of certain energy functionals. Of special interest has been soft wavelet
shrinkage, which is related to gradient descent along Besov norms.

Before we formulate continuous wavelet shrinkage, let us give an introduction
to the formal notions related to wavelets which will be used in this paper. As usual
let LP(R) := {f : R — R| [ |f(#)[Pdx < oo} for 1 < p < oo. In this and the
following three sections, we consider signals as real functions f,u € L'(R). We
choose a real function 1) € L'(R) N L?(R), the mother wavelet, which has to satisfy



the admissibility condition [14, p. 27)

0 |7 2
cy = 27r/0 |¢(§)| d¢ < oo . (1)

Here, the Fourier transform is defined as
Fy() = (6) = % / Z (@) exp(—ict) dao . @)

To simplify the notation let ¢, and 1& be scaled and mirrored versions of v, i.e.
Yo (z) := =1 (%) and ¢(z) := ¢(—=z). By f * g we denote the convolution of

Cyp 0

two functions f,g € L'(R):

(f*xg)(x) = /_oo flx—7)g(r)dr forallz e R . (3)

If a function f(y,z) depends on more than one variable we replace the variable in
which the convolution is performed with a dot, for example

(f(-,2)*g) (z) = /Rf(a:—'r,z)g(T) dr forallz,zeR . 4)

This notations help us to write down wavelet shrinkage in an easy way. Wavelet
shrinkage transforms the data in a suitable representation and performs simple
nonlinear operations. The back-transform finally yields the denoising result. Let us
now formulate these three steps in detail:

1. Analysis: First the given function f is transformed into the wavelet domain.
With the notations introduced above we can write the wavelet transform as

Worwo) = = [~ g0 o (7F) b = (be )@ - @

Thus this step can be seen as convolution with scaled and mirrored versions
of the mother wavelet.

2. Shrinkage: A - typically nonlinear — shrinkage function S : R — R is
applied to the wavelet transform Wy, f. Usually it is assumed that this shrink-
age function diminishes the absolute value of the wavelet coefficients without
changing their sign. Reasonable assumptions on S are thus

z>0=S(x) >0, S(—z)=-S(z), and|S(z)| <|z| (6)

for all z € R. Usually S depends on a parameter A which determines the
amount of shrinkage. This parameter is omitted here to simplify the notations.
Examples of shrinkage functions can be found in Tab. 1.

3. Synthesis: As final step, the shrunken wavelet transform S o Wy, f has to be
transformed back into the spatial domain to yield the resulting function u of
the shrinkage. It should be mentioned that the wavelet transform W is an
isometric map from L2(R) to L?(R x RY), equipped with the inner product

o= [ [ swo)gtao) G ds )



where g is the complex conjugate of g. Thus, on the subspace given by the
image of Wy, the adjoint operator W is the inverse of Wy,. We show several
ways to formulate the back-transform:

u = Wi(SoWyf) (8)

oo do
— /0 (¢U*S(W¢f(';‘7)))ﬁ

= sy e (SF) Sar

The convergence of these integrals should be understood in the weak sense,
see [14, p.25]. In the following sections we will mostly refer to the following

formulation: - J
u = /0 (1/)‘,*5(1/30*1”)) U—Z . 9)

Note that besides the convolution with 1, , the back-transform also introduces
an integration over all scales o.

The formulation for wavelet shrinkage given in this section will be the starting point
for our considerations in the following.

3 Nonlinear Diffusion Filtering and Regularisa-
tion

The goal of this section is to sketch nonlinear diffusion processes of arbitrary or-
der and their corresponding regularisation methods, and to consider modificiations
that turn the differential equations into integrodifferential equations. All these pro-
cesses are required when interpreting multiscale wavelet shrinkage in terms of an
intergrodifferential equation.

3.1 Nonlinear Diffusion Filtering of Arbitrary Order

Nonlinear diffusion filtering in image processing goes back to the seminal paper of
Perona and Malik [35] in 1990; for an overview we refer to [44].

