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Summary. Image simplification and smoothing is a very important basic ingredi-
ent of a lot of practical applications. In this paper we compare different numerical
approaches to solve this image approximation task within a unifying variational ap-
proach presented in [8]. For methods based on fixed point iterations we show the
existence of fixed points. To speed up the convergence we also use two approaches
involving Newton’s method which is only applicable for convex penalisers. The run-
ning time in practice is studied with numerical examples in 1-D and 2-D.

1 Introduction

The task of image smoothing, simplification and denoising is the subject of var-
ious approaches and applications. An initial image is approximated by filtered
versions which are smoother or simpler in some sense. Statistical estimation,
median or mode filters, nonlinear diffusion, bilateral filtering or regularisa-
tion methods are among the tools helpful to reach this aim. Most of these
tools somehow incorporate a neighbourhood of the pixel under consideration
and perform some kind of averaging on the grey values. One of the earliest
examples for such filters has been presented by Lee [7], followed by a lot of
successors like the SUSAN filter by Smith and Brady [14]. In the context of
statistical methods, Polzehl and Spokoiny presented a technique called adap-
tive weights smoothing [11]. The W-estimator by Winkler et al. [17] can be
related to a spatially weighted M-smoother [5]. A very similar evolution is the
bilateral filter by Tomasi and Manduchi [16], another prominent example for
a weighted averaging filter. In its original form it is interestingly not meant
to be iterative. There are approaches to relate it to variational principles [4].
In general there are a lot of approaches to give relations between averaging
methods and techniques based on minimisation of energy functionals or on
partial differential equations [1, 13].

In [8], an energy-based approach has been proposed which allows to con-
sider a whole spectrum of well-known methods as different facets of the same
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model. This approach makes use of so-called Nonlocal Data and Smoothness
terms; thus it will be called NDS here. These terms can consider not only
information from a small region around a pixel but also make it possible to
involve large neighbourhoods. The data term rewards similarity of our filtered
image to the given one while the smoothness term penalises high deviations
inside a neighbourhood of the evolving image.

The goal of the present paper is to analyse numerical methods for this ap-
proach. This paper is organised as follows: Section 2 gives a closer description
of the energy functional we deal with and its relations to well-known filtering
methods like M-smoothers and the bilateral filter. In Section 3 we discuss
different approaches to minimise the NDS functional including a fixed point
scheme and Newton’s method. Numerical experiments in 1-D and 2-D in Sec-
tion 4 compare the behaviour and running time of the presented approaches.
A summary of the results and an outlook conclude the paper in Section 5.

2 The Filtering Framework

In this section we review the variational model presented in [8] and relate it to
other filtering techniques. Let f, u ∈ R

n be discrete one- or two-dimensional
images. We always denote the initial noisy image of the filtering process with
f and the processed one with u. Let Ω = {1, . . . , n} be the index set of all
pixels in the images. The pixel positions on the one- or two-dimensional grid
will be denotes with xi(i ∈ Ω). That means |xi −xj |2 yields the square of the
Euclidean distance between the two pixels xi and xj in the real line (1-D) or
the plane (2-D). This will be referred to as spatial distance. The tonal distance
then is the distance between grey values of two pixels, for example |ui − fj |2.

We start with an energy functional involving the tonal distance between
u and f :

ED(u) =
∑

i∈Ω

∑

j∈Ω

ΨD

(

|ui − fj |2
)

wD

(

|xi − xj |2
)

(1)

The iterative minimisation of such a scheme leads to the well-known W-
estimator

u0
i := fi, uk+1

i :=

∑

j∈Ω Ψ ′
D

(

|uk
i − fj |2

)

wD

(

|xi − xj |2
)

fj
∑

j∈Ω Ψ ′
D

(

|uk
i − fj |2

)

wD (|xi − xj |2)
(2)

This scheme is very similar to another well-established filtering technique
known in image processing: the bilateral filter presented by Tomasi and Man-
duchi [16]. The bilateral filter can be obtained by replacing fj with uj in
(2). Similar to the above reasoning the bilateral filter can be thought of as
minimisation scheme for a nonlocal smoothness term:

ES(u) =
∑

i∈Ω

∑

j∈Ω

ΨS

(

|ui − uj |2
)

wS

(

|xi − xj |2
)

. (3)
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We keep in mind that a minimisation of (3) would lead to a constant image
with an arbitrary grey value, since the initial image f does not appear in ES .
Nevertheless, the bilateral filter can be seen as the first step of an iterative
minimisation procedure for (3).

