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Abstract. The increasing importance of outdoor applications such as driver as-
sistance systems or video surveillance tasks has recently triggered the develop-
ment of optical flow methods that aim at performing robustly under uncontrolled
illumination. Most of these methods are based on patch-based features such as
the normalized cross correlation, the census transform or the rank transform.
They achieve their robustness by locally discarding both absolute brightness and
contrast. In this paper, we follow an alternative strategy: Instead of discarding
potentially important image information, we propose a novel variational model
that jointly estimates both illumination changes and optical flow. The key idea
is to parametrize the illumination changes in terms of basis functions that are
learned from training data. While such basis functions allow for a meaningful
representation of illumination effects, they also help to distinguish real illumi-
nation changes from motion-induced brightness variations if supplemented by
additional smoothness constraints. Experiments on the KITTI benchmark show
the clear benefits of our approach. They do not only demonstrate that it is pos-
sible to obtain meaningful basis functions, they also show state-of-the-art results
for robust optical flow estimation.

1 Introduction

Three decades after the seminal work of Horn and Schunck [22], dense variational op-
tical flow methods have found their way into numerous real-world applications such
as driver assistance systems [33], markerless motion capture [13], long-term trajectory
analysis [32] as well as motion-aware video editing [37]. Based on the minimization
of a global energy functional that combines constancy assumptions (data term) with
regularity constraints (smoothness term), variational methods allow both a transparent
modeling and an accurate estimation of the results. Since many real-world applications
require to process outdoor sequences, it is not surprising that the robustness of optical
flow methods under uncontrolled illumination has become a major challenge. This is
also reflected in the design of recent real-world benchmarks such as the KITTI Vision
Benchmark Suite [14]. It provides challenging data from automotive scenarios that con-
tains typical illumination changes due to automatic camera re-adjustments, changeable
weather conditions or physical effects such as shadows and highlights.
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Basic Optical Flow Approaches. In order to tackle the problem of illumination changes,
most approaches from the literature make use of constancy assumptions based on
illumination-invariant image features. Such features achieve their robustness by locally
discarding illumination-sensitive information such as absolute brightness or contrast
[24, 27, 34, 36, 50]. In the extreme case almost all information is discarded and only a
relative local ordering is stored [5, 11, 35]. Methods based on such illumination-invari-
ant features use constancy assumptions on higher order derivatives such as the gradient
or the Hessian [23, 34, 38, 43, 51], photometric invariants [27, 45, 54] as well as mutual
information [21]. Moreover, recently, patch-based techniques have become very popu-
lar such as the normalized cross correlation (NCC) [50], the rank transform [11, 53] and
the census transform [5, 35, 39]. Some of the approaches also use illumination-robust
descriptors from sparse feature matching such as SIFT [24, 25] and HOG [8, 36]. A
comparison of some of these methods can be found in [40] and [46]. Similar in spirit
are methods that discard illumination-relevant information via preprocessing. Typically,
they employ the structure-texture-decomposition [48] or derivative-type filters [41].

What all those aforementioned methods have in common is that they discard poten-
tially valuable image information. However, if illumination changes are only moderate
or not even present, discarding brightness and contrast information may significantly
deteriorate the results. Moreover, some of the transformations are highly non-linear and
even lack differentiability which results in a more complex optimization. Finally, most
invariants are not defined at all locations, since illumination-invariant information can-
not be extracted everywhere (e.g. in homogeneous regions). Summarizing: Instead of
discarding potentially valuable information that may harm the estimation, it would be
desirable to keep and exploit all available information when estimating the flow.

Advanced Optical Flow Approaches. In fact, there are a few methods in the literature
that follow the above mentioned idea by jointly estimating both illumination changes
and the optical flow. On the one hand, there are approaches that seek to estimate a
single global brightness transfer function to identify problematic image regions [10].
On the other hand, there are techniques that embed the classical brightness constancy
assumption into a parametrized local illumination model for which the coefficients are
jointly estimated. Such local models include simple additive terms [7, 28], affine illumi-
nation models [15, 18, 30] as well as complex brightness models derived from physics
[20]. Recently, also local and global ideas were combined [18]: While a local affine
model allows to estimate the correspondences in a PatchMatch-like approach [1], the
information is eventually condensed to a single global transfer function.