One of the major drawbacks of diffusion filters is the so-called staircasing effect:
Especially edge-enhancing processes tend to turn smooth grey value transitions into
stair-like artifacts in the image. One way to circumvent this problem is to introduce
higher derivative orders in the filtering process [49, 25, 16]. This generalises piece-
wise constant results to piecewise polynomial ones which may be better adapted to
certain applications.

In this paper we consider higher order nonlinear diffusion filters with the follow-
ing family of PDEs:

ou = (=1)"*tLton (g (|6;”u|2) a;}u) . (10)

For n € N\ {0} we call this a diffusion filter of order 2n because this is the maximal
derivative order appearing in the equation. We notice that the case n = 1 yields the
classical model by Perona and Malik. For practical purposes usually the casesn =1
and n = 2 are most interesting. Orders n > 2 often tend to adapt too much on
high noise outliers. Furthermore, in a 2-D grey value image, the difference between
a quadratic and a cubic polynomial region is optically hardly distinguishable.



3.2 Corresponding Regularisation Methods

It is well-known that nonlinear diffusion filtering can be closely related to regu-
larisation methods [38]. Such regularisation strategies with first order derivatives
in image processing have been considered for example in [34, 9, 39, 32]. Higher
derivative orders are also used for regularisation purposes, see [37]. Such varia-
tional approaches obtain denoised or simplified versions of the data by minimising
energy functionals of the form

oo
Bw = [ (-0 +ap(uP)) ds . (11)
—0o0

The function p in this case is an increasing function which penalises large fluctu-
ations in term of pronounced derivatives of order n. The choice of this penalising
function heavily influences the characteristics of the solutions.

The connection of (11) to the nonlinear diffusion equation (10) becomes evident
when we write down the Euler-Lagrange equation of (11):

u=f gy 4 (&' (1uP) u™) (12)

« dz™

This equation can be regarded as a fully implicit time discretisation of (10) with
initial condition u(z,0) = f(x), diffusivity g = p' and time step size a.

3.3 Modifications Leading to Integrodifferential Equations

Besides the pure regularisation and diffusion models discussed so far, we will now
point out with several examples that it is common practice in image processing to
use smoothing kernels in combination with derivatives: A prominent example for
such a filter is the regularised nonlinear diffusion by Catté et al. [5]. It is a second-
order Perona-Malik model where the data steering the diffusivity is smoothed with
a Gaussian kernel before taking the derivative:

o = 8, (910, Gy % ul?) O,u) (13)

In this example, the presmoothing introduces well-posedness in the problem and
renders the filter more robust against noise.

Other authors proposed to replace all derivative operators consequently with
Gaussian-smoothed derivatives [33]. An example which would fit into this strategy
is regularisation with a presmoothed derivative [38]:

2
)) dz . (14)

E = — — G,
W= [ (= san (|56
The corresponding diffusion process to this energy functional is given by

—0o0

Ou = 8, Gy x (9(|0: Go xul?) 0, Gy % u) . (15)

However, these approaches have hardly found practical applications so far. One
problem is that smoothing all derivatives with a fixed scale ¢ makes the method
incapable of removing noise on a smaller scale. This cannot happen with the method
by Catté et al. since the outer derivatives are not smoothed.

As alast example in this context we want to mention edge-enhancing anisotropic
diffusion filtering in the case of at least two-dimensional data [44]:

Ou = div(D(V G, *u) Vu) . (16)



This filter family is of special interest as example because presmoothing is necessary
for the anisotropy of the filter: Due to the construction of the diffusion tensor D, the
preferred directions for the anisotropy are the one of VG, * u and its orthogonal
direction. Without presmoothing one would simply go in direction of Vu which
directly leads to an isotropic model.

These examples show that presmoothing of derivatives within diffusion filters is
a common concept that is applied in different contexts and for several reasons. Let
us now investigate its interpretation in terms of the wavelet transform.

4 Wavelet Transforms as Smoothed Derivative
Operators

In Section 2 we have introduced the wavelet shrinkage technique with an arbitrary
mother wavelet ¢). Now we restrict our choice to a certain class of wavelets in order
to relate the corresponding wavelet transform to smoothed derivative operators.

