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Kurzzusammenfassung
Die robuste Schätzung von Korrespondenzen in Bildfolgen ist eines der grund-
legenden Probleme des Maschinensehens. Eine der großen Herausforderun-
gen in der Praxis sind hierbei Aussehensänderungen von Objekten, da die
traditionelle Helligkeitskonstanzannahme nur unter idealisierten Bedingun-
gen gilt. Zwei Kapitel dieser Dissertation befassen sich mit diesem Problem
im Kontext der Schätzung dichten optischen Flusses. Wir tragen zwei Lö-
sungen bei die sehr verschiedenen Strategien folgen. Zuerst betrachten wir
Invarianzen, also Eigenschaften des gegebenen Bildmaterials, die unter be-
stimmen Beleuchtungs- und Aussehensänderungen unverändert bleiben. Wir
geben eine systematische Übersicht bestehender Invarianzen und stellen un-
sere Complete Rank Transform vor. Unser prototypisches variationelles Fra-
mework kann jede der besprochenen Invarianzen verwenden und macht so
einen fairen Vergleich möglich. Unser zweiter Beitrag ist von der Erkenntnis
motiviert, dass schwierige Aussehensänderungen, wie z.B. Schlagschatten,
oft lokale Erscheinungen sind, Invarianzen jedoch global wirken. Wir ent-
wickeln daher ein Modell das Beleuchtungsänderungen explizit einbezieht und
die Konstanzannahme um diese Änderungen lokal kompensiert. Der dritte
Beitrag dieser Dissertation betrifft das Skalenraum-Verhalten variationeller
Optischer-Fluss-Methoden. Das Vorhandensein eines solchen Verhaltens im
Regularisierungsparameter ist unstrittig, jedoch liegen bislang keine gründli-
chen Untersuchungen hierzu vor. Diese sind der Beitrag des vierten Kapitels
dieser Dissertation.



Short Abstract
The robust estimation of correspondences in image sequences belongs to the
fundamental problems in computer vision. One of the big practical chal-
lenges are appearance changes of objects, because the traditional brightness
constancy assumption only holds under idealised conditions. Two chapters of
this thesis approach this problem in the context of dense optic flow estima-
tion. We contribute two solutions that follow very different strategies. First,
we consider invariances, i.e. features of the input images that remain unaf-
fected under certain changes in illumination and appearance. We present a
systematic overview of available invariances and introduce our complete rank
transform. Our prototypical variational framework can incorporate any of
the discussed invariant features and facilities a fair comparison. Our sec-
ond contribution is motivated by the insight that challenging appearance
changes such as drop shadows often are local phenomena, but invariances
operate globally. Thus, we develop a method that integrates illumination
changes explicitly into our model and compensates the constancy assump-
tion locally for them. The third contribution of this thesis considers the
scale space behaviour of variational optic flow methods. The existence of
such a behaviour in the regularisation parameter is unquestionable, however,
there is no through analysis in this direction up to now. We close this gap
as the third contribution of this thesis.



Zusammenfassung
Die robuste Schätzung von Korrespondenzen in Bildsequenzen ist eines der
fundamentalen Probleme des Maschinensehens. Hierbei sind Änderungen des
Aussehens von Objekten eine der größten Herausforderungen, da die tradi-
tionelle Helligkeitskonstanzannahme lediglich unter idealisierten Vorausset-
zungen gilt. Unter realistischen Bedingungen sind weitergehende Konzepte
notwendig um verlässliche Korrespondenzen schätzen zu können. Im Zusam-
menhang mit der dichten Schätzung von optischem Fluss ist das Hauptziel
dieser Dissertation, Vorgehensweisen und Konstanzannahmen zu entwickeln,
zu analysieren und zu vergleichen, die robust mit unkontrollierten Beleuch-
tungssituationen umgehen können. In dieser Hinsicht leisten wir zwei Bei-
träge zur Lösung dieses Problems, die sehr verschiedenen Strategien folgen.
Zuerst betrachten wir Invarianzen, die den weit-verbreitetsten Lösungsan-
satz in der Literatur heute darstellen. Dies sind Eigenschaften die vom ge-
gebenen Bildmaterial abgeleitet werden können, und die unter bestimmen
Beleuchtungs- und Aussehensänderungen unverändert bleiben. Wir geben ei-
ne systematische Übersicht bestehender Invarianzen und stellen zwei neue
Reihenfolgen-basierte Features vor, die Complete Rank Transform und die
Complete Census Transform. Wir untersuchen wichtige Eigenschaften und
geeignete Metriken für diese Signaturen, und stellen ein generisches variatio-
nelles Framework vor. Jede der besprochenen Invarianzen kann ohne weitere
Anpassungen in diesem Modell verwandt werden. Unser zweiter Beitrag ist
vom großen Nachteil aller invarianzbasierten Konstanzannahmen motiviert,
nämlich dass schwierige Aussehensänderungen lokale Erscheinungen sind, In-
varianzen jedoch global wirken. Zum Beispiel im Falle von Schlagschatten
ändern sich nur Teile des Bildes. Dies bedeutet im Umkehrschluss, dass In-
varianzen in Bereichen ohne Änderung potentiell wertvolle Bildinformation
blind verwerfen. Aus dieser Erkenntnis heraus entwickeln wir daher ein Mo-
dell das Beleuchtungsänderungen explizit einbezieht und das die Konstanz-
annahme um diese Änderungen lokal kompensiert. Schließlich betrachten wir
einen weiteren Aspekt variationeller Optischer-Fluss-Methoden die die heute
vorherrschenden Methoden zur Schätzung von optischem Fluss darstellen.
All solche Methoden haben einen Regulariserungsterm gemein, dessen Ge-
wicht typischerweise der entscheidende Parameter der gesamten Methode
ist. Je größer sein Wert, desto glatter wird das Ergebnis sein. Offensichtlich
besteht ein Skalenraum-Verhalten in diesem Parameter. Dieses ist jedoch nur
im Kontext von Signalregularisierung und Bild-Skalenräumen wohlverstan-
den. Aus diesem Grund sind diese fehlenden Untersuchungen des Optic Flow
Scale Space der dritte Beitrag dieser Dissertation.



Abstract
The robust estimation of correspondences in image sequences belongs to the
fundamental problems in computer vision. One of the biggest challenges
in this context are appearance changes, because the traditional brightness
constancy assumption only holds under idealised conditions. In realistic sce-
narios, more advanced concepts are necessary to estimate correspondence
reliably. Thus, in the context of dense optic flow estimation, the main goal
of this thesis is to develop, analyse and compare strategies and constancy as-
sumptions that are able to handle uncontrolled lighting situations robustly.
In that respect, we contribute two solutions to the mentioned problem, that,
however, follow very different strategies. First, we consider invariances, which
are the dominating concept in literature to tackle appearance changes and
uncontrolled lighting conditions today. Invariant features are properties that
can be derived from the input images that remain unaffected under certain
classes of intensity rescalings. We present a systematic and broad overview
of available invariances from the literature and introduce two novel ordering-
based features, the complete rank transform and the complete census trans-
form. We analyse important properties and suitable metrics for these sig-
natures and present a generic variational framework that allows to incorpo-
rate any of the discussed signatures. Our second contribution is motivated
by the biggest disadvantage of invariance-based constancy assumptions: the
most challenging appearance changes are local phenomena, but invariances
act globally. For instance in case of drop shadows, only parts of the image
change. Thus, in regions without appearance changes, the invariance blindly
discards potentially valuable information. This fact motivates us to develop
a method that integrates illumination changes explicitly into the data model
and compensates the constancy assumption locally for occurring changes. Fi-
nally, we consider another aspect of optic flow, where variational methods are
prevailing today. All such functionals have some type of regularisation term
in common, whose weight is the crucial parameter in practice. The larger its
value, the smoother the solution will be. Obviously, there exists scale space
behaviour in this parameter, which is, however, only well understood in the
context of signal regularisation and image scale spaces. Thus, we perform
this missing analysis of the optic flow scale space as the third contribution
of this thesis.
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Chapter 1

Introduction

Given two images, the establishment of correspondence relations between
positions in these two images is one of the fundamental problems in computer
vision. Usually, these two images are consecutive frames of an image sequence
– a movie –, and the task is to establish this relation for every pixel densely.
This means, we want to determine for every position (or pixel) in the first
frame to which position in the second frame it corresponds. We quantify this
relation by a displacement vector field pointing from each position in the first
frame to the corresponding new position in the second image. This is what
we call optic flow field.

Since more than three decades, many researchers have addressed this
problem. Interestingly, variational energy functionals for optic flow, whose
history dates back to the very first dense optic flow method proposed by
Horn and Schunck [1981], are still the prevailing methodology today, c.f.
various accuracy benchmark platforms [Baker et al., 2011; Geiger et al., 2012;
Butler et al., 2012]. Also the present thesis focusses completely on variational
strategies to compute optic flow. The core of such methods is a global cost
functional that integrates a cost function over the image domain, and the
goal is to find a flow field that minimises the cost. The modeling within
such an energy functional can be performed in a completely transparent and
elegant way, as all assumptions just need to be encoded in cost terms that
are added together: All desired properties of the solution can be rewarded
with low costs, and, vice versa, unmeant configurations in the solution can be
penalised severely. Typically, an energy functional for optic flow comprises at
least two types of cost terms: a data term relates the input image sequence
with the optic flow field, and ensures that the optic flow is appropriate for the
given images. The other term is a smoothness term that usually demands
some kind of spatial regularity of the flow, for instance that neighbouring
pixels have a similar displacement vector.

15



16 CHAPTER 1. INTRODUCTION

1.1 Applications
Being able to reliably and accurately estimate optic flow fields is an important
prerequisite for an enormous variety of applications.

Optic flow is probably the most intuitive and straightforward strategy for
tracking [Shi and Tomasi, 1994] objects from frame to frame. The trajectory
of an object over time can be determined by computing optic flow fields be-
tween all consecutive frames and following the displacement vectors at the
actual object position. Ochs et al. [2013] uses optic flow as input data for
his long-term trajectory analysis. Also in the context of video compression,
motion information can be useful if the appearance of a moving object does
not change. The MPEG video coding standard incorporates a block motion
compensation feature, where frames can be predicted from reference frames
with motion information about blocks of size 16× 16 pixel. The more recent
High Efficient Video Coding (HEVC) standard exploits accurate motion in-
formation even more [Sullivan et al., 2012]. Not only for video compression
purposes, also in order to interpolate movies in temporal direction [Rakêt
et al., 2012] optic flow is helpful. For instance, if the frame rate of a video
should be changed [Wang et al., 2014], additional frames are necessary. Op-
tic flow also plays an important role for visual effects in movies [Radke,
2012; Sadek et al., 2013]. Another example is the so-called bullet time ef-
fect, where a scene is captured from a couple of different view points. Using
optic flow, these different view angles can be interpolated and a version of
the movie can be computed where a virtual camera seems to fly around the
scene. Another application of optic flow in the graphics domain is high dy-
namic range (HDR) reconstruction. Whenever differently exposed images of
a scene should be reconstructed to a HDR composite and these exposures
were subject to any motion, the necessary alignment can be achieved with
optic flow [Zimmer et al., 2011a][Hafner et al., 2014]. In automotive driver as-
sistance systems, optic flow plays an increasingly important role [Onkarappa
and Sappa, 2014], for instance for the detection of obstacles. In the same
context, Stein [2004] proposes the usage of correspondences computed using
the census transform [Zabih and Woodfill, 1994]. Generally, visual corre-
spondence algorithms are important for the whole research field of robotics
and are used for various purposes, e.g. for optic flow based obstacle avoid-
ance [Santos-Victor et al., 1993]. The research field on structure-from-motion
relies on the assumption that the captured scene did not contain individually
moving objects such as cars or persons. Then, any motion between consec-
utive frames can be attributed to camera motion, and the geometry of the
scene can be deduced. This property is also exploited in the field of photo-
metric 3-D reconstruction [Schroers et al., 2012], [Schneevoigt et al., 2014]
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and visual odometry [Steinbrücker et al., 2011]. Garrido et al. [2013] use
optic flow to improve face reconstructions. In case of a stereoscopic setting,
i.e. if two cameras capture a picture at the same time, the static-scene as-
sumption is always fulfilled and the correspondence problem becomes much
easier [Hartley and Zisserman, 2004]. Another research field where dense
correspondence plays an important role is registration. In this setting, typ-
ically the two images to be related are of different kind, for instance, one
could register the CT scan of a patient’s hand to the CT scan of a normal
(or standardised) hand and then compute an image of the patients hand
in normalised shape and pose. Such applications are not exclusively in the
medical domain, optic flow-based registration can also be applied for face
registration [Demetz et al., 2007]. Finally, many denoising algorithms try
to remove noise by averaging similar pixels. If more than one image of the
same (moving) object are available, Nir et al. [2005] average in the spatial
and temporal domain by considering the corresponding pixels from the other
images.

1.2 Main Challenges in Optic Flow
The seminal work of Horn and Schunck [1981] constitutes the starting point
of the research on optic flow. Since then, the main challenges and major
problems in the context of optic flow estimation have become evident and
have been approached.

Noise. Almost all methods for optic flow are vulnerable against noise in
the input image sequence. To this end, Bruhn et al. [2005] combined the
local and noise-robust method of Lucas and Kanade [1981] with the global
variational ansatz of Horn and Schunck [1981]. Another way to approach
this problem is proposed by Nir et al. [2005], who additionally minimise for
a denoised version of the input images and thus incorporate the problematic
noise explicitly into their model.

Occlusions. Another major problem of dense correspondence estimation
algorithms are occluded image regions, because there no corresponding struc-
ture exists at all. This happens if a structure enters or leaves the image, or
if one object moves behind another and becomes invisible by that. Also in
this respect, several ways to tackle this problem have been proposed. As one
example, Alvarez et al. [2007] propose a method to estimate such regions
explicitly and their model ignores them in further computations.
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Outliers. In general, all types of phenomena that violate our assumptions
about the scene or input images can be considered as outliers. For such cases,
Black and Anandan [1991] incorporated the concepts of robust statistics into
variational optic flow.

Appropriate regularisation. Horn and Schunck [1981] proposed the first
variational formulation for optic flow, where they incorporated a quadratic
regularisation of the flow derivatives [Tikhonov, 1963]. This type of regular-
isation however penalises any discontinuities in the solution, although image
sequences as they are captured in real world do contain sharp discontinuities.
Many researchers have addressed this issue. One of the earliest attempts in
this direction is made by Nagel and Enkelmann [1986]. They propose an
anisotropic regularisation term where smoothness is demanded mainly along
images edges, across them the smoothness assumption is weighted down. The
works of Shulman and Herve [1989] and Cohen [1993] propose sub-quadratic
regularisation terms for optic flow, such that discontinuities can be preserved.

Large displacements. The typical data terms for optic flow are highly
non-convex expressions, as the sought unknown flow appears in the argument
of the image function. Thus, most variational methods for optic flow make
use of a linearised data term, i.e. approximate the image sequence locally by
a function that is linear in space and time. At the one hand, this linearisation
is very important as it makes the minimisation of the functional tractable
and converts the formerly non-convex problem into a convex one. On the
other hand, this linearisation has serious problems with large displacements.
To this end, multi-scale strategies have been proposed by Witkin et al. [1987]
and Anandan [1989]. Alvarez et al. [1999b] refrain from the linearisation and
instead perform a gradient descent on the non-convex functional. To not be
trapped in local minima, they embedded also their descent in a coarse-to-fine
strategy. A more efficient solution to this problem is proposed by Brox et al.
[2004], who solve on each level only for a flow increment.

Varying illumination. In principle all motion estimation methods rely
on some sort of constancy assumption. The most basic assumption that the
colour of an object does not change over time is intuitively correct. However,
there is a difference between the intuitive understanding of the diffuse re-
flectance colour of a surface and the actually perceived light spectrum that is
reflected from an object surface into the direction of the observer in reality. In
practice, this depends on the surface orientation, the light source, the surface
roughness, and many more factors. There exist various different mathemat-
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ical reflectance models, see e.g. the book of [Pharr and Humphreys, 2010].
Thus, the intuitive assumption that the grey value of corresponding pixels
remains constant over time unfortunately only holds under idealised condi-
tions, and further concepts must be employed to handle realistic phenomena
such as automatic camera re-adjustments, changeable weather conditions or
physical effects such as shadows and highlights reliably.

1.3 Scope of this Thesis
The first two main chapters of this thesis are devoted to the last-mentioned
problem, the adequate treatment of appearance changes in variational op-
tic flow methods. The goal is to analyse different strategies to tackle such
changes and to perform an objective comparison of these concepts. In the
end, the reader should have a broad overview over existing alternative strate-
gies as well as their individual advantages and shortcomings. The different
strategies to approach this problem can be roughly divided into two classes:

First, the predominant concept to tackle this problem today is through
invariances. Approaches of this type are covered in Chapter 2 of this disser-
tation. Depending on the situation, a feature, i.e. a property which can be
computed from the input images, is chosen that is not affected by the type of
illumination change one expects to occur. As an example, for colour image
material Zimmer et al. [2011b] choose the hue channel of the hue-saturation-
value (HSV) colour space representation of the images and argue that this
hue channel does not change when entering a shadow region. However, there
is no free lunch, and every invariance discards information. Especially for the
class of morphologically invariant transform that we will consider especially
in this thesis, the problem of discarding too much information is an issue.
Throughout our analysis, we will see that in designing invariance-based data
terms, the big issue is to find features that discard as little information as
possible.

This inevitable loss of information is the main motivation for the second
class of strategies being discussed in Chapter 3 of this thesis. Their idea is
– instead of ignoring parts of the available information – to explicitly esti-
mate the change. That way, the change becomes an additional unknown,
and assumptions about this change, e.g. smoothness and plausibility, can
be incorporated formally. Moreover, absolutely no image information is dis-
carded when following this strategy. However, we will see that an appropriate
parametrisation of the illumination change is important, and we will show
how to learn the parametrisation from training data.

Chapter 4 of this dissertation is devoted to the optic flow scale space. The
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central quantity being analysed in this context is the weight of the flow regu-
larisation term, which is usually the crucial parameter of all variational optic
flow methods. The larger its value, the smoother the minimising flow field
will be. The existence of a scale space behaviour in potentially all variational
optic flow methods is thus undeniable. However, formal scale space evolution
equations as they are well known and understood for traditional image scale
spaces have not been found before. This is the contribution of Chapter 4.
For the seminal model of Horn and Schunck [1981], we derive the evolution
equations and analyse important properties and differences to established
concepts. Practical experiments underline our theoretical findings.

1.4 Formal Problem Definition
Let us define the optic flow correspondence problem formally. We assume to
be given two consecutive frames of an input image sequence

fi : Ω→ Rnc , i ∈ {1, 2} (1.1)

where Ω ⊂ R2 is the rectangular image domain and R ⊂ R denotes the range
of intensity values for each channel. The dimensionality nc of the co-domain
of f depends on the type of image material; for grey value imagery nc = 1,
and for typical colour images (e.g. RGB imagery) nc = 3. The range of
intensity values R in each dimension is a matter of definition. Typically,
images are stored on disk as integer values with 8 bit per channel which
suggests the interval [0, 255].

With the term optic flow field, we denote a dense 2-D vector field. This
vector field describes the relative displacement for each position between the
first frame f1 and the second frame f2 of the image sequence. More formally,
the optic flow field u = (u, v)> : Ω → R2 parametrises at each position
x = (x, y)> ∈ Ω the displacement by the horizontal offset u(x) and the
vertical offset v(x). Hence, the flow (u, v)> expresses the correspondence
relation

(x, y)>� (x+ u(x, y), y + v(x, y))> . (1.2)

From a continuous-time point of view, the two frames f1 and f2 can be
understood as slices of a spatio-temporal image sequence

f̂ : Ω× [0, T ]→ Rnc , (1.3)

where the third dimension corresponds to time. Thus, for an arbitrary time
instant t ∈ [0, T − 1], we would have that

f1(x, y) = f̂(x, y, t) and f2(x, y) = f̂(x, y, t+ 1) , (1.4)
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and the flow establishes a correspondence for a time span of length 1

(x, y, t)>  (x+ u(x, y), y + v(x, y), t+ 1)> . (1.5)

For convenience, we will use the abbreviation w = (u, v, 1)> to denote the
flow vector with one variable that includes the temporal offset.

Discrete vs. Continuous Images and Differentiability

In practice, all image acquisition devices convert the observed scene into dis-
crete data. Thereby, the image sensor performs a spatial integration of the
incident light over each pixel element. Neglecting the spatial extent of each
pixel element, this can also be interpreted as a multiplication of the con-
tinuous incident light function with a regular Dirac comb. Throughout this
thesis, we will however model almost all concepts with continuous functions.
Such continuous counterparts of the recorded discrete samples can be recon-
structed by convolving the discrete samples with a small Gaussian kernel.
As a side effect, any this way reconstructed functions inherit the property
of being infinitely many times differentiable from the Gaussian. Thus, with-
out further mention, all continuous image functions treated in this thesis are
assumed to be the result of this acquisition pipeline.

1.4.1 Flow Field Visualisation
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Figure 1.1: Visualisation schemes for optic flow fields. Left: Arrow plot
of the ground truth flow field of the Yosemite 2 sequence. Center: Corre-
sponding colour visualisation. Right: Colour circle. The colours associated
to each direction can be seen from this image: For instance, a vector pointing
in right direction ((u, v)> = (1, 0)>) is visualised with red colour, cf. the sky
region in the exemplary flow field.

To visualise optic flow fields, colour visualisations are well suited. In
contrast to the classical arrow plots, a colour visualisation allows to visualise

2The Yosemite image sequence was originally created by Lynn Quam at SRI.
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the vector field densely and with high angular and radial resolution for the
human observer. The direction of a flow vector is used to defines its colour,
and its length determines the brightness. Thus, each displacement vector
(u, v) is decomposed into polar coordinates, i.e. angle φ = atan2(u, v) and
length r =

√
u2 + v2. The visualisation colour is computed in HSV colour

space, where the angle of the flow vector defines the hue component, the
length is set to the value component and the saturation is kept fixed at the
maximal value, see also Figure 1.1

1.4.2 Error Measures

To quantify the accuracy of an estimated flow field, its distance to the so-
called ground truth flow field must be computed. Ground truth flow informa-
tion is only available in special cases, e.g. if the image sequence is synthetic
and has been rendered, or in special scenarios like for the data acquisition
car of the KITTI Vision Benchmark suite [Geiger et al., 2012].

Average Angular Error

The classical error measure introduced by Barron et al. [1994] is the average
angular error (AAE), which measures the average angular deviation of the
estimated optic flow we = (ue, ve, 1)> from the ground truth flow field wg =
(ug, vg, 1)> in a spatio-temporal sense

AAE(we,wg) = 1
Ω

∫
Ω

arccos
(
w>e wg

|we||wg|

)
dx

= 1
Ω

∫
Ω

arccos
(

ueug + vevg + 1
(u2

e + v2
e + 1)1/2 · (u2

g + v2
g + 1)1/2

)
dx .

(1.6)

Average Endpoint Error

A slightly different error measure is the average endpoint error (AEE) which
computes the average Euclidean difference of two flow fields

AEE(ue,ug) = 1
Ω

∫
Ω

√
(ue − ug)2 + (ve − vg)2 dx

= 1
Ω

∫
Ω
||ue − ug||2 dx .

(1.7)
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Bad Pixel Measure

Recently, Geiger et al. [2012] released the KITTI Vision Benchmark Suite
that offers a huge amount of image material from urban driving scenarios.
The ground truth optic flow data of this benchmark is recorded using a
Velodyne laser scanner device that is mounted besides the image sensors. To
account for the small scale imprecision contained in the measurements of this
laser scanner, Geiger et al. [2012] adopted the so-called bad pixel (BP) error
measure from the stereo vision community [Scharstein and Szeliski, 2002]

BPK(ue,ugt) = 1
Ω

∫
Ω
1(‖ue(x)−ugt(x)‖2<K) dx K ∈ N , (1.8)

where 1(·) is 1 if its argument is true, and 0 else. For instance, the BP3 error,
which we will always consider, expresses the percentage of estimated flow
vectors that differ by more than 3 pixels form the ground truth solution, i.e.
the percentage of pixels with an Euclidean endpoint error above 3 pixels.

1.5 Thesis Organisation
This dissertation is organised in three main chapters.

Chapter 2 is devoted to invariances. After giving clarifying notations in
Section 2.1, a broad overview of available invariant features is presented in
Section 2.2. After that, Section 2.3 discusses appropriate metrics for the
various features, and in Section 2.4 we develop a generic variational energy
functional that allows to incorporate all previously discussed invariances.
After that, we evaluate our findings experimentally in Section 2.5.

Chapter 3 discusses our change estimation and compensation strategy.
We begin by presenting a variational model that estimates appearance changes
in Section 3.2. In the following Section 3.3, we describe how to estimate a
suitable basis from training data, and we evaluate our method in Section 3.4
with experiments.

In Chapter 4, we turn our attention to the scale space behavior of optic
flow. First, in Section 4.1, we rewrite the energy functional of Horn and
Schunck in terms of a signal regularisation like approach. After that, we
generalise the functional by introducing two additional degrees of freedom in
Section 4.2. After that we derive the evolution equations and discuss their
implementation in Sections 4.3 and 4.4, respectively. Finally, we discuss
how to select an optimal scale in Section 4.5 and analyse the scale space
behaviour experimentally in Section 4.6.

Finally, in Chapter 5 we conclude this dissertation and briefly touch on
possible future research directions.
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Chapter 2

Invariance

This chapter is dedicated to invariance-based constancy assumptions. Thus,
in the first section, we will start by giving a broad and structured overview
over available features and the type of invariance they provide. After that,
we will analyse in Section 2.3 what suitable distance metrics for the discussed
descriptors are. Then, we will develop a general variational framework for
optic flow in Section 2.4 which allows to incorporate each of these assump-
tions in a generic manner. Finally, we will present extensive experiments
that analyse the properties and performance of the discussed concepts in
practice. This chapter bases on the BMVC paper [Demetz et al., 2013] and
the follow-up IJCV article [Demetz et al., 2015].

In the upcoming section, the goal will be to define a transformation for
each possible feature. Such a transformation takes as input a smooth image
f ∈ C∞(Ω,R), where C∞(Ω,R) denotes the set of infinitely often differen-
tiable image functions that map from the 2-D spatial image domain Ω to
image intensity values R. The transformed feature T (f) is a generic m-
dimensional feature vector field. For colour images f ∈ C∞(Ω,Rnc) and
transformations that do not depend on all nc colour channels, we apply the
transformation to each channel and concatenate the transformation results:

T (f) := (T (f1)>, . . . , T (fnc)>)> . (2.1)

Regarding the differentiability of the output, some of the inherently discrete
transforms that we will introduce later do not lead to differentiable trans-
formation results. However, as mentioned in Section 1.4, in this case we
choose the same countermeasure to fix this theoretical problem and perform
a Gaussian post-smoothing after the transformation has been applied; see
also Section 2.4.3.

25
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f̄7 f̄3 f̄6

f̄4 f̄1 f̄2

f̄8 f̄5 f̄9

f̄ := N 9(f) = (f̄1, . . . , f̄9)>

f̄11

f̄7 f̄3 f̄6

f̄12 f̄4 f̄1 f̄2 f̄10

f̄8 f̄5 f̄6

f̄13

f̄ := N 13(f) = (f̄1, . . . , f̄13)>

Figure 2.1: Illustration of the neighbourhood operator for two different neigh-
bourhood sizes. Left: N 9 on a 3 × 3 patch. The grey-shaded cell denotes
the centre reference pixel. The four direct neighbours are closer than the
diagonal neighbours and thus have lower indices. Right: Example for N 13.

2.1 Point- vs. Patch-based Descriptors
Many of the common standard features that we are now going to discuss are
point-based, i.e. the features are computed for each point only by exploiting
image information in that point. In the discrete case, a small fixed set of
neighbouring pixels around a point is sometimes necessary to approximate
the derivatives, however we still consider such features as point-based.

If we give up this property and consider a neighbourhood around each
point, we will see that a variety of other features with special properties and
invariances becomes available. Of course, the size of this neighbourhood is a
free parameter for which we will also have to choose a suitable value.

