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Abstract. While image scale spaces are well understood, it is undeniable that the
regularisation parameter in variational optic flow methods serves a similar role
as the scale parameter in scale space evolutions. However, no thorough analysis
of this optic flow scale-space exists to date. Our paper closes this gap by inter-
preting variational optic flow methods as Whittaker-Tikhonov regularisations of
the normal flow, evaluated in a constraint-specific norm. The transition from this
regularisation framework to an optic flow evolution creates novel vector-valued
scale-spaces that are not in divergence form and act in a highly anisotropic way.
From a practical viewpoint, the deep structure in optic flow scale space allows the
automatic selection of the most accurate scale by means of an optimal prediction
principle. Moreover, we show that our general class of optic flow scale-spaces
incorporates novel methods that outperform classical variational approaches.

1 Introduction

Starting with Iijima’s pioneering work on Gaussian scale-space and its use in optical
character recognition many decades ago [12,13], scale-spaces have become versatile
tools for analysing and understanding the multiscale structure of images; see e.g. the
monographs [8,15,21,23] and the references therein. While partial differential equations
(PDEs) of evolution type provide a natural framework for most scale-space concepts
[2], it has also been shown that variational regularisation methods create scale-spaces
where the regularisation parameter acts as scale [18]. Such variational methods, how-
ever, offer much broader application fields than classical data smoothing. In computer
vision, for example, they are widely used for solving correspondence problems. For
specific applications such as optic flow computation in image sequences, variational
methods have become highly sophisticated and constitute the most accurate methods
to date [3]. In contrast to classical image regularisation methods, however, these optic
flow methods do not regularise image data, but constraint equations. For instance, in
the classical method of Horn and Schunck, a grey value constancy assumption replaces
the role of a data fidelity term [11]. Therefore, it is unclear in which sense one may
interpret variational optic flow methods as scale-spaces. However, in view of the fact



that the unreliable normal flow is essentially the only information that can be extracted
directly from the data in an image sequence, it is astonishing that modern variational
optic flow methods are capable of achieving results of such a high quality. Thus, there
is a clear need to understand their scale-space behaviour.

The goal of our paper is to address this problem. Our contributions are fourfold:

1. We interpret the classical variational methods of Horn and Schunck [11] and of
Nagel and Enkelmann [17] as Whittaker-Tikhonov regularisations of the normal
flow. We show that this requires to replace the Euclidean norm by a space-variant
matrix-induced norm that respects the data constraints.

2. We generalise this framework to a broader class of methods that also allows to
come up with new models that have not been considered before. We show that they
can offer better performance than the classical variational methods.

3. Going from the regularisation framework to a scale-space representation, we come
up with the novel concept of optic flow scale-spaces. They are parabolic evolutions
of vector-valued data with the regularisation parameter as scale and the normal
flow as initial state. However, in contrast to many image scale-spaces they are not
of divergence type and hence do not preserve the average value of the initial data.
Moreover, they turn out to be highly anisotropic. Both properties are essential for
the remarkable performance of optic flow methods.

4. Having a scale-space evolution, it is natural to explore its deep structure. To this
end, we show that the optic flow scale-space provides an efficient framework for
automatically selecting the best scale that gives the most accurate optic flow field.
As a parameter-free scale selection principle we employ the Optimal Prediction
Principle, which is specifically tailored to the needs of optic flow estimation [25].

This paper is not intended to present a new high accuracy optic flow method. Rather,
we want to investigate the scale space behaviour of variational optic flow methods.
Thus, we intentionally do not consider algorithmic sophistications such as robust pe-
nalisation strategies, constancy assumptions without linearisation, multiscale warping
strategies, and nonlocal search methods. Since the focus of our work lies on the funda-
mental concepts behind optic flow scale space, the discussion of additional side effects
would obliterate the core message of the paper.

Related work. The transformation we apply is related to a proposal by Schnörr [19],
who did not pursue this concept further. With respect to the interpretation of varia-
tional methods in terms of specific norms, vector spaces, and higher order manifolds,
there is a huge amount of literature available; see e.g. Sochen et al. [20] and the refer-
ences therein. Particularly interesting in this context is the work of Ben-Ari and Sochen
[5] who derive a class of smoothness terms based on spatially varying norms induced
by suitable embeddings of the flow field into higher dimensional vector spaces. Scale
selection is a classical issue in Gaussian scale-space theory [15]. More specifically,
choosing optimal smoothness parameters is an enduring problem for almost all classes
of scale-space and variational methods. In our context, the works by Krajsek et al. [14],
Mrázek and Navarra [16] and the recent ideas by Zimmer et al. [25] are most relevant.
While there has been some research on scale spaces for image sequences [7,10], to our
knowledge the concept of optic flow scale space has not been considered before.