Preserving potentially valuable image information, however, is not the only advan-
tage of approaches based on parametrized illumination models. If appropriate models
are employed, imposing smoothness on the resulting parameter field allows to separate
real illumination changes from motion-induced brightness variations. However, so far
in the literature, the considered illumination models were either chosen ad-hoc [7, 15],
or specifically tailored towards a certain physical process [20]. There have been no ef-
forts so far to determine the most suitable model for a specific type of data. Moreover,
it has not yet been investigated how the smoothness term of the coefficient field should
be modeled such that it allows for a good separation of motion and illumination effects.
Finally, since all existing variational methods with parametrized illumination models
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are based on simple concepts for data and smoothness terms, it remains unclear how a
more sophisticated joint method would perform on a suitable optical flow benchmark.

Our Contribution. In this paper, we address all these questions. Firstly, we use a prin-
cipal components analysis (PCA)-based approach with a clustering step to learn a suit-
able basis for the local brightness transfer functions from training data. Secondly, we
propose a joint complementary regularizer for the basis coefficients that is based on a
weighting scheme derived from the eigenvalues of the PCA. Thirdly, we embed the ba-
sis functions and the regularizer into a variational model that combines brightness and
gradient constancy with a second-order smoothness term. Experiments demonstrate that
our approach works very well in practice. We obtain meaningful basis functions, intu-
itive coefficient fields as well as state-of-the art results on the KITTI benchmark.

Related Work on Basis Learning. Apart from the aforementioned techniques that
jointly estimate illumination changes and optical flow, a few more related works are
worth mentioning. On the one hand, there are methods that address the estimation of
camera response or brightness transfer functions, mainly in the context of HDR imag-
ing. Such approaches include the work of Grossberg and Nayar [16] who proposed to
compute the brightness transfer function via histogram specification, as well as the pa-
pers of Debevec and Malik [9] and Grossberg and Nayar [17] on estimating the camera
response function, the latter one using learned basis functions. On the other hand, there
are approaches that represent appearance changes with basis functions for illumination
changes. Such methods include the template tracking approach of Hager and Belhumeur
[19] as well as the work on iconic changes by Black et al. [3]. Finally, there exist a few
optical flow methods that make use of spatial or temporal basis functions to model the
flow. This applies to the approaches by Nir et al. [31] on over-parametrized optical flow
and Garg et al. on temporal tracking of non-rigid objects with subspace constraints [12].

Organization. In Section 2, we introduce our novel variational model based on bright-
ness transfer basis functions and joint complementary coefficient regularization. Min-
imization issues are then discussed in Section 3. The estimation of the basis functions
and the clustering step are explained in Section 4. Our results and a comparison to the
literature are presented in Section 5. The paper ends with a summary in Section 6.

2 Variational Model

Let us consider a sequence of two images fi : Ω → R (i ∈ {1, 2}) defined on a
rectangular domain Ω ⊂ R2. Furthermore, let the optical flow field be denoted by
w=(u, v)>: Ω→R2 and let the illumination changes be parametrized by a coefficient
field c : Ω → Rn. Then, inspired by the basic approach of Cornelius and Kanade [7],
we propose to jointly compute the optical flow and the illumination changes as mini-
mizer of an energy functional with the following structure:

E(w, c) =

∫
Ω

(
D(w, c) +Rflow(w) +Rillum(c)

)
dx . (1)

It consists of three terms: a data term D that relates two consecutive frames of the input
image sequence via the optical flow and the parametrized illumination changes (in terms
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of coefficients), a flow regularization term Rflow which encourages a piecewise affine
flow field, and a coefficient regularization termRillum that assumes the coefficient fields
to be piecewise smooth. Let us now discuss these terms in detail.

2.1 Data Term

Unlike traditional data terms for optical flow estimation that explain brightness changes
in the image sequence exclusively by motion, our data term models changes in il-
lumination as additional source for brightness variations. In order to estimate these
changes jointly with the motion, we make use of a parametrized brightness transfer
function (BTF) which was originally proposed by Grossberg and Nayar [17] in the con-
text of photometric calibration for HDR imaging. This function maps intensities of the
first frame to their intensities in the second frame. Given a set of n basis functions
φj : R→R, the corresponding brightness transfer function reads

Φ(c, f) = φ̄(f) +

n∑
j=1

cj · φj(f) , (2)

where φ̄ : R → R is the mean brightness transfer function and c = (c1, . . . , cn)>

are linear weights. Let us now discuss how to embed this general model for brightness
changes into a data term. To this end, we propose the following combination of the
brightness constancy assumption and the gradient constancy assumption which can
be seen as an extension of [6]. Defining ν as positive weight and using ∇· as spatial
gradient operator, our data term reads

