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Abstract

We are interested in minimizing functionals with /5 data and gra-
dient fitting term and (absolute) ¢; regularization term with higher
order derivatives in a discrete setting. We examine the structure of
the solution in 1d by reformulating the original problem into a con-
tact problem which can be solved by dual optimization techniques.
The solution turns out to be a discrete polynomial spline whose knots
coincide with the contact points. In 2d we modify Chambolle’s algo-
rithm to solve the minimization problem with absolute £; norm and
second order derivatives. This requires the application of fast cosine
transforms. We demonstrate by numerical denoising examples that the
lo gradient fitting term can be used to avoid both edge blurring and
staircasing effects.

Short title: {1 regularized gradient fitting
AMS Subject Classification: 65K10, 65F22, 65T50, 49M29

Key words: higher order ¢, regularization, TV regularization, convex opti-
mization, dual optimization methods, discrete splines, splines with defect,
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1 Introduction

In image denoising one is interested in removing noise while preserving or
even enhancing important structures such as edges. While linear filters
typically smooth edges some edge enhancing methods create artificial edges
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out of continuous gray value transitions. This effect is known as ’staircasing’.
In this context, we are concerned with minimizing discrete versions of the
functional

1 o
L ul?, + 5 IVF = Vg, + 81D L, (1)

where |u(7)|, v € N2 denotes the absolute value of appropriate higher order
derivatives of u. For [u’Y| = |Vu| and o = 0 the functional (1) is the
frequently applied Rudin—-Osher—Fatemi (ROF) model [20] which typically
shows the staircasing effect. Using higher order derivatives v one can avoid
this effect, see, e.g., [23] but the method tends to introduce some blurring
in regions of image edges. To cope with this disadvantage we propose to
add an additional gradient fitting term (« # 0) and examine its influence on
the solution. Other possible approaches, e.g., the application of Bregman
distances [17] are beyond the scope of this paper.

To get a better idea concerning the structure of the solution of the min-
imization problem, we first deal with the univariate setting, where the re-
gularization term contains only the ¢; norm

1 o m
SIf = ulll, + Sl = I, + B - (2)

Again, we focus on the discrete approach with forward differences instead
of derivatives. Note that in the continuous setting L; regularization in
connection with splines was treated in [6] with a careful handling of the non—
reflexive space Li. In this paper, we reformulate (2) as a contact problem
which can be solved via the dual formulation of (2). In case of an additional
gradient fitting term (« > 0) the computation requires the application of
fast discrete cosine transforms. We prove that the solution U of the contact
problem is a discrete polynomial spline of degree 2m — 1 with the contact
points as spline knots. For o = 0 this spline is 'smooth’, i.e., has defect
(knot multiplicity) one, see also [24], while for o > 0 it has defect three.
The solution u of (2) is directly determined by the solution U of the contact
problem and appears to be a discrete 'smooth’ polynomial spline of order
m — 1 with knots related to the contact points. We do not present numerical
denoising examples in 1d since they only confirm the 2d findings. For a = 0
and various derivatives m denoising results are given in [24].

Having examined the structure of the solution in 1d, we turn to our orig-
inal 2d denoising problem. Here the regularization term includes an absolute
¢ norm which in contrast to the ordinary ¢; norm leads to rotationally in-
variant solutions. We adapt an algorithm of Chambolle [2] which is also
based on the dual version of (1) to our setting. Again we have to apply
fast cosine transforms in case of an additional gradient fitting term. The
dual algorithms considered so far are based on the fact that the ¢; regu-
larization functional is one-homogeneous so that the dual functional is the



indicator function of a convex set. However, in variational image restoration
other regularizers, including non—convex ones were also applied. It seems
to be interesting to see how the additional gradient fitting term behaves
in connection with such penalizers. To this end, we include for numeri-
cal comparisons a brief consideration of more general functionals and their
numerical solution via the Euler-Lagrange equation and the corresponding
reaction—diffusion equation. In our numerical examples we will focus on the
non convex penalizer corresponding to the Perona Malik diffusivity [18].

This paper is organized as follows: We start with the 1d part in Section 2.
First we provide our discrete setting in Subsection 2.1 . Then we reformulate
the discrete minimization problem as a contact problem and deal with its
solution via the dual formulation of the minimization problem in Subsection
2.2. Finally, we examine the structure of the solution both of the contact
problem and the original minimization problem in Subsection 2.3.

Section 3 deals with 2d images, where we focus on the practically rele-
vant regularization with at most second order derivatives in the regulariza-
tion term. After introducing the discrete setting in Subsection 3.1 we turn
to the dual formulation and Chambolle’s algorithm in connection with the
discrete cosine transform in Subsection 3.2. Subsection 3.3 briefly describes
the numerical treatment of regularization functionals which are possibly not
one—homogeneous via the corresponding Euler—Lagrange equation. Finally,
Subsection 3.4 presents numerical denoising results demonstrating the influ-
ence of the additional gradient fitting term.