Formally, with the notion image patch we mean a discrete and finite set
of neighbouring pixels. To this end we have to introduce a neighbourhood
operator N k that formally converts the scalar image function f ∈ C∞(Ω,R)
into a k-dimensional vector field. This is done by sampling the signal on a
regular grid and stacking the neighbours of each pixel into a vector. Another
intuition how the k-dimensional signal is built is that each of the k compo-
nents contains a copy of original signal, however, each component is spatially
shifted by a shift corresponding to the offset to the neighbour.

At this point, the fully discrete nature of patch-based concepts enters the
game, because this local neighbourhood is sampled on a regular grid. A con-
tinuous counterpart for some of the upcoming concepts is not available in all
cases. However, there are exceptions for specifically shaped neighbourhoods,
see e.g. the study of Hafner et al. [2013] about the continuous implications
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of the circular census transform. Thus, we define the local neighbourhood to
contain the k closest grid positions with respect to Euclidean distance, i.e.
the neighbourhood has an approximately circular shape. As a convention,
we order the values in the vector by increasing spatial Euclidean distance
from the centre reference position, c.f. Figure 2.1. To ease notation, we will
abbreviate the neighbourhood operator by over-lining and bold-face font to
indicate that the result is vector-valued:

f̄ := N k(f) . (2.2)

The neighbourhood operator includes the centre pixel, thus, the first com-
ponent always coincides with the input image:

f̄1 = f . (2.3)

2.2 Invariant Descriptors
Let us now give an overview over features that exhibit invariances, structured
by their class of invariance.

The most basic of all features is the input grey value or colour image
sequence itself. Formally one could say that these raw intensity values exhibit
the weakest form of invariance, namely no invariance since any rescaling that
is not the identity changes the function.

2.2.1 Additive Rescalings

The second-weakest class of invariance comprises all features that stay un-
changed under additive rescalings. Formally, this invariance is fulfilled if it
holds that

T (f + a) = T (f) ∀ a ∈ R, f ∈ C∞(Ω,R) . (2.4)

Here, a denotes a globally constant intensity offset.

It is obvious that if the additive term from Equation (2.4) is constant in
space, then it vanishes by differentiation. A large variety of feature transfor-
mations based on local derivative information is available. A good overview
on this class is given by Papenberg et al. [2006] and is summarised here for
the sake of completeness.
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Image Gradient

The image gradient has a long tradition as constancy assumption in varia-
tional optic flow [Nagel, 1983b; Tretiak and Pastor, 1984; Uras et al., 1988;
Schnörr, 1993]. It leads to a two-dimensional feature per colour channel and
represents a vector that points into the direction of steepest ascent in the
current colour channel. Its length can be interpreted as a measure of the
local image contrast. Formally, the sought transform is simply defined as the
nabla operator

Tgrad(·) := ∇(·) =
(
∂x(·)
∂y(·)

)
, (2.5)

which is a linear operator. One drawback of the gradient is its missing rota-
tion invariance, i.e. if a structure undergoes rotational motion, the direction
of the gradient changes.

Gradient Magnitude

The magnitude of the gradient, however, does possess the property of rota-
tional invariance:

Tgradmag(·) := |∇(·)| =
√

(∂x ·)2 + (∂y ·)2 , (2.6)

because the directional component of the gradient is discarded, and only the
local contrast, which is rotationally invariant, counts.

Gradient Orientation

For the sake of completeness, we note that the orientation of the gradient
plays an important role in the context of image registration [Modersitzki,
2009]. Such constancy assumptions are often realised via the scalar product
of the normalised image gradients at corresponding locations. However, this
scalar product does not fit into our framework and cannot be represented
with our type of transformation operator [Haber and Modersitzki, 2007].

Hessian

Of course, also higher-order derivatives can serve as feature to match. The
Hessian

H(·) :=
(
∂xx(·) ∂xy(·)
∂xy(·) ∂yy(·)

)
, (2.7)

summarises all second-order derivatives and offers several possibilities for
deriving constancy assumptions.
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Generally, all derivative based features are members of the same invari-
ance class, they are only invariant under additive rescalings. However, for
second-order features, the additive rescaling might be spatially affine:

T (f(x) + a(x)) = T (f) ∀ a : Ω→ R with H(a) = 0 , (2.8)

and where f ∈ C∞(Ω,R) denotes the image function. In contrast, for first-
order features, the additive rescaling must be constant.

A basic assumption would be about the entries of the Hessian, leading to
the 3-dimensional feature transform

Thess(·) :=

∂xx(·)∂xy(·)
∂yy(·)

 , (2.9)

where the second component holding the mixed derivatives might be double-
weighted since this entry appears twice in the full Hessian (2.7).

As for the raw gradient feature (2.5), the latter feature is not rotation-
ally invariant. However, for instance the trace of the Hessian, the so-called
Laplace operator, fulfills this requirement

Tlaplace(·) := ∆(·) = ∂xx(·) + ∂yy(·) , (2.10)

and leads to a one-dimensional feature per colour channel.

Structure-Texture Decomposition

Under the assumption that illumination changes vary smoothly in space,
Wedel et al. [2008] have used the total variation (TV) denoising model of
Rudin et al. [1992] to separate the input images into a so-called structure and
a texture part. The texture part is the difference of original input image and
its smoothed version (also calledmethod noise in other contexts). Wedel et al.
[2008] argue that smooth illumination changes will only affect the structure
part and the texture part remains unchanged. Hence, the feature to impose a
constancy assumption on is the texture part. This is a reasonable assumption
for smooth additive illumination changes, however, multiplicative rescalings
do not fit into this model. In practice, Wedel et al. [2008] perform a blending
of structure and texture part

s(f) = argmin
u

(
(u− f)2 + λROF|∇u|

)
, (2.11)

t(f) = f − αblend · s(f) , (2.12)
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Figure 2.2: Structure-texture decomposition. Left column: Frame 1 of
KITTI training sequence #15. Right column: Corresponding frame 2.
Top row: Input images. Middle row: Structure part. Bottom row:
Texture part.

where the smoothness parameter λROF > 0 has to be chosen according to Au-
jol et al. [2006], and the optimal value for the blending parameter is experi-
mentally found as αblend = 0.95 [Wedel et al., 2008]. The texture part is then
considered as feature

Ttexture(·) := t(·) . (2.13)

For an exemplary decomposition, see Figure 2.2. This feature however should
not be applied to colour data in the straightforward channel-by-channel man-
ner, because the original ROF model is not well suited for multivariate inputs.
An appropriate smoothing process should align the edges of all channels, as
proposed and applied for instance by Gerig et al. [1992]; Blomgren and Chan
[1998]; Chambolle [1994], and Kramarev et al. [2013].

Centralised Differences

The first patch-based concept we consider in this thesis are centralised differ-
ences that Vogel et al. [2013] introduce as a sum of absolute differences-based
approximation of the census transform, c.f. Section 2.2.4. Its invariance ver-
sus additive changes originates from considering the difference between each
pixel value of the patch and the centre value. For a patch size k, the resulting
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feature is k−1-dimensional and reads

Tcentr−diff(f̄) :=


f̄2 − f̄1

...
f̄k − f̄1

 , (2.14)

where, as defined before, f̄1 corresponds to the grey value of the central pixel
of the patch f̄ .

2.2.2 Multiplicative Rescalings

Let us now extend the invariance class to include multiplicative rescalings,
i.e. we consider transformations that remain unchanged under the following
type of changes:

T (a · f) = T (f) ∀ a ∈ R, f ∈ C∞(Ω,R) , (2.15)

where a > 0 is a globally constant, positive number. A more extensive study
on the features that we will discuss in this subsection is presented by Mileva
et al. [2007].

Derivatives of Logarithms

For multiplicative changes, we can exploit the general logarithm rule

log(a · b) = log(a) + log(b) , (2.16)

and that it holds for space variant f and constant a that

∂x(log(a · f)) = ∂x(log a) + ∂x(log f) . (2.17)

The first summand, i.e. the former constant factor, vanishes. Hence, the
according two-dimensional feature reads

Tlogderiv(·) :=
(
∂x(log ·)
∂y(log ·)

)
. (2.18)

Analogously to the gradient, this feature is not rotationally invariant.
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Normalisation

Let us consider the special case of being given vector-valued (colour) images,
i.e. f ∈ C∞(Ω,Rnc), and let the special assumption hold that the multi-
plicative factor a ∈ R is the same for all channels but can vary spatially:

fchanged,i = a · forig,i for all channels i . (2.19)

For this scenario, Golland and Bruckstein [1997] propose a strategy that elim-
inates the multiplicative change by means of normalisation. After computing
either the arithmetic or geometric mean of each colour vector

f̃a = 1
nc

(f1 + . . .+ fnc) , or f̃g = nc

√
f1 · . . . · fnc , (2.20)

each channel is normalised by dividing though the computed mean. Thus, we
obtain one normalised feature for each input channel which finally amounts
to

Tnorm−a(f) := 1
f̃a
f , and Tnorm−g(f) := 1

f̃g
f . (2.21)

2.2.3 Affine Rescalings
In this section we will discuss features that are invariant under affine rescal-
ings, i.e. transformations for which holds

T (a · f + b) = T (f) ∀ a, b ∈ R, f ∈ C∞(Ω,R) , (2.22)

where a > 0 and b ∈ R are constants.

Hue Saturation Value (HSV) Colour Space

In this colour space, a colour is characterised in a cylindrical coordinate
representation, rather than in a Cartesian space like the standard RGB colour
space. Instead of red, green and blue value, the hue angle H, the saturation
S and the value V specify a colour. The hue component H ∈ [0, 2π] defines
an angle on the colour wheel which selects the pure colour. The saturation
S ∈ [0, 1] represents the pureness of the colour, i.e. a pure red has saturation
equal to one. If the saturation of a colour is zero, then only shades of grey
can be represented. Finally, the value V ∈ [0, 1] defines the brightness of a
colour. Figure 2.2.3 illustrates this concept. For the sake of completeness, we
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Figure 2.3: HSV colour space.1

depict the general transformation rules from RGB to HSV space, c.f. Mileva
et al. [2007],

H (r, g, b) =


g−b
M−m · π/3 if R = M ,

( b−r
M−m + 2) · π/3 if G = M ,

( r−g
M−m + 4) · π/3 if B = M ,

S (r, g, b) = M −m
M

,

V (r, g, b) = M ,

(2.23)

where m = min(r, g, b) and M = max(r, g, b) are abbreviations.
To gain an invariance in the HSV colour space, we need the assumption

that both, the multiplicative and the additive change are the same for all
colour channels, i.e.

fchanged,i = a · forig,i + b for all channels i . (2.24)

In this setting, the hue component H is invariant against such affine rescal-
ings [Geusebroek et al., 2001]. This invariance is expolited by van de Weijer

1Image source: Wikipedia https://de.wikipedia.org/wiki/HSV-Farbraum

https://de.wikipedia.org/wiki/HSV-Farbraum
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and Gevers [2004] by embedding a constancy assumption on the hue com-
ponent into a local optic flow approach. Mileva et al. [2007] proposes a
variational optic flow method with a constancy assumption on the hue com-
ponent. In the work of Zimmer et al. [2011b], the ambiguity in the hue
channel is solved by expressing the angle in terms of its sine and cosine.
That way, the angles 0 and 2π, which correspond to the same hue colour
angle, are expressed by the same vector. The feature finally reads

Thue(f) :=
(

cosH(f)
sinH(f)

)
. (2.25)

Correlation Transform

The correlation transform of Drulea and Nedevschi [2013] uses image statis-
tics of the local neighbourhood N such as the mean

µf (x) = 1
|N |

∫
N
f(x+ y) dy , (2.26)

and standard deviation

σf (x) =
√

1
|N |

∫
N

(f(x+ y)− µf (x))2 dy , (2.27)

and assumes the scalar feature

Tcorrelation(f) := f − µf
σf

, (2.28)

to remain unchanged over time. This is related – but not equivalent – to
assuming directly in a data term that two patches correspond if their nor-
malised cross correlation is large [Hermosillo et al., 2002; Werlberger et al.,
2010; Molnár et al., 2010]. However, such a direct normalised cross corre-
lation term does not fit into our transformation framework. Moreover, the
linearisation and minimisation of this assumption also differs in important
points from the scheme that we will discuss in the next section.

Keypoint Descriptors for Large Neighbourhoods

There is a large variety of features available in the literature that computes
very discriminative high-dimensional feature vectors on larger neighbour-
hoods. Among those, the Scale Invariant Feature Transform (SIFT) [Lowe,
2004], Speeded Up Robust Features (SURF) [Bay et al., 2008], or Histogram
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of Gradients (HOG) [Dalal and Triggs, 2005], are most popular. There exist
many more such features and an extensive review is out of the scope of this
dissertation. For a comparative study we refer to Mikolajczyk and Schmid
[2005]. Almost all of these descriptors are invariant w.r.t. affine rescalings,
since they mostly operate on grey value differences and include some kind of
normalisation step. However, due to their large neighbourhood window, such
descriptors are mainly suitable for sparse feature matching methods and are
less appropriate for our dense correspondence estimation setting. Moreover,
these descriptors are typically very high dimensional, for instance the SIFT
descriptor is 128-dimensional. This renders their use in a data term of a
variational energy functional difficult. One remarkable direct integration of
SIFT descriptors in an optic flow method is SIFT-Flow [Liu et al., 2011],
where the authors concentrate on matching images across different scenes
(similar to general registration tasks, c.f. Subsection 2.2.5), and employ
discrete optimisation strategies to compute a locally optimal solution. More-
over, an integration of HOG features into a variational model is presented by
Rashwan et al. [2013]. An alternative way to exploit the remarkably good
sparse matching quality of descriptors from this section in variational optic
flow methods is to follow a two step strategy: First, estimate sparse matches
with one of the mentioned key point descriptors, then integrate them as soft
constraint into a variational model. Such ideas have been proposed e.g. by
Brox and Malik [2011], Stoll et al. [2013], and Braux-Zin et al. [2013].

2.2.4 Monotonically Increasing Rescalings
Let us now discuss transforms that are invariant under any global monoton-
ically increasing rescalings of the input signal. Transforms of this class are
also called morphologically invariant, in the sense of Alvarez et al. [1993] and
Chambolle [1994]. An illustration of the important transforms in this class is
given in Figure 2.4. All morphologically invariant transforms have to fulfill
formally:

T (g(f)) = T (f) ∀g ∈ C1(R,R), g′ > 0, f ∈ C∞(Ω,R) . (2.29)

For instance, if a video camera adjusts its gain to adapt to brightness changes
in the captured scene, the effect on the recorded images can be approximated
by an exponential rescaling (also called γ-correction), which is monotonically
increasing and thus does not fit into any of the previous invariance classes.

Transforms of the current class of morphologically invariant descriptors
are closely connected to the order of intensity values, because a monotonically
increasing function can change anything – except the order of pixel intensities.
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(a) Intensities.
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(b) Rank.

1 1 0
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(c) Census.

1 3 7

1 5 8

0 4 6

(d) Complete
rank.
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0 0 1 0 1 1

(e) Complete
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Figure 2.4: Illustration of the presented intensity order transforms (b)–(d)
with a 3 × 3 neighbourhood patch (a), where the reference pixel is marked
in grey.

Rank

The rank transform (RT) was proposed by Zabih and Woodfill [1994], and
encodes for each pixel the position of its grey value in the ranking of all grey
values in the neighbourhood. In other words, it is the number of neighbours
with a smaller grey value than the central one. Formally, for a patch of size
k the rank transform maps each pixel to its scalar rank signature Trank

(
f̄
)
∈

{0, . . . , k − 1}. It can be computed as

Trank
(
f̄
)

:=
k∑
i=2

1(f̄i<f̄1) , (2.30)

where 1(x) denotes the indicator function

1(x) :=

1 if x is true,
0 otherwise.

(2.31)

In Figure 2.4, the image patch

f̄example = (25, 88, 14, 4, 15, 83, 4, 3, 65)> , (2.32)

is depicted, and its rank transform is

Trank(f̄example) = 5 , (2.33)

since 5 of the 8 neighbouring intensities in the patch are smaller than the
reference value.
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Census

In the same paper, Zabih andWoodfill [1994] also introduced another descrip-
tor, the so-called census transform (CT). It has attracted a lot of attention in
recent years and can be seen as an extension of the rank transform: Besides
encoding the rank, it adds a spatial component by expressing the relationship
between the central pixel and each of its neighbours explicitly. Specifically,
one bit of information is stored for each pixel of the neighbourhood: If the
neighbour is smaller than the reference pixel the bit is 1, and 0 otherwise. In
the final binary signature, all bits are concatenated. While the order of this
concatenation is in general arbitrary, it has to be consistent such that each
bit can be uniquely associated with one neighbour. Throughout this thesis,
we will stick to our definition from Section 2.1. In mathematical terms, each
image patch of size k is mapped to a binary signature Tcensus

(
f̄
)
∈ {0, 1}k−1

of length k−1. We choose the following formal representation to compute a
census signature:

Tcensus
(
f̄
)

:= (1(f̄2<f̄1), . . . ,1(f̄k<f̄1))> . (2.34)

Hence, every neighbouring pixel is compared to the central one. For the
exemplary patch form Figure 2.4, we have:

Tcensus(f̄example) = (0, 1, 1, 1, 0, 1, 1, 0)> . (2.35)

Furthermore, the sum of the digits of a census signature coincides with the
rank of that pixel:

Trank
(
f̄
)

=
k−1∑
i=1

(
Tcensus

(
f̄
))

i
. (2.36)

There are several recent publications that incorporate the census transform
in variational optical flow or stereo methods: Müller et al. [2011] propose a
census-based data term for optical flow, and Ranftl et al. [2012] as well as
Mei et al. [2011] present census-based stereo methods. Braux-Zin et al. [2013]
combine census and grey value constancy assumption in a data term for optic
flow and additionally integrate sparse feature matches. The theoretical study
of Hafner et al. [2013] explains the reasons why census-based data terms for
variational optic flow are successful.

Variants. The original census concept of Zabih and Woodfill [1994] has
been extended in various respects.
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Especially in homogeneous regions of an image, the decision between 0
and 1 for each bit of a census signature can be influenced severely even by
very low amounts of noise. Stein [2004] proposes one possibility to address
this problem by extending the concept to a ternary signature and introduc-
ing a parameter that represents the noise level. Thus, if one grey value is
clearly smaller or larger than the other one, a 1 or −1 is stored, respectively.
However, the case when two grey values are very similar has its own repre-
sentation and is encoded by the signature value 0. The novel transform can
formally be written as

Ttern−census
(
f̄
)

:= (1ε(f̄2,f̄1), . . . ,1
ε
(f̄k,f̄1))

> , (2.37)

where the ternary indicator 1ε(·) is defined as

1
ε
(x,y) :=


1 if x− y < −ε ,
−1 if x− y > ε ,

0 otherwise.
(2.38)

Note that, strictly speaking, the ternary census transform is only invariant
versus additive rescalings, since for any difference of two grey values, there
exists a multiplicative factor that can scale this difference below or above the
noise threshold ε.

Fröba and Ernst [2004] address the vulnerability of the census transform
against noise in another way: The idea of their so-called modified census
transform is to exchange the centre grey value by the mean grey value of the
patch as comparison target. This concept formally reads

Tmod−census
(
f̄
)

:= ( 1(f̄1<f̄mean), . . . ,1(f̄k<f̄mean))> , (2.39)

where f̄mean = (f̄1 + . . .+ f̄k)/k represents the mean grey value of the patch.
Note that the modified census signature also contains one digit for a compar-
ison of the centre pixel value with the mean, thus leads to a k-dimensional
feature. Moreover, by comparing against the mean, the morphological invari-
ance of the modified transform is destroyed, and only an invariance under
affine rescalings is left.

Mohamed and Mertsching [2012] combine the two latter concepts and
use sparse matches from the ternary modified census transform as soft con-
straints in an otherwise standard variational optic flow approach of TV −L1
type [Zach et al., 2007].



2.2. INVARIANT DESCRIPTORS 39

In the spirit of local binary patterns [Pietikäinen et al., 2011; Calonder
et al., 2012], where larger and sparse stencils are common, Ranftl et al. [2014]
recently proposed a scale-adaptive census transform. Depending on the scale
of the underlying structure, the census signature is computed on a circular
stencil of varying radii. The sampling of this circular stencil involves bi-linear
interpolation. Thus, unfortunately also this census variant formally looses
the morphological invariance.

Complete Rank

Although the two signatures by Zabih and Woodfill [1994] exhibit the same
morphological invariance, the census transform obviously encodes by con-
struction more information than the pure rank.

However, there is still some more information that can be used without
losing the desired invariance. To this end, let us now introduce an extension
of Zabih and Woodfill’s basic transform: the complete rank transform (CRT).
We will see that the resulting signature carries much more information than
its predecessors.

Given the census signature of an image patch, we know which pixels in
the patch are smaller than the central one. However, the relationships among
all neighbours cannot be determined by the pure census information. For
instance, if two neighbouring pixels are both smaller than the central one, it
is still unclear which of the two neighbours is smallest.

To also encode this information, we propose the complete rank transform.
We compute the rank of each pixel of the patch and store this information
in a k-dimensional signature Tcomp−rank

(
f̄
)
∈ {0, . . . , k−1}k:

Tcomp−rank
(
f̄
)

:= (s1
rank, . . . , s

k
rank)> ,

sjrank := T jrank

(
f̄
)

:=
k∑
i=1
i 6=j

1(fi<fj) .
(2.40)

With this CRT signature, the whole intensity order is represented. From
the viewpoint of morphological invariance, this is the maximal amount of
information that can be extracted without leaving this class of invariance.
Regarding the exemplary patch from Figure 2.4, we have:

Tcomp−rank(f̄example) = (5, 8, 3, 1, 4, 7, 1, 0, 6)> , (2.41)

where the rank 1 is tied, which means two pixels in the patch have the same
intensity, so the corresponding rank 1 occurs twice. This scenario is not
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uncommon in practice, since most images are stored after a quantisation
to 256 intensity levels. By this, tied ranks occur frequently especially in
homogeneous image regions. Of course, by Gaussian pre-smoothing, this
phenomenon can be largely suppressed.

The computation rule for CRT signatures as shown in Equation 2.40 is
demonstrative and intuitively understandable, but also inefficient (quadratic
complexity in k). Essentially what has to be done is to sort the intensities,
and afterwards note their position. Thus, we propose to use an efficient
sorting algorithm such as Quicksort for this task (asymptotical complexity
O(k log k)); see e.g. Press et al. [2007].

The first appearance of ordinal measures of full patches in the literature
goes back to work on block matching based stereo correspondence of Bhat
and Nayar [1998]. Related to that, also more recently, several sparse interest
point descriptors building on intensity order-based ideas have been proposed:
With their chained circular neighbourhoods, Chan et al. [2012] make a first
step towards representing neighbourhood ordinal information. The Local
Intensity Order Pattern (LIOP) descriptor of Wang et al. [2011] describes the
intensity order of a very large neighbourhood and is specifically tailored for
sparse interest point matching. A similar idea of matching order distributions
is proposed by Tang et al. [2009]. Mittal and Ramesh [2006] combine order
and intensity information to increase the robustness against Gaussian noise.

Complete Census

After motivating the complete rank transform via the missing information
about ordering relationships between all pixels in the patch, another trans-
form comes naturally into mind, namely an analogue extension of the census
transform: the complete census transform (CCT).

Instead of storing all k ranks, it stores for each pixel of the patch its own
census transform, i.e. it is smaller or larger than any other pixel in the patch.
Thus, we obtain a signature Tcomp−census

(
f̄
)
∈ {0, 1}k·(k−1) which contains

all census signatures with each of the pixels as reference:

Tcomp−census
(
f̄
)

:=
(
s1

census
>
, . . . , skcensus

>)>
, (2.42)

with

sjcensus := T jcensus

(
f̄
)

:= (1(f1<fj), . . . ,1(fj−1<fj),

1(fj+1<fj), . . . ,1(fk<fj))> .
(2.43)
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Evidently, the original census signature from Equation 2.34 coincides with
this novel definition for j = 1: Tcensus(·) = T 1

census(·). The information con-
tained in complete rank and complete census is equivalent. This can be seen
from the bijection between them: Instead of computing the CCT signature
from the original intensity patch, we could as well compute it from the CRT
signature of the patch. The result would be the same:

Tcomp−census
(
f̄
)

= Tcomp−census
(
Tcomp−rank

(
f̄
) )

. (2.44)

Vice versa, the complete rank digits are just the sums of corresponding CCT
bits:

(Tcomp−rank
(
f̄
)
)j =

k−1∑
i=1

(sjcensus)i . (2.45)

Both signatures, complete rank and complete census, can also represent tied
ranks, i.e. if pixels in the patch have the same intensity. In this case the
same rank occurs multiple times in a CRT signature, and corresponding CCT
digits are both 0. Thus, the number of possible signatures for a patch with
k pixels is the k-th ordered Bell number OBN(k) [Sloane and Plouffe, 1995]
(also called k-th Fubini number), which is defined by

OBN(k) =
k∑
i=0

i∑
j=0

(−1)i−j
(
i

j

)
jk . (2.46)

It expresses the maximally possible number of weak orderings of a set of k
elements. The fact that tied ranks can be represented increases the number
of possibilities drastically, see Table 2.1.

Vulnerabilities

When dealing with morphologically invariant transforms, one has to be very
careful not to accidentally destroy this invariance by performing operations
on the signals before the transformation: For instance any averaging, inter-
polation or smoothing of the intensity values before performing the transfor-
mation can cause a change of the intensity order. Let us illustrate this with
an example: We consider an exemplary patch of three intensities

p1 = (3, 1, 4)> , Tcomp−rank(p1) = (1, 0, 2)> , (2.47)

and as non-affine, monotonically increasing rescaling we consider the cubic
function g(f) = f 3. Morphological invariance means that the order of inten-
sities of the original patch and the rescaled one remains unaltered:

p2 = (27, 1, 64) , Tcomp−rank(p2) = (1, 0, 2)> , (2.48)
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Table 2.1: Ordered Bell Numbers in comparison to factorial k, the number
of possible rankings without tied ranks.

k OBN(k) k!
0 1 1
1 1 1
2 3 2
3 13 6
4 75 24
5 541 120
6 4683 720
7 47293 5040
8 545835 40320
9 7087261 362880
10 102.247.563 3.628.800

which is obviously the case. If we now compute the arithmetic mean of
neighbouring pixels on the original patch we obtain:

p3 = (3, 2︸︷︷︸
= 3+1

2

, 1, 2.5︸︷︷︸
= 1+4

2

, 5) , Tcomp−rank(p3) = (3, 1, 0, 2, 4)> , (2.49)

and if we first apply the cubic rescaling and average the result, we obtain:

p4 = (27, 14, 1, 32.5, 64) , Tcomp−rank(p4) = (2, 1, 0, 3, 4)> . (2.50)

In the non-transformed patch, the right averaged value of 2.5 was smaller
than the first entry 3. This relation is not true anymore after the rescaling:
now, 32.5 is larger than 27.

This example shows that the invariance of a transformation is a very
fragile property that can easily be affected by pre-processing steps or the
like.

2.2.5 Monotonically Decreasing Rescalings
The class of monotonically decreasing rescalings is not in the focus of this
thesis. For instance, a grey value inversion would belong to this class of
rescalings, i.e. if bright structures in the first frame correspond to dark parts
in the second image, and vice-versa. Such phenomena typically do not occur
in real image sequences. However, this class of features is in fact relevant in
general image registration contexts, such as medical image registration [Mod-
ersitzki, 2009].
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2.2.6 Discussion
We have revisited a big variety of descriptors in this section, and we have
ordered them systematically by their class of invariance. For the sake of
clarity, we summarise all discussed transforms and compare their essential
properties in Table 2.2.