First we assume that the mother wavelet v has fast decay, i. e. for any exponent
m € N there exists a constant ¢,, such that

()] <

¢

— " forallzeR . 17

1+ |z|™ (17
For the rest of the paper, we focus on wavelets with a finite number n € N\ {0} of
vanishing moments:

/ zhp(x) de =0 for 0<k<n . (18)

— 00

It is well-known [27, p.167] that these assumptions are equivalent to the existence
of a function 6 with fast decay such that

V(@) = (0" Do) (19)

Moreover, 1 has no more than n vanishing moments if and only if § has nonzero
mean value, i. e. [%_6(z) dz # 0. In our further considerations, this function 6
will play the role of a smoothing kernel. Keeping this in mind it makes sense to
consider the maximal number of vanishing moments for a certain wavelet which
gives a natural choice of the corresponding derivative order.

Fig. 1 gives two examples of wavelets that are often used in image processing
together with their corresponding derivative orders and smoothing kernels. It can
be seen that the Haar wavelet is the first derivative of a hat-shaped function. The
second classical example is the Mexican hat wavelet which is defined as the second
derivative of a Gaussian kernel. Examples of wavelets with a higher number of
vanishing moments include the Daubechies wavelets. All the wavelet classes men-
tioned here are also of fast decay, the Mexican hat wavelet because of its exponential
decreasing velocity, and the others because of their compact support.

So far, we have seen the relation (19) between the mother wavelet and the
smoothing kernel. It is not difficult to verify the following equations for scaled and
mirrored versions of the wavelet:

Go*f = ™" (éa*f) = " (6,)™ x f (20)

and

Yo f = (o) OF (O % f) = (=) (6,)™ % f . (21)
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Figure 1: Examples of wavelets as derivatives of smoothing kernels.

As an elementary property of the convolution, one can also put the derivative in
front of the function f, if the regularity of f allows for this. If this is not the case
one can motivate the smoothing kernel 8 as regularisation of the n-th derivative of
f.

Equation (20) shows that the wavelet transform is equivalent to taking a
smoothed derivative with an additional weight factor o™:

Wof = (Yox1f) = 0" 02 (6, %1) (@) - (22)

For the back-transform, an additional integration over all scales ¢ is introduced:
N *° do *° do
wr= [ wen G = [Coraesn G @)
0 g 0 o

These two equations will form the basis for relating wavelet techniques to derivative-
based methods.

5 Wavelet Shrinkage and Evolution Equations

In this section, we are going to relate wavelet shrinkage as given in Section 2 to novel
integrodifferential evolution equations involving the data on a continuous spectrum
of scales.

The prototype of an evolution equation in the sense of this paper can be written
down informally as

Bu = L* (g(|Lu|2) Lu) . (24)

In principle we will study this in the case that L is the wavelet transform. Addi-
tionally we are going to argue that the time-discrete shrinkage steps can be seen
just as an approximation to a time-continuous evolution.

We start with writing down one step of wavelet shrinkage as given in Section 2:

u:/ooc(¢a*5(zﬁ,,*f)) d—o. (25)

o2
Now we choose a function g such that

S@) = z—glaP)x . (26)



Shrinkage S(x) g(|z|?) Diffusivity
Linear Az 1-A Linear [23]
0, ol <X 1, Jal <A
Hard [27] z, |z|>A 0, |z|>A
0, lzf <X | 1, Jz[<Xx |
Soft [17] z — Asgn(z), |z|>A ﬁ, lz] > X |~ TV {1, 36]
0, lz] < A 1, |z| <A
te [22 N N ~ BFB [24
Garrote [22] -2 g > A A el > A [24
-1
/\2‘1722 (1 + f\—z) Perona-Malik [35]
1
(1 — ,/ﬁ;) x (1 + f\é) ’ Charbonnier [9]

Table 1: Shrinkage functions and corresponding diffusivities. Adapted from [30].

During the further steps we are going to see immediately why this choice makes
sense (cf. also [30] where a relation of this type has been derived in a discrete
setting). The function g is going to play the role of a diffusivity function in the
following considerations. Under the assumptions (6) it follows that 0 < g(|z|?) < 1.
This range is in accordance with stability requirements that do not allow negative
diffusivities, and bounding the diffusivity from above by 1 is a frequently used
normalisation in image analysis.