2 Higher order /; regularization in 1d

2.1 Discrete setting

In this section, we deal with a discrete version of (2). To this end, let

-1 1 0 ... 0 00O
O -1 1 ... 0 00O
Dl,N = c RN—I,N (3)
o o0 o0 ... -1 10
o o0 o0 ... 0 -1 1
be the first order forward difference matriz and
Dy N =Dy Nn_(m-1) --- -Din-1DiN € RN—mN

the m—th order forward difference matriz. 1f the size N of a difference matrix
Dy, n is clear from the context we will skip the second index and write only



D,,. Then it is well known that

N
{feRY:> 4" f(j) =0, r=0,...,m—1},

j=1
N(DpN) = span{(jr)jyzlz r=0,...,m—1},

R(D}, N)

i.e., the range R(ng) of Dz’m consists of the vectors with m vanishing
moments while the kernel N (D, ,,) of Dy, p, is just given by the discrete
polynomials of degree < m — 1.

We are interested in minimizing the discrete counterpart of (2)

1 le}
F(u) = §||f*UH3 + §||D1f*D1UI|§ + Bl Dimullx (4)

which can be rewritten as

Fu) = 5(f )" (Iy +aDID)(f ~u) + AlDwuls. ()

We will see by (21) that the matrix
A= A(a):=Iy+aDiD;

is positive definite. Setting BTB := A and L := D,, the functional (5)
becomes

Flu) = S|B(f ~ w3 + AlLul. (©)

The minimizer of (6) can be computed in various ways. In the next subsec-
tion, we propose to minimize (6) using its dual formulation. This is closely
related to the reformulation of (6) as a contact problem and serves as our
basis to gain some insight into the structure of the solution w.

2.2 Contact problem and dual formulation

In this subsection, we focus on minimizing strictly convex functionals of the
form

Flu) = 2B =l + BllLull, @

where B € RVY and L € RY=™! are arbitrary matrices of full rank.
In particular, we are interested in our special setting from the previous
subsection.

Decomposition related to N'(L). Since the regularization term becomes
zero if w is in N (L) we want to restrict ourselves to those parts of u which
are in a certain sense orthogonal to AV(L). The matrix B has full rank such
that A := BT B is positive definite and

(u,v) 4 = (Au,v) = vT Au.



defines an inner product on RY. Corresponding to the A orthogonal decom-
position
RY = N(L) &4 R(ALT)

every vector u € R has a unique decomposition as

w=uy + uy, ug€N(L), u € R(AT'LT). (8)
Using this decomposition for f and u, we obtain in (7),
F) = SIBUo— wld + (B(fo —uo) By —un)) + 5IB(L — w3

+ Bl Luy 2
= SIBGo—uo)l§ + SIB(L —w)l + BlLulls
It is easy to check that f; = AT'LTKLf, where
K= (LA™ LT) 7

Note that K exists since L has full rank. Consequently, to solve (7), we can
set ug := fo = f — fy and search for u; € R(A™'L") minimizing

1
SIBUL =) + Bl Ll

In the following, we assume that f € R(A'LT) such that f; = f and
ulr = Uu.

Reformulation as contact problem. For the solution uw of (7) it is
necessary and sufficient that Oy is an element of the subdifferential OF (u):

ONEA(U—f)+5LT|§—Z|a (9)

where the quotient is meant componentwise and

. 1 ifx>0,
— = -1 ifx <0,
] [—1,1] if 2 =0.

This can be rewritten as

Lu
_BA-1LT
u € f—pA L]
L
Lu € Lf—ﬁLA‘lLTﬁ. (10)



Since f,u € R(A 'LT) there exist F,U € RV~™ such that

f=ATTF u=A"1L"0. (11)
Conversely, we have that
F=KLf,U=KLu. (12)
Multiplying (10) by K and using (12) we obtain the inclusion
KU
UeF—-f3——.
T

Hence (7) can be reformulated as the following contact problem:

Find U € RY "™ 5o that

i ”F - U”oo < B
U lies in a tube around F' of width 20.

e if (K'U); > 0 we have a lower contact point U; = Fj — 3,
if (K~1U); < 0 we have an upper contact point U; = Fj + £3.

For an illustration of a contact problem see Fig. 1 (right).
To get an idea concerning the structure of U and w in the next subsection
let us write

U=Kece, (13)

so that by (11) .
u=Ke, (14)

with K := A~'LTK. Then the contact problem reads as follows:

Find ¢ € RYN—™ g0 that
° ||F — KCHOO < g.

e if ¢; > 0 we have a lower contact point U; = F; — 3,
if ¢; < 0 we have an upper contact point U; = Fj + f3.

Let

=:={je{0,...,N—m—1}:¢; #0} (15)
be the (sub)set of contact point indices. If #= is small, then ¢ becomes sparse
and (13) (resp. (14)) are sparse representations of U (resp. u) determined
by the corresponding columns of K (resp. K). In the next subsection we
will have a closer look at these columuns.