Organisation of our paper. In Section 2, we describe the transformation of classical
optic flow energies into a regularisation framework for the normal flow in a suitable
constraint-induced norm that is further generalised in Section 3. The fourth section
introduces our scale space framework for optic flow. An efficient numerical scheme
is described in Section 5, while the automatic scale selection is discussed in Section
6. Section 7 presents computational results, and we conclude with a summary and an
outlook in Section 8.

2 Variational Optic Flow as Whittaker-Tikhonov Regularisation

As starting point of our derivations of an optic flow scale space we consider the classic
method of Horn and Schunck [11]. This variational method estimates the optic flow field
w := (u, v)> = (u(x, y, z), v(x, y, z))> as the minimiser of the energy functional

E(w) =

∫
Ω

(
(fxu+ fyv + fz)

2
+ α

(
‖∇u‖2 + ‖∇v‖2

) )
dxdy , (1)

where Ω ⊂ R2 represents the spatial image domain, f : Ω × [0,∞) → R the image
sequence, ‖ · ‖ stands for the Euclidean norm, subscripts denote partial derivatives, and
∇ = (∂x, ∂y)

> is the spatial gradient operator.
The first term of this functional is called data term and models the linearised as-

sumption that corresponding pixels in subsequent frames have similar grey value. Since
it depends on two unknown functions u and v that describe the horizontal and vertical
displacement field, respectively, its solution is under-determined. Evidently, in order to
find a unique solution, additional assumptions on u and v are needed. This is realised by
the second term – the so-called smoothness term. It penalises variations of the solution
and is weighted by the positive regularisation parameter α.

2.1 Towards Regularisation in a Spatially Varying Norm

In the following, we consider a slightly modified version of the energy (1) with the
additional terms ε2(u2 + v2) + c, where ε is a small positive constant and c(x, y, z) =
−εf2z /(|∇f |2 + ε2) is a function which does not depend on the unknown and thus
does not play a role in the actual minimisation. Later on, these terms will be useful for
theoretical reasons. The modified energy then reads as

E(w) =

∫
Ω

(
(fxu+ fyv + fz)

2
+ ε2(u2 + v2) + c+ α

(
‖∇u‖2 + ‖∇v‖2

))
dxdy .

(2)
In order to obtain a different much more intuitive understanding of the underlying varia-
tional model, we seek to reformulate the latter energy in an image regularisation frame-
work. Since a smoothness term is already present, the main task is now to derive a
suitable similarity term. To this end, we make use of the following result (see also [1]):
Let wn be the regularised normal flow, given by

wn =
−fz∇f

|∇f |2 + ε2
, (3)



and let A : Ω → R2×2 be a symmetric positive definite matrix in every point of the
image domain defined as

A2 = ∇f∇f> + ε2I , (4)

where I denotes the unit matrix. Then the following equivalence holds:

(fxu+ fyv + fz)
2
+ ε2(u2 + v2) + c = (w −wn)

>A2 (w −wn) . (5)

This can easily be verified by straightforward calculations. Furthermore, we use the
latter quadratic form and the concept of matrix-weighted norms to rewrite the modified
functional (2) into an image regularisation-like energy [6]

E(w) =

∫
Ω

(
‖w −wn‖2A2 + α

(
‖∇u‖2 + ‖∇v‖2

) )
dxdy . (6)

In this context, for a symmetric positive definite matrix M the corresponding matrix-
weighted norm is given by ‖x‖2M := 〈x,x〉M = x>Mx. Note that due to the addi-
tional term in (2), the matrix A fulfils these requirements by construction.

Having performed the previous rewritings, the following insight becomes explicit:
Essentially, the seminal variational optic flow method of Horn and Schunck can be in-
terpreted as Whittaker-Tikhonov regularisation of the normal flow in a matrix-weighted
spatially varying norm.