Tab. 1 shows some corresponding pairs of shrinkage functions S and diffusivities
g. We obeserve that several practically used shrinkage functions lead to well-known
diffusivities. An interesting case is for example soft wavelet shrinkage [17] that
corresponds via (26) to a total variation (TV) diffusivity [1] which is regularised
for small parameters where it would become unbounded. A similar regularisation
for small parameters appears in the balanced-forward-backward (BFB) diffusivity
[24] corresponding to Garrote shrinkage. With the Perona-Malik diffusivity [35]
and the diffusivity related to the regularisation approach of Charbonnier et al. [9)
we also give two examples where we start with classical diffusivities and calculate
corresponding shrinkage functions. Plugging (26) into the wavelet shrinkage formula
(25) yields

u = /OOO(¢<,*zZzJ*f) Z—Z (27)

[ (o (o (W 1P) G2 )) 55

The first integral is simply the wavelet reconstruction formula which gives back the
initial data f. Therefore this expression is equivalent to

u=f == [ (v x (a9 57 G 1)) (28)

The next step now is to involve the ideas from Section 4 to regard wavelets as
smoothed derivative operators. We obtain the following equivalent formulation of
wavelet shrinkage as integrodifferential equation:

u—f = (=1 /oo o2 " 6, * (g (|0"6250*f|2) (6;”67(,*1‘)) do

0 o’

(29)




Let us now relate this process to nonlinear diffusion filtering. Similar to the
approach in [38] we now introduce an artificial time variable ¢ for the function u
such that the initial data is given at time ¢t = 0: u(:,0) = f. It is possible to write
the left-hand side as “(z);f(z) = "(Z’T);"(Z’O) with 7 = 1. Keeping this in mind,
(28) can be understood as a single step time-explicit approximation to the evolution
equation

* ~ ~ do
= (-1 n+1 / 2n qn ., n an ' 2 n B =
Ou = (—1) | o Oy b, * (g (|a 0y 65 * ul ) (A *u)) 2 (30)
If we compare (30) to the higher order nonlinear diffusion equation
Opu = (-1)""1 07 (g (107 ul*) O3u) (31)

we notice two differences:

1. All appearing derivative operators in the equation are pre-smoothed by con-
volution with scaled and mirrored versions of a kernel 6.

2. The right-hand side is not only considered at one single scale, but there is an
integration over all scales with additional weight factors.

We are going to see in the next section that these two steps can also be used to
turn classical variational methods into wavelet-based ones.

It should be noted that the choice 7 = 1 in the above derivation is motivated by
the fact that we want to represent exactly one step of wavelet shrinkage with this
stopping time. By using the relation

S(a) = (1 - 7g(|e))z (32)

instead of (26), one could specify an arbitrary stopping time 7 > 0 which corre-
sponds to one shrinkage step. This would lead to other diffusivity functions g = £.
We have chosen 7 = 1 here to avoid the division by 7 in all diffusivities.

We have seen how wavelet shrinkage can be related to integrodifferential equa-
tions. In the next section we consider regularisation approaches and investigate how
these can be related to variational formulations for wavelet shrinkage.

6 Variational Formulation and Correspondences

Our prototype of a variational method for denoising or simplifying a signal f can
be written as follows:

oo
Bw = [ @-17ds+a [ (L)) dy - (33
o r
First a linear operator L is used to extract some features of interest from the image
u which are penalised with a typically nonlinear function p. The variable name
y should indicate that the function Lu can live in another domain than u which
is named I" here. Examples for such operators L can be derivative operators, the
wavelet transform, or also the Fourier transform.

