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Abstract. This paper discusses the extension of nonlinear diffusion fil-
ters to higher derivative orders. While such processes can be useful
in practice, their theoretical properties are only partly understood so
far. We establish important results concerning L2-stability and forward-
backward diffusion properties which are related to well-posedness ques-
tions. Stability in the L2-norm is proven for nonlinear diffusion filtering
of arbitrary order. In the case of fourth order filtering, a qualitative de-
scription of the filtering behaviour in terms of forward and backward
diffusion is given and compared to second order nonlinear diffusion. This
description shows that curvature enhancement is possible with of fourth
order nonlinear diffusion in contrast to second order filters where only
edges can be enhanced.

1 Introduction

Nonlinear diffusion filtering is an established method for signal and image de-
noising and simplification. Starting with the pioneering work of Perona and
Malik [1] in 1990, investigations have covered both the theoretical properties
and the usefulness in practice of nonlinear diffusion filters and related varia-
tional methods [2,3,4,5,6,7]. With a whole spectrum of different diffusivities, the
method produces smoothing effects as well as edge enhancement. The edge en-
hancement locally increases the first derivative and may also cause one of the
major drawbacks of the method, the so-called staircasing effect: Regions with
smooth grey value changes in the original signal or image can be turned into
many segmentation-like regions. Fig. 1 (b.) shows a denoising example where
this effect occurs. To circumvent these artifacts, higher derivative orders have
been introduced in the diffusion process [8,9,10,11,12,13]. This allows a higher
adaptivity to the local image structure and can yield piecewise linear regions.
Several methods have been proposed which confirm the impression that higher
order nonlinear diffusion is a very useful extension of the well-established sec-
ond order methods in practice, see also Fig. 1 (c.). Unfortunately, not many
theoretical properties have been established for higher-order smoothing so far.
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Fig. 1. (a.) Left: Initial noisy image. (b.) Middle: Second order Perona-Malik filtering.
(c.) Right: Linear combination of second and fourth order Perona-Malik filtering.

In this paper we first consider stability properties of the higher order filtering
methods. We mainly restrict ourselves to the one-dimensional case although some
of the results can be carried over to higher dimensions. The main result presented
here related to stability is that higher order nonlinear diffusion filtering is stable
with respect to the L2-norm. Furthermore we will see that there is an analogue
to edge enhancement for fourth order nonlinear diffusion which will be called
curvature enhancement. A closer look at various commonly used diffusivities
shows that the behaviour for second and fourth order filtering is different but
exhibits strong structural similarities.
This paper is organised as follows. Section 2 gives a short summary of useful
properties of second order nonlinear diffusion related to this paper. In Section 3
we generalise the associated partial differential equation and its boundary con-
ditions to higher orders and establish L2-stability. The enhancement of local
features is then discussed in Section 4 from a theoretical point of view. Section
5 displays some experiments confirming that fourth order forward and back-
ward diffusion are practically observable effects. A summary of the main results
concludes the paper with Section 6.

2 Second Order Nonlinear Diffusion

Let f(x) denote a signal defined on an interval [a, b]. Second order nonlinear
diffusion creates a filtered signal u(x, t) as solution of the diffusion equation

∂tu = ∂x

(
g

(
(∂xu)2

)
∂xu

)
(1)

with initial condition u(x, 0) = f(x) for all x ∈ [a, b]. The velocity of diffusion
is steered by the diffusivity function g ≥ 0 depending on the square of the first
derivative of the evolving signal u. Typical diffusivities g tend to 1 for small
absolute values of their argument and are getting smaller for higher argument
modulus. This speeds up the diffusion in almost flat regions of the signal and
reduces the diffusion speed near edges. With an appropriate choice for the dif-
fusivity g, piecewise constant filtering results are possible. We will have a closer
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look at some typical diffusivities in Section 4.3. To complete the PDE (1) usually
homogeneous Neumann boundary conditions ∂xu(a) = ∂xu(b) = 0 are assumed.
There are two reasons for the appearance of this type of boundary conditions:
Firstly they can be physically motivated by the idea that the flux is zero at the
image boundaries. That means no matter is entering or leaving the image during
the filtering process. Secondly Neumann boundary conditions emerge in a nat-
ural way if one relates nonlinear diffusion filtering to regularisation and energy
functional minimisation [14]. This approach starts with an energy functional of
the form

E1(u) =
∫ b

a

(
(u − f)2 + α ϕ

(
(∂xu)2

))
dx

with a penaliser ϕ and weight α > 0 and searches for a minimiser u. The first
term (u − f)2 is minimal if u is close to the initial image f in the sense of the
L2-norm. The second term ϕ((∂xu)2) with ϕ(0) = 0 and ϕ′ ≥ 0 rewards signals
whose first derivative is small, i. e. it rewards smoothness of the filtered signal. A
necessary condition for a minimiser of E1 is given by the elliptic Euler-Lagrange
equation

u − f

α
= ∂x

(
ϕ′

(
(∂xu)2

)
∂xu

)
. (2)

When no assumptions about the boundary behaviour are imposed, the deriva-
tion of the Euler-Lagrange equations leads to homogeneous Neumann boundary
conditions. Interpreting the right-hand side of (2) as discretisation of a time
derivative ∂tu and setting g := ϕ′, one ends up with the parabolic equation
(1) with stopping time α. Later on we will see that this derivation helps us
to find appropriate boundary conditions for the higher order diffusion filters,
too. Stability in the L2-norm and even a maximum-minimum principle belong
to the properties which establish the good reputation of second order nonlinear
diffusion methods [6].

