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Abstract. We investigate the use of fractional powers of the Laplacian
for signal and image simplification. We focus both on their correspond-
ing variational techniques and parabolic pseudodifferential equations. We
perform a detailed study of the regularisation properties of energy func-
tionals, where the smoothness term consists of various linear combina-
tions of fractional derivatives. The associated parabolic pseudodifferen-
tial equations with constant coefficients are providing the link to linear
scale-space theory. These encompass the well-known α-scale-spaces, even
those with parameter values α > 1 known to violate common maximum-
minimum principles. Nevertheless, we show that it is possible to construct
positivity-preserving combinations of high and low-order filters. Numer-
ical experiments in this direction indicate that non-integral orders play
an essential role in this construction. The paper reveals the close rela-
tion between continuous and semi-discrete filters, and by that helps to
facilitate efficient implementations. In additional numerical experiments
we compare the variance decay rates for white noise and edge signals
through the action of different filter classes.

1 Introduction

Regularisation and diffusion filtering belong to the most frequently used and
best studied methods in image processing. In addition to the well-known Gaus-
sian scale-space [1, 2, 3, 4, 5], other linear scale-spaces enjoy a growing popularity.
Already in the 1960’s Iijima [6, 7] gave an axiomatic foundation of α-scale-spaces
with integer order using four axioms: linearity, translational invariance, scale in-
variance, and semigroup property. Later on a whole class of linear scale-spaces
depending on a fractional order α > 0 was axiomatically deduced (Pauwels et al.
[8]). Duits et al. [9] further investigated the α-scale-spaces where α ∈ (0, 1] can
be interpreted as fractional power the Laplacian in a pseudodifferential equa-
tion creating the scale-space. The restriction on α comes from the demand of a
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maximum-minimum principle for the resulting filters. The most prominent rep-
resentative of linear scale-spaces with fractional order is the Poisson scale-space
by Felsberg and Sommer [10].

In our work we use fractional powers of the Laplacian not only in partial dif-
ferential equations, but also in regularisation methods. Besides the scale-space
properties we are especially interested in well-posedness and regularity proper-
ties. We see that variational methods allow it to prescribe a certain fractional
regularity order for a given image where diffusion methods always yield arbi-
trary smooth solutions. In our experiments we propose a way to construct filters
with maximum-minimum property which involve both high and low fractional
derivative orders.

The paper is organised as follows. In Section 2 we introduce the basic notions
related to fractional powers of the Laplacian. Section 3 presents fractional order
regularisation as a first application of these notions. The corresponding diffusion
equations are investigated in Section 4. Section 5 reformulates both approaches
in a space-discrete framework directly leading to efficient implementations. Our
numerical experiments in Section 6 especially are dedicated to the question of
maximum-minimum property and variance decay. Section 7 concludes the paper.

2 Fractional Powers of the Laplacian

In order to present an elegant concept for fractional powers of the Laplacian,
we have to introduce some basic notions first. First we consider the Fourier
transform of a function f ∈ L1(IR) pointwise defined by

f̂(ξ) :=
1√
2π

∫
IR

f(x) exp(−ixξ)dx

Let F : L2(IR) −→ L2(IR) denote the Fourier-Plancherel transform, i. e. the
extension of the mapping L1(IR) � f −→ f̂ onto L2(IR). It is well-known that
F is isometric with respect to the norm in L2(IR) (see [11] for details). Later on
we will especially make use of the property

ikξkFf = F
(

dk

dxk
f

)
(1)

which builds the link between differentiation in the spatial domain and multi-
plication in the Fourier domain. For f ∈ L∞(IR) let Mf : L2(IR) −→ L2(IR)
denote the multiplication operator defined by Mfg := fg. With this notation

(1) reads as M(iξ)kFf = F
(

dk

dxk f
)
.

Lemma 2.1. For f, g ∈ L∞(IR) the multiplication operator Mf is L2(IR)-
continuous with ‖Mf‖ ≤ ‖f‖∞. Further, fg ∈ L∞(IR) and MfMg = Mfg.