Here we consider that case that L is the wavelet transform as introduced in
Section 2, so we have T' = R x R} and integrate with the corresponding weight.
Thus we formulate an energy functional for wavelet shrinkage as

/_(u— da:+a/ / |W¢um0)|2)i—gd:c
:/_(u— da:+a// |¢U*u|)—dz. (34)



This is closely connected to ideas and variational formulations presented in [6, 7, 3].
With (20) we can rewrite this energy functional as

E(u):/_ (w—f) da:+a/ / (10" 328+ w)P?) i—zdx. (35)

Again we see that the same two steps as in the last section lead to classical regu-
larisation approaches (11). First we moti the integration over all scales and obtain
a variational functional

E(u) = /m (u—f)? dz + a/oo p(|a;; (é,*u)ﬁ) dz . (36)

—00 — 0o

A special case (n = 1) of this functional is given by (14) which has been considered
by Scherzer and Weickert [38]. In our case a richer choice of convolution kernels and
higher derivative orders is allowed. The second step is to omit also the convolution.
This leads us directly to the classical regularisation functionals (11).

By comparing these results with the last section, we see that the two major
differences multiscale wavelet shrinkage and regularisation are the same as between
multiscale wavelet shrinkage and nonlinear diffusion: smoothed derivative operators
instead of derivatives, and weighted integration over all scales instead of working at
the finest scale.

7 Smoothing Kernels and Pseudodifferential Op-
erators

So far, we have related wavelet shrinkage to integrodifferential equations which
involve convolutions with scaled and mirrored versions of the mother wavelet. In
this section, we express these convolutions as pseudodifferential operators. This
allows us to eliminate all integrals from (30) except the integration over all scales.
Instead of the convolutions, the equations then contain power series of differential
operators.

After introducing some notations and technical details, we are going to describe
the general procedure. Then we apply this to examples for convolution kernels,
namely to a box function and a Gaussian kernel. As we have seen in Section 2,
also the wavelet transform is a convolution and thus considered after the first two
examples. Since the Haar and the Mexican hat wavelet can be written as derivatives
of a box function and a Gaussian, we can conclude the section with these two popular
examples of wavelets.

Let S be the Schwartz space of rapidly decreasing functions [42, 43]. We consider
the convolution @ * f of a function f € S(R) with a kernel # € L*(R) N L*(R). It
is well-known that convolution in the spatial domain is equivalent to multiplication
in the Fourier domain:

Fhxf) = V2r h-f . (37)

Besides the convolution, also derivative operators are multiplications in the Fourier

domain, namely
d .
F{— = i&f .
( dxf) i€f (39)

Let us assume that the Fourier transform of our convolution kernel € is analytic,
i. e. there is a power series representation

=D a . (39)
k=0

10



For f € S(R) we can understand the product 8 - f as a sum of derivatives of f up
to arbitrary orders in the Fourier domain:

1 k
Ee*sz Yoxf) = F! (Zakf ) (40)

Under the assumption of sufficient convergence conditions of the power series, we
may interchange the sum and the Fourier back-transform which allows us to write

oo oo o0 k
- (Zakf’“f> =S urteh) = Ya(ie) £ @
k=0 k=0

In this context the symbol 6 (%Bw) is used to denote this power series of differential
operators (see [43], for example):

9(:;;)]0 = iak (1;‘;)% = \/%e*f . (42)

k=0

We reformulate this as the central equation

= \/ﬂéC(Z)f (43)

relating convolution to power series of derivatives. It is also well-known that such
a reasoning can be generalised from analytic functions to richer classes of functions
6, for example continuous or measurable functions [42, 47].

After describing the general idea, let us now apply this to two examples of
convolution kernels:

Convolution with a box function. A basic operation in image processing is
to take the arithmetic mean inside a symmetric neighbourhood of pixels. This can
be understood as convolution with the characteristic function of an interval

= {y et (44

x(@) = XI- 0, else .

11
272
This function has the Fourier transform

o1 (1N _ 1 sin(le) DS
X(g)_msmc(2§)—m %52 \/*Z4k (2k 4+ 1)!

Thus we write the convolution with the box function x as pseudodifferential operator

(45)

1dY, ~ (D d*
X[ = sinc (2 da:)f - ;ZB 2k £ 1) da2F I (46)

Convolution with a Gaussian kernel. As our second example, we take a
look at the convolution with a Gaussian kernel, since this operation is fundamental
in image processing. It is well-known [43] that the Fourier transform of a Gaussian

kernel 6(z) = exp (—ﬁ) is again a Gaussian function 0(€) = exp (—%) With the
above reasoning we then write

2k
Oxf = Fexp( )f—rzyck!d%f. (47)

11



Similar formulations often appear in the context of linear scale-spaces and the heat
equation (see [32, 19, 43]).