D(w, c) = Dbright(w, c) + νDgrad(w, c) , (3)

with

Dbright(w, c) = Ψd

((
f2 (x+w)− Φ (c(x), f1(x))

)2 )
, (4)

and

Dgrad(w, c) = Ψd

(∥∥∇f2(x+w)−∇Φ(c(x), f1(x))
∥∥2

2

)
, (5)

where brightness changes are now modeled to be spatially variant, i.e. with non-constant
coefficients c. Thus, we allow different brightness transfer functions Φ at each position.
For both assumptions, the same sub-quadratic penalizer Ψd(s2) = 2λ2

d(1+s2/λ2
d)

1
2 is

used to render the approach more robust w.r.t. outliers [2].
Please note that flow variables and illumination coefficients have intentionally been

distributed to different frames. This avoids products of unknowns when linearizing the
assumptions later on and thus makes the minimization better tractable. Moreover, at first
glance, it may seem counter-intuitive to combine our explicit estimation strategy with
a gradient constancy assumption that is invariant under additive illumination changes.
However, the additional gradient constancy term supports the estimation at those lo-
cations where the coefficients can not adapt or have not yet adapted perfectly to the
illumination changes. This is for instance the case at the beginning of the estimation,
when neither the flow nor the coefficients have converged to their final values yet.
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2.2 Regularization Terms

Since the constancy assumptions in the data term may locally fail to provide any in-
formation, a spatial regularization of both the flow variables and the illumination coef-
ficients is required. Moreover, it is not clear from the data term how to distribute ob-
served brightness changes between motion and illumination. While the parametrization
in terms of basis functions already provides a meaningful representation given by the
coefficient fields, the concrete modeling of both regularization terms plays an important
role in resolving this ambiguity. Let us now discuss how we model the two regularizers.

Flow Regularization. While first order regularization strategies have a long and suc-
cessful tradition [22], recently, second-order smoothness terms received notable atten-
tion. In particular, such terms turned out to be highly useful for non-fronto-parallel
motion, since they are tailored towards piecewise affine solutions [5, 35, 42, 46]. Con-
sequently, we make use of the following second-order regularizer that has already been
used in the context of image denoising [26] and shape-from-shading [47]:

Rflow(w) = α · Ψs

(
‖Hu‖2F + ‖Hv‖2F

)
. (6)

Here, α is a positive weight, ‖H·‖F is the Frobenius norm of the Hessian, and Ψs(s
2)=

2λ2
s (1+s2/λ2

s )
1
2 is a sub-quadratic penalizer that encourages piecewise affine solutions.

Coefficient Regularization. In contrast to the flow regularizer that models a piecewise
affine flow field, we assume that neighboring pixels are subject to similar illumination
changes, i.e. that the coefficients of the basis functions are piecewise constant. Addi-
tionally, discontinuities in the coefficient fields are assumed to be aligned with edges in
the input images (e.g. shadow edges) [29]. Consequently, we follow the idea of Zimmer
et al. [54] and employ the following anisotropic complementary regularization term

Rillum(c) = β ·
2∑
i=1

Ψ iillum

( n∑
j=1

γj (r>i ∇cj)2
)
, (7)

where β is a positive weight and the two directions r1 and r2 = r⊥1 allow to adapt the
smoothing direction locally across and along image edges, respectively. As proposed
in [54], these directions can be derived as the eigenvectors of the so-called regulariza-
tion tensor. In our case, this tensor must be computed from the photometric uncompen-
sated first frame f1 to ensure that brightness information related to illumination changes
is not discarded. Moreover, all coefficient fields are regularized jointly with a single pe-
nalizer function per direction, since spatial changes of the brightness transfer function
typically result in discontinuities in all coefficient fields. In this context, the derivatives
of the coefficients have to be balanced with weights γj to reflect the different magni-
tude ranges of the coefficient fields. How we can estimate these weights together with
the basis functions is discussed in Section 4. Finally, we have to define the penalizer
functions. As suggested in [54], we use the edge-enhancing Perona-Malik regularizer
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Ψ1
illum(s2) = λ2

c log(1 + s2/λ2
c) as penalizer across edges (in r1-direction), while we

apply the edge-preserving Charbonnier regularizer Ψ2
illum(s2)=2λ2

c(1+s2/λ2
c)

1
2 along

them (in r2-direction).