In general the solution of the contact problem is not straightforward.
Only for the special case that B = Iy and L = D1 there exists the so-called
"taut string’ algorithm [4] which is based on a convex hull algorithm and
requires only O(N) arithmetic operations. Concerning tube algorithms see
also [7].

We will solve the problem via the dual approach to (7).



Dual formulation. To give the dual formulation of (7) we apply that
J(u) := ||Lu||; is one-homogeneous so that its conjugate J* is the indicator
function of the convex set

Sp:={veR(LY): (v,w) < J(w) VYwec RN}, (16)
It is easy to check that
Sy, ={v=LTV:||V|, < 1}. (17)

Then the inclusion (9) can be rewritten as

%A( f—u) € 0J(u)

which is equivalent to
1
u€ oJ* <—A(f — u)>
g
and with v := A(f —u), i.e., u=f — A" v to

foAyear (%) .

Obviously, v fulfills this inclusion if and only if it minimizes the functional

318~ g+ (5) (18)

By (17) this is the case if and only if v = L™V and V solves the minimization
problem
IBf —(B"H'L'V[3 — min, s.t. V] < 8. (19)

This is actually a quadratic optimization problem with linear constraints
which can be solved by standard optimization techniques. Finally, we obtain

w=f—ALTV.

Up to now we have not used the decomposition (8) for the solution.
To see the relation to the contact problem, we assume again that f €
R(ATILTY). Then, using (11), we can reformulate (19) as

I(B"H)TLTUIS = |Ullg-+ — min, st [F=Ule <8 (20)
and with (13) as
c'Ke — min, s.t. ||F— Kc|o < 0.

Thus, the vector U in our contact problem solves the minimisation problem
(20).

In the following, we are interested in the structure of w and U for the
special matrices B and L from Subsection 2.1.



2.3 Spline character of the solution

We want to examine the structure of the solution of our minimization pro-
blem for our original setting L = D,,, and

A= A(a) = Inx +aDiD;.

To get some intuition Fig. 1 illustrates the solution of (4) and of the corre-
sponding contact problem for the WaveLab signal 'Heavisine’ with N = 64
points, see [11] for WaveLab. The solution was computed using the 'quad-
prog’ procedure of the MATLAB optimization toolbox.

0 20 40 60 80 el

Figure 1: Solutions of the minimization problem (4) and the corresponding
contact problem (20) for m = 2 and § = 50. Left: Original signal f and
solutions u for & = 0 (top) and « = 2 (bottom). Right: Corresponding
tubes around F' and solution U of the contact problem. Here 'o’ illustrate
the spline knots corresponding contact points.

We will see that U and u are discrete polynomial splines of degree m — 1
and 2m — 1, respectively, where U has some higher defect in case & > 0. Let
us recall the basic spline notation.



Discrete polynomial splines. A real-valued function s defined on [a, b]
is a polynomial spline of order m with knots a < x1 < ... <z, <bif

T

sm) = Z k(- — xg) ,

k=1

where § denotes the delta-distribution. In other words, s is a polynomial of
degree < m — 1 on each interval [zg, zx11], k= 0,...,7; 9 = a, Ty41 :=b
and s € C™ 2[a,b]. These smoothest polynomial splines are also called
splines with defect 1 or with knot multiplicity 1.

Let n := |m/2]. Then we can analogously define the discrete polynomial
splineson {0, ..., N—1} of order m with knots j1+n,...,j.+n € {n,...,N—
[21} as the vectors s € RY satisfying

r

D,, s = E Cj. € s

k=1

where e; € RN=™ denotes the j—th unit vector. Material on discrete splines
can be found, e.g., in [22] and in connection with optimization problems
different from the one considered here in [12, 13].

For « > 0, we have to consider splines with higher defects. A real-valued
function s defined on [a,b] is a polynomial spline of order m with knots
a<z)<...<zp <b and defect (knot multiplicity) 3 if

T

s = Z cxd(- —xp) + 0 (- —xp) + (- — xp)
k=1

In other words, s is of lower smoothness, namely s € C™ *[a,b]. Here we
may restrict our interest to the discrete counterpart of splines with defect 3
satisfying

st = ch(é(- —ap) + (- —xp)) -
k=1

We say that s € RN is a discrete polynomial spline on {0,..., N — 1} of
order m with knots j1 +mn,...,jr +n € {n,...,N — [F]} and a-defect 3 if

s satisfies
-

_ . . "
D,, s = E i (€5, + ozejk) ,
k=1

where €/ := (0j_1,—1,2,=1,08 ;)" for j = 1,...,N —m — 2, ef :=

(2,—1,0N-—m—2)T and €5, _, | = (On—m—2,—1,2)T.