Following the notation in [12] we define the Sobolev space

Hs(IR) :=
{

u ∈ L2(IR) |
(
1 + |ξ|2

) s
2 û ∈ L2(IR)

}
(2)
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of all functions in L2(IR) and s ∈ IR. For s ∈ IN functions in Hs(IR) are weakly
differentiable up to the order s. From (1) we deduce the spectral decomposition
of the Laplacian − d2

dx2 = F−1M|ξ|2F which allows us to define fractional powers

D2α :=
(

− d2

dx2

)α

= F−1M|ξ|2αF (α > 0) (3)

as multiplication operators in the Fourier domain (see [13, 14] for further details).

Lemma 2.2. Applying Dα to functions in a certain Sobolev space reduces the
order of differentiability by α, i. e. Dα : Hs(IR) −→ Hs−α(IR) for all s ∈ IR.

In the next sections we are going to replace derivative operators in classical
image processing approaches with operators of the type Dα and investigate the
properties of the resulting filter methods.

3 Regularisation with Fractional Derivative Orders

To extend linear regularisation to fractional derivative orders we consider the
energy functional

E(u) =
∫

IR

(
(u − f)2 +

m∑
k=1

βk (Dαku)2
)

dx (4)

with a linear combination of m ∈ IN fractional derivatives of orders αk > 0 in the
smoothness term and regularisation weights βk > 0 for k = 1, . . . , m, for short,
α = (α1, . . . , αm), β = (β1, . . . , βm) ∈ IR+

m. For integer derivative orders αk,
similar functionals have been considered in [15]. We assume that the signals u
and f may only assume real values. With the Plancherel identity we can rewrite
functional (4) in the Fourier domain as

E(û) =
∫

IR

(∣∣∣û − f̂
∣∣∣2 +

m∑
k=1

βk |ξαk û|2
)

dξ (5)

depending on the complex Fourier transform û. A decomposition into the real
and imaginary part shows that it is necessary for a minimiser u to satisfy the
Euler-Lagrange equation

û − f̂ +
m∑

k=1

βk|ξ|2αk û = 0 for all ξ ∈ IR . (6)

We deduce that the minimiser u of the functional E has the Fourier transform

û =

(
1 +

m∑
k=1

βk|ξ|2αk

)−1

f̂ for all ξ ∈ IR . (7)

To obtain a regularised version of f we transform this minimiser û in the spatial
domain which motivates the following definition:
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Definition 3.1. (Fractional Order Regularisation) For α = (α1, . . . , αm),
β = (β1, . . . , βm) ∈ IRm

+ we denote the multipliers appearing in (7) with

rα
β : IR −→ IR, rα

β (ξ) :=

(
1 +

m∑
k=1

βk|ξ|2αk

)−1

(8)

and use these functions to define the regularisation operators

Rα
β : L2(IR) −→ L2(IR), Rα

β = F−1Mrα
β
F . (9)

First we assure ourselves that the above definition leads to a continuous opera-
tor. Furthermore we give a measure for the increase of smoothness obtained by
applying a regularisation operator of this class.

Proposition 3.2. (Stability and Regularity of Regularisation)

1. The regularisation operator Rα
β is continuous with respect to the norm in

L2(IR) with ‖Rα
β‖ ≤ 1.

2. Regularisation increases the smoothness order by twice the minimal deriva-
tive order:
For all s ∈ IR it is Rα

β : Hs(IR) −→ Hs+2α∗
(IR) where α∗ := min

k=1,...,m
αk.