2.2 Analysing the Matrix-Weighted Norm

By analysing the obvious eigenstructure of the constraint matrix A2, we can gain a
deeper understanding of the introduced matrix-weighted norm and thus of the data term.
Using the eigendecomposition of A2 given by

A2 =
(
|∇f |2 + ε2

) ∇f

|∇f |
∇f>

|∇f |
+ ε2

∇f⊥

|∇f |
∇f⊥

|∇f |

>

, (7)

we can express the data term as

‖w−wn‖2A2 =
(
|∇f |2 + ε2

)〈
w −wn,

∇f

|∇f |

〉2

+ ε2

〈
w −wn,

∇f

|∇f |

⊥
〉2

. (8)

This shows that the central quantity being under consideration is the normal flow wn,
or rather the difference between the actual solution and the normal flow w −wn. This
difference vector is then projected into the local eigensystem of A2. There, its com-
ponent perpendicular to the image gradient is basically negligible (since ε2 is small),
while its component along the image gradient is the part that actually contributes.

This also confirms the classic explanation of the linearised grey value constancy
assumption as a constraint line: The expression fxu+ fyv + ft = 0 defines a line per-
pendicular to the image gradient with distance ft/|∇f | from the origin [11]. Also the
findings in [25] are in accordance with this interpretation: There, the authors rewrite the
assumption into a projection of the difference vector w −wn onto the image gradient,
which exactly comes down to our locally adapted norm for ε=0.



3 Generalisation of the Matrix-Weighted Norm

Up to now, we have mainly reformulated the method of Horn and Schunck and iden-
tified the matrix-induced norm ‖ · ‖A2 to play a central role. Consequently, we now
propose to generalise this idea to a class of norms with varying anisotropy. To this end,
we modify the exponent of the constraint matrix inducing the norm. This yields a data
term of the general form

‖w −wn‖2A2−β (9)

with 0 ≤ β ≤ 2. Larger choices for β do not make sense, since they would invert the
anisotropy, i.e. swap the penalisation directions. The parametrisation of the norm has
been chosen in such a way that for β = 0 the original model of Horn and Schunck,
and for β = 2 a pure decoupled vector-valued regularisation of the normal flow in the
Euclidean norm is obtained (since the constraint matrix collapses to the identity matrix).

To establish a consistently extended model, we also equip the smoothness term with
the same spatially varying norm. This leads to the regulariser

‖∇u‖2A−γ + ‖∇v‖2A−γ (10)

where γ ≥ 0. This generally anisotropic image-driven regulariser allows variations of
the flow field across image edges but not along them. In the special case of γ = β = 0
the model corresponds to Whittaker-Tikhonov regularisation [24,22] as used by Horn
and Schunck [11]. Another special case of our generalised model is obtained for γ = 2
and β = 0: Then, our method resembles the method of Nagel and Enkelmann [17].
Recall that the proposed spatially varying norm naturally arises from the linearised
constancy assumption in the data term. In this way our approach differs significantly
from the work in [5], which derives such a norm by embedding the flow in a higher
dimensional vector space and thus disregards the data term throughout the derivation.
Incorporating both generalisations, we finally consider the energy functional

E(w) =

∫
Ω

(
‖w −wn ‖2A2−β + α

(
‖∇u‖2A−γ + ‖∇v‖2A−γ

) )
dxdy , (11)

with α, β and γ as defined before. This energy functional forms the basis for our optic
flow scale space introduced in the next section.

4 Optic Flow Scale Space

From the calculus of variations it follows that any minimiser of the functional (11) has
to fulfil the associated Euler-Lagrange equation, which reads

w −wn

α
= Aβ−2

(
div (A−γ ∇u)
div (A−γ ∇v)

)
, (12)

with reflecting Neumann boundary conditions n>A−γ∇u = 0 and n>A−γ∇v = 0.
The reader should keep in mind that the argument of the energy (11) as well as the latter



PDE is vector-valued, since w = (u, v)>. Equation (12) can be seen as a fully implicit
time discretisation of the filter

∂tw = Aβ−2
(
div(A−γ ∇u)
div(A−γ ∇v)

)
, w( · , 0) = wn . (13)

with a single time step of size α, and the normal flow wn as initial state at time t = 0.
Obviously this temporal evolution constitutes a scale space, whose evolution time

t coincides with the regularisation parameter α of the associated energy. Interestingly,
the initial state of our optic flow scale space is the regularised normal flow, which is the
only component of the flow field that can be directly extracted from the image data.