Table 2.2: Summary of the proposed intensity order transforms. The number
of pixels in the considered neighbourhood is given by k.

transform range D of
one digit

signature
length
m

spatial
infor-
mation

rotation
invari-
ance

invariance
class

Tintensity R 1 − − none

Tgrad R 2 X − additive

Tgradmag R 1 X X additive

Thess R 3 X X additive

Tlaplace R 1 X X additive

Ttexture R 1 − X (additive)

Tcentr−diff R k X − additive

Tlogderiv R 1 − X multiplicative

Tnorm−g [0, 1] 3 − X multiplicative

Tnorm−a [0, 1] 3 − X multiplicative

Thue [−1, 1] 2 − X affine

Tcorrelation R 1 − X affine

Trank {0, . . . , k−1} 1 − (−) morphological

Tcensus {0, 1} k − 1 X (−) morphological

Ttern−census {−1, 0, 1} k − 1 X (−) additive

Tmod−census {0, 1} k X (−) affine

Tcomp−rank {0, . . . , k−1} k X (−) morphological

Tcomp−census {0, 1} k(k−1) X (−) morphological

However, still the question Which transform is best? has not yet been
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answered. Unfortunately, a universal answer to this question cannot be given,
because the big trade-off between invariance and accuracy persists: On the
one hand we would like to be as invariant as possible, because more invariance
means more robustness. On the other hand, with every invariance we discard
information, i.e. we disregard the property we are invariant against. So, from
the analytical point of view, the only valid answer to the question is that the
best feature is situation-dependent and that no universally best feature can
be determined. It is up to our experiments to find appropriate solutions
for exemplary scenarios, and to identify features that perform well in many
situations.

However, among all features exhibiting one particular invariance, in fact
there do exist differences in terms of the information that is contained in the
different signatures, or – the other way round – in terms of the information
that is discarded. For instance, we have seen that, in each pixel, our com-
plete rank and census signatures contain the full local image intensity order.
Obviously this is much more information than the rank or census signatures
carry. In particular, it is not even possible to encode any more local image in-
formation without leaving the class of morphologically invariant descriptors.
The reason for this is as follows: All monotonic functions have in common
that they cannot alter the order of inputs. This means if one intensity is
smaller than another, this relation will still be valid after any monotonic
function has been applied. Any further information that goes beyond the
order of intensities, for instance differences, sums or quotients of intensities,
can thus be altered by monotonic functions. As consequence, since our com-
plete signatures carry the ordering relations between every possible pair of
intensities, it is not possible to encode more morphologically invariant infor-
mation. The same maximal amount of image information is also contained in
the complete census transform. However, the reason to prefer our proposed
complete rank signature is its much more compact representation and lower
dimensionality, compared to the complete census signature.

Nevertheless, this alternative census-inspired perspective offers an unex-
pected insight: Hafner et al. [2013] points out that each binary digit of a
census signature can be regarded as the sign of the corresponding directional
derivative (in a finite difference sense). Thus, from this point of view, one
can conclude that the complete rank transform inherently contains rich lo-
cal differential information. In this regard, dealing with derivatives of such
signatures as in [Puxbaum and Ambrosch, 2010] actually corresponds to sec-
ond order image derivative information. This fact is not obvious from just
considering the rank representation and should be kept in mind.

Let us further note that our notion of image information does not coincide
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with the classical notion of information content in terms of coding length.
The work by Soatto [2009] goes more in our direction, as his notion of action-
able information only includes the information content of image (sequences)
that is relevant for the task at hand. In particular, this means that so-called
nuissances – illumination and viewpoint changes – are discarded and do not
count as actionable information. Interestingly, Soatto [2009] models illumi-
nation changes with monotonically increasing continuous functions. In that
sense, our morphologically invariant descriptors do only discount nuisances
and no actionable information.

2.3 Signature Distance Metrics
Besides the question which signature to chose, an equally important decision
to take is the metric in which to compare the chosen signatures.

For the real- and vector-valued transforms, such as Tgrad, Tgrad−mag, etc.,
considering an Lp-norm of the signature difference most often is already a
suitable solution. However, for the ordering-based descriptors, an appropri-
ate metric is not immediately obvious.

For the classical rank and census transform there are suitable solutions
available: For ranks, the absolute value of their differences is an appropriate
metric because smaller rank difference means higher patch similarity. Let,
analogously to Section 2.2.4, f̄ and ḡ denote two patches to compare. Then,
the corresponding metric for the pure rank reads

d(Trank(f̄), Trank(ḡ)) = |Trank(f̄)− Trank(ḡ)| . (2.51)

In case of census signatures, the Hamming distance is a natural choice since
it reflects the number of pixel comparisons that are in agreement:

d(Tcensus(f̄), Tcensus(ḡ)) =
k−1∑
i=1

1((Tcensus(f̄))i 6= (Tcensus(ḡ))i) ,

= |Tcensus(f̄)− Tcensus(ḡ)|0 .
(2.52)

In the latter equation, we make use of the l0 norm, i.e. the total number
of non-zero elements of its argument vector. Vogel et al. [2013] propose
the so-called Centralised Sum of Absolute Distances (CSAD) as a convex
approximation of the Hamming distance for Census signatures. However,
this approximation looses many invariances, in fact even the invariance under
multiplicative rescalings is lost. Thus, this is not an option for our framework.

The Hamming distance is a concept for binary signatures, thus for ternary
census signatures an appropriate metric has to be found. However, in terms
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of comparison similarity, an Lp-norm of the difference vector of two ternary
signatures makes sense:

d(Ttern−census(f̄), Ttern−census(ḡ))
= ‖Ttern−census(f̄)− Ttern−census(ḡ)‖p .

(2.53)

This can be explained by regarding the possible values that each component
of the difference vector can attain: If it is zero, then the ternary digits of the
two signatures to compare coincide in the considered component. If it is 2 or
−2, then the two signatures differ completely, one digit is 1, the other −1.
Accordingly, the contribution to the norm is large. The interesting case is if
the difference is 1 or −1. Then, one of the signatures must have a zero in
the respective component, the other signature however must be one or minus
one. One can thus argue that the two signatures are less different than in
the second case and consequently, the contribution to the norm is smaller.

The straightforward generalisation of the absolute rank difference to its
complete counterpart is the Euclidean norm of the difference vector (p = 2)
or the sum of absolute component differences (p = 1):

d(Tcomp−rank(f̄), Tcomp−rank(ḡ))

=
(

k∑
j=1
|(Tcomp−rank(f̄))j − (Tcomp−rank(ḡ))j|p

)1/p

.
(2.54)

However, we are actually interested in the number of pixel comparisons
in the patch not being in agreement. In this regard, the desired dissimilarity
measure can be obtained by applying the Hamming distance to the complete
census signatures:

d(Tcomp−census(f̄), Tcomp−census(ḡ))

=
k(k−1)∑
i=1

1((Tcomp−census(f̄))i=(Tcomp−census(ḡ))i ) ,
(2.55)

because this metric measures exactly what we would like. Interestingly, the
two latter metrics exhibit a close relationship that becomes clear by plugging
Equation 2.45 into the former one:

d(Tcomp−rank(f̄), Tcomp−rank(ḡ))

=
(

k∑
j=1

∣∣∣∣∣
k−1∑
i=1

(sjcensus(f))i −
k−1∑
i=1

(sjcensus(g))i
∣∣∣∣∣
p )1/p

.
(2.56)
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Comparing Equation 2.55 and 2.56, one can see that instead of counting each
individual disagreeing pixel comparison, the disagreements are accumulated
for each of the k CRT components. This accumulation performs a best case
estimate, i.e. as many census digits as possible are assumed to coincide. In
other words, the best possible case for each CRT component is assumed.

In the case of the sum of absolute differences (p = 1), the metric exactly
represents the lowest possible bound on the Hamming distance of CCT signa-
tures. For the Euclidean distance (p = 2), the individual rank differences are
amplified by the square function. Thus, more disagreeing pixel comparisons
than the least possible are presumed.

To conclude, CCT in combination with the Hamming distance might be
the most intuitive measure. However, the CCT introduces a large computa-
tional overhead compared to CRT; signature length k(k − 1) versus k. Nev-
ertheless, we have seen that the CRT metrics approximate this CCT metric
in a meaningful way. It is up to our experiments to show the difference of
both signature-metric combinations in terms of accuracy.

2.4 Variational Optic Flow Model
Let us now develop a general variational framework for optic flow in which
all the previously discussed transforms can be embedded.

The seminal work of Horn and Schunck [1981] constitutes the starting
point of the whole research branch on variational methods for optic flow.
They were the first to formulate the problem of determining the optic flow
as that of finding the minimiser of an energy functional of type

E(u) =
∫

Ω

(
D(u) + α · S(u)

)
dx , (2.57)

where the terms D and S denote the so-called data term and smoothness
term, respectively. In such an energy minimisation setting, both terms can
be understood as penalising functions, i.e. the terms should attain small
values for a good solution. Here, a good solution means a solution that fits
well to the model. The relative weight of data and smoothness term can be
influenced with the positive smoothness parameter α.

In the following sections, we will discuss generic choices for both terms of
the latter functional.

2.4.1 Data Term
The purpose of the data term is to establish a relationship between the input
images and the sought optic flow field. This relationship usually consists of
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the assumption that some quantity that can be deduced from the images – a
so-called feature – remains constant between the two images. For instance,
the constancy assumption behind the classical work of Horn and Schunck
[1981] is that the intensity of corresponding pixels stays unchanged over
time. Thus, here the mentioned feature would be the intensity, which does
not exhibit any invariance c.f. Section 2.2. Formally, this assumption can be
expressed with the equation

f2(x+ u(x, y), y + v(x, y)) = f1(x, y) (2.58)
⇔ f2(x+ u(x, y), y + v(x, y))− f1(x, y) = 0 , (2.59)

where f(x, y, t) is the intensity of a pixel in the first frame and f(x +
u(x, y), y+v(x, y), t+1) represents the grey value of the pixel at the displaced
corresponding position in the second frame. For the sake of readability, we
will omit from now on the spatial arguments (x, y) of u and v.

Any non-zero value of the difference in Equation (2.59) indicates a viola-
tion of the constancy assumption. The larger this violation is, the larger will
be the absolute value of the difference. Thus, to incorporate this constancy
assumption into an energy functional we square it and obtain the basic data
term

Df (u) = (f2(x+ u, y + v)− f1(x, y))2 . (2.60)

Vector-Valued Features

Many of the previously presented features are vector-valued, c.f. the overview
of the previous Section 2.2. As discussed in Section 2.3, in most of these cases,
the L2 norm is a suitable metric. Thus, let us assume that for j ∈ {1, 2},
the feature under consideration T (fj) =: pj is m-dimensional. The task is
then to set up a data term reflecting the assumption that the value of each
component remains constant for corresponding points. Analogously to 2.59,
we can then transform each single feature constancy assumption into a data
term by squaring and adding all squared data terms together:

Dp(u) = 1
m

∣∣∣ p2(x+ u, y + v)− p1(x, y)
∣∣∣2
2

= 1
m

m∑
i=1

(
p2,i(x+ u, y + v)− p1,i(x, y)

)2
,

(2.61)

and where the division by the number of components m normalises the whole
expression w.r.t. the number of features. Note that in the same way also
different constancy assumptions can be imposed jointly. For instance the
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model of Brox et al. [2004], which assumes grey value and gradient constancy,
can be represented via TBrox(f) := (f, fx, fy)>.

Linearisation

The representation of our constancy assumptions as difference of grey values
has one big practical drawback: The unknowns u and v show up in the ar-
gument of the image sequence. As consequence, Equations (2.60) and (2.61)
are not convex and far from linear. Thus, the direct minimisation of a func-
tional with this data term is very difficult: Due to the non-convexity, there
might be many local minimisers and even several distinct globally optimal
solutions. Thus, if we would find a minimiser with some strategy, e.g. some
kind of descent scheme, we might just have been trapped in a local minimum
and we cannot to decide if it is the globally optimal solution. Non-convex
optimisation is a very difficult problem in general and the way we approach
this issue will be discussed in Section 2.4.3 later in this thesis.

Nevertheless, Horn and Schunck [1981] and Lucas and Kanade [1981]
approximated the non-linear expression of the data term with a first-order
Taylor expansion. This linear approximation leads to

f2(x+ u, y + v) − f1(x, y)
≈ f2(x, y) + f2,x(x, y)u+ f2,y(x, y) v − f1(x, y)
= f2,x(x, y)u+ f2,y(x, y) v + ft(x, y) ,

(2.62)

where the abbreviation ft := f2−f1 can be seen as a finite temporal derivative
and the notion fi,∗ := ∂∗(fi) abbreviates a partial derivative of the i-th
frame. Due to this linearisation, we obtain linear (and thus also convex)
minimality conditions when minimising the functional later on. Such a linear
approximation, however, only holds if the signal f is indeed sufficiently linear,
and if the displacements u and v are small.

We note that each constancy assumption leads to one constraint, but
depends on two unknowns u and v. In the linearised case (2.62), this under-
determinedness shows up in the fact that there exists one line in the (u, v)-
space of which all points are solutions of the constancy assumption. This
line is perpendicular to the so-called normal flow

unormal = −ft∇2f

|∇2f |2
, (2.63)

which is the shortest possible of all solutions on that line. A visualisation of
this solution is depicted in Figure 2.5. In Chapter 4, we will analyse the role
of the normal flow in further detail.
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Figure 2.5: Visualisation of the normal flow of the linearised grey value con-
stancy assumption. Colours encode direction, and regions where the image
gradient is zero are depicted in grey. Image sequence: sequence #15 of the
KITTI benchmark [Geiger et al., 2012].

Motion Tensor Notation

Especially for the case of multiple features, the motion tensor notation of Bruhn
[2006] allows a very elegant formulation of the energy components. This ten-
sor notation results in a data term consisting of one quadratic form – the
so-called motion tensor – which is independent of the number of incorporated
features. For the vector-valued feature p, it can be deduced as follows:

Dp,lin(u) =
m∑
i=1

(
pi,xu+ pi,yv + pi,t

)2

=
m∑
i=1

(
∇3p

>
i w

)2
=

m∑
i=1
w>∇3pi∇3p

>
i w

= w>
m∑
i=1

∇3pi∇3p
>
i︸ ︷︷ ︸

motion tensor J

w .

(2.64)

Here, the spatio-temporal offset vector w = (u, v, 1)> contains the flow com-
ponents, and ∇3 = (∂x, ∂y, ∂t)> denotes the spatio-temporal gradient, c.f.
Equation (2.62).

Normalisation

Linearised data terms as in Equation (2.62) penalise the distance of a flow
vector to the line defined by the normal flow. However, as deduced by Lai and
Vemuri [1998], Schönemann and Cremers [2006] and Zimmer et al. [2011b],
the true distance of the flow to that line is locally re-weighted by the squared
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magnitude of the image gradient, as can be seen from the following compu-
tation:

(∇3f
>w)2 = (∇2f

>u+ ft)2

= |∇2f |2
(

(∇2f
>u+ ft)
|∇2f |

)2

= |∇2f |2
(

∇2f
>

|∇2f |
(
u− −∇2fft

|∇2f |2
))2

(2.63)= |∇2f |2
(

∇2f
>

|∇2f |
(
u− unormal

))2

.

(2.65)

The consequence of this re-weighting is that high-contrast positions have
more influence on the minimiser than positions where the image gradient
is small. To eliminate this behaviour, Lai and Vemuri [1998] proposed to
normalise the constancy assumption. Zimmer et al. [2011b] applied this
strategy by dividing the motion tensor of each feature by the trace of its
upper left 2× 2 sub-tensor:

J̄p =
n∑
i=1

1
|∇2pi|2 + ξ2 ∇3pi∇3p

>
i , (2.66)

where ξ is a small constant to avoid division by zero. Throughout all exper-
iments, its value is kept constant at ξ = 10−2. For the rest of this thesis,
we will indicate normalised motion tensors with bars, e.g. J̄ . Generally,
the concept of constraint normalisation can be applied to any linearised con-
stancy assumption [Valgaerts et al., 2010]. In motion tensor notation, the
factor to normalise any constraint is given by θ := (J11 + J22 + ξ2)−1, where
J represents the motion tensor:

J̄ = 1
J11 + J22 + ξ2︸ ︷︷ ︸

=:θ

·J . (2.67)

On the one hand, normalising the data constraints removes the dependency
on the local feature contrast. On the other hand, however, from a global
energy point of view, this changes the interplay of data and smoothness term
completely: Without normalisation, the data term only gives a contribution
if reliable image information is available, i.e. if the image gradient is large.
Otherwise, the energy is determined solely by the smoothness constraint, this
creates the so-called filling-in effect. Contrarily, with normalisation, small
image gradients are amplified and each position finally has the same weight.
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Figure 2.6: Data term normalisation. Top: First frame of KITTI training
sequence #15 [Geiger et al., 2012]. Grey values are in [0, 255]. Middle:
Trace of motion tensor without normalisation. Edge pixels have a clearly
larger influence than pixels in smooth regions. Values are in the range [0, 25].
Bottom: Trace of motion tensor after normalisation. Values in range [0, 1].
Positions with non-vanishing image gradient all have similar weight. How-
ever, regions where the image gradient vanishes still have no influence (e.g.
the sky).
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This can be problematic for instance if noise is present. In that respect, the
small constant ξ plays an important role, as it can also be seen as a parameter
allowing to influence the noise sensitivity of the normalisation. Any image
noise below ξ is not overamplified.

Figure 2.6 juxtaposes the weightings of the linearised grey value con-
stancy assumption for one sequence of the KITTI Vision benchmark with
and without motion tensor normalisation. One can see clearly that without
normalisation, the few image regions with high local contrast dominate all
other areas completely. Moreover, the regions where the local contrast is
really vanishes are mainly saturated image parts.

Robust Data Terms

So far, we have analysed and developed a global data term, in the sense that
it couples the flow and input image data in every pixel. There are, however,
cases, where such a coupling is not appropriate everywhere. For instance,
if the image sequence is perturbed by a stochastic process like noise, we
cannot expect that corresponding pixels in both frames are affected exactly
in the same way. Moreover, any feature constancy assumption is conceptually
wrong in occlusions, i.e. regions that are – due to the apparent motion in
the scene – only visible in one of the two frames.

In any of the described cases, we can expect the intensity or feature
difference (c.f. Equation (2.59)) to attain large values. Consequently, with
quadratic penalisation, the data term (2.60) will nevertheless try to match
such unmatchable regions. This will have negative effects, and, because of the
global coupling of the regularisation term, this will spoil the result globally
in the whole image domain.

As a remedy, the concept of sub-quadratic penalisation from robust statis-
tics can help [Huber, 1981]: By surrounding the quadratic expression with a
function

Ψε(z2) = 2ε
√
z2 + ε2 − 2ε2

= 2ε2
√
z2/ε2 + 1− 2ε2 ,

(2.68)

where ε > 0 is a small positive constant, we can limit the influence of out-
liers [Black and Anandan, 1991] while ensuring the convexity of the expres-
sion. Thus, a generic robustified data term would read:

Df,Ψ(u) = Ψ
(

(f2(x+ u, y + v)− f1(x, y))2
)
. (2.69)

We note that our choice of the function Ψ is a regularised and differentiable
version of the absolute value function (re-scaled by ε). Its derivative Ψ′ is
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the so-called Charbonnier diffusivity [Charbonnier et al., 1994]

Ψ′ε(z2) = ε√
z2 + ε2

= 1√
1 + z2

ε2

, (2.70)

which is a decreasing function. If its argument is zero, i.e. if the constancy
assumption is fulfilled, it has the value 1. On the contrary, if the constancy
assumption is violated its value goes to zero.

Separate vs. Joint Robustification. This robustification step offers ad-
ditional degrees of freedom if more than one constancy assumption is present,
or if the feature has multiple channels.

Depending on the situation, it can be beneficial to either impose a joint
robustification, i.e.

Dp,Ψ,joint(u) = Ψ
( 1
m

∣∣∣ p2(x+ u, y + v)− p1(x, y)
∣∣∣2)

= Ψ
(

1
m

m∑
i=1

(
p2,i(x+ u, y + v)− p1,i(x, y)

)2
)
,

(2.71)

or a separate one, which reads:

Dp,Ψ,separate(u) = 1
m

m∑
i=1

Ψ
(

( p2,i(x+ u, y + v)− p1,i(x, y) )2
)
. (2.72)

Since our choice of the sub-quadratic function Ψε(z2) approximates the abso-
lute value function |z| in the limiting case ε→ 0, joint robustification approx-
imates the L2-norm of the feature vector difference. Ignoring the influence
of the regularisation term for a moment, we find that a jointly robustified
data term thus demands the solution to be close to the least squares solution
in each point. However, in case of separate robustification, the L1-norm is
approximated, which is closely related to the median.

As a rule of thumb, joint robustification is appropriate if the features
should hold and fail together; for instance it is unlikely that the red channel
of a colour image sequence matches, but the green and blue channel do
not fit well. On the contrary, if one feature can match independently of
another, it makes sense to robustify them separately. Of course, also hybrid
robustification schemes might make sense, i.e. mixed schemes where several
vector-valued features are separately robustified, c.f. [Bruhn and Weickert,
2005].

With the latter robustification strategies for multiple features, an assump-
tion is considered reliable if its cost is low. Thus it is possible that multiple
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separately robustified feature constancy assumptions are active at same time.
There is work by Xu et al. [2010] and Kim et al. [2013] where this situation
is avoided, and in which configurations where only one assumption is active
at a time are preferred. However, we do not consider such strategies in this
work.

2.4.2 Smoothness Term
Let us now turn our attention to the smoothness term. Its purpose is to
resolve the ambiguities of the data constraints and to ensure the existence
of a dense solution. It is important to choose the smoothness term carefully,
because each possible type of smoothness term prefers solutions with different
properties. Thus, with a certain choice, we express our prior knowledge
that the solution shall have its associated properties and thus influence the
resulting flow field.

There is a big variety of possible smoothness terms available in the lit-
erature, however the discussion of those is not in the scope of this thesis.
Instead, let us now consider a general smoothness term which allows to rep-
resent several popular terms from the literature. This general regulariser
reads:

S(u,a, b) = R1(u,a, b) + βR2(a, b) , (2.73)

and consists of two components: R1 is a coupling term:

R1(u,a, b) = Ψ
(
|∇u− a|2 + |∇v − b|2

)
, (2.74)

which demands the gradients of the flow field to be similar to the auxiliary
vector fields a and b. The second term R2 is a classical smoothness term
that penalises changes in the auxiliary functions:

R2(a, b) = Ψ
(
|Ja|2F + |J b|2F

)
. (2.75)

In the latter equation,

J v :=
(
∂xv1 ∂yv1
∂xv2 ∂yv2

)
(2.76)

denotes the Jacobian matrix that captures the first-order derivatives, and
| · |F denotes the Frobenius norm.

Our general smoothness term (2.73) has several well-known special cases
that we now want to review briefly.
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Tikhonov Regularisation. For the choice Ψ(z2) = z2, and the constraint
a = b = 0, the second term R2 vanishes naturally and the first term can be
simplified to

RTikhonov
1 (u) = |∇u|2 + |∇v|2 . (2.77)

By restricting the minimisation to the unknown flow u and setting a and b
to zero, we revert the role of the coupling term to a traditional smoothness
term that demands the flow derivatives to be small. As result, this term
coincides with a standard Tikhonov regularisation [Tikhonov, 1963] term as
used by Horn and Schunck [1981].

First-Order Flow-Driven Regularisation. By only setting a = b = 0,
again R2 drops out naturally, and the term

Rnon−lin
1 (u) = Ψ

(
|∇u|2 + |∇v|2

)
. (2.78)

realises the popular non-linear isotropic regularisation. This concept has a
successful and long tradition in the context of computer vision [Blake and Zis-
serman, 1987; Shulman and Herve, 1989; Black and Anandan, 1991; Cohen,
1993; Schnörr, 1994; Brox et al., 2004].

Depending on the choice of Ψ, a discontinuity preserving or even discon-
tinuity enhancing behaviour can be achieved. Our choice of a regularised
absolute value function from Equation (2.68) approximates total variation
(TV) regularisation [Rudin et al., 1992; Acar and Vogel, 1994].

Second-Order Flow-Driven Regularisation

When exploiting its full potential, the general framework from (2.73) can
realise a second-order regularisation. To this end, the set of unknowns has
to be extended by the vector fields a, b : Ω→ R2. The task of the auxiliary
variables is then to approximate the first order derivatives of the optic flow
field:

a ≈∇u , b ≈∇v . (2.79)

Consider for a moment the case that the coupling term would be perfectly
fulfilled, i.e. equality would be enforced to hold everywhere in terms of a hard
constraint, such that a = ∇u and b = ∇v. Consequently, in this case, R1
would be satisfied and evaluate to zero. However, the term R2 would penalise
second-order derivatives of the flow in this case. More precisely, because of
J ∇(·) = H(·), exactly all entries of the Hessian matrices of u and v would
be penalised, and an equivalent second-order regularisation term would read:

Rdirect
2 (u) = Ψ

(
|Hu|2F + |Hv|2F

)
. (2.80)
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Figure 2.7: Regularisation of a piecewise affine test image. Top row, from
left to right: Input image, perturbed version with additive Gaussian
noise (σ = 10), denoised version with coupled regulariser (α = 40, β = 125,
ε = 10−2), visualisation of the resulting auxiliary coupling variable for the
x-derivative, and a corresponding first order regularisation as reference (c.f.
Eq. (2.78), α = 60). Bottom row: Plots of respective horizontal scan lines
of the centre row of the images above.

However, such a direct second-order term prefers continuous piecewise affine
solutions [Lysaker et al., 2003; Didas, 2008]. This means the latter direct
second-order regularizer favors continuous solutions, because only the first
order derivatives exhibit discontinuities. This corresponds to bends in the
solution. Another direct second-order regularisation term for optic flow is
presented by Trobin et al. [2008] that penalises the deviation of the solu-
tion from an affine function in each position. Also the work of Yuan et al.
[2007] considers second-order regularisation term for variational optic flow
estimation in the context of fluid dynamics.

In contrast, in the model used in this thesis, the derivatives are allowed
to deviate from the auxiliaries (c.f. (2.79)). As consequence, the solution
can exhibit both: discontinuities and bends. This is illustrated in Figure 2.7
in the image regularisation setting: Especially when comparing the result-
ing images with and without coupling, the typical staircasing artefacts of
the first-order regulariser become obvious. For the second-oder model this
can be avoided. In general, the regularisation scheme from Equation (2.73)
can be seen as a regularised and differentiable approximation of the second
order total generalised variation (TGV 2) smoothness term of Bredies et al.
[2010]. The TGV -norm, in turn, has a close relationship to infimal convo-
lution [Chambolle and Lions, 1997]. Setzer et al. [2011] proposes a modified
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infimal convolution regulariser for the discrete setting that coincides with
the TGV -norm. This modification clearly shows that the difference between
the original infimal convolution and TGV -norm is one additinal degree of
freedom in the latter framework. Hewer et al. [2013] use a linear variant of
the coupling scheme for the estimation of Lagrangian strain tensors from op-
tic flow field derivatives in mechanical engineering applications. The TGV 2

norm has also recently been used in several stereo [Ranftl et al., 2012] and
optic flow methods, e.g. [Braux-Zin et al., 2013; Vogel et al., 2013].

Other Regularisation Schemes

Our regularisation term cannot cover several other important regularisation
concepts. Among those, the isotropic image-driven ideas of Alvarez et al.
[1999a] align discontinuities of the solution with edges in the input images.
Furthermore, the anisotropic image regularisation term of Nagel and Enkel-
mann [1986] also considers edge information of the input images, and de-
mands the solution to be smooth along image edges but not across them.
The joint image- and flow-driven regularisation of Zimmer et al. [2011b] also
performs an anisotropic smoothing, but rather considers directional deriva-
tives of the flow along directions given by the data term. A purely flow-driven
anisotropic flow regularisation scheme is presented by Weickert and Schnörr
[2001]. The non-local total variation concept is used by Werlberger et al.
[2010] and allows to incorporate tonal weights. The work of Sun et al. [2010]
shows the relationship between such non-local terms and median filtering.

2.4.3 Multi-Scale Technique
As we have argued before, from an optimisation point of view, the main
problem with the constancy assumptions so far is that they consist of highly
non-linear and non-convex terms that cannot be minimised without further
ado. As one first countermeasure, we already discussed a generic linearisation
strategy that leads to a locally convexified and linear (sub-)problem. In
the field of nonlinear least squares minimisation, such a linearisation can be
interpreted as one step of the Gauss-Newton method [Nocedal and Wright,
2006]. However, this linearisation is merely a linear approximation to the
original constraints that obviously only holds if the underlying signal is in
fact linear (i.e. smooth), and if the approximation distance, i.e. the length
of the flow vector, is sufficiently small. Both these requirements do not
hold for general real world image sequences: We have to cope with very
large displacements and arbitrary image material. Figure 2.8 illustrates this
problem. This exemplary sequence has an image resolution of 1241 × 376



2.4. VARIATIONAL OPTIC FLOW MODEL 59

0 50 100 150 200 250 300 350 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Flow Vector Magnitude

R
e

la
ti
v
e

 F
re

q
u

e
n

c
y

Figure 2.8: Illustration of large displacements in real world image sequence.
Top row: first and second frame of KITTI training sequence #15. Mid-
dle: Both frames overlaid as green and red channel, respectively. Plot:
Distribution of flow vector magnitudes in this image sequence.

pixels and 8.2% of all flow vectors are longer than 100 pixels.