Proof. 1. The Fourier multipliers satisfy 0 ≤ rα
β (ξ) ≤ 1 for all α, β ∈ IRm

+ and

all ξ ∈ IR, i. e. ‖rα
β ‖L∞(IR) ≤ 1. Lemma 2.1 then shows that

∥∥∥Mrα
β

∥∥∥ ≤ 1 and

‖Rα
β‖ ≤

∥∥F−1
∥∥∥∥∥Mrα

β

∥∥∥ ‖F‖ ≤ 1 (10)

using the fact that the Fourier transform is L2-isometric.
2. Fix f ∈ Hs(IR). First we note that

(
1 + |ξ|2

) s
2 f̂ ∈ L2(IR) ⇐⇒ |ξ|sf̂ ∈ L2(IR) . (11)

Thus it follows that(
1 +

m∑
k=1

βk|ξ|2αk

)−1

|ξ|s+2α∗
f̂ ∈ L2(IR) (12)

which implies Rα
βf ∈ Hs+2α∗

(IR). 	


For integer derivative orders a corresponding statement to the second part of the
previous lemma can be found in [15]. As they state for integer orders, also frac-
tional order regularisation is not a projection operator: Applying regularisation
iteratively increases the smoothness in each step by twice the minimal derivative
order α∗. Starting with a function in L2(IR) we now are able to reach a given
degree of smoothness with linear regularisation. This smoothness property does
not depend on the size of the regularisation weights βk > 0. Two examples of
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Fig. 1. Fourier multipliers and corresponding Fourier backtransforms for fractional
order regularisation. Left: α = 0.5, Right: α = 2.0

the appearing Fourier multipliers are shown in Fig. 1. The multiplication in the
Fourier domain can be related to convolution for which the corresponding kernels
are also shown. The fact that the convolution kernel for α = 2.0 reaches nega-
tive values indicates that the corresponding filter violates a maximum-minimum
property. Besides its smoothing behaviour the linear filtering technique is also
expected to satisfy some scale-space properties. We summarise these in the case
of fractional order regularisation:

Proposition 3.3. (Scale-Space Properties of Regularisation) The regu-
larisation operators Rα

β are linear, translational invariant and preserve the av-

erage grey value, i. e.
∫

IR

(
Rα

βf
)
(x)dx =

∫
IR

f(x)dx.

Proof. For the translational invariance we note that translations correspond to
multiplications with phase factors exp(icξ) of absolute value one in the Fourier
domain. Since the multipliers rα

β only assume real values these do not affect the
argument of the Fourier coefficients and thus do not interfere with the complex
phase factors.

The average grey value can be expressed as f̂(0) =
∫
IR f(x) exp(−ix0)dx.

Since rα
β (0) = 1 for all α, β ∈ IRm

+ , the average grey value remains unchanged by
multiplication with rα

β in the Fourier domain. 	


4 Diffusion with Fractional Derivative Orders

The elliptic differential equations appearing in regularisation techniques are re-
lated to parabolic diffusion equations [16]. Now we investigate such parabolic
equations involving a linear combination of different fractional powers of the
Laplacian. To this purpose we choose fractional derivative orders α1, . . . , αm > 0
and weight parameters λ1, . . . , λm > 0 and consider the linear pseudodifferential
equation
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∂

∂t
u = −

m∑
k=1

λk

(
− ∂2

∂x2

)αk

u . (13)

with initial condition u(x, 0) = f(x) for all x ∈ IR. In the Fourier domain (13)
reads as ∂

∂t û = −
∑m

k=1 λk|ξ|2αk û. This is an ordinary differential equation with
parameter ξ and can be analytically solved by

û(ξ, t) = exp

(
−t

m∑
k=1

λk|ξ|2αk

)
f̂ =

m∏
k=1

exp
(
−tλk|ξ|2αk

)
f̂ . (14)

This formula expresses fractional order linear diffusion filtering as multiplica-
tion in the Fourier domain. The following definition uses its equivalence with
convolution in the spatial domain.

Definition 4.1. (Multipliers and Convolution Kernels for Diffusion)
For the order α > 0, the weight λ > 0 and the stopping time t ≥ 0, we de-
fine the multiplier function

Gα
λ(ξ, t) := exp

(
−tλ|ξ|2α

)
for all ξ ∈ IR .

We also define the convolution kernels appearing in linear filtering as the Fourier
backtransform

pα
λ(x, t) :=

1√
2π

F−1 (Gα
λ(·, t)) (x) =

1
2π

∫
IR

exp
(
−tλ|ξ|2α + ixξ

)
dξ .

