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Abstract. Although variational models offer many advantages in im-
age analysis, their successful application to real-world problems is doc-
umented only for some specific areas such as medical imaging. In this
paper we show how well-adapted variational ideas can solve the problem
of hairstyle simulation in a fully automatic way: A customer in a hair-
dresser’s shop selects a new hairstyle from a database, and this hairstyle
is automatically registered to a digital image of the customer’s face. In-
terestingly already a carefully modified optic flow method of Horn and
Schunck turns out to be ideal for this application. These modifications
include an extension to colour sequences, an incorporation of warping
ideas in order to allow large deformation rates, and the inclusion of shape
information that is characteristic for human faces. Employing classical
numerical ideas such as finite differences and SOR iterations offers suffi-
cient performance for real-life applications. In a number of experiments
we demonstrate that our variational approach is capable of solving the
hairstyle simulation problem with high quality in a fully practical setting.

1 Introduction

By hairstyle simulation a customer in a hairdresser’s shop can see herself wearing
other hairstyles and decide whether a hairstyle suits herself or not. This process
combines two images into one. The images being combined are on one hand
the image of a face, and on the other hand an image of a hairstyle. The image
containing the hairstyle is transparent/semi-transparent in areas where no hairs
are shown.

The main problem of hairstyle simulation is not the combination itself. It
is located in the fact that in general the proportions and the position of the
hairstyle in its image will not fit the face. Furthermore, simple linear scalings do
not solve the problem. Conventional software that is used in a hairdresser’s shop
requires a lot of manual interaction in order to register the desired hairstyle
to a photo of the customer’s face. This procedure is time-consuming and for
hairdressers who lack experience with handling such a software, the results are
not always optimal. Thus it would be desirable to exploit computer vision ideas
in order to create a fully automised hairstyle simulation that does not require
any interaction and creates a registration of high quality.



Addressing this problem is the goal of the current paper. Our work aims at
computing a transformation, that, applied onto the hairstyle, makes a simple
hairstyle combination possible. In order to avoid to recalculate this transfor-
mation again for each new hairstyle, all offered hairstyles have to be equally
proportioned and positioned. To achieve this, they have been registered onto
one reference face before. In this way a single mapping from the reference face
to the customer face is sufficient to adapt any hairstyle to the customer’s face.
The corresponding displacement field is the transformation we are searching for.
Figure 1 illustrates this procedure.
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Fig. 1. Hairstyle simulation. (a) Top left: Reference face. (b) Top middle: Example
of a hairstyle. Grey-chequered regions show transparency. (c) Top right: Hairstyle
combined with the reference face. (d) Bottom left: Example of a customer face. (e)
Bottom middle: Mesh representation of the resulting deformation flow field between

the reference face (a) and the customer face (d). (f) Bottom right: Customer face
combined with the new hairstyle transformed according to (e).

From a computer vision perspective, hairstyle simulation requires to find cor-
respondences between two images. One searches for a displacement field that is
used to deform one image onto the other. To this end it is highly desirable to
compute a deformation field that is dense. Since it can happen that the local in-
formation is not sufficient to establish the desired correspondences, it is natural
to apply variational methods that benefit from the filling-in effect of the smooth-
ness term. Such approaches have been successfully used for computing optic flow
fields in image sequences [10,17,8, 18], for estimating the disparity in stereo re-



construction problems [13,12,1], and for calculating the deformation rates for
medical image registration [2,7,15,19]. To our knowledge, however, there is no
application of these techniques within the beauty and wellness industries. In our
paper we shall see that the variational optic flow approach of Horn and Schunck
[10] constitutes an ideal starting point to tackle the problem of hairstyle sim-
ulation if it is modified in order to meet some specific requirements: It has to
incorporate colour information, it must be able to handle large displacements,
and it must be tunable to the shape characteristics of human faces.

Our paper is organised as follows. In Section 2 we describe the basic varia-
tional optic flow model that is used for our approach. In Section 3 we discuss
modifications that make the model more robust against non-optimal image ac-
quisition. In order to cope with large deformation rates, a multiscale setting is
used in which a warping strategy is applied when going from a coarser to a finer
scale. This is described in Section 4. In Section 5 we sketch how we minimise
the energy functional at each scale by computing the Euler-Lagrange equations,
discretising them and solving the corresponding linear systems of equations in an
iterative manner. Experimental results are presented in Section 6. We conclude
the paper with a summary in Section 7.

2 Basic Variational Model

Our variational approach is based on an interpretation of the hairstyle simulation
problem as an optic flow problem. We would like to find a displacement field that
maps a reference face to a customer face. To this end we interpret these images
as two subsequent frames in an image sequence. Then the displacement field
between corresponding structures is nothing else than the optic flow field in this
sequence. From a practical viewpoint it would be desirable to have a dense flow
field within a rotationally invariant setting. This naturally suggests the use of
continuous variational methods.