Spline structure of u. Based on the sparse representations (13) and (14)
of U and u it seems to be useful to have a closer look at the matrices K and
K. First, we verify that for our special case

K = Ku(a) = (DnA(a) 'DL)™,

K = Kp(a) = A(e) 'DI K, ().
Now we see by definition that
DpKm(a) =IN m, Dpu=c.

Consequently, we obtain the following corollary concerning the structure of
U.

Corollary 2.1 The k-th column of K m(@) is a fundamental discrete poly-
nomial spline of order m with knot k+mn. The solution u of (7) is a discrete
polynomial spline of order m with knots Z+n, where = is given by the indices
of the contact points (15).

Fig. 2 illustrates the fundamental splines given by the columns of K, ()
for various values of m and a.

Figure 2: Fourth column of K, (c) for m = 1,2, 3 (left to right) and oo = 0
(top), @ = 10 (bottom), where N = 30.

10



Spline structur of U. To get some insight into the structure of the solu-
tion U of the contact problem, we need some technical preparations. Let

ag ay .-+ G@N_—2 AaN-—1
al ag --- aN-—-3 aN-—2
T(a) :=
aN—2 aN-3 .- ag ayl
aAN-—1 AN -2 ai ag
ag ay -o- aN-—2 aN-—1
al ag ... aN-1 aN-2
aN—2 aN-—1 a2z ai
aN—1 aN-2 .- ay ag

be the symmetric Toeplitz matrix and persymmetric Hankel matrix gener-
ated by the vector a € RY. By

9\ 1/2 jhr\ N1
Sn_1 = <—> <Sin —) c RN_l’N_l
N N J k=1
we denote the transform matrix of the sine I transform of length N —1 and

by
2\ /2 i@k + D\ V! NN
CN = <N> <E] COS T)jko cR

with g := 1/\/5 and e := 1 for j # 0 the matrix of the cosine-II transform
of length N, cf. [19]. Both matrices are orthogonal, i.e., Sy_1 Sy—1 = In_1
and C’% C'y = In. Moreover, the vector multiplication with Sy_1 and Cyn
can be realized in an FFT-like manner with only O(N log N) arithmetic
operations.

It is well known that these transforms are strongly related to Toeplitz
plus Hankel matrices in the following sense, see, e.g., [19]:

Lemma 2.2 The following relations hold true

SN—I diag (dj);vzzl SN—I = T(ao,...,aN_g) — H(ag,...,aN_g,O,O),
C% diag(dj)ﬁ-\]:_ol CN = T(ao,...,aN_l) + H(al,...,aN_l,O),

where

. N-1
j)j=0 = k COS N (ag; .. ,an—2,0)
J,k=0

In particular, it follows by Lemma 2.2 that
DIDy =T(2,—1,05_2) + H(—1,0n_1) = CYA*Cy,

where

. N
2. 1 2\N—1 2. Jm _ . JT
AT =diag (A));Sg » A .—2—2COSW = <2sm 2—) .

11



and consequently
Ala) =Ixy+aD{D; = Ch(In + aA*)Cy . (21)

We introduce the cutoff matrix

R, = (ON—m,na I'n_m, ON—m,n) € RNV=mN=m+2n,

Multiplication of a vector with R,, cuts off the first and last n vector com-
ponents.

Lemma 2.3 Let by, := (—1)* (TST]C), =0,...,m be the coeﬂicients of the
2m-—th bz’nomz’al filter multiplied by (—1)*. Let A = diag(\))Y !, A ==

Jj= 0 ’
diag (); )] 1, where \j := 2sin 2]7{, Then the following relations hold true:

. ~2m
1) SN_lA SN—I = T(bo,...,bm,ON_m_Q)—H(bg,...,bm,ON_m),
CYA*™CN = T(bo,... by, ON-m-1)+H (b1, ... b, ON—m).

11) RnSNflA/N\%nSNflRE = T(b()a"':bmaONmefl)a form: 271—*—1/
R,CYA"™CNRY = T(bo,...,bm,0N_2m-1), form=2n.

Proof. i) By Lemma 2.2 we have that
T(bo, - - » b, ON—m—2) = H(ba, ..., by, On—pm) = Sn—1 diag (d;) 7" Sn_y
where d; := by +2) ;" by cos JICT” It remains to show that
“ ik jkr\™
bo—i—?Zbkcosz = <2—QCOS]T> , j=1....,N—1
k=1
i.e., that

bO‘l‘Zbk i e (2—6 6_ix)m, T ==

This can easily be verified by induction on m. The second assertion of i)
follows in a similar way.
ii) By i) the Hankel matrix summand influences only the first and last n

~2
rows and columns of Sy_1A s ~N—1 and C%AQmC N, respectively. Thus we
obtain ii). O

12



Lemma 2.4 Let A and A be defined as in Lemma 2.3. Then the kernel
K Ya) can be written as