We would like to mention that the convolution kernels pα
λ(·, t) were already

discussed in [6] and [7] for α ∈ IN. With this definition we are able to express
the Fourier backtransform of the solution of (13) as convolution:

u(x, t) =
(
pαm

λm
(·, t) ∗ . . . ∗ pα1

λ1
(·, t) ∗ f

)
(x) . (15)

It is an interesting feature of (14) and (15) that one can successively add different
derivative orders to the right-hand side of (13) and obtain the particular solution
step by step by convolution with corresponding kernels. Figure 2 shows two
Fourier multipliers for different diffusion orders and their associated convolution
kernels obtained by numerical approximation.

As in the last section for regularisation, we also express fractional order dif-
fusion as linear operator.

Definition 4.2. (Fractional Order Diffusion) We choose fractional deriva-
tive orders α1, . . . , αm > 0 and the corresponding weights λ1, . . . , λm > 0. For
every t ≥ 0 we define the linear filtering operator Tt : L2(IR) −→ L2(IR) as

Ttf := F−1MGαm
λm

(·,t) · . . . · MG
α1
λ1

(·,t)Ff . (16)

With respect to stability and smoothness of the solutions, we see that these
diffusion operators have very convenient properties.
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Fig. 2. Fourier multipliers and corresponding Fourier backtransforms for fractional
order diffusion filtering. Left: α = 0.5 (Poisson scale-space), Right: α = 2.0

Proposition 4.3. (Stability and Regularity of Diffusion)
1. For all t ≥ 0 the operator Tt is continuous with respect to the norm in L2(IR)

with ‖Tt‖ ≤ 1.
2. For natural filter orders α1, . . . , αm ∈ IN it is Ttf ∈ C∞(IR) for initial data

f ∈ L2(IR).
3. For positive real filter orders α1, . . . , αm > 0 we have Ttf ∈ Hk(IR) for

arbitrary k ∈ IN and initial data f ∈ L2(IR).

Proof. 1. 0 ≤ Gα
λ(ξ, t) ≤ 1 for all t, α, λ > 0 and all ξ ∈ IR. An upper bound

for the norm of Tt is given by

‖Tt‖ ≤
∥∥F−1

∥∥( m∏
k=1

∥∥∥MG
αk
λk

(·,t)
∥∥∥
)

‖F‖ ≤ 1

with Lemma 2.1 (1.) and the fact that F is L2-isometric.
2. For α ∈ IN the functions Gα

λ(·, t) are in the Schwartz space S(IR) of rapidly
decreasing functions. Thus their Fourier backtransforms pα

λ(·, t) are also in
S(IR) and also the convolution kernel p(·, t) := pαm

λm
(·, t) ∗ . . . ∗ pα1

λ1
(·, t) ap-

pearing in linear filtering in the spatial domain. We see that the derivatives
of Ttf exist with

dk

dxk
Ttf =

∫
IR

∂k

∂xk
p(x − y)f(y)dx .

3. We note that lim
x−→∞ xk exp(−xα) = 0 for all k ∈ IN. Thus we have

ξk exp
(
−tλ|ξ|2α

)
∈ L∞(IR) .

Let k ∈ IN be an arbitraty derivative order. The Fourier transform of the
kth weak derivative of our filtered image

FD(k) (Ttf) = ikξk exp
(
−tλ|ξ|2α

)
f̂ (17)
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is in L2(IR) as the product of f̂ with a bounded function. We have shown
that Ttf ∈ Hk(IR). 	


Since k was arbitrary in the last proposition we know with the Sobolev em-
bedding theorem (see [12–Chapter 4, Proposition 1.3]) that for each m ∈ IN there
is an u ∈ Cm(IR) with u = Ttf almost everywhere. In that sense one could say
that the results of such filtering processes are arbitrary smooth for all stopping
times t > 0. Furthermore, linear diffusion filtering fulfills a choice of scale-space
properties.