The oldest and simplest variational method for optic flow estimation goes
back to Horn and Schunck [10]. Assume we are given some sequence f(z,y,t) of
greyscale images, where (x,y) denote the location and ¢ is the time. The method
of Horn and Schunck computes the optic flow field (u,v) T = (u(z,y,t),v(z,y,t)) "
as the minimiser of the convex energy functional

Bluo) = [ (Geut fyo+ 502 +alIVuP +[90f)) dody (1)

where (2 is the rectangular image domain, subscripts denote partial derivatives,
and V is the spatial nabla operator. The first term of this energy functional is
a data term that reflects the assumption that corresponding structures do not
change their greyvalues over time (optic flow constraint), while the second term
penalises spatial fluctuations of the flow field in a quadratic way. The positive
regularisation parameter o determines the required amount of smoothness.

A colour image sequence may be regarded as a vector-valued function f :
2% [0,00) — R® where the red, green and blue channels serve as components of



f = (f1, f2, f3) 7. If one searches for a joint optic flow field for all three channels
and imposes colour constancy during the motion of image features, cf. e.g. [9],
the Horn and Schunck method can be extended to
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E(u,v) = /Q(Z(fi,zu+f,-,yv+fi,t)2+a(|vu|2+|v1;|2)) drdy.  (2)

i=1

Since we work with colour images, we will make use of this adaptation.

3 Shape Weighting and Preregistration

So far we have assumed that there is a reasonable match between structures
from both images throughout the image domain (2. While this condition appears
fairly reasonable for the face region, it can be expected to fail in rather common
situations: Objects in the background may lead to severe mismatches as well as
clothes details and jewellery worn by the customer.

This problem is solved by incorporating a-priori knowledge. We modify our
model (2) such that it takes into account which parts of the image are really
important to match. The face must be matched accurately while background
regions are of no interest and should not influence the algorithm. To this end,
we introduce a space-variant weight function w(z,y) that attains high values at
the face region and low values in other image areas. This leads to
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This energy functional will be the main ingredient of our hairstyle simulation
approach. Interestingly it turns out that typical features of more sophisticated
optic flow models (such as discontinuity-preserving regularisers and other con-
stancy assumptions; see e.g. [18]) are not required for our present task.

The downside of the weighting approach is that, in order to apply the mask
appropriately, the customer and reference faces need to be adjusted to equal
position and size beforehand, because otherwise some parts of the customer face
might wrongly be excluded from the matching process. That is, the adjustment
already requires to match the faces. To escape this vicious circle, we make use
of a remarkable observation: There are two specific details which are already
reliably matched without the weighting, namely the eyes. Knowing the eye co-
ordinates in the reference image, we can locate the eyes in the customer face
via the displacement field. From these, not only the position of the customer’s
face but even (via the eye distance) its approximate size can be inferred. The
customer image is then shifted and linearly rescaled such that the face regions
approximately coincide. Running the displacement computation again, with the
weighting mask, yields the final flow field.

Another source of unmatched details are illumination differences between
reference and customer image. While global illumination changes turn out to be



rather uncritical, the positioning of light sources constitutes a radical distinc-
tion between lighting conditions in professional studios and in “normal” envi-
ronments. In a studio setting, flashlights are installed also above and next to the
model, thus widely eliminating shadows. In a typical non-studio situation there
is just one flashlight located above the lens of the camera, causing shadows in
the background as well as, in some cases, in the face itself. Moreover, overex-
posed areas tend to occur near the eyebrows. To rule out the influence of these
differences, we choose a pragmatic solution: We ensure that the reference image
is taken under similar lighting conditions as the customer images.

Focussing at the minimisation process, it should be noted that (3) incor-
porates a data term that involves temporal derivatives of the image sequence.
If subsequent frames are fairly different — as can be the case if they are given
by the images of two different faces, and even more in the preregistration step
when their location and scale may differ substantially — local derivative approx-
imations cannot capture these large displacements anymore. A remedy to this
problem is the warping approach that is described in the next section.

4 Warping

Warping approaches are frequently used techniques to handle large displacements
in the context of motion estimation [3,14,5] or medical image registration [11,
15]. By incrementally computing the desired displacement field over multiple
scales, they allow to decompose an originally difficult matching problem with
large displacements into a series of simpler ones that only require the estimation
of small displacements. In general, this decomposition is achieved via a coarse-
to-fine strategy: Starting from a down-scaled version of the original problem,
the image data and the solution are refined step by step. Thereby, previous
solutions from coarser scales are used to compensate the image data for the
already computed displacement field. As a consequence, only a small incremental
deformation has to be estimated at each scale: the displacement field for the
remaining difference problem. Once all these increments have been computed,
they have to be summed up in order to form the final solution.