After these two examples, we now apply the idea to the convolution coming from
the wavelet transform.

Wavelet transform. We have seen in Section 2 how the wavelet transform can
be understood as convolution operator. Given a mother wavelet 1), the Riemann-
Lebesgue theorem assures that its Fourier transform is integrable, i. e. ¢ € L!'(R).
This allows us to use (43) and write

wef =vai(3) s (18)

For a wavelet transform we now need convolutions with translated and scaled ver-
sions of the mother wavelet ¢ which can be obtained in a general way. The transla-
tion is simply the evaluation of 4 * f at another point. For the scaled and mirrored
version a substitution shows that

(Fy) (&) = —voip(—o€) . (49)

Together this means that we can write the wavelet transform as

Wol(ao) = o @) = ~omo (5 (<72 ) F)@ 60

and thus express it as pseudodifferential operator.

As we did in the previous sections, we will also make this more explicit with the
two examples of Haar and Mexican hat wavelets:

Haar wavelet. We consider the Haar wavelet defined as

-1, z€[-1,0)
Pl@) = ¢ 1, =z€01] (51)
0, else

as negative first derivative of a hat function

1—|z|, z<L1
h(z) = { 0 7| | clso | (52)

A simple calculation shows that h can be written in terms of the box function x
considered below, namely h = x * x. Together we have ¢ = —%(X *x). With (45)
this implies in the Fourier domain

e = = (sinc (;s))z (53)

Written as pseudodifferential operator the basic convolution of a Haar wavelet trans-
form looks as follows:

1 d (. (1 d\\’
w*fz_\/ﬁdm<smc<2idx>> I (54)

For the scaled version of ¢ we can use (50). The power series looks as follows:

Yo x f = \/gd‘i (sinc (;:;x))z : (55)

With this equation we have expressed the wavelet transform. The convolutions
appearing in the back-transform are the same except the mirroring of the kernel.
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This operator can be used as an example for the linear transform L in the variational
methods or evolution equations shown above.
Mexican hat wavelet. The Mexican hat mother wavelet is given by the sec-

ond derivative of a Gaussian function ¢(z) = —%22 exp (—‘”2—2) The Gaussian has

already been considered in (47), so that we can directly give the corresponding
derivative operator

f- (56)

& 1 d? — 1 2

bxf = _mdm?eXP(Zdﬁ>f = VAT ) g gy

Again we consider scaled and mirrored versions since they appear as convolution
kernels in the wavelet transform:

f.o (67

0.2 d2> o O.Qk d2k+2

- &2
Yox f = — QWUMGXP(2M f= _%I;}WW

These examples show that it is possible to reformulate the convolutions in the
integrodifferential evolution equation (30) as power series of differential operators.
This eliminates all integrations in this equation except of one: The outer integral
over all scales ¢ still remains.

8 Conclusions

The goal of the present paper was to shed some light on the differences between
continuous multiscale wavelet shrinkage on one hand and nonlinear diffusion filters
of arbitrary order and their variational counterparts on the other hand. This has
been achieved by deriving novel integrodifferential equations from multiscale wavelet
shrinkage. To this end we exploited the fact that wavelets with a finite number of
nonvanishing moments represent smoothed derivative operators. Our investigations
apply to a broad class of widely-used wavelet types such as the Haar wavelet and
the Mexican hat wavelet. The resulting integrodifferential equations differ from
their nonlinear diffusion counterparts by the additional presmoothing of derivatives
and integration over a continuum of scales. Moreover, they can be rewritten as a
weighted average of pseudodifferential equations. It is our hope that our analysis
will form a first step towards a more detailed quantitative characterisation between
multiscale and iterative concepts for discontinuity-preserving denoising. We are
currently extending our results to discrete considerations where very efficient multi-
scale implementations are available. Moreover, we are investigating the algorithmic
use of multiscale ideas within diffusion filtering, e.g. by truncated representations
of the series of differential operators.
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