Proposition 4.4. (Scale-Space Properties of Diffusion)
1. The set of linear diffusion operators {Tt : t ≥ 0} is a semigroup. We have

T0 = I and Tt1Tt2 = Tt1+t2 for all t1, t2 ≥ 0.
2. For all t ≥ 0 the average grey value is invariant under Tt.
3. The continuous filtering operator is translational invariant.

Proof. 1. Since Gα
λ(·, 0) = exp(0) = 1 it is clear that T0 = I. For t1, t2 > 0 and

ξ ∈ IR one can directly verify Gα
λ(ξ, t1)Gα

λ(ξ, t2) = Gα
λ(ξ, t1 + t2). In the case

of a single order α we have with the second statement of Lemma 2.1

Tt1Tt2 = F−1MGα
λ
(·,t1)FF−1MGα

λ
(·,t2)F

= F−1MGα
λ
(·,t1+t2)F

= Tt1+t2 .

The same proof also works for multiple filter orders.
2. Average grey value invariance is guaranteed by Gα

λ(0, t) = 1 for all t, α, λ > 0.
3. Translational invariance follows directly from the representation of the op-

erator Tt as convolution with p as in (15). 	


Scale invariance is not given in the framework considered above: To achieve
this property we have to restrict ourselves to a single derivative order.

Proposition 4.5. (Scale Invariance of Diffusion) With only a single deriva-
tive order, the diffusion filter Tf := F−1MGα

λ
(·,t)F is scale invariant in the

following sense: For every σ > 0 and every t > 0 there is a t̃ > 0 such that(
Ttf

( ·
σ

))
(x) = (Tt̃f(·))

(x

σ

)
.

Proof. It can be shown by elementary calculations that t̃ = t
σ2α is the unique

value satisfying the above condition. Since t̃ depends on the order α such a time
can not exist for a combination of different orders. 	


5 Semi- iscrete Linear Filtering

For practical purposes a space-discrete formulation of generalised linear filtering
can be very useful. In this section we give a matrix representation for the fil-
ters which can be understood as a finite-dimensional analogue of the operators

d
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given above. In correspondence to the operator F we define the discrete Fourier
transform F ∈ Cn×n as the matrix

F :=
1√
n

(
exp

(
−

2πi
(
j − n

2

)
k

n

))
j,k=0,...,n−1

. (18)

Since the rows of F are orthonormal in Cn, F is unitary and its inverse is given by
its complex conjugated and transposed matrix F

T
. The matrix-vector product of

F with g ∈ IRn yields the Fourier coefficients Fg =:
(
ĝ−n/2, . . . , ĝn/2−1

)T ∈ Cn.
We define the analogue to the multiplication operator M as the diagonal matrix

Mf := diag

(
f

(
2π
(
j − n

2

)
n

))
j=0,...,n−1

(19)

which multiplies a vector with the values of a function f : [−π, π) −→ C at the
equidistant grid points in the Fourier domain.

Definition 5.1. (Semi- iscrete Regularisation and Diffusion Matrices)
As space-discrete analogues to (9) and (16), for α, β, λ ∈ IRm

+ and t > 0 we

define the regularisation matrix Rα
β := F

T
Mrα

β
F and the linear diffusion matrix

via Tt := F
T
MGαm

λm
(·,t) · . . . · MG

α1
λ1

(·,t)F .

In the semi-discrete case the scale-space properties slightly differ from the con-
tinuous ones considered in the last sections. Since the discretisation in space
leads to a band-limiting we observe not only average grey value invariance but
also convergence towards a constant signal.

Proposition 5.2. (Scale-Space Properties of Regularisation)

1. Semi-discrete regularisation is linear.
2. The average grey value is invariant under the operators Rα

β for all t ≥ 0. For
β → ∞ in all components the solution converges towards the average grey
value, i. e. limβ→∞ Rα

βf = (µ, . . . , µ)T with µ := 1
n

∑n
k=1 fk .