Let us now discuss how such an incremental coarse-to-fine strategy can ac-
tually be applied in the context of our hairstyle simulation problem. To this
end, we have to define a pyramidal (hierarchical) representation of our image
sequence f that contains both the customer and the reference face:

fO = f1— o fhes™l o fhons (4)

Here, k = 0 denotes the coarsest (initial) scale of the coarse-to-fine process, while
k = korig stands for the finest (original) one. The ratio between two consecutive
scales k and k — 1 is given by a factor n in the interval (0,1). One should note
that this hierarchical representation is also required for our weighting mask w.
Moreover, since we are interested in an incremental computation of the results,
we also have to decompose the deformation field u and v at each scale into
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Here, (uk—17% pk=1=k)T i5 the already computed (and up-scaled) overall dis-
placement field from the previous scale k — 1, and (6u*,dv*) T is the unknown
deformation increment that we are looking for at the current scale k. At the
coarsest scale the already known displacement field is initialised with zero, i.e.

(u

—1—0 v*l—)O)T = (0 O)T

Due to the previous definitions we are now in the position to formulate our

coarse-to-fine warping approach for the hairstyle simulation problem. It is given
by the following three steps that have to be performed at each scale:

1)

Setting up the Difference Problem. In order to derive the difference problem
for the current scale, both the customer face f(x,y,t) and the reference face
f(z,y,t + 1) have to be scaled down. Moreover, the reference face has to be
compensated by the already computed deformation field (u*—17k p*—1=k)T
from the previous scale. Thus, at each scale, the following task remains to
be solved: Find the deformation increment (§u*,§v*)T that describes the
mapping between f*(z,y,t) and f*(z 4+ ub 17k y 4012k 1),

Solving the Difference Problem. In order to compute this deformation incre-
ment, we propose the minimisation of the following energy functional:
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As one can easily verify, this energy functional can be obtained from (3)
by substituting (5)—(6). One should note that the overall displacement field
(uk=12% pk=12F)T from the previous scale must not occur explicitly in the
data term: By using the deformation-compensated reference face for comput-
ing the temporal derivatives fi’ft, this displacement field is already considered
implicitly in the formulation of the data term.

Updating the Querall Displacement Field. The final step at each scale is the
update of the overall solution (u*,v*¥)T. To this end, the computed defor-
mation increment has to be added to the overall displacement field from the

previous scale (cf. (5)—(6)).

As soon as the update step on the finest (original) scale has been performed, the
overall solution is obtained. However, due to the recursive definition of (5)—(6)
it can also be computed by a simple summation of all deformation increments:

korig korig

u= E Su i eris v = E vt Reris | (8)
=0 i=0



After we have presented our warping approach for the hairstyle simulation prob-
lem in detail, let us now discuss its numerical realisation. This shall be done in
the next section.

5 Numerical Realisation

In each level of our warping procedure we have to minimise an energy of type
(7). At level k this convex problem has a unique minimiser that satisfies the
Euler-Lagrange equations

JPyouf + JF, 0% + Jf s — a A (uFTF 4 6uF) =0, (9)
Jlk’2 Suf + .]2'“’2 svk + J§73 —aA 7R 4 6R) =0 (10)
where A = 0, + 0y, is the spatial Laplace operator, and
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denotes a generalisation of the structure tensor from [4]. These continuous equa-
tions are discretised by finite difference approximations (see e.g. [16]). We use
Sobel operators for discretising the spatial derivatives within the structure ten-
sor, and we replace the temporal derivatives by differences between both frames.

This discretisation leads to a large linear system of equations, where the
system matrix is sparse, symmetric and positive definite. In this case, an iterative
SOR scheme is a simple and efficient convergent method [20].

In order to calculate the temporal derivatives, we have to compensate the
reference frame for the deformation already computed at the coarser level. To
this end we perform backward registration and evaluate values between the
grid points by bilinear interpolation. Down- and upsampling within the warping
scheme is done by area-based averaging and interpolation, respectively [6].

Typical computation times for images of 512 x 512 on a 3.2 GHz Pentium 540
with the previously described numerical scheme are in the order of 10 seconds.

6 Experiments

In this section, we present results of our approach in order to assess its usefulness.
Beyond the fundamental correctness and applicability, emphasis will be put on
aspects of robustness and suitability under practical conditions, i.e. whether
the model can cope with the problems that occur upon the everyday usage in
a hairdresser’s shop. The section is split into two parts. First, we apply the
basic method with just one displacement estimation run without weighting to
images taken in a studio setting. This ideal situation serves to demonstrate the
fundamental applicability of our approach, and discuss important parameter
settings. After that, we show how the complete method copes with images taken
under realistic conditions.