The functional E of the NDS filter presented in [8] is a linear combination
of both data and smoothness terms:

E(u) = α
∑

i∈Ω

∑

j∈Ω

ΨD

(

|ui − fj |2
)

wD

(

|xi − xj |2
)

+(1 − α)
∑

i∈Ω

∑

j∈Ω

ΨS

(

|ui − uj |2
)

wS

(

|xi − xj |2
)

. (4)

Here we have incorporated a similarity constraint which can lead to non-
flat minimisers and a smoothness constraint. The spatial weights wD and wS

incorporate the spatial distance between pixel positions xi and xj while the
tonal weights ΨD and ΨS penalise high deviations between the corresponding
grey values. Table 1 shows some possible choices Ψ for the tonal weights ΨD in
the data term and ΨS in the smoothness term. The NDS functional (4) allows
to express a lot of different models, so it is natural that the tonal weights are
motivated from different contexts. The list in Table 1 is clearly not meant to
be complete since there is a whole variety of possible penalisers at hand. The
choice of a special one should be motivated from the type of noise and image,
but this is not within the scope of this article.

Table 1. Possible choices for tonal weights Ψ .

Ψ(s2) Ψ ′(s2) known in the context of

s2 1
Tikhonov regularisa-
tion [15]

2
(√

s2 + ε2 − ε
) (

s2 + ε2
)

−
1

2
regularised total varia-
tion [12]

2λ2

(

√

1 + s2

λ2 − 1

)

(

1 + s
2

λ2

)

−
1

2 nonlinear regularisation,
Charbonnier et al. [2]

λ2 log
(

1 + s
2

λ2

) (

1 + s
2

λ2

)

−1 nonlinear diffusion, Perona
and Malik [10]

λ2

(

1 − exp
(

− s
2

λ2

))

exp
(

− s
2

λ2

) nonlinear diffusion, Perona
and Malik [10]

min(s2, λ2)

{

1 |s| < λ

0 else
segmentation, Mumford
and Shah [9]

Two simple examples of functions which can lead as spatial weights are
displayed in Table 2. They both have in common that they are symmetric.
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Table 2. Possible choices for spatial weights w.

w(s2) known in the context of

{

1 |s| < λ

0 else
hard window

locally orderless images, Koenderink
and van Doorn [6]

exp
(

− s
2

λ2

)

soft window Chu et al. [3]

Since in our model (4) we only use w(s2) we only plug in nonnegative values
and this symmetry is obtained automatically. Essentially the same model al-
lows to use nonsymmetric spatial weights, too. We also have chosen spatial
weights which are between 0 and 1 and have their maximum in the point 0.
This makes sure that the pixel itself is taken into consideration with the high-
est weight. Centering the spatial weight in the data term around a number
different from 0 would perform a shift of the whole image during filtering.

3 Minimisation Methods

After discussing the derivation and the meaning of the NDS functional we now
study different methods to minimise it. All numerical minimisation methods
are based on conditions on the derivatives of E so we now calculate the first
and second partial derivatives of E.

Taking the partial derivatives of the data term (1) yields

∂ED

∂uk

= 2
∑

j∈Ω

Ψ ′
D

(

|uk − fj |2
)

(uk − fj)wD

(

|xk − xj |2
)

(5)

∂2ED

∂uk∂ul

=















2
∑

j∈Ω

[

2Ψ ′′
D

(

|ul − fj |2
)

(ul − fj)
2

+Ψ ′
D

(

|ul − fj |2
)]

wD

(

|xl − xj |2
)

l = k

0 l 6= k

In a similar way we calculate the derivatives of the smoothness term (3) which
leads to

∂ES

∂uk

= 4
∑

j∈Ω

Ψ ′
S

(

|uk − uj |2
)

(uk − uj)wS

(

|xk − xj |2
)

(6)

∂2ES

∂uk∂ul

=



























4
∑

j∈Ω

[

2Ψ ′′
S

(

|ul − uj |2
)

(ul − uj)
2

+(1 − δlj)Ψ
′
S

(

|ul − uj |2
)]

ws

(

|xl − xj |2
)

l = k

−4
[

2Ψ ′′
S

(

|uk − ul|2
)

(uk − ul)
2

+Ψ ′
S(|uk − ul|2)

]

wS

(

|xk − xl|2
)

l 6= k
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In the second derivatives δlj denotes the Kronecker symbol δlj =

{

1 l = j

0 else
.