Note that we have transformed the regularisation-like energy functional (11) into a
diffusion-like coupled system of parabolic PDEs (13). In the context of image filtering,
relations between such methods have been investigated by Scherzer and Weickert [18].

5 Numerical Realisation

For solving the parabolic problem in (13) we use an explicit scheme. To this end we
discretise the two flow components u and v by sampling them on a regular grid and
stacking all rows in single vectors u,v ∈ RN , where N denotes the number of pixels.
Using this single-index notation, we discretise the matrix Aβ−2 in pixel i by

Aβ−2
i =

(
ai bi
bi ci

)
, i = 1, . . . , N . (14)

Accordingly, we discretise the diffusive terms using finite differences and obtain a nona-
diagonal diffusion matrix D ∈ RN×N (similar to [23]). This leads to the following
explicit scheme:

(
u
v

)k+1

=


I + τ



a1 b1
. . . . . .

aN bN
b1 c1

. . . . . .
bN cN




D 0

0 D




(
u
v

)k
,

(15)
where every iteration advances the evolution by the time step size τ > 0. Thus, after
k iterations (uk,vk)> contains the flow field at scale α = k · τ . As a consequence,
this explicit scheme inherently samples the whole scale space up to the stopping time
α in intervals of size τ . Thereby, the whole iteration matrix remains constant for all
iterations, since all terms are exclusively image-driven.

In order to accelerate this explicit scheme, we made use of the recently introduced
fast explicit diffusion (FED) strategy [9], which performs cycles of explicit iterations
with varying time step sizes. In particular, up to 50% of the step sizes can exceed the



stability limit significantly, while the overall process remains provably stable. By that,
the order of the smoothing time reached in n steps can be increased from O(n) to
O(n2). In our case, this is very beneficial, since the maximal stable time step size of the
explicit scheme can decrease drastically with increasing anisotropy or small choices of
the parameter β.

6 Scale Selection

In the previous sections, we have set up a novel class of optic flow scale spaces which
all evolve in the regularisation parameter α. Evidently, in our optic flow setting there
exists one scale within each scale space that provides the flow with the highest accuracy.
Since the optic flow on all scales is available by construction, we have access to the deep
structure of this scale space and can exploit this information to perform an automatic
scale selection. To this end, we adapt the Optimal Prediction Principle (OPP) recently
developed by Zimmer et al. [25]. In short, this principle suggests to rate the quality
of an optic flow field between the first and second frame according to its extrapolation
quality from the first to the third frame. The underlying assumption is that the velocity
of objects (or the camera) remains constant over time. It is shown in [25] that this simple
assumption works very well for the automatic estimation of the smoothness weight α.

In our case, for a given flow field w=(u, v)> between the frames at time z and z+1,
we assess the extrapolation quality by evaluating the Average Data Constancy Error
(ADCE), which is based on the grey value constancy assumption without linearisation:

ADCE1,3(w) =
1

|Ω|

∫
Ω

(
f(x+ 2u, y + 2v, z + 2)− f(x, y, z)

)2
dxdy . (16)

It is obvious that if the model assumptions hold, a good flow field will lead to small val-
ues of this error measure. Note that in contrast to the optimisation strategy in [25], we
can exploit the following advantageous property of our numerical scheme: It explicitly
evolves in the parameter α, hence after each iteration the flow field at cumulated time α
is available, and the ADCE can be evaluated. This on-the-fly computation of the qual-
ity estimate is not possible for most other optic flow methods, because they typically
require to solve a new system of equations for each value of α.

Besides the OPP, we also tried other schemes for automatic scale estimation. In
particular, we investigated the performance of the decorrelation method by Mrázek and
Navarra [16]. However, experiments indicated that the underlying assumptions do not
hold for our optic flow scale space.

7 Experiments

In order to investigate the behaviour of our optic flow scale space we perform experi-
ments on several image sequences that are publicly available and for which the ground
truth flow field is known. In particular, we use the Yosemite sequence with and without
clouds [4], the New Marble1 sequence as well as the Rubberwhale sequence [3].

1 available from http://i21www.ira.uka.de/image_sequences

http://i21www.ira.uka.de/image_sequences
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Fig. 1. Scale space at different stopping times for varying β and γ.