The common solution for this problem in the literature is to perform more
than one step of the Gauss-Newton method [Nagel, 1983a], and to embed
these steps in a multi-scale strategy [Witkin et al., 1987; Enkelmann, 1988;
Anandan, 1989; Brox et al., 2004]. Then, the original non-linear problem is
approached step-by-step on different levels of a scale space representation of
the input images [Iijima, 1962; Witkin, 1983]. Beginning on a very smooth
scale, the solution is successively refined on sharper levels. This strategy
makes the estimation of large displacements possible: On very smooth scales,
the linearisation holds since the error of a linear approximation becomes less
significant. Practically, the refinement of a previous solution is realised by
computing an additive increment on each scale, such that the sum of the
solution from the previous scale and the increment approximates the solution
of the non-linear problem at the current scale. Alternatively to the Gauss-
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Newton method, Alvarez et al. [2002] performs a gradient descent on the
original non-linear functional which is embedded into a scale space strategy.

In detail, our scheme acts on a finite set of scales indicated with the
variable `. We split the overall estimation of the final flow into a series of
estimations of flow increments du` = (du`, dv`)>, starting from the smoothest
scale ` = 0 up to the finest scale `max. Each incremental flow allows to
compute the refined flow for the next finer scale `+ 1 as:

u`+1 = u` + du` and v`+1 = v` + dv` . (2.81)

At the coarsest scale, the flow u0 is initialised with a zero flow. On each
scale, we minimise the following incremental functional:

E`(du`) =
∫

Ω

(
D`(u` + du`) + α S(u` + du`)

)
dx . (2.82)

In principle, the integrand of the incremental energy coincides with our origi-
nal functional (2.57). However, the functional (2.82) is minimised only w.r.t.
the flow increment and only the smoothed versions of the input images are
considered.

Concerning the regularisation term, this means that the estimated incre-
ment can be non-smooth. The functional only demands smoothness of the
overall refined flow:

S(u` + du`,a, b) = R1(u` + du`,a, b) + βR2(a, b) , (2.83)

where

R1(u` + du`,a, b)

= Ψ
(
|∇u` + ∇du` − a|2 + |∇v` + ∇dv` − b|2

)
.

(2.84)

The main difference between the original functional and the incremental
energy lies in its data term that acts on images at the scale `; for instance a
basic robustified version reads:

D`
f,Ψ,joint(u`+du`) = Ψ

((
f `2(x+u`+du`, y+v`+dv`)−f `1(x, y)

)2)
. (2.85)

In the latter definition, the smoothed versions f ` are computed by:

f ` = Gσ` ∗ f , σ` = ν

η`max−`
, (2.86)
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where the 2-D Gaussian kernel Gσ with standard deviation σ reads

Gσ(x, y) = 1
2πσ2 exp

(
−(x2 + y2)

2σ2

)
. (2.87)

Thus, the standard deviation of the Gaussian (i.e. the scale) is determined
from the scale index ` and the parameter η ∈ (0, 1) that steers how far
apart two consecutive scales are. Moreover, the parameter ν > 0 scales the
size of the Gaussian linearly. For efficiency reasons, we can sub-sample the
(discretised) images after smoothing: When going from one scale to the next
smoother one, we divide the grid size by the factor η and resample. Thus,
the standard deviation of the Gaussian increases on smoother scales to avoid
aliasing artifacts.

Once a solution is found on a scale, the transition to the next finer scale
is performed as follows: First, the coarse optic flow field is resampled to
the finer scale. There, we perform the linearisation around the displaced
position: We warp the second frame as well as its derivatives by the current
overall flow field u`. This means we compensate for this motion and consider

f `,u
`

2,∗ (x, y) := f `2,∗(x+ u`(x, y), y + v`(x, y)) . (2.88)

Thus, the linearisation around the the point (x+ u`) (instead of x) reads:

f `2(x+ u`+1, y + v`+1) − f `1(x, y)
= f `2(x+ u` + du`, y + v` + dv`) − f `1(x, y)

≈ f `,u
`

2 (x, y) + f `,u
`

2,x (x, y) du` + f `,u
`

2,y (x, y) dv` − f `1(x, y)

= f `,u
`

2,x (x, y) du` + f `,u
`

2,y (x, y) dv` + f `,u
`

t (x, y) .

(2.89)

Again, in the last line, the difference between the warped second frame and
the first frame is interpreted as a temporal derivative (along the overall flow
trajectory). Thus, also the incremental linearised data term can conveniently
be transformed into motion tensor notation. We extend our notation from
Equation (2.66), and denote with J̄ `,u`p a normalised motion tensor of features
p on scale `, which have been compensated with the flow field u`. Thus, our
linearised data term (analogously to Equation (2.64)) reads:

D`,u`

p,Ψ,joint,linearised(du`) = Ψ
(
dw`> · J̄ `,u`p · dw`

)
(2.90)

Note that, formally, this multi-resolution strategy differs slightly from
the strategy of Brox et al. [2004]: We solve a series of incremental energy



62 CHAPTER 2. INVARIANCE

functionals, whereas Brox et al. [2004] embed the minimality conditions of
the original functional into a fixed point iteration. Our series of functionals
makes the use of images from different scales explicit. Moreover, the series
of incremental energies is an explicit and deterministic convexification of the
non-convex original problem: after linearisation, the convex problem that is
solved throughout each incremental step is clearly defined, c.f. the Gauss-
Newton method [Nocedal and Wright, 2006].

Further, please note that for the special case `max = 0, the multi-scale
strategy exactly falls back to the original scheme without warping: the pre-
smoothing of the images at scale 0 with a Gaussian of standard deviation
σ0 = ν ensures their differentiability, cf. Section 1.4. The back-registration
with a zero flow field leaves the second frame unchanged.

Let us also remark that it is possible to iterate the computation of incre-
mental flows on each scale [Sun et al., 2010]. This means, instead of going
to the next finer scale as soon as the increment has been found, one can stay
at the current scale, add overall flow u` and increment du` together, back-
register the second frame by the sum, and recompute a new flow increment.
Sun et al. [2010] report that these intra-scale iterations allow to increase the
accuracy of the resulting flow slightly. However, we could not reproduce this
behavior unless we decrease the number of iterations of the linear system
solver significantly.

Large Displacements of Small Objects

The linearised data term in Equation (2.82) only allows to estimate small
displacements – relative to the current scale. This means that on very smooth
scales the displacements being estimated can indeed be large with respect to
the original scale. However, the displacements being estimated there are
optimal for the smoothed images, where each pixel represents a local average
or the original imagery. Let us now consider small objects with high velocity.
On a scale that is smooth enough to capture such high velocities, small
objects are smoothed out: due to their small size, such objects do not have
enough weight in the local average and disappear. As soon as as the multi-
scale strategy reaches a finer scale where the small object survives, however,
such large motions cannot be recovered anymore.

Thus, the problem that small objects undergoing large displacements can-
not be estimated is an inherent property of the multi-scale algorithm. More-
over, seen from the viewpoint of stability and robustness, this property is
even desired: If it would be possible to alter the strategy such that on smooth
scales, small objects could dominate their surrounding, then the algorithm
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would effectively trust in outliers. This would weaken the overall strategy
and cannot lead to a reliable estimation scheme.

The recent work of Sevilla-Lara et al. [2014] partly aims in that direction.
By exploding the input images to multiple channels with a different intensity
intervals for each channel, the phenomenon that small objects disappear on
smoother scales shall be suppressed.

Another possibility to capture small objects with long motion vectors is
via the integration of sparse feature matches. Such methods are proposed by
Brox and Malik [2011], Stoll et al. [2013] and Braux-Zin et al. [2013].

2.4.4 Minimisation
Until now, we have only introduced and explained our model assumptions
from an energy point of view. All our assumptions have lead to penalty
terms that attain small values if the model is fulfilled and large values if it
is violated. Thus, the solution we are searching for minimises the developed
energy functionals. Let us now come to the question how to find such a
minimiser.

The calculus of variations [Gelfand and Fomin, 2000] tells us that any
minimiser of a generic energy functional of type

E(u) =
∫

Ω
F (x, u,∇u) dx , (2.91)

has to fulfill the Euler-Lagrange equation:

Fu − div F∇u = 0 , (2.92)

as well as the boundary conditions

n>F∇u = 0 ∀x ∈ ∂(Ω) , (2.93)

where div = ∇> := (∂x, ∂y) is the divergence operator, n the unit outer
normal vector, and the boundary of the image domain is denoted with ∂(Ω).

For convenience, we repeat our functional (2.82) with linearised data
term (2.90), whose minimisation will be discussed in the following:

E`(du`,a`, b`) =
∫

Ω

(
D`(u` + du`)

+ α
(
R1(u` + du`,a`, b`) + βR2(a`, b`)

))
dx .

(2.94)
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For the sake of readability, we omit the scale ` for the rest of this section,
and obtain a system of six coupled Euler-Lagrange equations:

Ddu − α div R1,∇du = 0 , (2.95)
Ddv − α div R1,∇dv = 0 , (2.96)

α (R1,a1 − β div R2,∇a1) = 0 , (2.97)
α (R1,a2 − β div R2,∇a2) = 0 , (2.98)
α (R1,b1 − β div R2,∇b1) = 0 , (2.99)
α (R1,b2 − β div R2,∇b2) = 0 . (2.100)

We introduce the following abbreviations:

Ψ′D := Ψ′
(
dw> · J̄ `,u`p · dw

)
, (2.101)

Ψ′R1 := Ψ′
(
|∇u+ ∇du− a|2 + |∇v + ∇dv − b|2

)
, (2.102)

Ψ′R2 := Ψ′
(
|Ja|2 + |J b|2

)
. (2.103)

With these abbreviations, the Euler-Lagrange equations that stem from the
optic flow increments du and dv (2.95) and (2.96) can be written as

Ψ′D · (J11du+ J12dv + J13)− α div
(
Ψ′R1 · (∇u+ ∇du− a)

)
= 0 , (2.104)

Ψ′D · (J12du+ J22dv + J23)− α div
(
Ψ′R1 · (∇v + ∇dv − b)

)
= 0 , (2.105)

where Jij denote the entries of the motion tensor, cf. (2.101). The latter two
equations are associated to natural boundary conditions, which read:

n>(∇u+ ∇du− a) = 0 , (2.106)
n>(∇v + ∇dv − b) = 0 . (2.107)

As one can see, the first auxiliary variable a couples to the gradient of the
horizontal flow component u+ du, and the second variable b belongs to the
vertical part v + dv. Moreover, concerning the boundary conditions, if the
the auxiliaries do not vanish at the boundary, the given boundary conditions
ensure that also the outer normal derivatives of the flow do not vanish there.

Let us now come to the remaining four coupling variables. Having a
closer look at the functional, one can recognise that the term R1 demands
the auxiliary variables to be similar to the derivatives of the flow and R2
demands them to be smooth. This bears analogy to variational approaches
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for signal or image regularisation. In such methods, a noisy input image
corresponds to the flow derivatives in our functional. This similarity is also
obvious in the minimality conditions:

−Ψ′R1 · (ux + dux − a1) − β div (Ψ′R2∇a1) = 0 , (2.108)
−Ψ′R1 · (uy + duy − a2) − β div (Ψ′R2∇a2) = 0 , (2.109)
−Ψ′R1 · (vx + dvx − b1) − β div (Ψ′R2∇b1) = 0 , (2.110)
−Ψ′R1 · (vy + dvy − b2) − β div (Ψ′R2∇b2) = 0 . (2.111)

The boundary conditions for the latter four equations are homogeneous Neu-
mann conditions:

n>∇c = 0 , c ∈ {a1, a2, b1, b2} . (2.112)

Lagged Nonlinearity Algorithm

In total, we have deduced six coupled PDEs that determine the minimiser
of our energy. These PDEs are in general non-linear due to the Ψ′-terms
(2.101)–(2.103). In order to resolve this source of non-linearity, we apply the
Kačanov-method [Fučik et al., 1973; Zeidler, 1990; Vogel and Oman, 1996]
which introduces a fixed point iteration with index k. In each iteration, the
nonlinear Ψ′-terms are converted into linear factors by fixing them to the old
iterate. What remains is a system of six linear PDEs which reads:

Ψ′kD · (J11du
k+1 + J12dv

k+1 + J13)

− α div
(
Ψ′kR1 · (∇u+ ∇duk+1 − ak+1)

)
= 0 ,

(2.113)

Ψ′kD · (J12du
k+1 + J22dv

k+1 + J23)

− α div
(
Ψ′kR1 · (∇v + ∇dvk+1 − bk+1)

)
= 0 ,

(2.114)
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−Ψ′kR1 · (ux + duk+1
x − ak+1

1 )
− β div (Ψ′kR2∇ak+1

1 ) = 0 ,
(2.115)

−Ψ′kR1 · (uy + duk+1
y − ak+1

2 )

− β div (Ψ′kR2∇ak+1
2 ) = 0 ,

(2.116)

−Ψ′kR1 · (vx + dvk+1
x − bk+1

1 )
− β div (Ψ′kR2∇bk+1

1 ) = 0 ,
(2.117)

−Ψ′kR1 · (vy + dvk+1
y − bk+1

2 )

− β div (Ψ′kR2∇bk+1
2 ) = 0 ,

(2.118)

where the abbreviation Ψ′k∗ means that the respective nonlinearity is eval-
uated with the unknowns from iteration k. This lagging non-linearity is
the reason why the Kačanov method is also known under the name lagged-
nonlinearity algorithm. We initialise the flow increment du0 with zero and
the auxiliary coupling variables with the (resampled) solution from the pre-
vious scale.

Reinterpretation. The lagged nonlinearity method allows an alternative
interpretation: Under the name iteratively reweighed least squares, an ad-
vanced least-squares technique is known, where weights gk play an important
role. These weights pop up in the associated normal equations in terms of a
diagonal weight matrix, and the weighted least squares problem is solved sev-
eral times, always with updated weights. Let us now consider the following
series of functionals:

E(duk+1,ak+1, bk+1) =
∫

Ω

(
gkD ·

(
dwk+1> · J̄ `,u`p · dwk+1

)

+ α ·
(
gkR1 ·

(
|∇u+ ∇duk+1 − ak+1|2 + |∇v + ∇dvk+1 − bk+1|2

)

+ β · gkR2 ·
(
|Jak+1|2 + |J bk+1|2

)))
dx .

(2.119)
The interesting point about these functionals is that they are linear in all
unknowns. The nonlinearities are hidden in the terms gk∗ = Ψ′k∗ . However,
the associated Euler-Lagrange equations coincide with the those of the lagged
nonlinearity method, cf. Equations (2.113)–(2.118). Thus, for our type of
energy functional, both non-linear optimisation methods, the lagged non-
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linearity scheme as well as the iteratively reweighted least squares technique,
coincide since they lead to the same minimisation procedure.

2.4.5 Numerical Algorithm and Implementation

At this point, we have developed two nested fixed point iterations to solve the
original functional: The outer loop (iteration variable `) realises the multi-
scale strategy and makes the estimation of large displacements feasible. The
nested inner iterations (iteration variable k) tackle the non-linear terms that
stem from the robust functions. At this stage, however, we are still left with
a linear system of equations with 6 unknowns per pixel to solve.

Discretisation

We assume the images to be sampled on a regular grid with horizontal and
vertical grid size h1 and h2, respectively. We use finite differences to ap-
proximate derivatives in discrete images: The spatial derivatives of the input
image data appear in the motion tensor in (2.90). They are computed with
a 4th-order stencil (1,−8, 0, 8,−1)/(24hd), d = 1, 2. The temporal deriva-
tive ft is determined by a simple forward difference, c.f. Equation (2.62).
Moreover, during the backward-registration step from Equation (2.88), any
interpolation is performed using bicubic interpolation [Keys, 1981]. A dis-
crete linear system of equations corresponding to the system of partial dif-
ferential equations (2.113)–(2.118) can be deduced in two ways: either by
discretising the mentioned PDEs directly, or by developing a discrete version
of the corresponding linearised functional given in Equation (2.119). Due
to the non-standard boundary conditions (2.107), we choose the latter al-
ternative and discretise the functional. This discretisation is postponed to
Appendix A.

Iterative Solution

As a fast and easily implementable linear system solver, we use the Fast Ja-
cobi method of Grewenig et al. [2013]. It is perfectly suited for an implemen-
tation on parallel hardware architectures such as modern GPUs. Basically,
it is based on a standard Jacobi solver. However, varying cyclic under- and
over-relaxations ω, where even half of them may violate the stability limit
allow an enormous speed-up. More precisely, one iteration step at the pyra-
mid level ` with pixel index i and iteration index k is for the flow increments
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du` and dv` given by

du`,k+1
i = (1− ω) · du`,ki + ω ·

(
−Ψ′Di · (J12,i · dv`,ki + J13,i)

+
2∑
d=1

∑
j∈Nd(i)

α ·
Ψ′R1i + Ψ′R1j

2hd
·
(u`,kj − u`,ki + du`,kj

hd
+ a`,kdi − a

`,k
dj

))
/(

Ψ′Di · J11,i +
2∑
d=1

∑
j∈Nd(i)

α ·
Ψ′R1i + Ψ′R1j

2h2
d

)
,

(2.120)

and

dv`,k+1
i = (1− ω) · dv`,ki + ω ·

(
−Ψ′Di · (J12,i · du`,ki + J23,i)

+
2∑
d=1

∑
j∈Nd(i)

α ·
Ψ′R1i + Ψ′R1j

2hd
·
(v`,kj − v`,ki + dv`,kj

hd
+ b`,kdi − b

`,k
dj

))
/(

Ψ′Di · J22,i +
2∑
d=1

∑
j∈Nd(i)

α ·
Ψ′R1i + Ψ′R1j

2h2
d

)
,

(2.121)

where N1 and N2 describe the neighbouring pixels in horizontal and ver-
tical direction, respectively. In an analogous way, the iteration step for
a = (a1, a2)> and b = (b1, b2)> for p = 1, 2 reads

ak+1
pi = (1− ω) · akpi + ω ·

(
Ψ′R1i ·

u`,k
n+
p
− u`,k

n−
p

+ du`,k
n+
p
− du`,k

n−
p

2hp

+
2∑
d=1

∑
j∈Nd(i)

β ·
Ψ′R2i + Ψ′R2j

2h2
d

· akpj

)
/(

Ψ′R1i +
2∑
d=1

∑
j∈Nd(i)

β ·
Ψ′R2i + Ψ′R2j

2h2
d

)
,

(2.122)
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and

bk+1
pi = (1− ω) · bkpi + ω ·

(
Ψ′R1i ·

v`,k
n+
p
− v`,k

n−
p

+ dv`,k
n+
p
− dv`,k

n−
p

2hp

+
2∑
d=1

∑
j∈Nd(i)

β ·
Ψ′R2i + Ψ′R2j

2h2
d

· bkpj

)
/(

Ψ′R1i +
2∑
d=1

∑
j∈Nd(i)

β ·
Ψ′R2i + Ψ′R2j

2h2
d

)
,

(2.123)

where n−1 and n+
1 describe the left and right neighbouring pixels in horizontal

direction. In a similar way, the vertical neighbours are denoted by n−2 and
n+

2 .
Additionally, we embed the iterative Fast Jacobi scheme that we perform

on each scale into a cascadic coarse-to-fine scheme, c.f. Bruhn [2006] and
Meister [2008]. This means that the solution on each level of the outer
warping pyramid comprises another inner solver pyramid. To this end, after
having warped the input images and having computed all motion tensor
entries at each scale of the outer pyramid, we resample all tensors and other
quantities to the coarsest scale of the inner pyramid. There, we initialise
the unknowns with zero and perform a number of Fast Jacobi cycles. After
that, we resample the intermediate solution to the next finer scale of the
inner pyramid where we perform again a number of cycles. This algorithm is
continued until we arrive at the finest inner scale. The outer warping pyramid
is typically very steep, i.e. the resolution only changes by a factor of 0.95
between subsequent scales. However, the purpose of the inner pyramid is
merely to provide a good initialisation. So, this pyramid can be less steep,
and we half the resolution between two scales.

2.5 Experiments
In this section, let us evaluate the discussed concepts. Before we actually
present the experiments, we are going to detail on our experimental setup
in Section 2.5.1. After that, we perform a general comparison of all invari-
ant descriptors that have been considered in this chapter (Section 2.5.2).
Next, we demonstrate that order-based descriptors do also perform well on
perturbed image material by analysing their performance under synthetic
perturbations (Section 2.5.3). Then, we turn to the evaluation of the com-
ponents of the presented framework in Section 2.5.4 and present a real world
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multi-modal image matching example in Section 2.5.5. Finally, we compare
our framework to the state-of-the-art in Section 2.5.6.

2.5.1 Experimental Setup
Before starting with the actual evaluation, let us detail on our general ex-
perimental setup.

Optimal Parameter Estimation

When trying to find the best descriptor or the best strategy, it is important
to optimise the crucial regularisation parameters of all competing methods
equally well. Thus, in order to perform such a fair comparison, a clear
parameter optimisation strategy has to be defined. In this thesis we will
always use the following fixed iterative strategy: We pick a set of image
sequences, e.g. all Middlebury training image sequences [Baker et al., 2011],
for which ground truth optic flow fields are available, and our objective is
to minimise the average error over all sequences. To this end, we follow
an iterative strategy that shortens in each step an open search interval Sk
in which the optimal parameter value is contained. Initially, we have to
define the search interval S0 = (a0, b0), that definitely contains the optimal
value. Usually, the lower bound of this interval is a0 = 0. Throughout the
experiments for this thesis, all optimal parameters have shown to be in the
interval (0, 1000).

In each iteration of our strategy, we sample the current interval at posi-
tions si that lie in different orders of magnitudes:

si = ak + bk − ak
dik

, i = 1, ..., ns . (2.124)

At each position, we compute the average error over the chosen set of image
sequences. Typically, we sample ns = 5 orders of magnitude, and we choose
the divisor d0 = 10 initially. Assume the j-th sample sj of the interval
Sk = (ak, bk) leads to the smallest mean error. Then we define the restricted
search interval for the next iteration to be the order of magnitude above and
the one below the best sample:

Sk+1 =
(
ak + bk − ak

dj+1
k

, ak + bk − ak
dj−1

)
(2.125)

It is easy to show that Sk+1 ⊂ Sk. Moreover, we decrease the step size to
achieve a finer sampling with every iteration:

dk+1 =
√
dk . (2.126)
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Table 2.3: First three iterations of an exemplary optimisation sequence. Op-
timal samples are marked by an asterisk.

k ak bk dk s5 s4 s3 s2 s1
0 0 1000 10 0.01 0.1 1∗ 10 100
1 0.1 10 3.16 0.131 0.199 0.413 1.09 3.23∗
2 1.09 10 1.77 1.59 1.981∗ 2.674 3.90 6.1

In each iteration, the search interval shrinks and thus also the minimal and
maximal measured average errors come closer. Thus, we stop after 4 itera-
tions or if the maximal error is less than 1% larger than the minimal one.

Example. Let us consider the initial interval S0 = (0, 1000), ns = 5 and
d0 = 10. For a hypothetical optimisation, we summarise the computed sam-
ples and intervals in Table 2.3. In this exemplary case, during the initial
iteration the sample s3 leads to the least error, in the second iteration s1 and
in the last iteration the sample s4 are optimal.

If more than one parameter has to be optimised, we perform this loga-
rithmic sampling strategy in N-D, leading to nNs mean error evaluations per
iteration.

Instead of choosing logarithmically distributed sampling positions, one
could also perform an equidistant sampling. However, if the interval is chosen
too large in the beginning, much more iterations of the scheme are necessary.
There do exist alternative methods, such as Golden Section Search [Press
et al., 2007] or standard binary search schemes. However, in our practical
experiments, we found out that the initial search interval has to be chosen
much more carefully for binary schemes than for the described one. Any
search scheme performing binary decisions runs a high risk of turning into a
wrong direction if the interval is very large. Due to the ns > 2 samplings,
this risk is much lower for our scheme. However, the most important require-
ment to any of these schemes is to perform a fair comparison of competing
strategies. This is fulfilled by our scheme.

It is obvious that in order to execute the described optimisation strategy,
large compute resources are indispensable. For instance, to perform three
iterations of the 2-D scheme with an image set consisting of 10 images with 5
samplings per dimension, 750 flow fields have to be computed. Fortunately,
we can access the compute cluster of the Cluster of Excellence “Multimodal
Computing and Interaction” (MMCI) at Saarland University to master the
workload. In detail, this cluster consists of 78DELL PowerEdge 1950 servers,
each being equipped with two Intel XEON E5430 CPUs (2.66GHz quad core)



72 CHAPTER 2. INVARIANCE

and 16 GB RAM. Without this cluster, our upcoming experiments would not
have been feasible in this elaborateness.

Implementation Details

Our main implementation is written in C and basic parallelisation is realised
via OpenMP directives. Although our numerical scheme is described in detail
in Section 2.4.5, the multi-scale technique comprises several resampling and
interpolation operations that we realise as follows: The backward-registration
as well as the resampling of smoothed images to a coarser grid is performed
using bicubic interpolation [Keys, 1981]. However, to avoid over- and under-
shoots, we only use bilinear interpolation for the prolongation operator that
is used to transfer flow fields as well as auxiliary variables from a coarse scale
to the next finer one. Moreover, we perform 10 inner and 5 outer iteration
steps of our cascadic numerical solver scheme on each level. Compared to 5
inner iterations, hardly any changes of the solution can be observed.

Available Image Material

Since our main objective is to achieve the highest possible accuracy, we have
to be able to assess the quality of estimated flow fields objectively, by means
of average error measures, cf. Section 1.4.2. However, all such measures can
only be evaluated if a ground truth optic flow field is available.

For synthetic image sequences depicting rendered scenes, the acquisition
of ground truth flow is not an issue. Unfortunately, often the resulting ren-
dered images look unrealistic and do not reproduce well certain character-
istics of real photographs such as lighting, noise, motion blur, atmospheric
effects, etc.. Nevertheless, rendered scenes offer very reliable ground truth
flow fields and occlusion masks. The meanwhile classical Middlebury bench-
mark [Baker et al., 2011] is partly based on such synthetic sequences. The
more recent MPI Sintel benchmark of Butler et al. [2012] is an large scale
source of such synthetic image sequences. Here, parts of the open source
short film Sintel2 build the basis of the benchmark that comprises around
1000 frames with ground truth flow fields.

However, the reliable measurement of ground truth flow information in
real world scenarios is still an open problem, even if huge technical effort is
taken. The state-of-the-art in this respect is shown by Geiger et al. [2012],
who equip a car with many different kinds of sensors to allow a flow estimation
while the car is driving. Nonetheless, the acquired measurements contain
small scale imprecisions, compelling the authors to propose a non-standard

2Official webpage https://durian.blender.org

https://durian.blender.org
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Table 2.4: Uncritical model parameters and chosen values.
Parameter εc εs εd η ν k

Value 10−2 10−2 10−2 0.95 0.75 13

error metric to account for this problem. Moreover, another severe restriction
of the laser scans of Geiger et al. [2012] is that the captured scene must be
static. This is very difficult to guarantee, and in some of the published
training sequences independently moving cars are visible that violate this
requirement. We further remark that the authors of this benchmark have
published two different ground truth flow fields for each image sequence, one
excluding and one including regions that leave the field of view. Throughout
this thesis we will always refer to the latter one (abbreviated with occ).

Finally, the recent benchmark of Scharstein et al. [2014] represents the
state-of-the-art for the real-world stereo setting. For a set of 11 static scenes
in calibrated stereo camera setups, very accurate disparity maps are acquired
with structured lighting techniques. Moreover, the pictures of the scenes are
available under very different lighting situations such that very challenging
test problems are available. Although these image sequences are provided in
a rectified ortho-parallel stereo setting, where we can be sure that the vertical
flow component v must vanish, it is still possible to apply our methods test-
wise to such image sequences without enforcing v to be zero in any way. Since
all discussed descriptors are used within the same variational framework and
implementation, the results are well comparable.

