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Abstract. Weighted averaging filters and nonlinear partial differential
equations (PDEs) are two popular concepts for discontinuity-preserving
denoising. In this paper we investigate novel relations between these fil-
ter classes: We deduce new PDEs as the scaling limit of the spatial step
size of discrete weighted averaging methods. In the one-dimensional set-
ting, a simple weighted averaging of both neighbouring pixels leads to a
modified Perona-Malik-type PDE with an additional acceleration factor
that provides sharper edges. A similar approach in the two-dimensional
setting yields PDEs that lack rotation invariance. This explains a typical
shortcoming of many averaging filters in 2-D. We propose a modification
leading to a novel, anisotropic PDE that is invariant under rotations.
By means of the example of the bilateral filter, we show that involving
a larger number of neighbouring pixels improves rotational invariance
in a natural way and leads to the same PDE formulation. Numerical
examples are presented that illustrate the usefulness of these processes.

1 Introduction

Adaptive averaging filters belong to the simplest and most effective tools for
image processing. Since taking the average of the grey values of all pixels in
a certain spatial neighbourhood is an intuitive concept, already early methods
in image processing use averaging filters: For example, in the beginning of the
1980s, Lee presented an averaging filter for image denoising [1]. In the litera-
ture, there is a whole variety of methods which use the concept of averaging
pixel grey values with weights depending on their tonal1 and spatial distance.
Some examples are adaptive smoothing [2] by Saint-Marc et al., adaptive weights
smoothing [3] by Polzehl and Spokoiny, or the W-estimator [4] by Winkler et
al. While many averaging filters work iteratively by applying small stencils, the
bilateral filter of Tomasi and Manduchi [5,6] in its original form is an example
for a noniterative averaging method: They proposed to use just one iteration
of an averaging scheme with a large stencil. Applications for other tasks than
image denoising are investigated by Smith and Brady with the SUSAN filter [7].
1 The tonal difference denotes the difference of grey values.
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Many local adaptive filters have been introduced in an intuitive manner. Re-
search on finding a systematic theoretical foundation for them started much
more recently: Barash [8], for instance, investigated connections between bilat-
eral filtering and nonlinear diffusion with a scalar-valued diffusivity, and Mrázek
et al. [9] have introduced a common framework for a number of adaptive fil-
ters that is based on minimising suitable energy functions. An overview over
several neighbourhood filtering techniques has been given by Buades et al. [10].
They start with integral formulations of neighbouring filters and relate them to
methods based on PDEs [10].

In general, PDE approximations of discrete averaging filters can be useful to
study the evolution of the results under iterated filtering, to prove equivalence
between seemingly different methods, and to investigate why and how a discrete
filter deviates from a rotationally invariant behaviour. Last but not least, these
scaling limits can also lead to novel PDEs with interesting properties.

The goal of our paper is to perform novel scaling limits of a specific class of
discrete adaptive averaging methods. This class includes local filters as well as
more global representatives such as bilateral filtering.

This paper is organised as follows: In Section 2 we start with a fully dis-
crete averaging filter and describe how a scaling limit of it can be related to
an accelerated variant of the Perona-Malik filter. These ideas are extended to
the two-dimensional case in Section 3. They motivate the use of an anisotropic
filter similar to the diffusion filter in [11]. In Section 4 we extract the same filter
as scaling limit of bilateral filtering. Numerical examples in Section 5 juxtapose
the behaviour of the scaling limits to the averaging filters they originate from.
Section 6 concludes the paper with a summary.

2 Averaging Filters and Scaling Limits in 1-D

Derivation of the Scaling Limit. We start with the consideration of an iter-
ative weighted averaging filter of the form
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where f ∈ R
n is an initial signal and uk denotes the processed signal at iteration

k ∈ N0. For each pixel uk+1
i , the filter takes the direct neighbours uk

i−1 and uk
i+1

into account for averaging. At the boundaries, we assume mirroring boundary
conditions, that means we have two dummy pixels uk

0 := uk
1 and uk

n+1 := uk
n.