~2m
R,SNn_1 Aiﬁ SN—lRE form =2n+1,
KN o) = In_i+aA
T _A™ T _
R, Cy Tuiah CnR, for m = 2n,
where the quotient is defined componentwise.
Proof. By Lemma 2.3i) it is easy to check that
~2n
Doy n—1 = (—1)" RySn—1A" Sn-1, (22)
Doy = (=1)" R,CHA*"Cly. (23)
First, let m = 2n. Then we obtain by (21) and (23) that

K Y a) = D, CxN(In+aA?)™!Cy DL

A2m
AT ov R
In + aA

Assume now that m = 2n + 1. By (21) we have that

= R,C%

K{'(a)=D; CY% (Ix +aA?)™t Cy DT.
Straightforward computation gives

p,ct - (2 1/2 o (oo 23T 3@k 4 DT N-2,N-1
1¥N N J g ON S oN -

(2)" (o o 2050y )
= -— —2&5; SIN ———— SN ——

N ! N 2N /. iz
= —(Ony-11,5nv-1) A

and consequently

KT (@) = (On—11,Sn-1) A (Ix +aA?)™' A (On—11,Sn-1)"
<2
A

= SN—l )
IN_1 +OéA

Sn-i1.

Using this relation and (22) we obtain

K, (@) = Dmoin-1 D1 (In+ah?)™ DY Dy gy
AQm
= RuSy-1 ————3 Sn_1RL.
In_1+al
This completes the proof. O

13



2m

Theorem 2.5 Let zT denote the n—th row of C’% AiQ Cy RE K (a)
= IN—i-aA

if m = 2n and the n—th row of —Sn_1 Aiﬂ SN_lRE K, (a) if m =
IN,1+aA

2n + 1. By zpey we denote the reversed vector z. Then our kernels K, ()
Sfulfill

OéZT

Omfl,me
(_1)m D2m,N+m Km(a) = T(l + 2a, —av, ON_m_Q). (24)
Omfl,me
aZTTe’U
Proof. We restrict our attention to even m = 2n. The proof for odd
m = 2n + 1 follows the same lines. By Lemma 2.3ii) we have that

T(bOv cee abma ON—Qm—l) = RnC%AZmCNR;I;
A2m

= R,CH(I ANYOyOot —
NUn+aA®) Cn N T+ aA?

Cn RY.

Using Lemma 2.4 and regarding the tridiagonal structure of C’%(I N+aA?) Oy
this can be rewritten as

T(bOa s 7bma ON—Qm—l)

T
a
= T(l + 2a, —a, ON_m_Q) K;zl(oz) — « ON_m_QyN_m ,
a/’rrl'-‘@’l)
2m
where a" denotes the n—th row of C'y ﬁ Cx RF. Multiplication with
N+«
K, () results in
ST
T(bo, R 0N—2m—1)Km(a) + « ON—m—Q,N—m
Z;‘Fe'l)
= T(l + 20, —av, ON_m_Q) .
Now we can enlarge (—1)™T (b, ..., bm,ON—2m—1) by 2m rows and columns
to (—1)™ D2y, N4 to obtain
Om,N—m 2T
(71)m D2m,N+m Km(a) + « OmefZ,me
Om,N—m ZrTev

= T(l + 2a, —a, ON_m_Q).

14



Since the first coefficient in the Toeplitz matrix (—1)™ Day N4m is equal to
1, this can be rewritten in the form (24). O

By Theorem 2.5 we have for &« = 0 that the k—th column of
(ON—m,ms K (a),0nN—pmm) is a discrete polynomial spline of order 2m on
{0,..., N+m—1} with knot m+k and (0%, Ur, 0%) is a discrete polynomial
spline of order 2m with knots = 4+ m.

For arbitrary a > 0, we obtain by Theorem 2.5 the following corollary.

Corollary 2.6 Let z be given as in Theorem 2.5 and let

O[ZT O[ZTC
Om—l,N—m Om—l
K& (a) = | Kpn(a) , U= U
Om—l,N—m Om—1
O[Z,?e,u azrevCT

Then the k—th column of K& () is a discrete polynomial spline on {0, ...,
N +m—1} with a—defect 3 and knot m+k and U™ is a discrete polynomial
spline with a—defect 8 and knots =+ m.

The fundamental splines given by the columns of the kernel are illus-
trated in Fig. 3.

£ B 0 s E3 =

Figure 3: Fourth column of K&*(a) for m = 1,2, 3 (left to right) and a = 0
(top), a = 10 (bottom), where N = 30.

15



3 Second order absolute /; regularization in 2d

3.1 Discrete setting

For simplicity, we restrict our attention to quadratic (n,n) images and re-
shape them column by column into a vector f of length N := n?. As discrete
counterpart of (1) we are interested in minimizing strictly convex functionals
of the form

1 «
F(u) = 5||f—U||3 + §||191f—191UI|§ + Bl Dmul |1 - (25)

As in the univariate case, D; will be a discrete partial derivative operator
of first order and D,, a discrete partial derivative operator of higher order.
Here we mainly focus on second order derivatives Ds.