To obtain experimental results that are as representative as possible, we
select a subset of the mentioned benchmarks. The images of this set are
depicted in Figures 2.9 and 2.10. The MPI Sintel sequences and the classic
Middlebury problems exhibit only very few illumination changes. For the
new Middlebury stereo sequences, we have exchanged the original second
frame with the second frame taken in the alternative lighting situation. By
that, the three selected image sequences exhibit drastic appearance changes.

Choice of Parameters

Our model comprises a number of uncritical parameters that we fix to one
value throughout all our experiments. These parameters are summarised
in Table 2.4. In this table, εc, εs, and εd are the parameters of the robust
functions around the coupling, auxiliary variable smoothness, and data term,
respectively, c.f. Equation (2.68). The parameters η and ν affect the multi-
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Shaman_3 frames (1,2) Market_2 (27,28) Mountain_1 (2,3)

Adirondack Piano Recycle

Dimetrodon Hydrangea Rubberwhale

Figure 2.9: Image sequences selected for the experiments of this thesis (ab-
breviation subset9 ). First frame of each image sequence with corresponding
flow visualisation below it. Grey regions in the flow fields indicate occlusions.
Top: MPI Sintel subset [Butler et al., 2012], abbreviation subset3sintel.
Middle: New Middlebury stereo subset [Scharstein et al., 2014], abbrevi-
ation subset3newmiddle. Bottom: Classic Middlebury flow subset [Baker
et al., 2011], abbreviation subset3middle.
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KITTI #10 KITTI #13 KITTI #15

Figure 2.10: KITTI image sequences selected for the experiments of this
thesis (abbreviation subset3kitti). Unfortunately, the KITTI sequences are
only available as grey value images. First frame of each image sequence with
corresponding flow visualisation below it. Grey regions in the flow fields
indicate occlusions or missing measurements.

scale strategy, and k represents the size of the neighbourhood of patch-based
descriptors. Effectively, this means that there are two important parameters
to be chosen: the weight α of the coupling term, and the weight β of the aux-
iliary variable regularisation term. In Table 2.5, some optimal combinations
of α and β are shown. Smaller values for εc lead to sharper discontinuities,
which is reflected by more accurate flow fields on three of four image sets.
The reason that the KITTI imagery does not profit from sharp flow disconti-
nuities are the sparse ground truth measurements, where smooth and affine
solutions are more important than realistically reproduced flow discontinu-
ities. Thus, we will perform all further experiments with a standard choice
εc = 0.01, except for KITTI sequences where we choose εc = 0.5.

2.5.2 General Comparison

Let us start our evaluation with a general comparison of all discussed features
from this Section 2.2. To this end, we choose the mixed set of 9 image
sequences depicted in Figure 2.9 (subset9 ). Since the KITTI benchmark
does not provide colour imagery, we do not consider it for this experiment, as
several of the discussed features such as the normalisation methods or the hue
channel cannot be applied for scalar valued images. We apply the discussed
optimisation procedure in 2-D to find optimal values for the coupling weight
α as well as the smoothness weight β for each descriptor, and we present
the results Table 2.6. Please note that we do not consider combinations of
features, as there would be too many possible combinations.

As a result of this general comparison, we can see that the order-based de-
scriptors do perform quite well on the selected images. But also the classical
gradient constancy can still keep up - especially in view of the fact that also
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Table 2.5: Optimal combinations of the weight of the coupling term α and the
regularisation parameter of the auxiliary coupling variables β with varying
εc. When changing εc, both regularisation parameters have to be adapted.
The applied optimisation strategy is described in Section 2.5.1.

Image sequence εc α β avg. error
kitti10 0.5 0.003 243.787 11.82 %

0.01 0.063 4.601 13.06 %
0.0001 4.326 0.073 13.52 %

subset3middle 0.5 0.044 4.119 0.14 px
0.01 0.084 847.625 0.12 px
0.0001 7.642 151.623 0.11 px

subset3newmiddle 0.5 0.065 375.785 4.15 px
0.01 0.072 535.233 3.38 px
0.0001 7.16 2.813 3.32 px

subset3sintel 0.5 0.027 19.133 0.25 px
0.01 0.126 847.625 0.19 px
0.0001 11.517 6.466 0.18 px

subset9 0.5 0.019 847.625 1.53 px
0.01 0.095 348.688 1.24 px
0.0001 7.16 2.813 1.22 px

its computational requirements are very low (number of features per colour
channelm = 2). Furthermore, the colour-based features norm-a, norm-g and
hue perform clearly below average. This indicates that the occurring type of
changes cannot be well described by a multiplicative function, which these
features are invariant against. Moreover, the hue-feature only seems to work
well in a combination with other constraints, as demonstrated by Zimmer
et al. [2011b].

2.5.3 Behaviour under Synthetic Perturbations

Concerning synthetic perturbations, we consider again the mixed set of 9
image sequences.

Invariance to γ Changes

Our first experiment examines the behaviour of the proposed features under
monotonically increasing intensity changes. Assuming the red, green and
blue values of the input images to lie in the interval [0, 255], we apply a
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Table 2.6: General signature comparison. The table depicts for each of the
discussed features the average endpoint error (AEE). The optimal value of
the coupling weight α and the smoothness parameter β has been obtained
with the strategy described in Section 2.5.1. For the patch-based descrip-
tors, the patch size was fixed to 13 for this experiment. Smallest errors are
highlighted in boldface font.

Signature type AEE
rank 1.852
census 1.326
comp-rank 1.246
comp-census 1.269
intensity 3.760
centr-diff 1.694
correlation 7.367
tern-census 1.463
mod-census 1.561
hue 10.790
norm-a 9.258
norm-g 8.192
logderiv 1.697
texture 1.609
laplace 1.780
hess 1.398
gradmag 1.600
gradient 1.556

γ-correction to the second frame of each sequence:

fγ(x) := 255 · ( 1
255f(x))γ . (2.127)

The top part of Figure 2.11 shows the result of such rescalings for one of
the used images. In this experiment, we optimise for each descriptor the
coupling and smoothness weight for γ = 1 (c.f. Table 2.6), and use this value
to compute the average error for the 9 test images. The corresponding plots
are depicted in the middle row of Figure 2.11, where two plots are shown. In
the left plot, the performance of the ordering-based descriptors is depicted,
and the right plot shows the behavior of the classical features. As one can
see, the classical ones, which are also in theory not invariant against such
γ-rescalings are severely affected. However, for instance the texture part
of the structure-texture decomposition does perform clearly better than its
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competitors – especially for severe rescalings. Furthermore, the ordering-
based signatures also behave as expected. The rank, census, complete rank
and complete census transforms are fully invariant against γ-rescalings (they
compute perfectly the same results), whereas the modified and ternary cen-
sus transforms loose accuracy for drastic rescalings as expected. Considering
the behavior of the ternary census transform if further detail, another dis-
advantageous property becomes visible. As soon as the value of γ becomes
larger than 1, the error jumps up. By this rescaling, many intensities come
closer to each other. This can change the signatures, because 1 and -1 dig-
its can be changed into 0’s. Hence, the modified census transform is highly
vulnerable against rescalings of this type.

The gamma corrections in the mentioned middle row of Figure 2.11 are
performed with floating point accuracy. However, to simulate the image
acquisition process in a digital camera more realistically, we also want to take
the subsequent quantisation into account. Such a quantisation is a highly
nonlinear post-processing step, which, in particular, can affect the intensity
order. In our next experiment, we thus simulate the quantisation at two
different bit depths: Most often, digital images are quantised with 8 bit. As
can be seen in Figure 2.11, the theoretically unconditional invariance does
not hold for any transform in this case. However, many cameras offer RAW
sensor data that is quantised with 12 bit. Also many CMOS sensors and
high-quality webcams offer a capture mode with such an increased dynamic
range. Thus, we have also requantised the adjusted images with 12 bit, and
analysed those results. From Figure 2.11, one can see that these 4 bit more
tonal resolution are in practice enough to shift the point at which results
deteriorate considerably to higher γ-values.

Sensitivity to Noise

It is clear that noise can have a severe effect on all order-based signatures.
In fact only one changed pixel value can change the rank of each pixel in
a patch. Thus, the question how vulnerable the signatures are in practice
is interesting. To analyse this, we again consider the set of 9 mixed image
sequences (subset9 ) and perturb them with additive zero-mean Gaussian
noise. We consider two cases: a relatively low amount of noise (σn = 2), as
well as one case of severe noise (σn = 20). The outcome of this experiment is
shown in Table 2.7. Each single absolute error measurement in this table
has been optimised separately and depicts the average endpoint error of
the nine sequences. Moreover, we have also computed the relative error
of each measurement compared to the noise-free result (abs-column with
σ = 0). This relative value allows to compare how severely different features
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Figure 2.11: Behaviour under γ changes. Top: Exemplary γ-rescalings of
the mountain_1 test image [Butler et al., 2012]. For the centre field, γ = 1
means no change. As one can see, the interval [1

3 , 3] covers the whole range of
realistic γ-rescalings. Bottom: The plots show the average accuracy of the
features under γ variations of the second frames. Centre left plot: Be-
haviour of ordering-based features. Centre right plot: Other descriptors.
All features that have not been included in any plot here failed completely
under γ-rescalings. Bottom left: γ change followed by 8-bit quantisation.
Practically all transforms loose their invariance. Bottom right: With
12-bit quantisation.
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Table 2.7: Behaviour of the discussed features under additive white Gaussian
noise of varying standard deviations σn. The relative error of each descriptor
describes how much the accuracy changes if noise is present.

Signature Average Endpoint Error (AEE)
σn = 0 σn = 2 σn = 20

abs rel abs rel abs rel
rank 9.55 1.00 6.59 0.69 10.78 1.13
census 1.54 1.00 2.29 1.48 10.76 6.98
comp-rank 1.36 1.00 2.12 1.56 3.14 2.31
comp-census 1.46 1.00 2.23 1.52 4.50 3.08
intensity-pure 5.07 1.00 5.10 1.01 6.03 1.19
centr-diff 1.85 1.00 1.91 1.03 2.89 1.56
tern-census 2.83 1.00 2.07 0.73 5.65 2.00
mod-census 4.58 1.00 2.21 0.48 4.44 0.97
logderiv 2.17 1.00 2.26 1.04 3.38 1.56
texture 3.68 1.00 5.14 1.40 10.72 2.91
laplace 1.88 1.00 1.91 1.02 6.14 3.26
gradmag 1.90 1.00 2.11 1.11 7.20 3.79
gradient 1.54 1.00 1.63 1.06 2.83 1.84

are affected under noise: As could be expected, the pure rank is very robust
especially under zero-mean noise. Apart from that, this experiment proves
that the complete rank and complete census signatures do not fail under
noise. On the other hand, the classical census transform looses accuracy for
the case σ = 20.

2.5.4 Component Evaluation

In the following, the goal will be to evaluate single components of our frame-
work.
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Figure 2.12: Behaviour of the average error under varying neighbourhood
sizes. Due to its high dimensionality, we did not test larger neighbourhoods
for the complete census transform.

Neighbourhood Size

Our next experiments are devoted to appropriate neighbourhood sizes for
the proposed patch-based descriptors, and are depicted in Figure 2.12. Note
that all depicted measurements here are the result of the described parameter
optimisation strategy. First, we optimise the parameters of our method for
the set of 9 mixed training image sequences for many neighbourhood sizes
(subset9 ). The results of this experiment are shown in the left part of Fig-
ure 2.12. First, we consider patch-based intensity matching, which is very
similar to the Combined Local-Global method of Bruhn et al. [2005] (with a
hard window instead of a Gaussian). Here, the best patch size is 1, i.e. the
standard point-based grey value constancy is best. This is in line with results
reported by Zimmer et al. [2011b]. Next, the pure rank transform attains
the best error for the relatively small patch size of 4. For such small sizes the
rank seems to be a significant information. With growing size, results get
worse for the rank. The error plot for the original census transform attains
its minimal value at a neighbourhood size of 40. This is also the only position
where its average error is below the error of the complete rank transform. For
all other measurements, the complete rank and complete census transforms
outperform the original CT. In detail, the CRT performs best for a patch
size of 10, with only little variation over the whole tested range of neighbour-
hood sizes. For the CCT, a 15-pixel neighbourhood is optimal. We repeated
this experiment on a different set of images to test if these findings are also
valid in other situations. The results for the a selection of ten KITTI image
sequences are shown in the right plot of Figure 2.12. Again, our complete
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Table 2.8: Comparison of different regularisation strategies on different image
sets. The table depicts the average accuracy of different configurations of our
framework for different image sets in terms of the BP3 or AEE. The sub-
quadratic coupling scheme leads to very good result consistently.

Benchmark Coupling 1st order 2nd order
KITTI subquadratic 21.3% 11.9%

quadratic 21.4% 12.2%
Middlebury subquadratic 0.116 px 0.117 px

quadratic 0.158 px 0.151 px
Sintel subquadratic 0.215 px 0.189 px

quadratic 0.306 px 0.281 px
New Middlebury subquadratic 3.226 px 3.405 px

quadratic 3.505 px 21.113 px

signatures outperform the classical census consistently.

Regularisation Term

As described in Section 2.4.2, the discussed coupling framework allows to re-
semble several different regularisation strategies. Our upcoming experiments
will evaluate how different regularisation schemes affect the accuracy of the
computed flow. To this end, we consider 4 regularisation settings: On the
one hand it is possible to enable or disable the coupling scheme, and on the
other hand we can have quadratic or subquadratic coupling and coefficient
regularisation terms. In Table 2.8 we present the results of these configura-
tions on four different image sets. First of all, one can clearly state that the
sub-quadratic schemes outperform the quadratic ones consistently. For both
Middlebury benchmarks, the sub-quadratic 1st order scheme performs best,
but the 2nd order scheme is only slightly worse. This can be explained by
the dominating type of motion in those benchmarks, which is mainly fronto-
parallel and requires piecewise constant flow fields. Thus, the second-order
regulariser offers a degree of freedom that is not necessary here. Regarding
the KITTI benchmark, the opposite is the case. Here, the divergent flow
fields resulting from the driving scenario are mainly affine and not piecewise
constant. As one can see from the results in Table 2.8, the accuracy of the
second-order scheme is much higher.

Also our next experiment substantiates that the second-order coupling
model is superior to the first-order model. To this end we choose the same
set of images as selected for the GCPR 2013 - Special Session on Robust Optic
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Table 2.9: Behaviour in real-world scenarios. Errors are given in terms of the
BP3 measure, i.e. the percentage of pixels having a Euclidean error larger
than 3.

KITTI image sequence: #11 #15 #44 #74 average
Zimmer et al. [2011b] 37.3 32.3 23.2 62.9 38.9
Bruhn and Weickert [2005] 33.9 47.7 32.4 71.4 46.7
census(1st order) 36.5 28.6 28.5 63.8 39.4
comp-rank (1st order) 29.8 22.8 22.6 61.5 34.2
comp-rank (2nd order) 22.9 13.5 15.2 56.3 27.0

Table 2.10: Runtimes of our framework using the complete rank transform.
The time per pixel-value is approximately the same for all images.

Image Resolution Runtime
Middlebury Rubberwale 584× 388× 3 80.6 s
Sintel ambush2 1024× 436× 3 162.8 s
Kitti #15 1241× 376× 1 75.9 s
New Middlebury Adirondack 718× 496× 3 138.3 s

Flow 3. Table 2.9 summarises the obtained results. As reference, the numbers
for the method of Zimmer et al. [2011b] and Bruhn and Weickert [2005] are
taken from the website of this special session. The method of Bruhn and
Weickert [2005] is particularly interesting to compare, since its regularisation
term coincides with our first-order sub-quadratic strategy. Additionally, we
depict optimised results with the census transform for comparison. As one
can see, the complete rank transform consistently outperforms the competing
methods.

Further Model Evaluation

Runtimes. Table 2.10 summarises the runtime of our method on various
image sequences. As evaluation system we use a Macbook Air with Intel Core
i5 processor (1.3 GHz). This experiment substantiates that in practice the
runtime of our framework is linear in the number of pixels to be processed.

Normalisation. In Section 2.4.1, we discussed the data term normalisa-
tion. Here, we want to evaluate if this concept is also beneficial for our
order-based complete rank feature. The results are depicted in Table 2.11.

3http://www.dagm.de/symposien/special-sessions/

http://www.dagm.de/symposien/special-sessions/
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Table 2.11: Influence of data term normalisation. As can be seen, this con-
cept increases the accuracy on all test sequences consistently.

Image set Without Normalisation With Normalisation
subset3middle 0.117 px 0.116 px
subset3newmiddle 3.405 px 3.135 px
subset3sintel 0.189 px 0.174 px
kitti10 13.217 % 11.470 %

Table 2.12: Effect of different robustification strategies.
Joint Rob. Separate Rob.

comp-rank 1.268 px 1.248 px
comp-census 1.275 px 1.309 px

Obviously, the data term normalisation is also beneficial in the case of match-
ing complete rank signatures.

Joint vs. Separate Robustification. We have discussed the different
metrics that are applicable to the complete rank and complete census sig-
nature differences and their implications in Section 2.3. Let us now analyse
how the different robustification type affect the accuracy of flow computa-
tions. To this end we have optimised the average endpoint error for the set 9
mixed image sequences (subset9 ) with separate and joint robustification, cor-
responding to the L1 and L2 norm, respectively. Since the complete census
signatures become very large with increasing neighbourhood size, we have
fixed the patch size to k = 5 for this experiment. The results are shown
in Table 2.12. These results indicate that the computationally much more
efficient joint robustification performs comparably well in practice.

2.5.5 Real-world Example
In this experiment we demonstrate the matching capabilities of the complete
rank transform in a scenario with extreme appearance changes. The task is
to recover the optic flow between the two raw images provided by a Microsoft
Kinect4. This device is equipped with two sensors side-by-side: an infra red
(IR) camera captures a structured light pattern that a built-in IR-projector
casts into the scene. Simultaneously, a standard CMOS sensor for the visible
light spectrum provides a colour image of the scene. In this experimental

4http://www.xbox.com/en-US/xbox-360/accessories/kinect

http://www.xbox.com/en-US/xbox-360/accessories/kinect
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Table 2.13: Quantitative comparison of the rank (RT), census (CT) and com-
plete rank transform (CRT) on the Middlebury training images. Numbers
are average endpoint errors ×10−1.

rw dime. gr2 gr3 hydr. urb2 urb3 yos avg
RT 1.11 0.92 1.91 7.64 1.91 4.57 10.3 2.11 3.81
CT 1.02 0.90 1.69 6.46 1.47 3.78 8.19 1.69 3.16
CRT 1.00 0.76 1.54 5.85 1.58 3.24 5.29 1.50 2.60

setup, we switch off the IR-projector such that the IR-camera records an
unperturbed (but dark) image of the IR light in the scene. The two top
images of Figure 2.13 show a pair of two such captured images. The IR
image contains quite large amounts of noise. Nevertheless, the results in
this figure show that a reliable matching is possible using the complete rank
transform.

2.5.6 Comparison to State-of-the-Art
After having evaluated various strategies inside our framework, let us now
come to the question how our framework performs in comparison to other
state-of-the-art methods. Luckily, there are several public benchmark sys-
tems for optic flow available that make an objective and fair comparison
possible.

Middlebury Benchmark. First, we assess the error rates on the Middle-
bury training images in Table 2.13, where the results from our conference
contribution [Demetz et al., 2013] are reproduced. As also noted by Vogel
et al. [2013], the image sequences of that benchmark exhibit mainly fronto-
parallel motion, so use our first order regularisation term here. Furthermore,
note that the Middlebury sequences are also less demanding with respect to
illumination changes. Hence, the goal of this experiment is to show that also
under normal lighting conditions reasonable flow fields can be obtained with
our CRT-based data term. Furthermore, we prove with this experiment that
our CRT is also in this setting generally preferable over the rank and census
transform. Again, for each signature type, the regularisation parameter α
has been optimised and then kept constant over all images. For the sake of
completeness, we also evaluated our method with TV regularisation on the
testing images of the public Middlebury benchmark [Baker et al., 2011]. Also
these test sequences exhibit almost no illumination changes or other scenar-
ios that our highly invariant descriptor is designed for, so we cannot expect
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(a) input frame 1 (IR image) (b) input frame 2 (intensities)

(c) overlayed input frames (d) overlayed registered frames

(e) reconstructed flow zooms into (c) and (d)

Figure 2.13: Kinect registration example. Tow row: Input images cap-
tured with a Kinect RGB-D camera. Centre row: Colour Visualisation of
misalignments. The original input frames have been combined into different
channels (image (c)). One can clearly see the large misalignments. Image
(d) shows the same visualisation after back-registration of the second frame.
The matching was successful. Bottom row: Recovered flow (image (e))
and magnifications of (c) and (d). The arrows highlight the alignment before
and after the back-registration.
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Table 2.14: Quantitiative Middlebury results in terms of the average endpoint
error (AEE) ×10−1.
Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy
1.1 2.4 5.0 2.3 8.6 6.0 1.2 7.9

Table 2.15: Detailed results of our method on the KITTI benchmark.
Error Out-Noc Out-All Avg-Noc Avg-All
2 pixels 8.84 % 15.38 % 2.0 px 3.9 px
3 pixels 6.71 % 12.09 % 2.0 px 3.9 px
4 pixels 5.68 % 10.23 % 2.0 px 3.9 px
5 pixels 5.01 % 8.97 % 2.0 px 3.9 px

top-ranking results on this benchmark. Nevertheless, it turns out that our
prototypical variational model can in fact keep up with its nearest competi-
tors: Our method ranks on 59.4th average rank. That is between the method
of Brox et al. [2004] (avg. rank 67.5) and the much more advanced method
by Zimmer et al. [2009] (avg. rank 40.7)5. These results are remarkable
in the sense that they prove our invariant data term to include hardly less
information than the combined grey value and gradient information of [Brox
et al., 2004; Zimmer et al., 2009].

KITTI Benchmark. Definitely the most interesting benchmark for our
method is the KITTI Vision Benchmark Suite [Geiger et al., 2012]. It pro-
vides a huge amount of image sequences captured from a driving car, along
with corresponding ground truth flow fields that are acquired with a laser
scanning technique. These image sequence contain challenging illumination
conditions, such as camera adjustments, light inter-reflections in the wind-
shield, driving into or out of shadows, etc., and are thus a perfect testbed for
our needs. We used our described optimisation strategy on the 194 training
sequences with a neighbourhood size of 13 to find the optimal value of the
coupling weight as α = 0.01, and submitted the flow fields for all 195 test se-
quences to the benchmark website6. Detailed results are shown in Table 2.15
where the bad pixel error measure is depicted for various thresholds and for
ground truth information in all and non-occluded regions.

Additionally, we present in Table 2.16 a comparison of our method to the
other participants of the benchmark. In this table, we only include published

5Rankings as of September 28th, 2015
6http://www.cvlibs.net/datasets/kitti/

http://www.cvlibs.net/datasets/kitti/
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competing methods that provide a 100% dense ground truth and that con-
sider the pure two-frame optic flow setup without stereoscopic assumptions.
Methods that exploit such additional assumptions loose general applicability,
because they are likely to fail e.g. in the presence of independently moving
objects. The table shows the average error of each method with respect to
the bad pixel 3 error (BP3) and the average endpoint error (AEE). More-
over, the evaluation is performed on all pixels (occ), or only on pixels that
are visible in both frames (noc). The small numbers to the right of the
measured errors indicate the ranking of the corresponding method among all
competitors according to this measure.

As one can see, two entries in this table belong to methods discussed
in this chapter. With the complete rank transform and second order regu-
lariser, our method [Demetz et al., 2015] (CRT w. TGV) clearly belongs to
the top-ranking ones on this benchmark. Particularly when considering the
ground truth information in all image regions (occ), our method ranks third
in both error measures. One reason for this is the second order regulariser
that is well suited for the typical divergent motion patterns of the KITTI
benchmark. However, regarding the performance of the method of Ranftl
et al. [2012], which also incorporates a TGV-based regulariser, the benefits
of our descriptor become apparent. The other highlighted list entry [Demetz
et al., 2013] (CRT w. TV) shows the performance of our earlier conference
publication with only first order regularisation.

2.6 Summary
This chapter was devoted completely to invariance-based descriptors for pat-
tern matching. We approached this topic from the theoretical as well as the
practical point of view.

First, we structured all invariant features into different mathematical
classes of increasing invariance and gave a broad overview of existing in-
variant features from the literature. Then we concentrated on the extreme
class of morphological invariance, in which all descriptors fall that remain un-
changed under any monotonically increasing rescaling. Here, we introduced
two novel descriptors: the complete rank transform (CRT) and the complete
census transform (CCT). The unique property of these two descriptors is
that they carry as much image information as possible in this class.

Second, we discussed appropriate distance metrics for the discussed fea-
tures. In most cases the Euclidean distance is a natural and well-suited
choice. For the binary and order-based descriptors however, this was not
directly obvious.
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Table 2.16: Top KITTI benchmark results as of March 31st, 2015. Only
pure two-frame dense optic flow methods are shown. All our methods are
highlighted in red.

Method BP3 [%] AEE [px]
noc occ noc occ

[Ranftl et al., 2014] 5.93 1 11.96 2 1.6 4 3.8 3

[Wei et al., 2014] 6.03 2 13.08 5 1.6 4 4.2 5

[Braux-Zin et al., 2013] 6.20 3 15.15 7 1.5 1 4.5 6

[Demetz et al., 2014] 6.52 4 11.03 1 1.5 1 2.8 1

[Demetz et al., 2015] (CRT w. TGV) 6.71 5 12.09 3 2.0 8 3.9 4

[Vogel et al., 2013] 7.11 6 14.57 6 1.9 7 5.5 8

[Weinzaepfel et al., 2013] 7.22 7 17.79 8 1.5 1 5.8 9

[Rashwan et al., 2013] 7.91 9 18.90 13 2.0 8 6.1 10

[Mohamed et al., 2014] 8.67 10 18.78 12 2.4 11 6.7 13

[Timofte and Gool, 2015] 9.09 11 19.32 14 2.6 12 7.6 16

[Demetz et al., 2013] (CRT w. TV) 9.43 12 18.72 11 2.7 14 6.5 11

[Sun et al., 2014] 10.04 13 20.26 15 2.6 12 7.1 14

[Kennedy and Taylor, 2015] 10.22 14 18.46 10 2.0 8 5.0 7

[Sun et al., 2014] 10.49 15 20.64 16 2.8 15 7.2 15

[Hermann and Klette, 2013] 10.74 16 22.66 17 3.2 17 12.2 17

[Ranftl et al., 2012] 11.03 17 18.37 9 2.9 16 6.6 12
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Thirdly, in order to use the discussed features for pattern matching in
practice, we presented a very general variational framework for optic flow
computation, in which all discussed descriptors can be used without fur-
ther modifications. The data term of this functional penalises deviations
of the features at corresponding positions. The regularisation term demands
second-order regularity. Due to a coupling strategy, we could realise this with
first-order derivatives of the unknowns only. Our basic model is non-convex
and non-linear. To find a minimiser, we discussed a multi-scale minimisation
strategy and explained our final numerical scheme.

However, our theoretical classification could not answer one crucial ques-
tion: Which feature is best suited in practical situations? To find its answer,
we have performed an extensive evaluation of all discussed descriptors in
the final part of this chapter. With our evaluation we tried to compare the
various descriptors on a maximally fair basis. As could be expected, classi-
cal features such as the gradient that have proven their usefulness in many
methods do in fact perform quite well. Moreover, the experiments showed
that many features lead to inferior results because they either discard too
much (for instance the rank), or not enough information (e.g. normalisation
strategies). Thus, the best tradeoff is difficult to find. However, overall,
the theoretically maximal information content of our complete signatures is
also reflected experimentally in highly accurate results. In fact, we achieved
the highest accuracy with the complete rank transform, even if only minor
illumination changes were present.