3 Minimization

In order to handle large displacements, we follow the warping strategy of Brox et al. [6].
We split the unknowns, i.e. the flow fieldw and the coefficient fields c, into a known part
wk, ck and an unknown increment dwk, dck and embed their overall estimation into
a coarse-to-fine fixed point iteration. Moreover, within this (outer) fixed point iteration,
we linearize the brightness and the gradient constancy assumptions in terms of the flow
increments dwk such that we finally approximate the original non-convex optimization
problem by a series of convex optimization problems.

Actually, this strategy comes down to solving a differential formulation of the origi-
nal energy (1) at each level k of the coarse-to-fine approach. If we denote the first frame
by fk1 = f1(x, y) and the motion compensated second frame by fk2 = f2(x+uk, y+vk),
the corresponding differential formulation of data and smoothness terms is given as fol-
lows. While the brightness and gradient constancy terms become

Dk
bright = Ψd

(
θ ·
(
fk2,xdu

k+fk2,ydv
k+fk2 −φ̄(fk1 )−

n∑
j=1

(ckj +dckj ) · φj(fk1 )
)2 )

(8)

and

Dk
grad = Ψd

( ∥∥∥∥(θx 0
0 θy

)(
∇fk2,xdu

k+∇fk2,ydv
k+∇fk2

−
n∑
j=1

φj(f
k
1 ) ·∇(ckj +dckj )

−
(
φ̄′(fk1 )+

n∑
j=1

(ckj +dckj ) · φ′j(fk1 )
)
·∇fk1

)∥∥∥∥2

2

)
, (9)

respectively, the flow regularizer is given by

Rkflow = α · Ψs

(
‖H(uk+duk)‖2F +‖H(vk+dvk)‖2F

)
, (10)

and the coefficient regularizer reads

Rkillum = β ·
2∑
i=1

Ψ iillum

( n∑
j=1

γj (r>i ∇(ckj + dckj ))2
)
. (11)

Additionally, constraint normalization has been applied to all constancy assumptions in
terms of the weights θ, θx and θy as proposed in [44] for linearized constraints with
more than two variables.
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After discretizing the Euler-Lagrange equations of this differential energy with fi-
nite differences, we obtain a nonlinear system of equations due to the derivatives of
the subquadratic penalizers Ψ∗. This nonlinear system is then solved by another (inner)
fixed point iteration: All nonlinear expressions are repeatedly kept fixed, and the result-
ing linear systems are solved using the successive overrelaxation (SOR) method [52].

In order to speed up computations, the inner fixed point iteration is embedded in a
cascadic multigrid scheme, i.e. finer levels are initialized with coarse-scale solutions [4].
This also explains why we use an incremental computation of the coefficient fields ck

although the corresponding expressions are linear in the original functional (1). As the
cascadic multigrid approach always starts the computation from scratch, we need an in-
crement (dck) which can be initialized to zero without losing all previous information.

4 Basis Learning for Brightness Transfer Functions

In the previous sections, we have introduced our novel variational model and have
sketched how to minimize the corresponding energy. The goal of this section is to ex-
plain how we estimate the mean BTF φ̄(f), the basis functions φj as well as the asso-
ciated weights γj for the joint regularizer of the coefficient fields. The basic strategy of
this paper is inspired by the Empirical Model of Response (EMoR) of Grossberg and
Nayar [17], where the camera response function of imaging systems is parametrized
with a set of basis functions. However, our model acts on intensities instead of irra-
diances. As already mentioned in Section 2, input intensities f are mapped to output
intensities via

Φ(f) = φ̄(f) +

n∑
j=1

cj · φj(f) . (12)

Note that many kinds of polynomial and exponential illumination models can be repre-
sented using the appropriate basis functions. For instance, the affine model of Negah-
daripour [30] fits into this framework by choosing

φ̄(f) = 0 , φ1(f) = 1 , φ2(f) = f . (13)

The same holds also for the purely additive models in [7, 28], i.e. if instead φ2(f)=0.
The recent KITTI Vision Benchmark Suite [14] offers a huge set of real-world im-

age sequences together with ground truth optical flow fields. This gives us access to
samples of input and output intensity levels of realistic scenarios. In particular, the
availability of optical flow fields allows us to register consecutive frames and to analyze
the behavior of the true BTF on a per-pixel basis.