In contrast to the univariate case we do not use the l; norm in the
regularization term but a so—called absolute [1 norm which we introduce
next. This guarantees that the solution becomes rotationally invariant. We
mention that /; norm regularizations without the absolute inner value were
treated with respect to first order derivatives in [9] and for second order
derivatives in [10]. Fig. 4 illustrates the influence of the rotation invariance.

Let the vectors V € RPNV, where p, N € N, p > 2, and |V| € RY be given
by

(Vi3 N
V= : V= (),
Uphing
Then, by Lemma A.1,

N—-1
me=¥wpnwmig%Jw (26)
e

=U,...,

are dual norms on RPN, For given p, we call || |V|||; the absolute Iy norm of
V.

We introduce the partial difference matrices D1, Do using the Kronecker
product notation. To this end, we use the difference matrix D1 = Dy,

defined by (3) and set

([ I,®D IN,N ~ [ D
D1 _([)1®In ) eR , Di:= OLn .

The multiplication with D; mimics just a discrete gradient operator, where
the upper N rows correspond to the derivation in = direction and the lower IV
rows to the derivation in y direction. Moreover, |D; f| is a discrete version
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of the absolute value of the gradient |V f| = (f2 + ny)l/ 2. For a more
sophisticated discretization of |V f| see, e.g., [26]. Further, let

I, ® DDy
DiD,®1I,
~T ~
€(D; ® Dy)
€ (D1 ® Dl)

Dy = D2(€) = , €¢C {O, 1}

be our discrete version of the second order partial derivative operators O,y
Oyys Oyzs Oy (top rows to bottom rows), where the mixed derivatives only

~T ~
appear in case € = 1. Note that DY D; = Dy D1. Then we see that |Dyf| is
the discrete version of the Frobenius norm of the weighted Hessian

v2f::< f:v:v 6f:py>‘
€f yT f yy
For a variational method including the Hessian see also [8]. Of course other
discretizations of second order derivatives are possible and sometimes also
necessary, for example if integral identities have to be preserved, see, e.g.,
[28].

The functional (25) can be rewritten for m = 1,2 as

1
F(u) = §IIB(f —u)ll3 + Bll1Lulllx (27)
with L € {D1, Dy} and A= BT B,
A= A(q) ;== Iy 4+ oD D;.

The matrix D] D is just the central difference discretization of the Laplacian
with Neumann boundary conditions which can be diagonalized by Kronecker
products of the cosine transform matrices C',,. More precisely, we obtain that

Ala) = (Cr, @ C)"(In 4+ aAd)(C, @ C) (28)

_\n-1
with A2 =A2® I, + I, ® A%, A := diag (28in %—Z)n o
]:

3.2 Dual formulation

Since J(u) := || |Lul ||; is one-homogeneous the functional (27) can be min-
imized as in 1D by switching to the dual minimization problem

%||Bf— (B3 + J° (%) — win, (29)

where J* is again the indicator function of the set

Sy = {v e R(LY) : (v,w) < J(w) Ywe RN}, (30)
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cf. (16) and wu is related to v by u = f — A~ . By Lemma A.2 this set is
also given by

Sy, = {v IS R(LT) : min || |V| Hoo < 1}. (31)
=LTVv

v

For L := Dy, the norm |jv]|g := min |V |leo is just a discrete version
v=L"V
of Meyer’s G—norm which is known as dual norm of the BV norm on the

closed subspace BV of functions of bounded variation with gradient in L.
Concerning higher order derivatives and G-norm see also [16].
With v := LTV problem (29) is equivalent to

|IBf —(B~H'L'V|3 — min, s.t. [||[V]]e < 8.

This is a quadratic minimization problem with quadratic constraints (if
squared). The problem can be solved for example by an algorithm pro-
posed by Chambolle [2]. For our setting with L = Dy, this algorithms reads
as follows:

Algorithm.
Input: u® := f and VO := 04n.
Repeat for £ = 0 until a stopping criterion is reached

w® = Dyu®

4 1/2
|W(k)| = <Z W&’“%W&’”)

r=1

—1
YD o <I4N+%(14®|W(’“)|)> o <V(k)+TW(k)>
uk ) = ATIDTY R
k = k41,

where the inverse is taken componentwise and o denotes the componentwise
vector product.
Output: u = uk+1),

Chambolle proved that u¥) converges to the solution u if
T <Y(B HTLYE = 1/|[LA LT o,

32.
64.

Now we have obviously that |[A7!|la < 1, ||D1]|3 = 8 and || D2(0)]|3
Further, we see by applying Gerschgorin’s theorem that |D2(1)]|3
Hence we have to choose

IAINA

1/8 fOI‘L:D1,
r<{ 1/32 for L = Dy(0),
1/64 for L = Dy(1).
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For computational purposes it is useful to rewrite the Kronecker product
notation in the algorithm regarding the following relation: if F' is the orig-
inal image, f the corresponding column vector and R,S are matrices of
appropriate sizes, then

(R®S)f=SFRT.