Chapter 3

Change Estimation

In the previous Chapter 2, the main paradigm was to discard fragile informa-
tion through invariances. The idea was to find features that remain constant
under changing illumination, and that survive all changes of appearance. We
have seen that depending on the expected type of changes, this strategy can
be successful and allows to estimate correspondence accurately. However, we
also have seen that it is easily possible to employ too strong invariances: If
too much image information is discarded, the accuracy of the estimated flow
is affected. This is a general problem, for instance in the simplest case that
no illumination changes are present in an image sequence, any invariance can
potentially deteriorate the results.

For this reason, we want to approach the problem of uncontrolled lighting
from a completely different direction in this chapter. Now, the main paradigm
will be compensation: We want to compensate the observed intensities for
the occurring appearance changes, such that after the compensation, the grey
value constancy holds again. In order to compensate, we have to estimate
appearance changes explicitly, and our idea is to do this jointly with the
optic flow. Hence, we will consider the changes as an additional unknown to
be estimated. The basis for this chapter is the publication at the European
Conference on Computer Vision [Demetz et al., 2014].

As we have seen, already the original optic flow problem is ill-posed, and
regularisation is necessary. With this additional degree of freedom, things
don not get easier. However, we exploit the following observation: in the
real world, appearance changes usually are not arbitrary. For instance, if one
object causes a drop shadow onto another one, a certain larger region will be
affected smoothly by this shadow. In this region, the darkening of the image
content will be similar everywhere, see also Figure 3.1.

Practically, we have to estimate the so-called brightness transfer func-
tion (BTF) that allows to rescale the intensity of pixels in the first frame

91
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Figure 3.1: Exemplary image sequence [Scharstein et al., 2014]. Between the
first and second frame, the lighting in the scene changes drastically by an
additional spotlight. The Adirondack chair and the cup cast a drop shadow
with sharp shadow boundary. Outside the shadow region, the full brightening
illumination change is visible. One can expect that all pixels within the
shadow region are less affected by the spotlight.

to the illumination setting of the second one. However, instead of the ad-
hoc parametrisations proposed by Mukawa [1990] and Ayvaci et al. [2012]
(additive), and Gennert and Negahdaripour [1987] (affine), we aim for more
general and suitable representation of the BTF in terms of a specifically
learned basis. We obtain this basis by performing a principal component
analysis (PCA) of the appearance changes in training data. Contrary to the
invariance-based data terms from the previous chapter, where the invariance
can only be imposed globally, our ansatz will be to perform the compensation
locally. Thus, the BTF we estimate will vary in space. However, as already
mentioned, this variation in space cannot be arbitrary, thus, we develop
a suitable regularisation strategy and include it into our variational model.
This allows to separate real illumination changes from motion-induced bright-
ness variations.

3.1 Related Work
The idea of estimating illumination changes jointly with optic flow is not new.
Several – mainly older – methods in the literature follow this idea. On the
one hand, there are approaches that seek to estimate a single global brightness
transfer function to identify problematic image regions [Mann et al., 2003;
Dederscheck et al., 2012]. On the other hand, there are techniques that em-
bed the classical brightness constancy assumption into a parametrised local
illumination model for which the coefficients are jointly estimated. Such local
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models include simple additive terms [Cornelius and Kanade, 1984; Mukawa,
1990], affine illumination models [Gennert and Negahdaripour, 1987; HaCo-
hen et al., 2011; Negahdaripour and Yu, 1993; Fouad et al., 2009], as well
as more complex brightness models derived from physics [Haussecker and
Fleet, 2001]. Recently, HaCohen et al. [2011] combined local and global
ideas: While a local affine model allows to estimate the correspondences in
a PatchMatch-like approach [Barnes et al., 2010], the information is finally
condensed to a single global transfer function.

Also the research field on so-called intrinsic images is related to the
present idea. In this context, a captured image is usually considered to
be the product of surface reflectance (albedo, colour) and illumination. The
task is to estimate both factors. Such representations are valuable for many
applications. For instance, the illumination part plays an important role
for shape-from-shading methods [Horn and Brooks, 1989]. The reflectance
part is free of illumination and a well suited input for instance for segmen-
tation methods. The research on this topic has very long tradition. It goes
back to contributions of Horn [1974] and Barrow and Tenenbaum [1978] who
coined the expression intrinsic image. The two latter methods closely refer
to the Retinex theory of Land and McCann [1971]. A slightly easier prob-
lem is approached by Weiss [2001] who assume to be given a sequence of
images in which only the illumination changes. The recent work of Rother
et al. [2011] addresses the intrinsic image decomposition problem with the
assumption that the reflectance part only contains colours from a sparse set
of so-called basis colours. The work of Chen and Koltun [2013] incorporates
depth measurements as an additional cue for the accurate estimation of the
illumination part. In general, the goal of intrinsic image methods is to sepa-
rate the reflectance from illumination. In contrast, we are only interested in
illumination changes, i.e. we are not interested in removing all drop shadows,
but only in those regions where the shadow changes.

Related Work on Basis Learning. Apart from the aforementioned tech-
niques that jointly estimate illumination changes and optical flow, a few more
related works are worth mentioning. On the one hand, there are methods that
address the estimation of camera response or brightness transfer functions,
mainly in the context of HDR imaging. Such approaches include the work of
Grossberg and Nayar [2002] who propose to compute the brightness transfer
function via histogram specification. Also the papers of Debevec and Malik
[1997] and Grossberg and Nayar [2004] consider the problem of estimating
the camera response function, the latter one using learned basis functions.
On the other hand, there are approaches that represent appearance changes
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with basis functions for illumination changes. First, Belhumeur and Krieg-
man [1998] neglect viewpoint changes and consider the question how a convex
object can look under varying illuminations. Using PCA, they show that the
space of possible images is a cone with limited dimension. Mainly in the
context of face tracking, Hager and Belhumeur [1998] compute a basis of a
template image to be tracked and incorporate this basis in a local optic flow
method to account for changes in appearance. Similarly, the work on iconic
changes by Black et al. [2000] also computes a basis of images. The work
of Tieu and Miller [2002] comes closest to our formulation. There, a 3-D ba-
sis is estimated via PCA to represent so-called colour eigenflows that allow
to transfer RGB colour vectors from the first to the second image. Finally,
there exist a few optical flow methods that make use of spatial or temporal
basis functions to model the flow. This applies to the approaches by Nir et al.
[2008] on over-parametrised optical flow and Garg et al. [2013] on temporal
tracking of non-rigid objects with subspace constraints.

3.2 Variational Model
We stick to our notation from the previous chapter, and consider a sequence of
two images fi : Ω→ Rnc , i ∈ {1, 2}, defined on the rectangular image domain
Ω ⊂ R2. Furthermore, we denote the optic flow field by u = (u, v)> : Ω→ R2

and parametrise the illumination changes by a coefficient field

c : Ω→ Rnb . (3.1)

Then, inspired by the basic approach of Cornelius and Kanade [1984], we
propose to jointly compute the optical flow and the illumination changes as
minimiser of an energy functional with the following structure:

E(u, c,a, b) =
∫

Ω

(
D(u, c) + α ·Rflow(u,a, b) + λ ·Rillum(c)

)
dx . (3.2)

This functional is closely related to our functional of Equation (2.57) that
was the central quantity to be minimised in the previous chapter. However
the functional (3.2) now consists of three terms: As before, the data term
D relates the two input images via the optical flow and the parametrised
illumination changes (in terms of coefficients). The flow regularisation term
Rflow coincides with the regularisation term (2.73) from the previous chapter
and encourages a piecewise affine flow field. The novel coefficient regularisa-
tion term Rillum assumes the coefficient fields to be piecewise smooth. The
two positive parameters α and λ allow to adjust the influence of the two
smoothness terms. Let us now discuss these terms in detail.
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3.2.1 Data Term
Unlike traditional data terms for optical flow estimation that explain bright-
ness changes in the image sequence exclusively by motion, our data term
considers changes in illumination as an additional source for brightness vari-
ations. In order to estimate these changes jointly with the motion, we make
use of a parametrised brightness transfer function (BTF) which was origi-
nally proposed by Grossberg and Nayar [2004] in the context of photometric
calibration for HDR imaging.

Parametrised Brightness Transfer Function

This function maps intensities of the first frame to the intensity level of the
second frame. Given a set of nb basis functions φj : R→ R, we parametrise
the corresponding brightness transfer function as follows:

Φ(c, f) = φ̄(f) +
nb∑
j=1

cj · φj(f) , (3.3)

= φ̄(f) + c>φ(f) , (3.4)

where φ̄ : R→ R is the mean brightness transfer function, and φ : R→ Rnb

resembles all basis functions in one vector. As can be seen from Equa-
tion (3.4), independently of the shape of the basis functions, this parametri-
sation is linear in the weights c = (c1, . . . , cnb)>. Note that our concept of
brightness transfer functions is closely related to the colour flows of Tieu and
Miller [2002]. Such a colour flow, however, is a 3-D vector field describing the
offset in RGB colour space that is added to the RGB colour value of the first
image. Moreover, in the work of Tieu and Miller [2002], the linear coefficients
corresponding to the weights c of our model are assumed constant over the
whole image. This is not the case in our model.

Compensated Brightness Constancy Assumption

Let us now discuss how to embed this general model for brightness changes
into a data term. To this end, we formulate the assumption that after the
BTF has been applied to a grey value of the first frame, the resulting intensity
should be equal to the corresponding intensity in the second frame at the
displaced position. Such a data term thus reads:

Dbright(w, c) = Ψ
((
f2 (x+w)− Φ (c(x), f1(x))

)2
)
. (3.5)
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It is important to notice that the coefficient field c : Ω → Rnb is space-
variant, thus this model is able to estimate different illumination changes in
each position. If no appearance change has happened, the coefficients should
parametrise the identity function. Note that depending on the particular
choice of a basis, the identity is not represented by a zero coefficient vector.
A related data term has been proposed by Hafner et al. [2014], where the
camera response function is applied to the unknown radiances to establish a
correspondence to the observed exposures.

Compensated Gradient Constancy Assumption

We can go further, and apply the compensation idea to the gradient con-
stancy assumption. Consequently, the corresponding data term reads

Dgrad(w, c) = Ψ
( ∥∥∥∇f2(x+w)−∇Φ(c(x), f1(x))

∥∥∥2

2

)
, (3.6)

and our final data term is a convex combination of the two assumptions with
separate robustification with the weight ν ∈ [0, 1]:

D(w, c) = νDbright(w, c) + (1− ν)Dgrad(w, c) . (3.7)

This combination is similar to the data term of Brox et al. [2004] and the
separate robustification of grey value and gradient constancy assumption was
proposed by Bruhn and Weickert [2005].

In both assumptions, the flow variables and illumination coefficients are
intentionally distributed to different frames:

f2 (x+w(x))︸ ︷︷ ︸
flow

= Φ (c(x), f1(x))︸ ︷︷ ︸
illumination

. (3.8)

Because of this, the typical linearisation in the flow variables can be per-
formed without having to apply the chain rule, and the resulting minimality
conditions do not contain products of unknowns.

Moreover, at first glance, it may seem counter-intuitive to combine our
explicit estimation strategy with a gradient constancy assumption that is
invariant under additive illumination changes. However, the additional gra-
dient constancy term supports the estimation at those locations where the
coefficients cannot adapt or have not yet adapted perfectly to the illumina-
tion changes. This is for instance the case at the beginning of the estimation,
when neither the flow nor the coefficients have converged to their final values
yet.
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3.2.2 Regularisation Terms
Compared to traditional variational optic flow methods, where no illumina-
tion coefficients have to be estimated, the present method has a lot more
degrees of freedom. Especially the data term is highly under-determined: it
is not clear how to distribute observed brightness changes between the motion
field and the illumination compensation. Thus, spatial regularisation of both
the flow variables and the illumination coefficients is indispensable. While
the parametrisation in terms of basis functions already provides a meaningful
representation given by the coefficient fields, the concrete modeling of both
regularisation terms plays an important role in resolving this ambiguity. Let
us now discuss how we model the two regularisers.

Flow Regularisation

In order to ensure a fair comparison between the invariance and estimation-
based ideas we will stick to the second-order regularisation as presented in
Section 2.4.2:

Rflow(u,a, b) = Ψ
(
|∇u−a|2 + |∇v− b|2

)
+ β ·Ψ

(
|Ja|2F + |J b|2F

)
. (3.9)

This term can be seen as a regularised variant of the TGV 2 smoothness
term [Bredies et al., 2010; Ranftl et al., 2012], and favours piecewise affine
solutions. In our conference publication [Demetz et al., 2014], we employed a
direct second-order regularisation term, namely a sub-quadratic penalisation
of the Frobenius norm of the Hessian of both flow components u and v. For
the sake of comparability with the results from the previous chapter, we
refrain from this regulariser here.

Coefficient Regularisation

The smoothness assumption on the illumination coefficients is essential for
our model. Without this term, the displacement field of the global min-
imiser of our energy would be the trivial zero displacement field (with energy
zero): In each pixel a coefficient vector could be chosen that compensates
the brightness change in that pixel (without motion) perfectly. It is only the
smoothness constraint on the coefficients that prevents this degeneration,
and is thus absolutely vital for this method to work.

In contrast to the flow regulariser that models a piecewise affine flow field,
we basically assume that neighbouring pixels are subject to similar illumi-
nation changes, i.e. that the coefficients of the basis functions are piecewise
constant. Additionally, discontinuities in the coefficient fields are assumed
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to be aligned with edges in the input images (e.g. shadow edges) [Nagel and
Enkelmann, 1986]. Consequently, we follow the idea of Zimmer et al. [2011b]
and employ the following anisotropic complementary regularisation term:

Rillum(c) =
2∑
i=1

Ψi
( nb∑
j=1

γj (r>i ∇cj)2
)
, (3.10)

where the two directions r1 and r2 = r⊥1 allow to adapt the smoothing
direction locally across and along image edges, respectively. As proposed
in Zimmer et al. [2011b], these directions can be derived as the eigenvec-
tors of the so-called regularisation tensor. In our case, this tensor must be
computed from the photometrically uncompensated first frame f1 to ensure
that brightness information related to illumination changes is not discarded.
Moreover, all coefficient fields are regularised jointly with a single penaliser
function per direction, since spatial changes of the brightness transfer func-
tion typically result in discontinuities in all coefficient fields. In this context,
the derivatives of the coefficients have to be balanced with weights γj to
reflect the different magnitude ranges of the coefficient fields. How we can
estimate these weights together with the basis functions is discussed in Sec-
tion 3.3. Finally, we have to define the penaliser functions. As suggested
in Volz et al. [2011], we use the edge-enhancing Perona-Malik regulariser

Ψ1
illum(s2) = ε2

c log(1 + s2/ε2
c) (3.11)

as penaliser across edges (in r1-direction) [Perona and Malik, 1990], while
we apply the edge-preserving Charbonnier regulariser denoted by Ψ2

illum(s2)
along them (in r2-direction), c.f. Equation (2.68).

3.2.3 Multi-Scale Minimisation
As in the previous chapter, we have developed an energy functional that is
non-convex since the unknown optic flow field appears in the argument of
the image function. Consequently, also in this chapter, our minimisation
follows a very similar Gauss-Newton-type [Nocedal and Wright, 2006] multi-
scale strategy as described in detail previously (c.f. Section 2.4.3). Thus,
let us now only highlight the main extensions and differences to the already
presented strategy.

Although the illumination coefficients already now only appear linearly
inside the data term from Equation (3.5), we handle them analogously to the
flow variables, and apply a splitting into a known part c` and an unknown
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part dc` on each scale. Essentially, we minimise the following functional on
each scale `:

E`(du`,dc`,a, b) =
∫

Ω

(
D`(u` + du`, c+ dc`)

+α ·Rflow(u+ du`,a, b)

+ λ ·Rillum(c+ dc`)
)

dx .

(3.12)

The minimisation takes place only w.r.t. the flow increments, thus we lin-
earise the data term around the positions displaced by the known flow x+u`.
After that, also the optic flow unknowns only appear linearly in the compo-
nents of the latter functional. As in the previous chapter the only remaining
non-linear terms are the sub-quadratic penaliser functions Ψ. In detail, the
linearised brightness constancy assumption reads

D`
bright = Ψ

(
θ ·
(
f `,u

`

2,x du
` + f `,u

`

2,y dv
` + f `,u

`

2

− φ̄(f `1)− (c` + dc`)>φ(f `1)
)2 )

,

(3.13)

where, as before, we use the abbreviation f `,u
`

2 (x) := f `2(x+u`) to denote the
back-registered second frame. The compensated gradient constancy would
require the application of the chain rule in the BTF term:

∇Φ(c` + dc`, f1) =
nb∑
j=1
φj(f `1) ·∇(c`j+dc`j)

+
(
φ̄′(f `1)+

nb∑
j=1

(c`j+dc`j) · φ′j(f `1)
)
·∇f `1 .

(3.14)

Since derivatives of the unknown in the data term would render the minimi-
sation of the functional much more difficult, we omit the increments dc` for
the gradient constancy and obtain the modified constancy assumption:

D`
grad = Ψ

 ∥∥∥∥∥
(
θx 0
0 θy

)(
∇f `,u

`

2,x du
`+∇f `,u

`

2,y dv
`+∇f `,u

`

2

−
nb∑
j=1

φj(f `1) ·∇c`j (3.15)

−
(
φ̄′(f `1)+

nb∑
j=1

c`j · φ′j(f `1)
)
·∇f `1

)∥∥∥∥∥
2

2

 .
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Especially if multiple warps per scale are applied, this choice should approxi-
mate original constancy assumption sufficiently well. Moreover, in the latter
two data terms, constraint normalisation has already been applied to all
constancy assumptions in terms of the weights θ, θx, and θy, as proposed in
Valgaerts et al. [2010] for linearised constraints with more than two variables.

We omit the flow regulariser as it coincides with the one from the previous
chapter (c.f. Equation (2.83)). Similarly to the flow regularisation, also the
novel coefficient regularisation term demands the smoothness of the overall
coefficient field, thus it penalises directional derivatives of the sum of overall
and incremental coefficients:

R`
illum =

2∑
i=1

Ψi
illum

( nb∑
j=1

γj (r>i ∇(c`j + dc`j))2
)
. (3.16)

3.2.4 Minimality Conditions

The presented energy functional has to be minimised w.r.t. a number of un-
knowns: two flow components du` and dv`, the auxiliary 2-D vector fields a, b,
and the nb illumination coefficients that parametrise the brightness transfer
function. In total, this amounts to a system of 6 + nb partial differential
equations (PDEs). Its structure is:

Ddu − α div Rflow,1,∇du = 0 , (3.17)
Ddv − α div Rflow,1,∇dv = 0 , (3.18)

α (Rflow,1,a1 − β div Rflow,2,∇a1) = 0 , (3.19)
α (Rflow,1,a2 − β div Rflow,2,∇a2) = 0 , (3.20)
α (Rflow,1,b1 − β div Rflow,2,∇b1) = 0 , (3.21)
α (Rflow,1,b2 − β div Rflow,2,∇b2) = 0 , (3.22)

Ddcj − λ div Rillum,∇dcj = 0 , i = 1, . . . , nb , (3.23)

where the scale indices ` have been omitted for the sake of readability. Re-
garding the data term, we can standardise also here its structure in terms
of a generalised motion tensor. Since the inner argument is linear in the
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unknowns, we can write:

D`
bright = Ψ

θ · ((f `,u`2,x , f
`,u`

2,y ,−φ(f `1)>, f `,u
`

2 −

=Φ(c`,f`1)︷ ︸︸ ︷(
φ̄(f `1) + c`>φ(f `1)

))

·
(
du`, dv`,dc`>, 1

)>)2
 ,

= Ψ
(
θ · (t> · d̃w)2

)
,

= Ψ
(
θ · d̃w> · J̃bright · d̃w

)
.

(3.24)

Please note the similarities to the standard motion tensor [Bruhn, 2006]:
The last component of the data vector t resembles a temporal derivative
(with compensated first frame), and the vector d̃w captures all unknowns.
However, the resulting extended motion tensor J̃bright = t · t> has size (3 +
nb)× (3 + nb). Also the gradient constancy can be written in motion tensor
notation, but since we removed the illumination coefficient increments from
it, this motion tensor Jgrad falls back to standard size 3× 3.

As before, we abbreviate the appearing non-linear terms as follows:

Ψ′bright := νΨ′
(
θ · d̃w> · J̃bright · d̃w

)
, (3.25)

Ψ′grad := (1− ν)Ψ′
(
θ · dw> · Jgrad · dw

)
, (3.26)

Ψ′R1 := Ψ′
(
|∇u+ ∇du− a|2 + |∇v + ∇dv − b|2

)
, (3.27)

Ψ′R2 := Ψ′
(
|Ja|2 + |J b|2

)
, (3.28)

Ψ′iillum := Ψ′
( nb∑
j=1

γj (r>i ∇(c`j + dc`j))2
)
, (3.29)

Dillum := [r1 r2]>
(

Ψ′1illum
Ψ′2illum

)
[r1 r2] , (3.30)

and state the remaining components of the Euler-Lagrange equations:

Ddu = Ψ′bright · (J̃
bright
11 du+ J̃bright

12 dv + J̃bright
13 dc1 + ...+ J̃bright

1(2+nb)dcnb + J̃bright
1(3+nb))

+ Ψ′grad · (J
grad
11 du+ Jgrad

12 dv + Jgrad
13 ) ,

(3.31)
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and the data term contribution of the j-th coefficient equation is:

Ddcj = Ψ′bright · (J̃
bright
(2+j)1du+ J̃bright

(2+j)2dv

+ J̃bright
(2+j)3dc1 + ...+ J̃bright

(2+j)(2+nb)dcnb + J̃bright
(2+j)(3+nb)) .

(3.32)

Finally, the contribution of the illumination coefficient smoothness term in-
volves the diffusion tensor Dillum, c.f. (3.30). It reads:

Rillum,∇dcj = Dillum · (∇cj + ∇dcj) . (3.33)

As before, the boundary conditions for the two flow Equations (3.17) and (3.18)
read:

n>(∇u+ ∇du− a) = 0 , and n>(∇v + ∇dv − b) = 0 , (3.34)

and the Equations (3.19) – (3.22) are equipped with homogeneous Neumann
boundary conditions, c.f. Equation (2.112). The boundary conditions for the
last minimality condition (3.23) differ slightly from the previous ones:

n>Dillum · (∇cj + ∇dcj) = 0 , j = 1, ..., nb . (3.35)

The discussed Euler-Lagrange equations constitute a system of 6 + nb
nonlinear PDEs. In order to resolve the last nonlinear terms c.f. (3.25) to
(3.30), we again apply the lagged nonlinearity algorithm exactly as described
in Section 2.4.4.

3.3 BTF Basis Learning
In the previous section, we have considered a variational energy functional
that is to be minimised for the optic flow field and the illumination changes
jointly. In this functional, we quantify the illumination changes with a bright-
ness transfer function (BTF). This function is parametrised in terms of a
linear combination of basis functions. Thus, the unknowns to be estimated
jointly with the flow are the coefficients of this linear combination. This
means we estimate new coefficients together with each new flow field, but
the basis functions φj are learned offline from training data and remain the
same afterwards.

These basis functions will be the topic of this section: We will discuss our
estimation strategy for the mean BTF φ̄, the nb basis functions φj, as well as
the associated weights γj for the regulariser of the coefficient fields. Our basic
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Figure 3.2: Bases from the literature. Left: Normalised affine basis. The
additive basis only consists of the φ1. Right: EMoR functions Grossberg
and Nayar [2002].

strategy is inspired by the Empirical Model of Response (EMoR) of Grossberg
and Nayar [2004], where the camera response function of imaging systems is
also parametrised with a set of basis functions. However, our model acts on
intensities instead of irradiances.

As already mentioned in Section 2, input intensities f are mapped to
output intensities via the BTF:

Φ(f) = φ̄(f) +
nb∑
j=1

cj · φj(f) . (3.36)

Note that many kinds of polynomial and exponential illumination models
can be represented using the appropriate basis functions. For instance, the
standard model without any compensation can be obtained by the choice

φ̄(f) = f , nb = 0 . (3.37)

Similarly, the affine model of Negahdaripour and Yu [1993] fits into this
framework by choosing

φ̄(f) = 0 , φ1(f) = 1 , φ2(f) = f . (3.38)

The same holds also for the purely additive models in Cornelius and Kanade
[1984] and Mukawa [1990], i.e. if instead φ2(f)=0. In Figure 3.2 these bases
are depicted.

The recent KITTI Vision Benchmark Suite Geiger et al. [2012] and also
the new Middlebury stereo benchmark of Scharstein et al. [2014] offer huge
sets of real-world image sequences together with ground truth optical flow
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fields. This gives us access to samples of input and output intensity levels of
realistic scenarios. In particular, the availability of optical flow fields allows
us to register consecutive frames and to analyse the behavior of the true BTF
on a per-pixel basis.

3.3.1 General Strategy

Our general strategy to learn a basis from this massive amount of training
data consists of three steps: First, we segment and cluster each training
image spatially according to illumination changes along the ground truth
flow. The segmentation is important, since we cannot expect that different
image pairs provide fundamentally different global BTFs. Instead, we have
to estimate multiple BTFs per image pair, since typical illumination changes
such as drop shadows or specular reflections are local phenomena. In a second
step, we use the segmented input images and compute for each region of each
input image a separate BTF. This enables us to determine the sought local
BTFs. Third, all these BTFs are used to perform a principal component
analysis (PCA) in order to identify the most representative basis functions
for the observed illumination changes. It is worth noting that these steps can
be applied iteratively, i.e. the estimated basis functions can be used again
to segment the input images and thus to obtain improved BTFs. Our basic
basis estimation strategy is related to the work of Tieu and Miller [2002].
There, the change of colour between the first and second image is seen as a
3-D displacement in RGB-space. The displacement vectors of all colours of
an image together are considered as a colour flow. Then, such colour flows
are extracted from many input images and a suitable basis is estimated in
terms of so-called eigenflows.

Let us now detail on the steps of our strategy.

3.3.2 Segmenting Illumination Changes

Let us assume that we are given the training image sequences with corre-
sponding ground truth flows. This means for each pixel we are given the
intensity of the first frame and the intensity of the corresponding pixel in
the second frame. Since our goal is to discriminate image regions with dis-
tinct lighting situations, i.e. with different brightness transfer functions, we
first have to determine the pointwise BTF for every pixel of each image pair.
However, although this pointwise BTF can be arbitrarily complex, the given
images provide only one constraint per pixel: The unknown BTF must map
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the intensity of this pixel in the first frame to the intensity of the correspond-
ing pixel in the second frame.

Coefficient Estimation. To relax this extremely under-determined prob-
lem, let us now assume we are already given an estimate of the basis functions.
Then, the sought pointwise BTF can be approximated using the given basis,
and our task comes down to computing the nb entries of the optimal coeffi-
cient vector c in each pixel. This lowers the degrees of freedom drastically
in each pixel. Consequently, this problem fits perfectly into our variational
model from Section 3.2, with the difference that we only have to solve for
the coefficients c. The ground truth optic flow is given and does not need
to be estimated. However, as the ground truth might not be provided at
every pixel (i.e. due to occlusions or due to sparse laser scans), we have
to disable the data term at those positions where a flow vector is missing.
Basically, this procedure leads to a variational inpainting method [Weickert
and Welk, 2006], because if the data term is disabled, only the coefficient
regularisation term contributes to the energy. Note that unlike in traditional
inpainting scenarios, we are not interested in the coefficient values at posi-
tions of missing data. We only want to enforce global communication via the
regularisation term in order to avoid isolated estimates and to remove the
discussed ambiguities.

Clustering. Once the coefficients are found, we perform a K-Means clus-
tering [Steinhaus, 1957] (usually K=4) on the coefficients. This takes place
exclusively in the nb-dimensional coefficient space; spatial coordinates are in-
tentionally ignored here in order to allow spatially disjoint regions belonging
to the same segment. All pixels whose coefficients have been clustered to-
gether share a similar brightness transfer function and thus exhibit a similar
lighting situation. Figure 3.3 shows an example where such a segmentation
allows to distinguish regions in the image that undergo different brightening
effects.