Typically one chooses a decreasing positive function g such that the denominator
cannot be zero. This also implies that we always have convex combinations
which guarantees a maximum-minimum principle for the filter. One may use
e.g. the same function g as the diffusivities in nonlinear diffusion filtering [12],
for instance g(s) =

(
1 + s2/λ2

)−1
. We observe that the weights depend on the
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tonal distance between the pixel and its direct neighbours divided by the spatial
step size h > 0 between the two pixels. We introduce the abbreviations gk
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In this last form we notice that the iterative scheme contains finite differences
which approximate spatial derivatives of u. Now we assume that u and g are
sufficiently smooth to perform a Taylor expansion. For example, there appears
uk
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and thus we can write
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To understand the iteration indices k+1 and k as discrete samples of a continuous
time variable t we introduce a temporal step size τ > 0. Division of both sides
by τ leads to the equation
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where the left-hand side is an approximation for the temporal derivative ∂tu at
time level k with an error in the order O(τ). We set the ratio between h and τ
such that τ

h2 = 1
2 and let h tend to zero. Then (7) approximates

∂tu =
1

g(|∂xu|) ∂x (g(|∂xu|) ∂xu) (8)

with an error in the order of O(τ +h2). This equation is similar to the nonlinear
diffusion equation presented by Perona and Malik [12]:

∂tu = ∂x (g(|∂xu|) ∂xu) . (9)
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The only difference is the factor 1
g(|∂xu|) on the right-hand side which acts as an

acceleration of the Perona-Malik filtering process at edges. To understand this,
assume that |∂xu| is relatively small within a region. A classical Perona-Malik
diffusivity is close to 1 in this case, and the factor has only a small effect. More
interesting is the situation near an edge where ∂xu has large absolute value, and
backward diffusion can occur for the diffusivities presented by Perona and Malik.
In this case, g(|∂xu|) is close to zero, and thus 1

g(|∂xu|) leads to an amplification
of the backward diffusion behaviour. We can expect such equations to yield
sharper results than classical Perona-Malik PDEs. One the other hand, they do
not necessarily preserve the average grey value, since they cannot be written in
divergence form.

Stability of an Explicit Discretisation. Since classical diffusivities g may be
arbitrary close to zero, the fraction 1

g(|∂xu|) in (8) is not bounded. This might give
rise to concerns regarding stability. However, the weighted averging scheme (1)
inspires also ways how to obtain stable discretisations: An explicit Euler scheme
for (8) can be written as
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with the same notation as above and with mirroring boundary conditions. We
note that the factors in front of uk

i+1, u
k
i and uk

i−1 sum up to 1. For τ ≤ h2

2

all three factors are nonnegative, and thus uk+1
i is a convex combination of the

three pixels: the scheme is maximum-minimum-stable. Further we see that for
the limit τ = h2

2 we obtain exactly the averaging filter (1). It should be noted
that the stability of our scheme is a consequence of the arithmetic mean used in
the fraction in (10) to approximate the diffusivity at the position of the pixel xi.

A Weighted Averaging Variant Involving the Central Pixel. The filter
(1) does not involve the central pixel ui itself in the average. This might cause
problems for certain initial signals: If we choose f to be an alternating signal with
two different values, then applying the filter will simply exchange the grey values.
To avoid this problem one can give the central pixel a nonnegative weight and
involve it in the averaging process. For example, such a modified scheme could
look like
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where we have given the central pixel a fixed weight α > 0. The same reasoning
as presented above relates this averaging filter to the PDE

∂tu =
1

α
2 + g(|∂xu|)∂x (g(|∂xu|) ∂xu) . (13)

Here we see that there is still some factor influencing the velocity of the diffusion
process, but this factor now is bounded from above to 2

α . Compared to (8), this
slows down the evolution in regions with small derivatives of u.

3 Averaging Filters and Scaling Limits in 2-D

In this section we consider filtering of images with a two-dimensional domain
with weighted averaging over the direct neighbouring pixels. Let N (i) be the
set of indices of the maximal four direct neighbours of the pixel with index i.
Then an equivalent of the weighted averaging filter (1) in two dimensions can be
written as
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Numerator and denominator of this scheme can be understood as the sum of
numerators and denominators of two one-dimensional schemes in x- and y-
direction. Thus the reasoning described in the last section shows that (14) is
a consistent approximation for

∂tu =
∂x (g(|∂xu|)∂xu) + ∂y (g(|∂yu|)∂yu)

g(|∂xu|) + g(|∂yu|) . (15)

This equation is not rotationally invariant, and thus will lead to artifacts in
images with rotational invariant objects. This indicates that also the weighted
averaging method (14) leads to such artifacts which is shown with a practical
example in Fig. 2.