It is clear that the complete derivatives then have the form

∂E

∂ui

= α
∂ED

∂ui

+ (1 − α)
∂ES

∂ui

,

and the corresponding sum for the second derivatives. Having these derivatives
at hand we can now study the concrete minimisation algorithms.

3.1 Jacobi Method – Fixed-Point Iteration

For a critical point u of the energy functional E we have

∇E(u) = 0 ⇐⇒ ∂E

∂ui

= 0 for all i ∈ {1, . . . , n} . (7)

We define the abbreviations

di,j := Ψ ′
D

(

|ui − fj |2
)

wD

(

|xi − xj |2
)

,

si,j := Ψ ′
S

(

|ui − uj |2
)

wS

(

|xi − xj |2
)

which help us to rewrite (7) as

0 = α
∑

j∈Ω

di,j(ui − fj) + 2(1 − α)
∑

j∈Ω

si,j(ui − uj)

where we use the partial derivatives shown in (5) and (6). This can be trans-
formed into fixed point form

ui =
α

∑

j∈Ω di,jfj + (1 − α)
∑

j∈Ω si,juj

α
∑

j∈Ω di,j + (1 − α)
∑

j∈Ω si,j

.

To have a positive denominator we assume that Ψ ′
{S,D}(s

2) > 0, i. e.,
the penalisers are monotonically increasing. Furthermore we assume that
w{S,D}(s

2) ≥ 0 and w{S,D}(0) > 0 for the spatial weights. We use this equa-
tion to build up a first iterative method to minimise the value of E where an
additional index k denotes the iteration number. Note that di,j and si,j also
depend on the evolving image uk and thus also get a superscript to denote the
iteration level involved. The corresponding fixed point iteration then reads as

u0
i := fi ,

uk+1

i :=
α

∑

j∈Ω dk
i,jfj + 2(1 − α)

∑

j∈Ω sk
i,ju

k
j

α
∑

j∈Ω dk
i,j + 2(1 − α)

∑

j∈Ω sk
i,j

. (8)

With our assumptions on Ψ{D,S} and w{D,S} from above we know that

dk
i,j ≥ 0 and sk

i,j ≥ 0 for all i, j, k. That means in (8), uk+1

i is calculated as
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a convex combination of grey values of the initial image fj and of the last
iteration step uk

j . Thus we have

min
j∈Ω

{uk
j , fj} ≤ uk+1

i ≤ max
j∈Ω

{uk
j , fj} for all i ∈ Ω, k ∈ N .

Induction shows that the fixed point scheme (8) satisfies a maximum-minimum
principle, i.e.,

min
j∈Ω

{fj} ≤ uk
i ≤ max

j∈Ω
{fj} for all i ∈ Ω, k ∈ N .

Let us now consider the set M := {u ∈ R
n | ‖u‖∞ ≤ ‖f‖∞} with the norm

‖u‖∞ := maxj∈Ω |uj |. M 6= ∅ is compact and convex. Writing our scheme
(8) in the form uk+1 = F (uk) with F : R

n −→ R
n, the maximum-minimum

stability implies that F (M) ⊆ M . With our requirements on Ψ{D,S} and
w{D,S}, the denominator in (8) is always larger than zero. This means that
each component Fi : R

n −→ R is continuous with respect to the norm ‖ · ‖∞.
Since this holds for all i, we know that F : (Rn, ‖ · ‖∞) −→ (Rn, ‖ · ‖∞) is
continuous. Then Brouwer’s fixed point theorem (see for example [18, page
51]) shows that F has a fixed point in M .