In our first experiment we compute samples of the scale space for the New Mar-
ble sequence at different evolution times and for several choices of β and γ. Figure 1
shows the corresponding flow fields, where colour encodes the direction and bright-
ness indicates the magnitude of the displacements. Here, one can clearly see the scale
space behaviour of the proposed diffusion-like optic flow process: Independently of β
and γ, the initial state of all these scale spaces (α = 0) is given by the noisy normal
flow, while for larger values of α the flow fields become successively smoother. In this
context, we make two observations: On the one hand, for γ > 0 discontinuities are
preserved for a longer time, since the regulariser is then of image-driven anisotropic
nature. On the other hand, results for β > 0 are slightly less noisy, since the larger
eigenvalue of A2−β – the one that depends on the magnitude of the image gradient – is
now subject to a smaller exponent, cf. Equation (8). This becomes particularly visible
in the magnifications shown in Figure 2.

β = 0 β = 0.5

γ
=

0
γ
=

0
.5

Fig. 2. Zoom into the optic flow fields at scale α = 1000 from Figure 1.

In a second experiment, we compare the accuracy of the proposed scheme against
the two special cases in our framework: Horn and Schunck (β = γ = 0) and Nagel
and Enkelmann (β = 0, γ = 2). This is done for the aforementioned image sequences
by means of the Average Angular Error (AAE) [4]. Please note that we keep the pres-
moothing scale fixed at σ=1 throughout all experiments, since its impact is not in the
focus of our contribution. Table 1 demonstrates that our method consistently leads to
improved results. In particular, it shows that the additional degrees of freedom β and γ
provided by our general class of scale spaces can be beneficial.



Table 1. Quantitative error measurements in terms of the AAE on different image sequences. For
our method, β and γ have been optimised. The actual choices are given in brackets.

Image sequence Horn / Schunck Nagel / Enkelmann Our method
New Marble 2.65 2.77 2.53 (β=1.0, γ=0.4)

Rubberwhale 10.58 9.27 9.04 (β=0.5, γ=1.0)
Yosemite 7.51 6.86 6.41 (β=0.4, γ=0.9)

Yosemite no clouds 2.82 3.63 2.76 (β=0.2, γ=0.1)
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Fig. 3. Automatic scale selection using the Optimal Prediction Principle. (a) Left: Graphs of
the ADCE and AAE side-by side. Crosses denote the minimal value of the graph. (b) Right:
Estimation results of the selected scale α for different image sequences. Triangles indicate the
estimated value and squares denote the optimal choice.

In our third experiment, we investigate the automatic selection of the scale param-
eter α of our model using the OPP. To this end, we first juxtapose the graph of the
estimated quality in terms of the ADCE with the graph of the measured accuracy given
by the AAE in Figure 3 (a). This is done for the Yosemite sequence with clouds with
β=γ=0.5. One can see that both graphs have a similar and well aligned shape. In par-
ticular, the minima of both curves are attained at almost the same position. Secondly,
we compare the estimated values for the regularisation parameter α against those that
are optimal with respect to the AAE. This is done for all four image sequences with
β=γ=0.5 fixed. As one can see from Figure 3 (b), the OPP works very well in prac-
tice: In all cases, the AAE at the estimated scale is close to the one of the optimal scale.

In our final experiment we analyse how the two generalisation parameters β and γ
influence the accuracy of the estimation. To this end, we have computed the AAE for
β, γ ∈ [0, 2] using the Yosemite sequence with clouds. As in the previous experiments,
the selection of the stopping time α within each scale space has been performed auto-
matically using the OPP. The resulting graphs in Figure 4 (a) and (b) show that for both
parameters values larger than zero consistently improve the accuracy.
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Fig. 4. Influence of the parameters β and γ on the accuracy. (a) Left: Behaviour under variations
of β for fixed γ. (b) Right: Ditto for varying γ and fixed β. In both cases, crosses indicate the
minimum of the graphs.

8 Conclusion

It is surprising that in spite of many years of scale space research the scale space charac-
ter of variational optic flow methods has not been analysed so far. We have shown that
such an analysis can be a very worthwhile endeavour: It provides interesting insights
in the regularisation behaviour of variational optic flow methods by interpreting them
as classical regularisation in a problem-specific norm. Linking this to novel parabolic
scale space evolutions that are highly anisotropic and not of diffusion type shows that
modern scale space research has only discovered a glimpse of the entire fascinating
world of scale space concepts in image processing and computer vision. It would be
nice, if our paper serves as a starting point for further research in this direction.
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