To circumvent this shortcoming, we understand equation (15) as a crude ap-
proximation of the rotationally invariant equation
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1
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g(|∂eϕu|) dϕ
·
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0
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(
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where we write eϕ = (cos(ϕ), sin(ϕ))T for the unit vector in direction ϕ. In
(15) the integrals are approximated as trapez sums where only two evaluation
points of the integrands are used. Similar to [13] we introduce a smoothing of
the argument of the diffusivity by the convolution of u with a Gaussian kernel
of standard deviation σ, and we write uσ = Kσ ∗ u. This convolution can also
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simply be introduced in the arguments of the weights used in the averaging
process (14). It does not affect the reasoning leading to the PDE (16).

An equation similar to (16) has been studied in [11] in the context of
anisotropic diffusion filtering:

∂tu =
2
π
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)
dϕ. (17)

The proofs in [11] can be applied to show that (16) can be transformed into

∂tu =
1
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div (D(∇uσ) · ∇u) (18)

with the diffusion tensor D(∇uσ) =
∫ π

0
eϕe

�
ϕ g(|∂eϕuσ|) dϕ. In [11] the eigenvec-

tors of this diffusion tensorD(∇uσ) are calculated as v1(ψ) = (− sin(ψ), cos(ψ))T

and v2(ψ) = (cos(ψ), sin(ψ))T where ∇uσ �= 0 and (r, ϕ) are the polar coordi-
nates of ∇uσ. That means v1 is the direction of the isophote of uσ (along an
edge), while v2 is the direction across the edge. The corresponding eigenvalues
are given by

λ1(∇uσ) =
∫ π

0

sin2(ϕ) g(|∂eϕuσ|) dϕ and (19)

λ2(∇uσ) =
∫ π

0

cos2(ϕ) g(|∂eϕuσ|) dϕ . (20)

Equation (18) is the relevant formulation for practical implementations. This
equation is rotationally invariant, since the eigenvectors follow a rotation of
the input image, and the eigenvalues are invariant under image rotations. Since
trace(D(∇uσ)) is always significantly larger than zero, the sharpening of the
edges will be less pronounced in this anisotropic case (similar to (13)). Never-
theless, we are going to see with numerical examples that not only preservation
of edges, but also sharpening is possible with this filter.

4 Larger Neighbourhood and Rotational Invariance

In the last section we have derived an anisotropic PDE filter from a weighted
averaging of the direct neighbouring pixels. To circumvent the lack of rotational
invariance in (15) we have understood it as a very crude approximation of the
rotational invariant approach (16). Nevertheless, there are discrete filters which
address the problem of lacking rotational invariance by involving information
from pixels in a larger neighborhood.

We consider here the prominent example of the bilateral filter [5,8,6]. Even
though this filter is proposed as a noniterative method, it can make sense to
perform several filtering steps; thus we understand it as an iterative averaging
filter. In one filtering step, not only the direct neighbouring pixels are involved
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in the averaging, but an extended neighbourhood i+ BR. Here BR = {j ∈ R
2 :

|j| ≤ R} ∩ Gh denotes the intersection of the disc of radius R in R
2 with the

pixel grid Gh. A variant of the bilateral filter then looks like this:
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The spatial distance between ui and ui+j results in a usually smaller weight
w(|j|)/|j|2, where an example for w is w(h) = h2 exp(−h2). In this special ex-
ample, w leads to a Gaussian weight depending on the distance of the two pixels.