Then, using (28), the algorithm can be rewritten as follows:
Algorithm.
0)

Input: v9 := f and V7(~ =0n,r=1,...,4.
Repeat for £ = 0 until a stopping criterion is reached

wik .= DTDu®
ng) = u(k)D?Dl
ng) = Dlu(k)[)l
Wik) = Drlru(k)f)rf

4 1/2
Wk = Z(WWOWQ“))

r=1

-1
(k1) . T (k) (k) () _
G (1N+ﬁ<14®|W |>) o(VT +TWT), r=1,...,4
20 = pTpyw® 4 v DI, + DIV DT + DV D,
WD p T (%o(cnwncg)) Co.
I, + aA3
k = k+1,

where the inverses is taken componentwise.
Output: u := uk+1),

Since the difference matrices are sparse and the vector multiplication
with C,, can be performed in O(nlogn) arithmetic operations, one step of
the algorithm requires only O(n?logn) arithmetic operations.

3.3 Regularization with more general cost functions

Up to now we have considered convex functionals with one-homogeneous
regularization terms. However, besides the /1 regularization term it is very
common to use other penaliser functions in variational image restoration
methods [25, 15, 3, 21]. We are interested to see at least numerically how
other regularizers, in particular non—convex ones, behave in conjunction with
l data and gradient fitting terms.
Here we consider a functional similar to (1), namely
1

B = [ (30 02+ 5007 Vo 4 s (IHWIR)) & G2
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where | H (u)||% = u2, + ugy + UZ:L« + uzy is the sum of all squared partial
derivatives of order 2. To form the corresponding Euler—Lagrange equation
we assume that the penalizer ¢ is differentiable. In contrast to the previ-
ous methods, the £; norm can only be used as penalizer in an approximate,
differentiable version ¢(s%) = V2 + s2 with a small additional regulariza-
tion parameter ¢, cf. [1]. On the other hand, non—convex penalizers like

©0(s?) = X2In (1 + i—i) can be involved. This penalizer is closely related

to nonlinear diffusion methods with a diffusivity 1/(1 + s2/A\?) proposed
by Perona and Malik [18]. While the absence of convexity rises theoretical
problems, penalizers of this type allow for interesting practical properties,
for example enhancement of image features [5].

Under the assumption of sufficient smoothness of u we can write the
Euler-Lagrange equation corresponding to (32) as

0 = u—f—alA(u—f)+ 0 (SD/(HH(U)H%)UM)
+ 204y (SOI(HH(U)H%“)Uzy) + Oyy (W/(HH(U)H%)UW) . (33)

To solve this equation numerically, we introduce an artificial time variable
t and use the initial data u(-,0) = f as starting point. Then we understand
the solution of (33) as the steady state of the higher order diffusion-reaction
equation

u = u—f—alA(u—f)+ 0w (SDI(HH(U)”%)UM)
+28xy (‘P/(HH(U)”%)Umy) + ayy (SDI(HH(U)H%«“)uyy) ) (34)

where we impose natural boundary conditions. For our numerical examples
we have discretized this equation with finite differences in the space variable
as described above combined with a simple Euler forward scheme in the time
variable.

3.4 Numerical examples

In this section, we present some numerical examples for the denoising of
grey value images in 2d. Since for a human observer as well as for some
computer vision systems edges are a very important source of information
in an image, one of the major goals of denoising algorithms is to preserve
or even enhance edges. In practice especially edge enhancement can lead
to the creation of artificial edges out of continuous grey value transitions.
This so-called staircasing effect is one of the most prominent shortcomings
of many well-established image denoising algorithms, e.g., the ROF model.
It creates an oversegmentation of the image into artificial parts. To avoid
these artifacts one can involve higher order derivatives into the model which
would prefer not only piecewise constant, but also piecewise linear results
[27, 10]. Unfortunately, these higher derivative methods tend to introduce
some blurring in the region of the image edges.
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The main reason for introducing the additional gradient fitting term
consists in avoiding the staircasing effect on the one hand and on the preser-
vation of edges and discontinuities on the other hand. Image edges can be
characterised as regions where the gradient is high. Thus the gradient fit-
ting term is intended to force the solution to be similar to the initial image
especially near edges.

In our experiments we assume an additive noise model: Let f € R™*" be
a noisy version of the initial image g € R™*", degraded with additive noise
N, i e. fij = gij +nij- As a quality measure we now use the Signal-to-Noise
Ratio defined as

n Y
SNR(fa g) = IOlOgIO < Zi,jZl(gm ;L) ) ’

ZZj:l (fij - 9ij)2

where p := # Z:L =1 9ij denotes the mean value of g. The SNR is a widely
used measure in image processing and essentially gives the same information
as an fo distance.

The Chambolle-like algorithms were implemented in MATLAB. while
the diffusion-reaction approach (34) was implemented in C.