Fig. 2. Two synthetic hairstyles. Grey chequered regions show transparency. (a) Left:
Contour representation. (b) Right: Mesh representation.

6.1 Test Scenario and Parameter Settings

In all tests, we use images of 512 x 512 pixels with 24 bit colour depth. The semi-
transparent hairstyle images are given at the same resolution but with 32 bit
colour depth due to the additional alpha channel. The combination of faces with
hairstyles is performed by linear blending. For analytic purposes, we also use
synthetic hairstyle images showing grids and contours as illustrated in Figure 2.
With this image material, our scheme from Section 5 always converges to a
steady state after 100 SOR iterations.

For the scaling parameter in our warping strategy, the most intuitive choice
would be n = % In practice, however, larger values such as = % yield better
results: They slow down the refinement and thus reduce the gaps between scales.

While accuracy is a central requirement in estimating the displacement field,
it has to be balanced with the conflicting goal of smoothness. The latter is equally
important because the computed vector field is used to deform images. Disconti-
nuities or steep changes would imply visible gaps or offsets in the hairstyle image,
thus leading to substantially degraded results. The balance between accuracy and
smoothness is controlled via the regularisation parameter a. Its influence is stud-
ied in Figure 3. If « is chosen too small, the above-mentioned discontinuities and
gaps are observed. Besides, the filling-in effect is less pronounced in this case. In
practice, this is observed for a < 10000. Too large values for a, in contrast, lead
to oversmoothed displacement fields that do not adapt well to image structures.
Experimentally, one observes for a > 50000 visible mismatches between face
and hairstyle. A good compromise is achieved for a = 30000.

Having discussed the choice of the model parameters, we demonstrate in
Figure 4 that our model is capable of fitting hairstyles to different faces in good
quality.

6.2 Experiments on Real-World Imagery

While the applicability of our approach is evident, we turn now to consider
the robustness with respect to the perturbations that are common in realistic
situations, such as illumination differences, noise, or objects in the background.



Fig. 3. Sensitivity of the solution w.r.t. the regularisation parameter . From left to
right: o = 1000, @ = 30000, a = 500 000. Top row: Mesh representation. Bottom
row: Contour representation.

-

Fig. 4. Sample combinations (o = 30000, 100 iterations, n = Z). Top row: Hairstyle
1. Bottom row: Hairstyle 2. From Left to Right: Customer 1, 2, 3.



Fig. 5. (a) Left: Reference face used for real-world image material. (b) Right: Weight-
ing mask obtained as the average of 15 different masks adopted on different example
customer faces.

Let us address first the problem of different lighting conditions. As pointed
out in Section 3, we aim at keeping lighting conditions similar for customer and
reference images. To this end, we switch to another reference face that has been
shot under lighting conditions comparable to the practical setting, i.e. using an
ordinary digital camera with single flashlight in a badly lit room, see Figure 5(a).

To avoid misestimations caused by non-matched objects and structures in the
customer image, we use the two-step procedure from Section 3. Our weighting
mask, shown in Figure 5(b), is the average of numerous manually generated
masks for individual customer faces. The results shown in Figure 6 were obtained
by incorporating this preprocessing step. They demonstrate that the complete
process is able to handle the kind of image material that occurs in practice.

7 Summary and Conclusions

In this paper, we have presented the complete solution of a practical visual
computing problem by a variational approach, from a sound theoretical approach
all the way to a fully applicable algorithm whose commercial use is imminent.

We have started out from the formulation of hairstyle simulation as a cor-
respondence problem. The demand for a dense displacement field and the nec-
essary balance between adaptation to image structures and smoothness of the
displacement field made the variational approach with quadratic penalisation
the method of choice for its solution. Within this setting, all partial problems
could be addressed by specific well-founded measures. In particular, warping was
employed to deal with large displacements, and a weighting function in the data
term allowed to suppress the influence of spurious background and clothing de-
tails. A two-step matching procedure solved the problem of shifted and scaled
images. The meaning of the few parameters is transparent, and by experimental
guidance they were fixed to values that work for practical use. Careful design
of the weighting function and the selection of an adequate reference face image
rounded up the proceeding.



Fig. 6. Example combinations with three hairstyles. Top: Customer 1. Bottom: Cus-
tomer 2. Left to Right: Hairstyle 1, 2, 3.

As aresult, we have arrived at a method that combines results of high quality
with robustness against the typical problems of the real-life setting. The algo-
rithm processes input images taken by non-expert photographers with consumer
cameras under simple lighting conditions, it does not require sophisticated user
input like contours or marked features, and it achieves sufficient speed on a
standard PC.

This contribution demonstrates that theoretical stringence and real-life ap-
plicability go well together. Moreover, by addressing an unprecedented field of
application we want to emphasise that beyond a few well-established disciplines
there are realms of visual computing applications awaiting future research efforts.
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