3.3.3 Estimating Brightness Transfer Functions
Given the previously computed segmentation, the next task is to estimate
one brightness transfer function g : R → R per segment. To this end,
we adopt the global idea of Grossberg and Nayar [2002] locally: For each
segment we construct the intensity histogram h1 of the pixels in the first
frame as well as the histogram h2 of the corresponding intensities in the
second frame. In this context, we only consider pixels with valid optical
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Figure 3.3: Top: Frame 1 of KITTI training sequence #114. Top: Corre-
sponding K-Means segmentation. Each colour indicates a separate cluster,
black pixels denote locations where ground truth is missing. The separa-
tion between the stronger brightening effect on the street and the weaker
brightening effect in the environment becomes visible. Moreover, the inter-
reflections at the windshield show off in terms of the three red spots on the
street.

flow, i.e. a ground truth vector must be given and must not point out of the
image domain. As a consequence, neither occlusions, disocclusions or out-of-
image motion can spoil our result. Once both histograms have been created,
we compute the BTF that transforms h1 into h2 by means of a histogram
specification. A pseudo-code algorithm for this step is given in Algorithm 1.
In this context, fully saturated segments or too small clusters may lead to
wrong and unrealistic brightness transfer functions. To avoid this, we reject
any segments in which more than 80% of all pixels have the same intensity, as
well as segments in which more than one third of all possible intensities do not
occur. Please note that the resulting function of the histogram specification
is discrete and given by a vector g ∈ R256 that is not parametrised in terms of
basis functions and coefficients. In Figure 3.4, we depict the estimated basis
functions for two different benchmarks. Although the Middlebury stereo
benchmark contains much less training scenes, one has to keep in mind that
each scene is available in three lighting situations. Moreover, colour images
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Figure 3.4: Result of our BTF extraction algorithm. Left column: With-
out clustering. Right column: After iterating with clustering. Top row:
Result of using all 194 training images of the KITTI benchmark. As one
can see, a clearly larger variety of BTFs can be found. Bottom row: Us-
ing the Middlebury stereo benchmark, already the initial extraction gives a
large variety of BTFs. This is due to the various lighting situations that are
provided.

Algorithm 1 BTF extraction algorithm.
hist1 ← histogram of clustered pixels in first frame
hist2 ← histogram of clustered pixels in second frame
cummulative1, cummulative2, index2 ← 0
for index1 ← 0, 255 do

cummulative1 ← cummulative1 + hist1(index1)
while cummulative2 < cummulative1 do

index2 ← index2 + 1
cummulative2 ← cummulative2 + hist2(index2)

end while
BTF (index1) = index2

end for
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are available, allowing us to extract three BTFs per image. Along with the
BTFs from other segments it serves as input for the following PCA.

3.3.4 Learning the Basis
After having performed the previous clustering and estimation steps on each
of the p training image pairs we obtainm ≤ K·p brightness transfer functions,
so-called observations. In order to find one common set of basis functions
for all of them, we perform a principal component analysis (PCA). After
concatenating all observations gi (i = 1, . . . ,m) into a so-called observation
matrix

G = (g1| . . . |gm) ∈ R256×m , (3.39)

we compute the row-wise mean (i.e. the sample mean over all observations)
ḡ of G. Then we obtain the positive semi-definite covariance matrix C as:

C = U>ΣU = 1
m− 1

m∑
i=1

(gi − ḡ)(gi − ḡ)>. (3.40)

A deep discussion of principal component analysis is out of the scope of this
thesis; for details we refer to the book of Jolliffe [2002]. From this principal
component decomposition, the sought basis functions φj (j = 1, ..., nb) can
be found as the eigenvectors of the covariance matrix (the columns of U).
Moreover, the row-wise mean ḡ coincides with the 0-th basis function which is
the mean brightness transfer function φ̄. Furthermore, the diagonal matrix
Σ = diag(σ) contains the (non-negative) eigenvalues which represent the
variance of the given data along the principal components. This is a well-
suited estimate for the relative magnitude of the coefficients. Hence, we
choose the weights γj in the anisotropic coefficient regularisation term (3.10)
proportional to the inverse of the eigenvalues. More exactly, as another
normalisation step, we divide the final weight by the sum of all weights:

γj =
σ−1
j∑n

i=1 σ
−1
i

(3.41)

Figure 3.5 shows the estimated bases for the KITTI Vision Benchmark
Suite and compares it to an affine basis and the EMoR basis provided by
Grossberg and Nayar [2004]. We can see that compared to the EMoR ba-
sis our basis functions for the KITTI benchmark rather model illumination
changes in the upper part of the dynamic range. Moreover, the mean bright-
ness transfer function is roughly linear, since we do not estimate a camera
response function as in Grossberg and Nayar [2004], but a mapping between
intensities (where identity is expected as average).
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Figure 3.5: Our estimated bases for the KITTI and Middlebury stereo bench-
mark.

3.3.5 Iterating the Estimation

The strategy we have described so far assumes a basis to be given for the
clustering step. Initially, however, only the training images and ground truth
flows are given. Thus, in our first iteration loop we omit the clustering step,
treat the whole images as one segment, and estimate one global brightness
transfer function per image pair. This leads to a first estimate for the basis
which allows us then to perform the clustering as described. The impact of
iterating the estimation is demonstrated with two figures. First, Figure 3.4
makes the gain of variability in the extracted raw BTFs obvious. Especially
for the KITTI benchmark this gain is important since the initial BTFs show
only very little differences. Next, considering the resulting basis functions
and their shapes, Figure 3.6 shows the impact of iterating. Here we depict
the obtained initial and iterated bases for the KITTI [Geiger et al., 2012]
as well as the recent Middlebury stereo benchmark [Scharstein et al., 2014].
The results of the two benchmarks show a slightly different behaviour: for
the KITTI benchmark, the initial basis vectors are close to zero in the lower
half of the dynamic range. After iteration, all basis vectors except φ1 are
clearly different from zero. This is not the case for the bases computed from
the Middlebury training images. Here the initial estimate already shows clear
deviations from zero in the lower dynamic range. Furthermore, mainly the
higher basis vectors φ3 and φ4 change during the iteration. The other basis
components only change very little. This can be explained from the fact
that already the initially extracted global BTFs capture enough illumination
changes. As a consequence, the iteration scheme does not discover completely
new BTFs, as is the case for the KITTI benchmark.
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Figure 3.6: Impact of iterating the estimation for the KITTI (top) and Mid-
dlebury benchmark (bottom). The left plot shows the initially extracted
basis (without clustering step), the right plot shows the iterated basis.

3.4 Experiments
Let us now come to the evaluation of our framework. To this end we will start
by detailing on our experimental setup. After that we will compare different
available bases, then we will evaluate some components of our framework. Fi-
nally, we will compare with the state-of-the-art in terms of public benchmark
systems.

3.4.1 Experimental Setup
Choice of Parameters

Although our model contains a considerable number of parameters, effec-
tively we only adjust the three main model parameters α, β, and λ. As in
the previous chapter, the contrast parameters for the sub-quadratic functions
have been chosen fixed for all experiments. Concerning the K-Means clus-
tering step we kept K = 3 fixed as well. Generally, we stick to the described
parameter optimisation strategy c.f. Section 2.5.1 to guarantee an absolutely
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Figure 3.7: Effect of varying the three main model parameters. Plot shows
the error when varying the optimal parameter by a factor. The coupling
weight is the most important parameter.

fair comparison throughout all following evaluations.
To illustrate the behavior of this model under variations of its main

parameters, we perform the following experiment. First, we find optimal
parameters for the KITTI image sequence #15 (α = 0.174, β = 28, and
λ = 0.14). Next, we vary each of the three parameters by a factor of 2k
where k ∈ {−4, ..., 4}. The other two parameters are kept fix. The resulting
average error measurements are plotted in Figure 3.7. As one can see, the
crucial parameter is – as before – the weight of the coupling term α, the two
other parameters have much less influence on the resulting error.

Implementation Details

Our implementation is based on the one from the previous chapter. The
number of unknowns per pixel however increases by nc · nb because of the
illumination coefficients. The complementary regularisation term on these
coefficients leads to an anisotropic diffusion term that we discretise according
to Weickert [1998].

Runtimes. The number of coefficients nb has the largest impact on the
runtime of our single core implementation. Because of this, the usage of
colour image material leads to a significant increase of runtime (three times as
many coefficient fields). Table 3.1 depicts the runtime of our implementation
on an a Macbook Air with Intel Core i5 processor (1.3 GHz). As image
sequence we chose the Rubberwhale sequence of Baker et al. [2011] (584 ×
388 pixels, RGB). As before, we set the number of outer and inner solver
iterations to 5 and 10, respectively.
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Table 3.1: Runtimes of our method. Each coefficient field is subject to regu-
larisation, thus the runtime is approximately proportional to the number of
coefficients.

Number of coefficients n 1 2 3 4 5
Runtime [sec] 102.3 133.9 181.5 245.3 330.2

Table 3.2: Influence of different basis function on the resulting optic flow
accuracy.

Configuration subset3newmiddle subset3kitti
Baseline (no comp.) 5.679 px 10.296 %
Affine basis 3.989 px 9.514 %
Initial basis 4.146 px 8.309 %
Iterated basis 3.856 px 8.276 %

3.4.2 Comparison of Basis Functions

In our first experiment, we investigate the usefulness of illumination esti-
mation in general and analyse the impact of choosing different sets of basis
functions on the quality of the flow estimation. To this end, we consider the
subset of the KITTI benchmark [Geiger et al., 2012] as well as the selection of
training sequences from the recent Middlebury stereo benchmark [Scharstein
et al., 2014]. As we are using the parameter optimisation strategy described
in Section 2.5.1 here for three parameters, we limit the subset to three images
for each benchmark (subset3kitti and subset3newmiddle).

As first step, we compute a basis for both image sets using all available
image sequences, c.f. Figure 3.5. We perform three iterations of the described
basis estimation scheme and store the initial as well the intermediate results.
In the next step, we compute the average error of our method – with differ-
ent bases as well as without any illumination compensation – for each of the
image sets. For each configuration, we have optimised the parameters of our
model w.r.t. the adequate error measure using the ground truth. The results
of this experiment are presented in Table 3.2. As one can see, all compensa-
tion schemes allow to decrease the error compared to the baseline method,
i.e. with no illumination compensation and coefficient estimation. Moreover,
our initial basis is comparable to the affine parametrisation of Gennert and
Negahdaripour [1987]. However, we can observe a clear improvement with
the result of our iteration scheme.
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Figure 3.8: Cumulative energy content for each eigenvector.

Table 3.3: Number of bases nb and resulting accuracy on two different image
sets.

nb subset3kitti subset3newmiddle
1 9.21 % 5.42 px
2 8.48 % 4.27 px
3 8.46 % 3.83 px
4 8.28 % 3.86 px
5 8.18 % 3.70 px
6 8.21 % 3.76 px
7 8.13 % 4.42 px
8 8.15 % 4.04 px

3.4.3 Component Evaluation

Number of Basis Vectors

Our parametrisation of the BTF comprises another parameter nb which rep-
resents the number of basis vectors to be used. It clearly is a parameter for
which a suitable value has to be chosen. In Figure 3.8, we plot the cumulative
variance resulting from the PCA for the last iteration of our KITTI basis.
As one can see from this plot, already the first principal component captures
77.7% of the variance of the input data, and the first 3 components cover
more than 92%.

Apart form this theoretical consideration, we also evaluate the accuracy of
our variational framework for several choices of nb. The result is depicted in
Table 3.3, where one can see that more components lead to higher accuracy.
If not otherwise stated, we use nb = 4 basis vectors as a compromise between
accuracy and computational effort for the rest of our experiments.
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Figure 3.9: Data term contribution for varying smoothness parameters.

Additionally, we perform the following synthetical experiment to illustrate
the benefit of our BTF paramterisation in a learned basis. We consider the
Adirondack sequence [Scharstein et al., 2014], and solve our functional only
for the illumination coefficients (ground truth flow is given). We do this
for varying values of the illumination coefficient smoothness parameter λ,
and evaluate the integral value of our data term. In Figure 3.9, the results
of this experiment are depicted for different bases. Here one can see that
for small smoothness weights, all parametrisations can represent the image
data well, the data term integral is small. Differences become obvious for
larger smoothness weights. Here, the coefficients are forced to be smooth
while explaining the image data. As one can see, if two or more coefficients
are used with a leared basis, the resulting data energy is lower than for
the canonic bases (additive and affine). For nb = 4, even for really large
smoothness weights, the data energy stays low. This means that our learned
model can represent the given image data well while at the same time being
regularised strongly.

Coefficient Regularisation

Concerning the regularisation strategy for the illumination coefficients, we
have tested an nonlinear isotropic alternative to the anisotropic term from
Equation (3.10). This alternative term reads

Riso−nonlin
illum (c) = Ψ

( nb∑
j=1

γj|∇cj|2
)
. (3.42)

We run our optimisation strategy for both models on the known set of 10
KITTI sequences. As it turns out, the anisotropic regularisation does perform
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clearly better than the isotropic term: The average BP3 error increases from
12.0% to 12.6 % when switching from anisotropic to isotropic regularisation.

Gradient Constancy Assumption

We have also evaluated the necessity of the gradient constancy assumption
in our model. To this end, we compute the best accuracy for different values
of ν ∈ [0, 1], the parameter steering the influence of the gradient constancy
assumption. In this context, the choice ν = 1 disables the gradient constancy
assumption completely, and ν = 0 switches to pure gradient constancy. Note
that the latter extreme case is not solvable in with our incremental energy
formulation since we distributed the coefficient increments only to the inten-
sity constancy assumption, c.f. Equation 3.15. The results of this experiment
are presented in Figure 3.10. Regarding the left plot there, one can see that
the gradient constancy assumption does not influence the accuracy too much.
The minimal error value was obtained with ν = 0.5. However, during our
experiments we found that bright saturated areas lead to artifacts in the
flow field, especially if the gradient constancy assumption is switched off. By
introducing a space-variant weight into the data term that disables any con-
stancy assumption whenever the intensity of any of the frames is outside the
interval [0, 250], we were able to diminish this effect. This small additional
weight changes the behavior under variations of the gradient parameter, as
can be seen in the right plot of Figure 3.10. Now, the best accuracy is in fact
obtained if the gradient constancy assumption is switched off completely.

Behaviour under Synthetic Rescalings

Also the question how our estimation scheme behaves under synthetic rescal-
ings is interesting. We adopt the experimental setup from the previous chap-
ter (c.f. Section 2.5.3) and evaluate how the error behaves when varying the
value of γ in the interval [1

3 , 3]. The result of this experiment is depicted in
Figure 3.11. It turns out that for values of γ > 1, the estimation performs
quite robustly. However, for γ < 1, the error increases. This is plausible,
since this case corresponds to a brightening of the images, leading to more
and more saturated image regions. Traditional data terms cannot represent
such situations, usually the robust function weights the constancy assump-
tion down in this case. However, our estimation scheme can compensate the
first frame to the maximal intensity. In such saturated regions however, this
does rather harm the result since the image information is destroyed in satu-
rated regions. This effect is reflected in Figure 3.11 by large errors for small
γ-values.
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Figure 3.10: Accuracy under variations of the gradient constancy parameter
ν. If ν = 0, only the gradient constancy assumption is enabled. If ν = 1,
only the compensated grey value constancy assumption counts. Left: If
saturated image regions are treated as non-saturated, the gradient constancy
is important; best result for ν = 0.5. Right: If the data term is weighted
down in saturated regions, the gradient constancy assumption looses its im-
portance; highest accuracy for ν = 0.99.

3.4.4 Analysis of Transfer Functions and Coefficient
Fields

Let us now shed light on the coefficients that are estimated jointly with the
optical flow. To this end, we have picked one of the training sequences with
moderate illumination changes, see Figure 3.12, and another sequence with
severe illumination changes, see Figure 3.13. The two figures show the first
frame of the respective sequence together with the estimated flow as well as
the four computed coefficient fields. Furthermore, we have highlighted inter-
esting locations in the images using coloured squares. The brightness transfer
functions at those locations – that can be computed as linear combinations
of the learned basis functions weighted by the estimated local coefficients –
are jointly depicted in a graph using the corresponding colours.

For our first challenging example (Figure 3.12), the flow field appears
reasonably accurate, which is confirmed by a BP3 error of only 8.81% – the
highest accuracy we have been able to achieve on this image sequence with
any method discussed in this thesis.

Since the lighting changes in that image sequence are rather global, the
extracted brightness transfer functions are similar in shape. In fact, they
only differ in the upper end of the dynamic range. As can be seen from the
BTFs, the image becomes darker. This is mainly reflected by the strongly
negative values in the coefficient field c1 (that belongs to a positive basis
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Figure 3.11: Behaviour of the estimation approach under synthetic γ-
rescalings. The setup of this experiment is completely analogous to the
γ-experiment from the previous chapter. One can see that except for ex-
tremely small values of γ, the method is robust against such rescalings.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.5  1  1.5  2  2.5  3

rescaling γ

Table 3.4: Error statistics of our method for the bad pixel measure with
varying thresholds (BP2 - BP5), averaged over all sequences of the KITTI
evaluation benchmark.

Error Out-Noc Out-All Avg-Noc Avg-All
2 pixels 10.09 % 15.63 % 1.8 px 3.6 px
3 pixels 7.63 % 12.46 % 1.8 px 3.6 px
4 pixels 6.32 % 10.63 % 1.8 px 3.6 px
5 pixels 5.45 % 9.38 % 1.8 px 3.6 px

function). Moreover, slight local variations of the BTFs can be observed in
the coefficient plots, in particular in the plots of the coefficient fields c2, c3, c4.
An example, where our model has actually estimated significantly differing
BTFs for different parts of the image is presented in Figure 3.13. Particularly
challenging in this sequence are the inter-reflections in the windshield in front
of the camera. However, the flow field is still of reasonable quality (BP3 of
5.6%). Apart of the spatially varying BTFs, one can also observe that the
inter-reflections are reproduced by the corresponding coefficient fields.

3.4.5 Comparison to the Literature
Let us now compare our method to other approaches from the literature. To
this end, we evaluated our method on the KITTI test sequences using the
optimised parameters (α, β, λ)=(0.26, 30, 1). The corresponding results are
shown in Tables 3.4 and 2.16. Table 3.4 gives detailed information on the
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Figure 3.12: Estimated coefficients and BTFs. Left column, from top to
bottom: First frame of KITTI training sequence #15 with three highlighted
positions, estimated optical flow field (avg. BP3 error of 8.81 %), and plot of
the three corresponding brightness transfer functions. Plot colours coincide
with the marker colours. Right column, from top to bottom: Estimated
coefficient fields c1 to c4. Coefficients have been shifted such that a grey
value of 127 denotes a coefficient value of 0. Brighter values denote positive
coefficients, darker values negative coefficients.

performance of our algorithm in non-occluded and all regions for different
thresholds of the bad pixel error measure (BP2 - BP5). The main bench-
mark table has already been given in the previous chapter (Table 2.16) and is
repeated here for convenience (Table 3.5) with better highlighting. It shows
the performance of our algorithm compared to other pure two-frame optical
flow methods without stereo constraints (such constraints are likely to fail in
realistic scenarios with independently moving objects). As one can see, our
conference submission with direct second-order regularisation ([Demetz et al.,
2014] H) is among the leading optical flow approaches in this benchmark.
In particular, when considering all pixels (i.e. also occluded regions), this
method ranked first at the time of submission and is significantly more ac-
curate than previous approaches. This clearly demonstrates that performing
a joint estimation of illumination changes and motion can outperform meth-
ods discarding illumination information by using invariants. Additionally,
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Figure 3.13: Estimated coefficients and BTFs. Left column, from top
to bottom: First frame of KITTI training sequence #114 with three high-
lighted positions, estimated optical flow field, plot of the three corresponding
brightness transfer functions. Plot colours coincide with the marker colours.
Right column, from top to bottom: Estimated coefficient fields c1 to
c4. Coefficients have been shifted such that a grey value of 127 denotes a
coefficient of 0. Brighter values denote positive coefficients, darker values
negative coefficients.

the table entry Estimation w. TGV represents the estimation scheme with
coupled second-order regulariser exactly as presented in this chapter. Those
results are perfectly comparable to our results from the previous chapter
(green entry, [Demetz et al., 2015] CRT w. TGV).

3.5 Summary
In this chapter we extended our variational framework for optic flow com-
putation. Our extension allowed to refrain from invariances for matching
structures. Instead, we included the problematic appearance changes explic-
itly into the data term of our framework and modelled the spatial behaviour
of these changes with a complementary anisotropic regulariser. This lead to
a variational energy functional that we minimised for the optic flow and the
illumination changes jointly.
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Table 3.5: Top KITTI benchmark results as of March 31st, 2015. Table
repeated for convenience. Only pure two-frame dense optic flow methods are
shown. All methods of this chapter are highlighted in red. Our methods that
have been discussed in the previous chapter are highlighted in green.

Method BP3 [%] AEE [px]
noc occ noc occ

[Ranftl et al., 2014] 5.93 1 11.96 2 1.6 4 3.8 3

[Wei et al., 2014] 6.03 2 13.08 5 1.6 4 4.2 5

[Braux-Zin et al., 2013] 6.20 3 15.15 7 1.5 1 4.5 6

[Demetz et al., 2014] H 6.52 4 11.03 1 1.5 1 2.8 1

[Demetz et al., 2015] (CRT w. TGV) 6.71 5 12.09 3 2.0 8 3.9 4

[Vogel et al., 2013] 7.11 6 14.57 6 1.9 7 5.5 8

[Weinzaepfel et al., 2013] 7.22 7 17.79 8 1.5 1 5.8 9

Estimation w. TGV 7.63 8 12.46 4 1.8 6 3.6 2

[Rashwan et al., 2013] 7.91 9 18.90 13 2.0 8 6.1 10

[Mohamed et al., 2014] 8.67 10 18.78 12 2.4 11 6.7 13

[Timofte and Gool, 2015] 9.09 11 19.32 14 2.6 12 7.6 16

[Demetz et al., 2013] (CRT w. TV) 9.43 12 18.72 11 2.7 14 6.5 11

[Sun et al., 2014] 10.04 13 20.26 15 2.6 12 7.1 14

[Kennedy and Taylor, 2015] 10.22 14 18.46 10 2.0 8 5.0 7

[Sun et al., 2014] 10.49 15 20.64 16 2.8 15 7.2 15

[Hermann and Klette, 2013] 10.74 16 22.66 17 3.2 17 12.2 17

[Ranftl et al., 2012] 11.03 17 18.37 9 2.9 16 6.6 12
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The first part of this chapter was devoted to the variational model be-
hind this idea. We discussed the brightness transfer function that plays the
central role of our extension. It is parametrised with a linear combination of
basis functions, whose coefficients we regularised anisotropically. Finally, we
showed how to minimise our model in terms of its associated Euler-Lagrange
equations.

Besides this variational framework, another important component of our
model was the estimation of a suitable basis. We discussed how to extract
the brightness transfer function from an image sequence and how to estimate
a basis form many samples of such functions.

In our experiments, we analysed the behaviour and performance of the
developed method. We saw that proper regularisation of the illumination
coefficients is very important, as otherwise any motion in the scene could
be attributed to illumination changes, and vice-versa. We were also able to
resign from the gradient constancy assumption that contradicted our general
idea of compensating illumination changes such that no invariant features
are necessary anymore.

The big advantage of our compensation ansatz for illumination changes is
that our model can potentially cope with any (smooth) appearance changes.
This is not the case for invariance-based models, where the choice of one
particular invariance decides which appearance changes can be tackled, and
which not. In that sense, our estimation framework is very flexible and
can adapt to any situation, whereas invariances lead to a much more rigid
constancy assumption with fewer degrees of freedom.

This additional degree of freedom also represents the main disadvantage
of this framework, as it leads to an additional parameter that has to be
chosen adequately.
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Chapter 4

Optic Flow Scale Space

From a practical point of view, the most important parameters of the meth-
ods we have discussed so far are the various regularisation weights. Among
those, the weight of the flow regularisation term has a crucial influence on the
smoothness of the resulting optic flow field. The larger its value, the smoother
will be the resulting flow. Such a behaviour is also well known in the context
of image regularisation, and there exists a close relationship to parabolic
image evolution equations that define so-called image scale spaces [Iijima,
1963; Iijima et al., 1973]. For the case of image scale spaces, the relations
between the regularisation weight and the evolution time are very well under-
stood [Scherzer and Weickert, 2000]. In the context of variational optic flow,
however, the corresponding scale space evolution equations are not known
yet. The purpose of this chapter is thus to derive these missing evolution
equations for the optic flow scale space.

First, we give a reinterpretation of the classical variational methods of
Horn and Schunck [1981] and of Nagel and Enkelmann [1986] as Whittaker-
Tikhonov regularisations of the normal flow. We show that this requires to
replace the Euclidean norm by a space-variant matrix-induced norm that
respects the data constraints.

Then, we generalise this framework to a broader class of methods that
also allows to come up with new models that have not been considered before.
We show that they can offer better performance than the classical variational
methods.

After that, we will make the transition from the regularisation framework
to a scale-space representation. This leads to the novel concept of optic
flow scale-spaces. They are parabolic evolutions of vector-valued data with
the regularisation parameter as scale and the normal flow as initial state.
However, we will see that there are important differences to many image
scale-spaces: The optic flow scale spaces are not of divergence type and
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hence do not preserve the average value of the initial data. Moreover, due to
the matrix-weighted norm, they turn out to be highly anisotropic.

Finally, we exploit the optic flow scale space evolution to automatically
select the best scale that gives the most accurate optic flow field. As a
parameter-free scale selection principle we employ the Optimal Prediction
Principle, which is specifically tailored to the needs of optic flow estimation
[Zimmer et al., 2011b].

This chapter bases on the publication [Demetz et al., 2011] published at
the conference on Scale Space and Variational Methods in Computer Vision.

Related Work

The earliest occurrences of Gaussian scale-space theory go back to Iijima’s
pioneering work and its use in optical character recognition many decades
ago [Iijima, 1963; Iijima et al., 1973]. Since then, scale-spaces have become
versatile tools for analysing and understanding the multiscale structure of
images; see e.g. the monographs [Florack, 1997; Lindeberg, 1994; Sporring
et al., 1997; Weickert, 1998] and the references therein. While partial differ-
ential equations (PDEs) of evolution type provide a natural framework for
most scale-space concepts [Alvarez et al., 1993], it has also been shown that
variational regularisation methods create scale-spaces where the regularisa-
tion parameter acts as scale [Scherzer and Weickert, 2000].

The transformation we apply is related to a proposal by Schnörr [1993],
who did not pursue this concept further. With respect to the interpretation
of variational methods in terms of specific norms, vector spaces, and higher
order manifolds, there is a huge amount of literature available; see e.g. Sochen
et al. [2001] and the references therein. Particularly interesting in this context
is the work of Ben-Ari and Sochen [2009] who derive a class of smoothness
terms based on spatially varying norms induced by suitable embeddings of the
flow field into higher dimensional vector spaces. Scale selection is a classical
issue in Gaussian scale-space theory [Lindeberg, 1994]. More specifically,
choosing optimal smoothness parameters is an enduring problem for almost
all classes of scale-space and variational methods. In our context, the works
by Krajsek and Mester [2006], Mrázek and Navara [2003] and the recent
ideas by Zimmer et al. [2011b] are most relevant. While there has been some
research on scale spaces for image sequences [Fagerström, 2007; Guichard,
1998; Lindeberg, 2013; Laptev et al., 2007], to our knowledge the concept of
optic flow scale space has not been considered before.
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4.1 Variational Optic Flow
as Whittaker-Tikhonov Regularisation

As starting point of our derivations of an optic flow scale space we consider
the classic method of Horn and Schunck [1981]. This variational method
estimates the optic flow field u := (u, v)> = (u(x, y, z), v(x, y, z))> as the
minimiser of the energy functional

E(u) =
∫

Ω

(
(fxu+ fyv + fz)2 + α

(
‖∇u‖2 + ‖∇v‖2

) )
dx , (4.1)

where, as before, Ω ⊂ R2 represents the spatial image domain, f : Ω ×
[0,∞) → R the grey value image sequence, ‖ · ‖ stands for the Euclidean
norm, subscripts denote partial derivatives, and ∇ = (∂x, ∂y)> is the spatial
gradient operator.

The data term of the latter functional models the already linearised as-
sumption that corresponding pixels in subsequent frames have similar grey
value. Since it depends on the two unknown functions u and v, its solution is
under-determined. Evidently, in order to find a unique solution, additional
assumptions on u and v are needed. This is realised by the second term –
the so-called smoothness term. It penalises variations of the solution and is
weighted by the positive regularisation parameter α.