In the fixed point iteration scheme (8) we calculate uk+1 using only com-
ponents of the vector uk of the old iteration level:

uk+1

i := Fi(u
k) for all i ∈ Ω, k ∈ N . (9)

Such a method can also be called a nonlinear Jacobi method.

3.2 Newton’s Method

We search a zero of the gradient ∇E(u) = 0. To this end we use Newton’s
method for the function ∇E:

uk+1 = uk − H(E, uk)−1 ∇E(uk) , (10)

where H(E, uk) is the Hessian matrix of E at the point uk. In each step of
(10) we have to solve a linear system of equations. This system of equations
can only be solved if the Hessian matrix is invertible which is the case for
a convex functional E. That means we cannot use Newton’s method for all
penalisers shown in the last section. If both ΨD(s2) and ΨS(s2) are convex
in s, i. e. 2Ψ ′′(s2)s2 + Ψ ′(s2) > 0, the Hessian matrix H(E, uk) has positive
diagonal entries and is strictly diagonally dominant. This does not only allow
us to solve the linear system of equations, but it also gives us the possibility
to use a whole variety of iterative solution algorithms like the Gauß-Seidel,
successive overrelaxation, or conjugate gradient method. We have chosen to
use the Gauß-Seidel method here to solve the linear system of equations.

A practical observation shows that the steps of Newton’s method are often
too long. Thus we have used a simple line-search strategy:



Energy-Based Image Simplification 57

uk+1 = uk − σkH(E, uk)−1 ∇E(uk)

with σk ∈ (0, 1]. We try σk = 1, 1

2
, 1

4
, . . . until the energy is decreasing in the

step: E(uk+1) < E(uk).
It is clear that one step of Newton’s method is much more expensive than

one fixed point iteration step. Nevertheless, numerical examples will show that
the whole process can still converge faster.

3.3 Gauß-Seidel Method

Instead of the nonlinear Jacobi method (9) one can also use a nonlinear Gauß-
Seidel method which involves pixels of the old and the new iteration level. For
each pixel ui =: x0, we perform m steps of a local fixed point iteration

xl+1 := Fi(u
k+1

1 , . . . , uk+1

i−1
, xl, uk

i+1, . . . , u
k
n) l = 1, 2, 3, . . .

and set uk+1

i := xm afterwards. Since these inner steps satisfy a maximum-
minimum principle, the whole Gauß-Seidel method does. Thus one can apply
the same reasoning as above and gets the existence of fixed points for the
equation.

3.4 Gauß-Seidel Newton Method

Here we solve the single component equations with Newton’s method. We
start with the pixel value x0 = uk

i of the last iteration level and set

xl+1 = xl − σl

(

∂2E

∂u2
i

(ũ)

)−1
∂E

∂ui

(ũ)

with ũ = (uk+1

1 , . . . , uk+1

i−1
, xl, uk

i+1, . . . , u
k
n). After m steps of this method we

set uk+1

i = xm and proceed with the next pixel. The only difference is that we
use the criterion Eloc(x

l+1) < Eloc(x
l) for the choice of the step size σl where

the local energy is defined as

Eloc(u) = α
∑

j∈Ω

ΨD

(

|xl − fj |2
)

wD

(

|xi − xj |2
)

+(1 − α)
∑

j∈Ω

ΨS

(

|xl − ũj |2
)

wS

(

|xi − xj |2
)

.

We should note that besides the number of (outer) iterations, all meth-
ods except of the Jacobi method have the number of inner iterations as an
additional parameter for the numerics.
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4 Numerical Experiments

Now we investigate the practical behaviour of the methods presented in the
last section. We use the two stopping criteria ‖uk+1−uk‖2 < a and |E(uk+1)−
E(uk)| < b . That means we stop the algorithm if the changes of both the
evolving image (in terms of the Euclidean norm) and the energy value are
smaller than prescribed limits a and b. As quality measure we use the signal-

to-noise-ratio SNR(f, g) = 10 log10

(

‖g−µ‖2

2

‖f−g‖2

2

)

where µ stands for the mean

value of the original image g, and f is the noisy image. The results of the
1-D example are displayed in Figure 1 and Table 3. Here we have Gaussian
noise, and we have chosen ΨD(s2) = s2, ΨS(s2) = 2

(√
s2 + ε2 − ε

)

with ε =
0.01, and wD(s2) = wS(s2) = 1.0 inside a data term window of size 7 and
a smoothness term window of size 11 with α = 0.5. The number of inner
iterations was optimised to yield a fast convergence for each method. We see
that Newton’s method is the fastest one in this case while all of the methods
yield almost equal SNR values.