3 Higher Order Nonlinear Diffusion

Higher order nonlinear diffusion filtering as considered in this paper is related
to the equation

∂tu = (−1)m+1 ∂m
x

(
g

(
(∂m

x u)2
)

∂m
x u

)
(3)

with initial condition u(x, 0) = f(x) for all x ∈ [a, b]. Since the highest deriva-
tive order appearing in (3) is 2m, we will call the related process 2m-th order
nonlinear diffusion filtering. To determine appropriate boundary conditions we
consider the derivation of (3) from the energy functional

Em(u) =
∫ b

a

(
(u − f)2 + α ϕ

(
(∂m

x u)2
))

dx

following the train of thought of Section 2. A necessary condition for a minimiser
u of this functional is given by the Euler-Lagrange equation

u − f

α
= (−1)m+1 ∂m

x

(
g

(
(∂m

x u)2
)

∂m
x u

)
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where we again set g := ϕ′. The corresponding natural boundary conditions are
in this case

∂k
x

(
g

(
(∂m

x u)2
)

∂m
x u

)
= 0 for k ∈ {0, . . . , m − 1} (4)

for x ∈ {a, b}. We obtain m constraints at each boundary pixel as generalisation
of the Neumann conditions for m = 1.
The subject of existence, uniqueness, and regularity of solutions will not be
addressed in this paper. Usually a mollifier smoothing the argument of the diffu-
sivity is required to obtain well-posedness [2,13]. Since the reasoning presented in
this paper is independent of the presence of such a mollifier we omit it during the
paper for simplicity. In the sequel we assume the existence, uniqueness and suf-
ficient regularity of solutions. With these assumptions, the following proposition
assures L2-stability of the solutions:

Proposition 3.1. (L2-Stability) If a classical solution u of equation (3) exists
which is continuously differentiable in the time variable t and 2m times contin-
uously differentiable in the space variable x ∈ [a, b], the L2-norm of u(·, t) is
monotonically decreasing with t ≥ 0.

Proof. Using the assumption that u satisfies (3) with the boundary conditions
(4), integration by parts yields

∂t

(
1
2

∫ b

a

u2 dx

)
=

∫ b

a

u · (∂tu) dx

= (−1)m+1

∫ b

a

u · ∂m
x

(
g

(
(∂m

x u)2
)

∂m
x u

)
dx

= (−1)2m+1

∫ b

a

(∂m
x u) · g

(
(∂m

x u)2
)
· (∂m

x u) dx

+
m−1∑
k=0

(−1)m−1−k
[(

∂k
xu

) · ∂m−1−k
x

(
g

(
(∂m

x u)2
)

∂m
x u

)]b

a

= −
∫ b

a

g
(
(∂m

x u)2
)
· (∂m

x u)2 dx ≤ 0 .

This ensures that the L2-norm of the solution may not increase with t. ��
This result guarantees that higher order nonlinear diffusion leads indeed to a
simplification of the initial data.

4 Local Feature Enhancement

Though classical nonlinear diffusion simplifies signals or images, it may also
enhance important local features such as edges. This section discusses higher
order diffusion from this point of view.
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4.1 Second Order Filtering and Edge Enhancement

To determine the possibility of edge enhancement for special diffusivities g one
usually uses the the flux function Φ(s2) := g(s2)s to rewrite (1) yielding

∂tu = Φ′
(
(∂xu)2

)
∂2

xu =
(
2g′

(
(∂xu)2

)
(∂xu)2 + g

(
(∂xu)2

))
∂2

xu .

In regions where Φ′((∂xu)2) > 0 this equation behaves like a forward diffusion
equation while in regions with Φ′((∂xu)2) < 0 there is backward diffusion pos-
sible. In this regions with backward diffusion, an edge enhancing behaviour is
plausible and can also be observed in practice [1].

4.2 Fourth Order Filtering

Now we take a closer look at the fourth order diffusion equation, i. e. we set
m = 2 in (3) yielding

∂tu = −∂2
x

(
g

((
∂2

xu
)2

)
∂2

xu
)

.