Proof. The average grey value can be written as f̂0 = 1√
n

∑n−1
k=0 fk. This coef-

ficient is left unchanged by the diagonal matrices Mrα
β

since rα
β (0) = 1. Thus

claimed convergence follows from limβ→∞ rα
β (ξ) = 0 for all. 	


In addition to these properties the diffusion operators form a semigroup.

Proposition 5.3. (Scale-Space Properties of Diffusion)

1. Semi-discrete diffusion is linear.
2. The set of operators {Tt : t ≥ 0} is a semigroup.
3. The average grey value is invariant under the operators Tt for all t ≥ 0, and

we have convergence towards the average grey value for t −→ ∞.

d
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Proof. The proof of the second statement is analogous to the proof of Prop. 4.4
exchanging the operators F and M by their finite-dimensional counterparts F
and M . The third statement is proven as in the regularisation case. 	


6 Numerical Examples

In the first numerical experiment we investigate the possibility of building linear
combinations with different derivative orders such that the regularisation and
diffusion filters satisfy a maximum-minimum property. Knowing from Section 4
that combinations of two orders are no longer scale-invariant we try to preserve
one scale-space property at the expense of the other. To reduce the number of
possible combinations we consider diffusion equations of the form

∂

∂t
u = −

(√
− ∂2

∂x2 + β

(
− ∂2

∂x2

)α
)

u (20)

and the corresponding regularisation. For α between 1.5 and 8, we started with
β = 0 and increased it as long as nonnegative convolution kernels were obtained.
The maximal values of β are shown in Fig. 3. This experiment shows the use-
fulness of the Poisson scale-space: Using a Gaussian scale-space instead makes
it impossible to find a weight β �= 0 that leads to a nonnegative combination. In
that sense the fractional order scale-space has a clear advantage in comparison
with the integer order ones.

In our second experiment we study the variance diminishing properties of
different filters R and T . Fig. 4 shows the variance of a white noise signal de-
pending on regularisation weight / stopping time. We visualise the parameters
needed for reducing the variance of a white noise and a step edge signal to half
of its value in Fig. 5. The experiments show a similar behaviour of regularisation
and corresponding diffusion techniques in terms of variance reduction. We note
that higher orders lead to the same variance decay with smaller stopping times.
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Fig. 3. Positive combinations of derivatives of order 0.5 with higher orders. Left:
Regularisation. Right: Diffusion filtering
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half its value. Left column: Regularisation. Right column: Diffusion filtering. Top row:
Experiment for white noise signal. Bottom row: Experiment for step edge signal

7 Conclusion

In this paper we have discussed regularisation techniques and diffusion methods
that involve sums of fractional derivative orders. With respect to scale-space
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properties, fractional diffusion satisfies Iijima’s axioms of linearity, translation
invariance and semigroup property. If a single fractional order is used, scale in-
variance is satisfied as well. We have shown that both fractional diffusion and
fractional regularisation are L2-stable in the sense that the norms of the corre-
sponding operators are bounded by 1. With respect to regularity, the regulari-
sation approaches gain twice the minimal derivative order, while the fractional
diffusion admits arbitrarily smooth solutions. For the first time in the context of
α-scale-spaces, we have also presented a space-discrete theory that is in formal
analogy to the continuous framework. Moreover, it gives convergence towards the
average grey value, if the diffusion time / regularisation parameter tends to in-
finity. To our knowledge, all papers on α-scale-spaces focus their attention to the
case 0 < α ≤ 1, since this guarantees nonnegativity and a maximum-minimum
principle. However, we have shown that it is possible to construct combinations
of Poisson scale-space and diffusion scale-spaces of order α > 1 that satisfy this
principle as well. With Gaussian scale-space instead of Poisson scale-space, this
is not possible. Similar statements also hold for the corresponding regularisation
processes. From a practical viewpoint, we have studied the decay rates of the
variance as a function of the fractional order. These studies have shown that
higher orders reveal higher variance diminishing properties. In our ongoing and
future work we intend to find out which of the scale-space and regularity proper-
ties of the linear methods of this paper can be generalised to nonlinear processes
with higher-order derivatives.
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