Figure 2 and Table 4 contain the results of the 2-D experiments. For the
removal of salt-and-pepper noise we chose ΨD(s2) = 2

(√
s2 + ε2 − ε

)

with

ε = 0.01, ΨS(s2) =
(

1 + s2

λ2

)− 1

2

with λ = 0.1. We set wD(s2) = wS(s2) = 1.0

with both windows of size 3 and α = 0.95. Here we have the opposite case,
and the simple fixed point scheme is faster than Newton’s method. We have
performed some more experiments indicating that this does not depend on the
dimension of the problem but on the choice of penalisers. That the convergence
is much slower for Newton’s method is also shown by the smaller SNR value
in this example.
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Fig. 1. Denoising experiment in 1-D. Left: Test signal with additive Gaussian noise
with zero mean, size 1024 pixels, SNR 4.44. Right: Denoised version of the signal.

Table 3. Denoising experiment in 1-D with a = 10−2 and b = 10−6.

method iterations inner it. energy SNR time [sec]

Fixed point 1309 – 165.70820 21.90 3.332
Newton 25 60 165.70807 21.87 0.515
Gauß-Seidel 842 1 165.70815 21.89 2.193
G.-S. Newton 683 1 165.70813 21.89 5.739
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Fig. 2. Denoising experiment in 2-D. Left: Test image with salt-and-pepper noise
(256 × 256 pixels, SNR 11.50). Right: Denoised version of the image.

Table 4. Denoising experiment in 2-D with a = b = 103.

method iterations inner it. energy SNR time [sec]

Fixed point 38 – 1.86 · 107 19.05 8.175
Newton 25 5 2.07 · 107 16.18 89.239
Gauß-Seidel 3 25 1.86 · 107 19.15 8.502
G.-S. Newton 6 2 1.86 · 107 19.14 23.317

5 Conclusions

We have investigated four different algorithmic approaches for the variational
image simplification NDS-model presented in [8]. For schemes based on fixed
point iterations we have shown the existence of fixed points. Newton’s method
is only applicable for a certain class of convex penalisers. We have seen with
practical examples that in terms of running time we cannot prefer one single
method in general. Currently we are considering the question if other numeri-
cal approaches based on multigrid ideas could help to reduce the running time
especially of the fixed point approaches applicable for all weighting types.

Acknowledgement

We gratefully acknowledge partly funding within the priority programme
SPP1114 of the Deutsche Forschungsgemeinschaft (DFG), proj. WE 2602/2-2.

References

1. D. Barash: A fundamental relationship between bilateral filtering, adaptive
smoothing, and the nonlinear diffusion equation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 24(6), 2002, 844–847.



60 S. Didas, P. Mrázek, J. Weickert

2. P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud: Two determinis-
tic half-quadratic regularization algorithms for computed imaging. Proc. IEEE
International Conference on Image Processing 2, (ICIP-94, Austin, Nov. 13-16,
1994), 168–172.

3. C.K. Chu, I.K. Glad, F. Godtliebsen, and J.S. Marron: Edge-preserving
smoothers for image processing. Journal of the American Statistical Associa-
tion 93(442), 1998, 526–541.

4. M. Elad: On the origin of the bilateral filter and ways to improve it. IEEE
Transactions on Image Processing 11(10), 2002, 1141–1151.

5. L.D. Griffin: Mean, median and mode filtering of images. Proceedings Royal
Society of London A 456, 2000, 2995–3004.

6. J.J. Koenderink and A.L. Van Doorn: The structure of locally orderless images.
International Journal of Computer Vision 31(2/3), 1999, 159–168.

7. J.-S. Lee: Digital image smoothing and the sigma filter. Computer Vision,
Graphics, and Image Processing 24, 1983, 255–269.
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