We now want to imitate the approach presented in Section 2. To this end we
only consider one half of the disc B+

R = {(x, y) ∈ BR|x ≥ 0} and rewrite the
sums in (21) as
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The novelty in this two-dimensional case is that we have to consider several
directional derivatives. We see that there appear directional finite differences in
(22). Let eϕ = j

|j| be the unit vector pointing in the direction of j �= 0, and
h = |j| be the length of the vector j. A Taylor expansion of u around the pixel
i yields

ui+j = ui + 〈∇u, j〉 + O(h2) = ui + (∂eϕu) · h+ O(h2)

which will be useful in the form
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Applying the Taylor formula (23) to (22) allows us to write
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At this point we investigate the scaling limit if we let the spatial step sizes in
x- and y-direction tend to zero while we keep the size R of the neighbourhood
fixed. This means that the number of grid points in our neighbourhood BR is
tending to infinity. Thus we can consider the sums in (24) as Riemann sums
which approximate integrals over the set B+
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Since the inner integrals do not depend on the radius r, the outer ones are just
a scaling factor, that means (25) is corresponding up to a constant factor to

uk+1 − uk =
1
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0

g(|∂eϕu
k|) dϕ

·
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k|)∂eϕu
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If we understand the right-hand side as temporal forward difference we can see
(26) as an approximation to (16). This provides a novel interpretation of bilateral
filtering as an anisotropic PDE.

5 Experiments

Now we show some numerical examples to illustrate the practical behaviour of
averaging methods and our novel PDE methods. As weight function or diffusivity

we use the classical diffusivity g(s) =
(
1 + s2

λ2

)−1

by Perona and Malik [12].
First we display an experiment in the one-dimensional case in Fig. 1. We see

that the presence of the acceleration factor allows for sharper edges. With the
same evolution time we can achieve a stronger edge enhancement than with a
classical nonlinear diffusion equation of Perona-Malik type.

Figure 2 visualises the lack of rotational invariance of local averaging filters
and how it can be improved with a larger neighbourhood in the bilateral filter.
Even a better effect than extending the neighbourhood can be achieved with the
anisotropic nonlinear diffusion equation (16).

Figure 3 shows the denoising capabilities of the anisotropic diffusion equation
(16) for real-world data. The anisotropic behaviour is clearly visible.

6 Conclusions

We have described the close relationship between weighted averaging processes
and filters based on partial differential equations with an acceleration factor. In
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Fig. 1. Accelerated Perona-Malik diffusion in 1-D. Left: Original signal (64 point
width section of a signal with 256 pixels). Middle: Perona-Malik diffusion (λ = 0.005,
t = 5000). Right: Perona-Malik diffusion with additional factor (8) and the same pa-
rameters.
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Fig. 2. Weighted averaging and accelerated diffusion. Top Left: Original image (size:
256 x 256 pixels). Top Right: Weighted averaging (equation (14), λ = 3.0, 15000 it-
erations). Bottom Left: Iterated bilateral filtering (λ = 3.0, window size 5 × 5 pixels,
w(h) = h2 exp

(−h2/4
)
, 5000 iterations). Bottom Right: Accelerated anisotropic diffu-

sion (λ = 10, σ = 2, t = 1660).

Fig. 3. Accelerated diffusion. Left: Original image (size: 256 x 256 pixels) and additive
Gaussian noise with standard deviation 50. Middle: Accelerated anisotropic diffusion
(λ = 2, σ = 3, t = 2). Right: Same, but with t = 10.

the 1-D setting we have shown that a suitable scaling limit leads to a modifica-
tion of the nonlinear diffusion filter of Perona and Malik [12]. The modification
consists of a factor that accelerates the sharpening of edges and may give an
improved edge enhancement. In the two-dimensional setting, choosing only a
small neighbourhood for the averaging can lead to lack of rotational invariance.
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However, it can be regarded as a crude approximation of a rotationally invariant
PDE that resembles the anisotropic diffusion filter of Weickert [11]. We have
also derived the same PDE as a scaling limit of bilateral filtering. This provides
additional insights in the behaviour of the widely-used bilateral filter, and shows
a way how to improve its invariance under rotations. It is our hope that these
examples will motivate more people to analyse the fruitful connections between
averaging filters and PDE-based methods in the future.

Acknowledgements. We gratefully acknowledge partly funding by the Deut-
sche Forschungsgemeinschaft (DFG), project WE 2602/2-2.
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13. Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge
detection by nonlinear diffusion. SIAM Journal on Numerical Analysis 29 (1992)
182–193


	Introduction
	 Averaging Filters and Scaling Limits in 1-D 
	 Averaging Filters and Scaling Limits in 2-D 
	  Larger Neighbourhood and Rotational Invariance 
	 Experiments 
	 Conclusions 


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