Fig. 5 displays the test image used for the 2d experiment. Table 1 shows
the parameters and the error measures of the resulting images. Sections of
the results are displayed in Fig. 6. Here TV2 denotes the approach (25);
DR stands for the diffusion-reaction type equation (34) with the non—convex
penaliser ¢(s?) = A\2In <1 + f\—i) and A = 1.0. The error measures show that
adding a gradient fitting term to variational denoising with second-order
derivatives enables us to improve the results. Further we notice that the
non—convex penalizer can also lead to improvements in practical examples.
The resulting images in Fig. 6 give a similar impression. While the ROF
model leads to staircasing artifacts, the pure second order methods suffer
from blurred edges. The additional gradient fitting can help to avoid both
types of problems. We mention that the whole 256 x 256 image related to
the depicted part in the middle left of Fig. 6 looks more cloudy than the
whole image belonging to the bottom left part. Moreover it should be noted
that some noise pixels survive in the image at the bottom right.

A Appendix

Lemma A.1 The norms || |-||l1 and || |-||lc defined by (26) are dual norms
on RPN,

Proof. By applying the Schwarz inequality to (VJT)le, (%4 )P_, for
j=0,...,N —1 we obtain

(V) < (V'L IV,
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| [m o B[ SNR [u—f[i 107
Noisy image | - - -1 11.16 10.00
ROF 1 - o0 | 22.74 2.08
TV2 2 0 20 | 22.15 1.77
TV2 2 0 50 | 19.92 1.97
TV2 2 1.2 50 | 22.98 1.74
DR 2 1 1000 | 24.78 1.59

Table 1: Denoising experiment in 2d: Parameters and error measures.

where equality arises if V = (I, ® D)V’ with some diagonal matrix D €
RNV Further, we have

VLIVEH < TV Hlso VI

where equality arises for |V| = c(5j07j)§-vz_01 with some constant ¢ € R and
an index jo with [V'|;, := max{|V'|; : 7 =0,...,N — 1}. To get equality in
both estimates we may set D := diag (5]'0’]');.\’:_01. O

Of course, the lemma can be extended to arbitrary l,~l, norms with
% + % =1,1<p,q < oo. By the following lemma, we see that the sets in
(30) and (31) are equivalent.

Lemma A.2 Let L € RPN Then
|(V', Lw)|

sup —————— = min U )
werN | [Lw| |1 LTU:LTV,||| oo

’
Proof. Let v := sup W Then we obtain by the same considerations
1

weRN
as in the proof of Lemma A.1 and since |(V’, Lw)| = [(L*V', w)| = (U, Lw)|
for all U € RPY with L'V' = L™U and all w € RV that

vy < min U . 35

< min U] (35)

To show the reverse direction we consider the subspace B := R(L) of RPY
equipped with the norm ||| -|||;. The mapping ly/(Lw) = (V' Lw) is
a linear functional on B which has exactly the norm v. By the Hahn-

Banach Theorem this functional can be extended to a linear f}mctional [ on
RPN || - | |l1) with ||7]| = [|ly/]|. Consequently, there exists V € RPY such

that [(V) = (V, V) for all V € RPY and
(V,Lw) = (V' Lw) Yw e RV .
Since this can be rewritten as

(LTV,w) = (LTV' w) Vw e RN
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the vector V must fulfil LTV = LTV’. By Lemma A.1 we see that

vl =12 = 1V oo

Together with (35) this yields the assertion. O
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Figure 4: Top left: Original image. Top right: Relevant part of the im-
age. Bottom left: Solution of (25) with m = 1, a = 0 and g = 10
(classical ROF setting) by Chambolle’s algorithm applied to the dual
quadratic problem with quadratic constraints. Bottom right: Solution of
F(u) = 1||f —ul3 + B||D1ull|1 with the same parameters. This solution
was computed by applying the ILOG CPLEX barrier Optimizer version 7.5
to the dual quadratic problem with linear constraints.. The routine uses
a modification of the primal dual predictor corrector interior point algo-
rithm described in [14]. Due to the lack of rotation invariance vertical and

horizontal directions are stressed .

26



Figure 5: Denoising experiment in 2d. Left: Original image (size 256 x 256).
Right: Image with additive Gaussian noise, SNR 11.16.
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Figure 6: Denoising experiment in 2d. Sections with 120 x 100 pixels of the
resulting images. Top left: Noisy input image. Top right: Denoised image
with ROF model. The staircasing effect is clearly visible. Middle: Denoising
with second order model, m = 2, a = 0, left: 5 = 20, right: § = 50. No
staircasing effect, but the edges are blurred. Bottom left: Denoising with
second order model and gradient fitting term, m = 2, o = 1.2, 8 = 50, yields
better edge preservation. Bottom right: Second order model with gradient
fitting term and Perona-Malik type diffusivity, m = 2, « = 1, § = 1000 with
sharp edges and smooth grey value transitions.
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