We expand the right-hand side of this equation and rewrite it as

∂tu = −
(
2

(
∂3

xu
)2

Φ1

((
∂2

xu
)2

))
∂2

xu − Φ2

((
∂2

xu
)2

)
∂4

xu (5)

using Φ1(s2) := 2g′′(s2)s2 + 3g′(s2) and Φ2(s2) := 2g′(s2)s2 + g(s2). Analogue
to the second order case our argumentation is that (5) locally behaves similar
to the linear equation ∂tu = −a∂2

xu − b∂4
xu if the signs of the factors a and b

are equal to the signs of Φ1 and Φ2. For Φ1((∂2
xu)2) < 0 we expect some second

order forward diffusion influence on the solution, whereas Φ1((∂2
xu)2) > 0 leads

to second order backward diffusion. Vice versa, Φ2((∂2
xu)2) > 0 ensures fourth

order forward diffusion, and Φ2((∂2
xu)2) < 0 fourth order backward diffusion.

It should be mentioned that Φ2 always coincides with the function Φ in the
second order case presented in Section 4.1. Also for orders higher than four, the
sign of this function determines the diffusion property (forward or backward)
of the highest order term which implies a certain similarity in the behaviour of
several filtering orders. The main difference is the argument: Φ depends on the
squared m-th derivative for 2m-th order filtering.

4.3 Application to Commonly Used Diffusivities

After showing the general approach for fourth order diffusion in the last section
we now apply it to several diffusivities commonly used in practice to describe
their characteristic behaviour. In the following the diffusivities are ordered ac-
cording to their forward-backward diffusion properties:
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– Forward Diffusion: The diffusivity related to the regularisation approach

by Charbonnier et al. [3] is given by g(s2) =
(
1 + s2

λ2

)− 1
2

and is known to
perform forward diffusion in the second order case. By computing

Φ1(s2) = − 3
2λ2

(
1 + s2

λ2

)− 5
2

< 0 and Φ2(s2) =
(
1 + s2

λ2

)− 3
2

> 0

we see that also the fourth order Charbonnier diffusion always performs

forward diffusion. With the observation
(
ε2 + s2

)− 1
2 = ε

(
1 + s2

ε2

)− 1
2

it is
clear that regularised TV flow [15] behaves in the same way.

– Boundary Case: TV flow [5] comes from the diffusivity g(s2) = 1
|s| . At all

points where the argument s is nonzero we have Φ1(s2) = Φ2(s2) = 0 which
legitimates to consider TV flow as the boundary case between forward and
backward diffusion.

– Forward and Backward Diffusion: The diffusivity g(s2) =
(
1 + s2

λ2

)−1

proposed by Perona and Malik [1] leads to the conditions

Φ1(s2) = 1
λ4

(
1 + s2

λ2

)−3 (
s2 − 3λ2

)
< 0 ⇐⇒ |s| <

√
3λ

Φ2(s2) =
(
1 + s2

λ2

)−2 (
1 − s2

λ2

)
> 0 ⇐⇒ |s| < λ .

This really displays the adaptive nature of this diffusivity: Depending on the
parameter λ, the curvature

∣∣∂2
xu

∣∣ leads to forward or backward diffusion. New
to the fourth order case is the presence of two conditions and the possibility
that only one of them holds, namely in regions where λ <

∣∣∂2
xu

∣∣ <
√

3λ.

Similar conditions hold for the diffusivity g(s2) = exp
(
− s2

2λ2

)
also proposed

by Perona and Malik [1].
– Backward Diffusion: The balanced forward-backward diffusivity [4] de-

fined by g(s2) = 1
s2 leads to Φ1(s2) = s−4 > 0 and Φ2(s2) = −s−2 < 0 which

implies that it always performs backward diffusion. As for total variation
diffusivity we also suppose that the argument is nonzero here.

We conclude that even in the fourth order case there are diffusivities covering
the whole spectrum from pure forward to pure backward diffusion.

5 Numerical Examples

After the theoretical description of fourth order diffusion, in this section we
show results of Perona-Malik filtering in one dimension with different orders.

For 2m-th order filtering with g(s2) =
(
1 + s2

λ2

)−1

the parameter λ is chosen

such that there are regions with |∂m
x u| >

√
3λ where backward diffusion appears.

Fig. 2 shows the initial signal and some filtering results. While second order
filtering yields enhancement of edges, the fourth order filtering result tends to
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be piecewise linear with enhanced curvature at corner points. This observation
for fourth order filtering is further affirmed by the almost piecewise constant
derivative approximation of the filtering result also shown in Fig. 2.
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Fig. 2. Top left: Gaussian signal. Top right: Second order Perona-Malik filtering. Bot-
tom left: Fourth order Perona-Malik filtering. Bottom right: First derivative of fourth
order filtering result.

6 Conclusions

In this paper we have investigated theoretical properties of higher order nonlinear
diffusion filters. For the first time we have presented stability considerations for a
class of nonlinear diffusion filters related to variational methods. Furthermore, an
argumentation in terms of forward and backward diffusion has been given which
can be helpful to understand the behaviour of fourth order nonlinear diffusion
filters. Numerical examples with one-dimensional data show that higher order
filters can be used to enhance important data features. We have seen that in
correspondence to the edge enhancement of second order diffusion, fourth order
filters may act curvature enhancing, which is in accordance with the theoretical
considerations presented in this paper.
A theoretical generalisation to orders higher than four and new practically usable
diffusivities which are especially designed for higher orders are two questions of
our ongoing research.
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