4.1.1 Regularisation in a Spatially Varying Norm
In the following, we consider a slightly modified version of the energy (4.1)
with the additional terms ε2(u2 +v2) + c, where ε is a small positive constant
and c(x, y, z) = −εf 2

z /(|∇f |2 + ε2) is a function which does not depend on
the unknown and thus does not play a role in the actual minimisation. Later
on, these terms will be useful for theoretical reasons. The modified energy
then reads as

E(w) =
∫

Ω

(
(fxu+ fyv + fz)2+ ε2(u2 + v2) + c+ α

(
‖∇u‖2 + ‖∇v‖2

))
dx .

(4.2)
Let us now reformulate the latter energy in an image regularisation frame-
work. This will allow us to obtain a different much more intuitive under-
standing of the underlying variational model. Since a smoothness term is
already present, the main task is now to derive a suitable similarity term. To
this end, we make use of the following result (see also Abhau et al. [2009]):
Let un,ε be the regularised normal flow, given by

un,ε = −fz∇f

|∇f |2 + ε2
, (4.3)



126 CHAPTER 4. OPTIC FLOW SCALE SPACE

and let A : Ω→ R2×2 be a symmetric positive definite matrix in every point
of the image domain defined as

A2 = ∇f∇f> + ε2I , (4.4)

where I denotes the unit matrix. Then the following equivalence holds:

(fxu+ fyv + fz)2 + ε2(u2 + v2) + c = (u− un)>A2 (u− un) . (4.5)

This can easily be verified by straightforward calculations, see Appendix B.
Essentially this means that the data term of the modified functional (4.2) can
be rewritten to a quadratic form. The concept of matrix-weighted norms al-
lows us then to make the similarity the functional to an image regularisation-
like energy [Bertero et al., 1988] obvious:

E(u) =
∫

Ω

(
‖u− un‖2

A2 + α
(
‖∇u‖2 + ‖∇v‖2

) )
dx . (4.6)

In this context, for a symmetric positive definite matrixM the corresponding
matrix-weighted norm is given by ‖x‖2

M := 〈x,x〉M = x>Mx. Note that
due to the additional term in (4.2), the space-variant matrix A fulfils these
requirements by construction everywhere.

Having performed the previous rewritings, the following insight becomes
explicit: Essentially, the seminal variational optic flow method of Horn and
Schunck can be interpreted as Whittaker-Tikhonov regularisation of the nor-
mal flow in a matrix-weighted spatially varying norm.

4.1.2 Analysis of the Matrix-Weighted Norm
The rewritten data term favours solutions that are similar to the regularised
normal flow. However, the actual deviation is evaluated in rotated and
rescaled coordinate system that is determined by the constraint matrix A.
Since the eigensystem of the latter matrix is obvious, we can easily anal-
yse and understand the effect of the introduced matrix-weighted norm. The
eigendecomposition of A2 given by

A2 =
(
|∇f |2 + ε2

) ∇f

|∇f |
∇f>

|∇f |
+ ε2

∇f⊥

|∇f |
∇f⊥

|∇f |

>

. (4.7)

Thus, we can express the complete data term as

‖u− un‖2
A2 =

(
|∇f |2 + ε2

)〈
u− un,

∇f

|∇f |

〉2

+ ε2
〈
u− un,

∇f

|∇f |

⊥〉2

.

(4.8)
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This shows that the central quantity being under consideration is the normal
flow un, or rather the difference between the actual solution and the normal
flow u−un. This difference vector is then projected into the local eigensystem
of A2. There, its component perpendicular to the image gradient is basically
negligible (since ε2 is small), while its component along the image gradient
is the part that actually contributes.

This also confirms the classic explanation of the linearised grey value
constancy assumption as a constraint line: The expression fxu+fyv+ft = 0
defines a line perpendicular to the image gradient with distance ft/|∇f |
from the origin Horn and Schunck [1981]. Also the findings in Zimmer et al.
[2011b] are in accordance with this interpretation: There, the authors rewrite
the assumption into a projection of the difference vector w − wn onto the
image gradient, which exactly comes down to our locally adapted norm for
ε=0.

4.2 Generalisations
So far, our reformulation of the model of Horn and Schunck [1981] has only
identified the matrix-induced norm ‖·‖A2 to play a central role. Consequently,
we now propose to generalise this idea to a class of norms with varying
anisotropy. To this end, we alter the exponent of the constraint matrix
inducing the norm. This yields a data term of the general form

‖u− un‖2
A2−β , (4.9)

with 0 ≤ β ≤ 2. While theoretically possible, values of β beyond 2 do not
make sense, since then the anisotropy of the norm would be inverted, i.e. the
penalisation directions would be swapped. Our parametrisation of the norm
has been chosen such that for β = 0 the original model of Horn and Schunck,
and for β = 2 a pure decoupled vector-valued regularisation of the normal
flow in the Euclidean norm is obtained (since the constraint matrix collapses
to the identity matrix, i.e. A2−2 = I).

To establish a consistently extended model, we also equip the smoothness
term with the same spatially varying norm. This leads to the regulariser

‖∇u‖2
A−γ + ‖∇v‖2

A−γ , (4.10)

where γ ≥ 0. This generally anisotropic image-driven regulariser allows vari-
ations of the flow field across image edges but not along them. In the special
case of γ = β = 0 the model corresponds to Whittaker-Tikhonov regular-
isation [Whittaker, 1923; Tikhonov, 1963] as used by Horn and Schunck
[1981].
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Nagel and Enkelmann. Another special case of our generalised model is
obtained for γ = 2 and β = 0: Then, our method is very closely related to
the method of Nagel and Enkelmann [1986], as the regularisation term of
both methods can be written as

∇u>D ∇u+ ∇v>D ∇v , (4.11)

where the eigenvectors of the matrix D coincide for both methods, and only
the corresponding eigenvalues differ slightly:

D =
(

∇f

|∇f |
∇f⊥

|∇f⊥|

)> (
µ1 0
0 µ2

)(
∇f

|∇f |
∇f⊥

|∇f⊥|

)
. (4.12)

For the original method of Nagel and Enkelmann [1986] we have the following
eigenvalues:

µ1 = ε2

|∇f |2 + 2ε2 , and µ2 = |∇f |2 + ε2

|∇f |2 + 2ε2 , (4.13)

and for our method, the following eigenvalues result:

µ1 = 1
|∇f |2 + ε2

, and µ2 = 1
ε2
. (4.14)

By rescaling the smoothness weight of our method by the factor ε2, we effec-
tively rescale the eigenvalues. Then, the close similarity becomes obvious.

Recall that the proposed spatially varying norm naturally arises from the
linearised constancy assumption in the data term. In this way our approach
differs significantly from the work in Ben-Ari and Sochen [2009], which derives
such a norm by embedding the flow in a higher dimensional vector space and
thus disregards the data term throughout the derivation. Incorporating both
generalisations, we finally consider the energy functional

E(u) =
∫

Ω

(
‖u− un ‖2

A2−β + α
(
‖∇u‖2

A−γ + ‖∇v‖2
A−γ

) )
dx dy , (4.15)

with α, β and γ as defined before. This energy functional forms the basis for
our optic flow scale space introduced in the next section.

4.3 Optic Flow Scale Space
Let us now derive the actual evolution equations. The Euler-Lagrange equa-
tions associated with our functional (4.15) read

A2−β · (u− un)− α ·
(

div (A−γ ∇u)
div (A−γ ∇v)

)
= 0 . (4.16)
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with reflecting Neumann boundary conditions

n>A−γ ∇u = 0 and n>A−γ ∇v = 0 (4.17)

Note that Equation (4.16) is vector-valued. In the next step, subtract the
divergence terms and divide the factor A2−β to the other side. This is valid
since A is invertible by construction. We obtain:

u− un
α

= Aβ−2
(

div (A−γ ∇u)
div (A−γ ∇v)

)
, (4.18)

In this form, the relations to an implicit time discretisation of the following
filter are obtious:

∂t u = Aβ−2
(

div(A−γ ∇u)
div(A−γ ∇v)

)
, (4.19)

with a single time step of size α, and the normal flow un as initial state at
time t = 0:

u( · , 0) = un . (4.20)

Obviously this temporal evolution constitutes a scale space, whose evolution
time t coincides with the regularisation parameter α of the associated energy.
Interestingly, the initial state of our optic flow scale space is the regularised
normal flow, which is the only component of the flow field that can be directly
extracted from the image data.

Note that we have transformed the regularisation-like energy functional
(4.15) into a diffusion-like coupled system of parabolic PDEs (4.19). In
the context of image filtering, relations between such methods have been
investigated by Scherzer and Weickert [2000].

4.4 Numerical Realisation
For solving the parabolic problem in (4.19) we use an explicit scheme. To
this end we discretise the two flow components u and v by sampling them
on a regular grid and stacking all rows in single vectors u,v ∈ RN , where N
denotes the number of pixels. Using this single-index notation, we discretise
the matrix Aβ−2 in pixel i by

Aβ−2
i =

(
ai bi
bi ci

)
, i = 1, . . . , N . (4.21)
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Accordingly, we discretise the diffusive terms using finite differences and ob-
tain a nonadiagonal diffusion matrixD ∈ RN×N (similar to Weickert [1998]).
This leads to the following explicit scheme:

(
u
v

)k+1

=


I + τ



a1 b1
. . . . . .

aN bN
b1 c1

. . . . . .
bN cN





D 0

0 D




(
u
v

)k
,

(4.22)
where every iteration advances the evolution by the time step size τ > 0.
Thus, after k iterations (uk,vk)> contains the flow field at scale α = k ·τ . As
a consequence, this explicit scheme inherently samples the whole scale space
up to the stopping time α in intervals of size τ . Thereby, the whole iteration
matrix remains constant for all iterations, since all terms are exclusively
image-driven.

In order to accelerate this explicit scheme, we made use of the fast explicit
diffusion (FED) strategy Grewenig et al. [2010], which performs cycles of
explicit iterations with varying time step sizes. In particular, up to 50% of
the step sizes can exceed the stability limit significantly, while the overall
process remains provably stable. By that, the order of the smoothing time
reached in n steps can be increased from O(n) to O(n2). In our case, this is
very beneficial, since the maximal stable time step size of the explicit scheme
can decrease drastically with increasing anisotropy or small choices of the
parameter β.

4.5 Optimal Scale Selection
In the previous sections, we have set up a novel class of optic flow scale spaces
which all evolve in the regularisation parameter α.

Evidently, in the optic flow setting there exists one distinct scale within
each scale space that provides the flow with the highest accuracy. Since
the optic flow on all scales is available by construction, we have access to the
deep structure of this scale space and can exploit this information to perform
an automatic scale selection. To this end, we adapt the Optimal Prediction
Principle (OPP) of Zimmer et al. [2011b]. In short, this principle suggests
to rate the quality of an optic flow field between the first and second frame
according to its extrapolation quality from the first to the third frame. The
underlying assumption is that the velocity of objects (or the camera) remains
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constant over time. Zimmer et al. [2011b] show that this simple assumption
works very well for the automatic estimation of the smoothness weight α.

In our case, for a given flow field u=(u, v)> between the frames at time
z and z+1, we assess the extrapolation quality by evaluating the Average
Data Constancy Error (ADCE), which is based on the grey value constancy
assumption without linearisation:

ADCE1,3(u) = 1
|Ω|

∫
Ω

(
f(x+ 2u, y + 2v, z + 2)− f(x, y, z)

)2
dx . (4.23)

It is obvious that if the model assumptions hold, a good flow field will lead to
small values of this error measure. Note that in contrast to the optimisation
strategy of Zimmer et al. [2011b], we can exploit the following advantageous
property of our numerical scheme: It explicitly evolves in the parameter α,
hence after each iteration the flow field at cumulated time α is available,
and the ADCE can be evaluated. This on-the-fly computation of the quality
estimate is not possible for most other optic flow methods, because they
typically require to solve a new system of equations for each value of α.

Besides the OPP, we also tried other schemes for automatic scale esti-
mation. In particular, we investigated the performance of the decorrelation
method of Mrázek and Navara [2003]. However, experiments indicated that
the underlying assumptions do not hold for our optic flow scale space.

4.6 Experiments
In order to investigate the behaviour of our optic flow scale space we perform
experiments on several image sequences that are publicly available and for
which the ground truth flow field is known. In particular, we use the Yosemite
sequence with and without clouds [Barron et al., 1994], the New Marble1
sequence as well as the Rubberwhale sequence [Baker et al., 2011].

In our first experiment we compute samples of the scale space for the New
Marble sequence at different evolution times and for several choices of β and
γ. Figure 4.1 shows the corresponding flow fields, where colour encodes the
direction and brightness indicates the magnitude of the displacements. Here,
one can clearly see the scale space behaviour of the proposed diffusion-like
optic flow process: Independently of β and γ, the initial state of all these
scale spaces (α = 0) is given by the noisy normal flow, while for larger values
of α the flow fields become successively smoother. In this context, we make
two observations: On the one hand, for γ > 0 discontinuities are preserved

1available from http://i21www.ira.uka.de/image_sequences

http://i21www.ira.uka.de/image_sequences
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Figure 4.1: Scale space at different stopping times for varying β and γ.
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Figure 4.2: Zoom into the optic flow fields at scale α = 1000 from Figure 4.1.
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Table 4.1: Quantitative error measurements in terms of the AAE on different
image sequences. For our method, β and γ have been optimised. The actual
choices are given in brackets.

Image sequence Horn /
Schunck

Nagel /
Enkelmann Our method

New Marble 2.65 2.77 2.53 (β=1.0, γ=0.4)
Rubberwhale 10.58 9.27 9.04 (β=0.5, γ=1.0)

Yosemite 7.51 6.86 6.41 (β=0.4, γ=0.9)
Yosemite no clouds 2.82 3.63 2.76 (β=0.2, γ=0.1)

for a longer time, since the regulariser is then of image-driven anisotropic
nature. On the other hand, results for β > 0 are slightly less noisy, since the
larger eigenvalue of A2−β – the one that depends on the magnitude of the
image gradient – is now subject to a smaller exponent, cf. Equation (4.8).
This becomes particularly visible in the magnifications shown in Figure 4.2.

In a second experiment, we compare the accuracy of the proposed scheme
against the two special cases in our framework: Horn and Schunck (β=γ=0)
and Nagel and Enkelmann (β=0, γ=2). This is done for the aforementioned
image sequences by means of the Average Angular Error (AAE) Barron et al.
[1994]. It should be noted that we keep the presmoothing scale fixed at σ=1
throughout all experiments, since its impact is not in the focus of our con-
tribution. Table 4.1 demonstrates that our method consistently leads to
improved results. In particular, it shows that the additional degrees of free-
dom β and γ provided by our general class of scale spaces can be beneficial.

In our third experiment, we investigate the automatic selection of the scale
parameter α of our model using the OPP. To this end, we first juxtapose the
graph of the estimated quality in terms of the ADCE with the graph of the
measured accuracy given by the AAE in Figure 4.3 (a). This is done for
the Yosemite sequence with clouds with β=γ= 0.5. One can see that both
graphs have a similar and well aligned shape. In particular, the minima of
both curves are attained at almost the same position. Secondly, we compare
the estimated values for the regularisation parameter α against those that are
optimal with respect to the AAE. This is done for all four image sequences
with β= γ= 0.5 fixed. As one can see from Figure 4.3 (b), the OPP works
very well in practice: In all cases, the AAE at the estimated scale is close to
the one of the optimal scale.

In our final experiment we analyse how the two generalisation parameters
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Figure 4.3: Automatic scale selection using the Optimal Prediction Principle.
(a) Left: Graphs of the ADCE and AAE side-by side. Crosses denote the
minimal value of the graph. (b) Right: Estimation results of the selected
scale α for different image sequences. Triangles indicate the estimated value
and squares denote the optimal choice.
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Figure 4.4: Influence of the parameters β and γ on the accuracy. (a) Left:
Behaviour under variations of β for fixed γ. (b) Right: Ditto for varying γ
and fixed β. In both cases, crosses indicate the minimum of the graphs.

β and γ influence the accuracy of the estimation. To this end, we have com-
puted the AAE for β, γ ∈ [0, 2] using the Yosemite sequence with clouds. As
in the previous experiments, the selection of the stopping time α within each
scale space has been performed automatically using the OPP. The resulting
graphs in Figure 4.4 (a) and (b) show that for both parameters values larger
than zero consistently improve the accuracy.
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4.7 Summary
In this chapter we have developed and analysed the optic flow scale space
(OFSS). As for traditional scale spaces, the OFSS originates from the reg-
ularisation parameter that virtually all variational optic flow methods have
in common – larger values lead to smoother solutions. In order to derive the
central evolution equations of the OFSS, we modified the original method of
Horn and Schunk slightly such that we could transform the classical linearised
grey value constancy assumption into a similarity term in a problem-specific
space-variant norm. This allowed us to deduce the evolution equations of the
optic flow scale space. Interestingly, the initial state of our evolution is the
normal flow – an analogy to image scale spaces where the initial state is the
input image. After that, we established connections to other optic flow meth-
ods by transferring the matrix weighted norm also to the smoothness term.
Moreover, by varying the exponents of the constraint matrix, we were even
able to derive novel models and corresponding scale spaces. In every iteration
of our numerical scheme the iterate is a valid flow field which corresponds
to the solution of the basic energy functional with the current process time
as regularisation parameter. This fact is exploited by the optimal prediction
principle that allows to determine an optimal scale heuristically. With our
experiments we showed that the different generalisations in fact lead to dif-
ferent evolutions and that certain novel configurations allow to decrease the
error.



Chapter 5

Conclusion and Outlook

5.1 Conclusion
The central topic of this thesis was optic flow, the 2-D displacement field
that describes the motion of each position between consecutive frames of
an image sequence. In particular, we concentrated on one of the major
challenges of accurate and robust optic flow estimation: illumination and
appearance changes. Such changes are a big problem since they contradict
the traditional colour constancy assumption that many methods rely on.
There are two generally different strategies to approach this problem, which
we discussed in the second and third chapter of this work.

The prevailing way to handle illumination changes is via invariances.
There exists a great variety of invariant features in the literature, on which
we gave broad and structured overview in the first part of the second chap-
ter. This discussion grouped all invariant features into classes of increasing
invariance. The class with the highest degree of invariance we considered
comprises transformations that are not affected by any monotonically in-
creasing rescaling – so-called morphological invariance. For this class we
proposed two novel features the complete rank transform and the complete
census transform. These two transforms carry as much image information as
possible in this class on invariance. Next, we presented a variational frame-
work that allows to incorporate any of the discussed signatures and allows
a fair comparison. Our extensive experiments evaluated the performance of
the features among each other as well as among the state-of-the-art. We
could show that our novel complete signatures are favorable against all other
features. Moreover, the results on the public KITTI vision benchmark doc-
ument that our resulting variational optic flow method competes with the
state-of-the-art.

137
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In general, the term invariance is considered a desirable property of com-
puter vision algorithms. However, the closely related term ignorance has
a much worse reputation: If a feature is invariant against a certain class
of changes, it discards any information of that class – no matter if it is a
nuisance due to lighting changes, or a part of valuable image information
that should not be ignored. This change of perspective lead us to the idea
that instead of ignoring some parts of the given information, we could try
to estimate the appearance changes. To this end we developed a variational
model in the third chapter of this dissertation that estimates optic flow and
a so-called brightness transfer function (BTF) jointly. This model allowed
us to express our assumptions about the flow as well as the changes in ap-
pearance of the scene mathematically: After compensating the first frame
for the illumination changes with the BTF, the traditional colour constancy
assumption should hold again everywhere. Moreover, both the optic flow
as well as the BTF should exhibit some sort of spatial smoothness. We ex-
tended our model from the second chapter by these assumptions and showed
experimentally that such a strategy is able to produce flow fields of highest
accuracy.

Now that we have presented two alternatives to handle illumination changes,
we are left with the question which of the two approaches is better. First
of all, from a theoretical point of view, we think that the estimation scheme
should be favorable, as there is no inherent limitation in the type of appear-
ance change that could theoretically not be handled. The capability to po-
tentially explain any plausible illumination change however comes at a price:
there is an additional parameter that has to be chosen carefully. Moreover,
the estimation scheme always runs the risk of attributing a change to the
wrong cause – motion or illumination. Thus, the interplay between the data
and regularisation terms is very complex. The invariance-based scheme does
not have this degree of freedom, and only works with the part of the image
information that the feature provides. While this limits the capabilities on
the one hand, it also makes the parameter calibration much easier. One of
our experiments illustrates this trade-off very well: For the frequently consid-
ered sequence #15 of the KITTI benchmark, the lowest error of 8.81% was
achieved with our estimation framework. However, considering all 194 image
sequences, the invariance-based framework with our CRT-based data term
lead to the globally best result in this thesis. This illustrates that the estima-
tion model is in fact capable to estimate highest accuracy – if its parameters
are chosen optimally. Our CRT-based method however is more robust in this
respect and reaches high accuracy without the need to fine-tune parameters
for each new problem.

In the fourth chapter of this dissertation, we addressed another impor-
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tant component that practically all variational regularisation methods have
in common: the smoothness parameter that weights the data against the
smoothness assumption. In the context of image regularisation, close con-
nections to scale spaces are well understood. However, for optic flow meth-
ods such an analysis had not been performed before. The key to our elegant
formulation of the optic flow scale space was a small modification of the
method of Horn and Schunck. This allowed us to reinterpret the data term
as a similarity assumption in a space-variant norm. From this, we could
derive parabolic evolution equations whose initial state is the normal flow.
Analogously to image regularisation, the process time of our optic flow scale
space evolution equations corresponds to the regularisation parameter of the
optic flow functional.

5.2 Outlook
We have seen that the parameter choice is a major issue for the estimation
scheme. One ad-hoc possibility to alleviate it would be to supplement a
CRT-based data term. However, this can only lighten the problem, but
cannot remove the degree of freedom completely. If time is not an issue,
also the optimal prediction principle that was discussed in the last chapter
might be helpful, however modifications w.r.t. illumination changes would
be necessary, eventually via invariances.

Another interesting topic could be to alter our realisation of an illumina-
tion compensation via a local BTF into a global model that might be learned
online.

The estimation scheme can be seen as first step towards finding an ex-
planation of all changes in an image sequence. We did this in terms of a
spatial and a tonal displacement that we estimated in each pixel. As a long
term goal, one could think of going further and estimating richer models that
include for instance geometry and reflectance. The hope would be that the
parameters of such representations might be easier to calibrate. However,
such schemes of course would loose general applicability and one has to be
careful not to end up in a standard 3D reconstruction setting.

In the context of the optic flow scale space and the optimal prediciton
principle, extending the applicability of our theoretical findings to advanced
optic flow methods might be an interesting topic. Especially the application
of the optimal prediction principle in each scale of the warping strategy might
offer room for accuracy improvement.
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Appendix A

Discretisation Details

The goal of this appendix is to sketch our discretisation of the coupled second
order regularisation term that we use in our models from Chapters 2 and 3.

For the sake of simplicity, we consider the following regularisation energy
functional, whose data term is much simpler than our terms for optic flow:

E(u,a, b) =
∫

Ω
Ψd

(
(u− f)2

)
dx︸ ︷︷ ︸

Edata

+α
(∫

Ω
Ψc

(∥∥∥∇u−
(
a
b

)∥∥∥2

2

)
dx︸ ︷︷ ︸

Ecoupl

+β
∫

Ω
Ψs

(
‖∇a‖2 + ‖∇b‖2

)
dx︸ ︷︷ ︸

Esmooth

)
,

(A.1)

and where only one pair of auxiliary coupling variables a, b : Ω → R has to
be considered. Our discretisation has one unknown for and u, a and b per
pixel. The discretisation of the first term is trivial, we have:

Edata(u) =
n∑
i=1

m∑
j=1

Ψd

(
((ui,j − fi,j)2

)
, (A.2)

where u ∈ Rn×m is the discetised version of u. To develop a discretised
version of the second term, partial derivatives of u have to be approximated,
which we do by averaging forward and backward finite differences, c.f. We-
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ickert [1998]; Brox [2005]. We obtain:

Ecoupl(u,a, b) =
n∑
i=1

m∑
j=1

Ψc

 1
2 χ

[1,n−1]×[1,m]
i,j

(
ui+1,j − ui,j

hx
− ai,j

)2

+1
2 χ
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i,j

(
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)2

+1
2 χ
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i,j

(
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hy
− bi,j

)2

+1
2 χ

[1,n]×[2,m]
i,j

(
ui,j − ui,j−1

hy
− bi,j

)2
 ,

(A.3)

where the indicator functions

χa×bi,j =

1 if i ∈ a and j ∈ b
0 else

, (A.4)

make sure we do not access the signal outside its domain. For the smoothness
term on the coupling variables, we obtain in an analogous way for a, b ∈
Rn×m:

Esmooth(u,a, b) =
n∑
i=1

m∑
j=1

Ψs

 1
2 χ

[1,n−1]×[1,m]
i,j

(
ai+1,j − ai,j

hx

)2
+ 1

2 χ
[2,n]×[1,m]
i,j

(
ai,j − ai−1,j

hx

)2

+1
2 χ

[1,n]×[1,m−1]
i,j

(
ai,j+1 − ai,j

hx

)2
+ 1

2 χ
[1,n]×[2,m]
i,j

(
ai,j − ai,j−1

hx

)2

+1
2 χ

[1,n−1]×[1,m]
i,j

(
bi+1,j − bi,j

hx

)2

+ 1
2 χ

[2,n]×[1,m]
i,j

(
bi,j − bi−1,j

hx

)2

+1
2 χ

[1,n]×[1,m−1]
i,j

(
bi,j+1 − bi,j

hx

)2

+ 1
2 χ

[1,n]×[2,m]
i,j

(
bi,j − bi,j−1

hx

)2
 .
(A.5)

The minimiser of the energy function is found by setting the derivative of
E w.r.t. each ui,j,ai,j and bi,j to zero and solving the resulting non-linear
system of equations, c.f. Section 2.4.4. The correct boundary equations
result naturally from the discretised energy.



Appendix B

Derivation of the
Matrix-Weighted Norm

It remains to show that the data term of the modified functional from Equa-
tion (4.2) and the similarity term from Equation (4.6) are in fact equivalent.
To this end, we transform both data terms to arrive at the same expression.
We start with the modified Horn and Schunck data term:

(fxu+ fyv + fz)2 + ε2(u2 + v2)− εf 2
z

|∇f |2 + ε2

= (f 2
x + ε2)u2 + 2fxfyu v +2fxfzu−

εf 2
z

|∇f |2 + ε2

+ (f 2
y + ε2)v2 +fyfzv

+f 2
z

= u>
(
f 2
x + ε2 fxfy
fxfy f 2

y + ε2

)
u+ 2∇f>ufz + f 2

z (1− ε

|∇f |2 + ε2
)

= u>A2u+ 2∇f>ufz + f 2
z

|∇f |2

|∇f |2 + ε2
.

(B.1)

From the other end, using the abbreviation

un = −fz∇f

|∇f |2 + ε2
, (B.2)
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for the regularised normal flow, we transform the similarity term as follows:

(u− un)>A2 (u− un)
= u>A2u− 2u>A2un + u>nA2un

= u>A2u− 2u>(∇f∇f> + ε2I)un + u>n∇f∇f>un + u>n ε2un

= u>A2u− 2u>(−∇f∇f>∇ffz
|∇f |2 + ε2

+ −ε2∇ffz
|∇f |2 + ε2

)

+ −∇f>fz∇f
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|∇f |2 + ε2

+ ε2
−∇f>∇ff 2

z

|∇f |2 + ε2

= u>A2u− 2u> −fz
|∇f |2 + ε2

(∇f |∇f |2 + ∇fε2)

+ |∇f |4f 2
z

(|∇f |2 + ε2)2 + ε2
|∇f |2f 2

z

(|∇f |2 + ε2)2

= u>A2u+ 2u>fz∇f
|∇f |2 + ε2

|∇f |2 + ε2
+ |∇f |2 + ε2

(|∇f |2 + ε2)2 (|∇f |2f 2
z )

= u>A2u+ 2u>fz∇f + |∇f |2f 2
z

|∇f |2 + ε2
.

(B.3)

As one can see, both computations result in the same expression, thus the
equivalence holds. �
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