Our general strategy to learn a basis from this massive amount of training data con-
sists of three steps: In a first step, we segment and cluster the training images accord-
ing to illumination changes along the ground truth flow. The segmentation is impor-
tant, since we cannot expect that different image pairs provide fundamentally different
global BTFs. Instead, we have to estimate multiple BTFs per image pair, since typical
illumination changes such as drop shadows or specular reflections are local phenomena.
In a second step, we use the segmented input images and compute for each region of
each input image a separate BTF. In a third step, all these BTFs are used to perform a
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principal component analysis (PCA) in order to identify the most representative basis
functions for the observed illumination changes. It is worth noting that these steps can
be applied iteratively, i.e. the estimated basis functions can be used again to segment
the input images and thus to obtain improved BTFs. Let us now detail on these steps.

Segmenting Illumination Changes. Let us assume that we are given the training im-
age sequences with corresponding ground truth flows. In order to discriminate the image
regions with distinct lighting situations, i.e. with different brightness transfer functions,
for each image pair, we first have to determine the pointwise BTF for every pixel. How-
ever, although this pointwise BTF can be arbitrarily complex, the given images provide
only one constraint per pixel: The unknown BTF must map the intensity of this pixel in
the first frame to the intensity of the corresponding pixel in the second frame.

To relax this extremely under-determined problem, let us now assume we are al-
ready given an estimate of the basis functions. Then, the sought pointwise BTF can be
approximated using the given basis, and our task comes down to computing the op-
timal coefficient vector c in each pixel. Consequently, this problem fits perfectly into
our variational model from Section 2, with the difference that we only have to solve
for the coefficients c, since the optical flow is given and does not need to be estimated.
However, as the ground truth might not be provided at every pixel (i.e. due to occlu-
sions or due to sparse laser scans), we have to disable the data term at those positions
where a flow vector is missing. Basically, this procedure leads to a variational inpaint-
ing method [49], because if the data term is disabled, only the coefficient regularization
term contributes to the energy. Note that unlike in traditional inpainting scenarios, we
are not interested in the coefficient values at positions with missing data. We only want
to enforce global communication in order to avoid isolated estimates.

Fig. 1. Left: Frame 1 of KITTI training sequence #114. Right: Corresponding K-Means seg-
mentation. Each color indicates a separate cluster, black pixels denote locations where ground
truth is missing. The separation between the stronger brightening effect on the street and the
weaker brightening effect in the environment becomes visible. Moreover, the inter-reflections at
the windshield show off in terms of the three red spots on the street.

Once the coefficients are found, we perform a K-Means clustering (usually K=5)
on the coefficients. This takes place exclusively in the n-dimensional coefficient space;
spatial coordinates are intentionally ignored here in order to allow spatially disjoint re-
gions belonging to the same segment. All pixels whose coefficients have been clustered
together share a similar brightness transfer function and thus exhibit a similar lighting
situation. Figure 1 shows an example where such a segmentation allows to distinguish
regions in the image that undergo different brightening effects.
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Estimating Brightness Transfer Functions. Given the previously computed segmen-
tation, the next task is to estimate one brightness transfer function g : R → R per
segment. To this end, we adopt the global idea of Grossberg and Nayar [16] locally:
For each segment we construct the intensity histogram h1 of the pixels in the first frame
as well as the histogram h2 of the corresponding intensities in the second frame. In
this context, we only consider pixels with valid optical flow, i.e. a ground truth vector
must be given and must not point out of the image domain. Once both histograms have
been created, we compute the BTF that transforms h1 into h2 by means of a histogram
specification. In this context, fully saturated segments or too small clusters may lead
to wrong and unrealistic brightness transfer functions. To avoid this, we reject any seg-
ments in which more than 80% of all pixels have the same intensity, as well as segments
in which more than one third of all possible intensities do not occur. Please note that the
resulting function of the histogram specification is discrete and given by an arbitrary
vector g ∈ R256 that is not parametrized in terms of basis functions and coefficients.
Along with the BTFs from other segments it serves as input for the following PCA.

Learning the Basis. After having performed the previous clustering and estimation
steps on each of the p training image pairs we obtain m ≤ K ·p brightness transfer
functions, so-called observations. In order to find one common set of basis functions
for all of them, we perform a principal component analysis (PCA). After concatenating
all observations gi (i=1, . . . ,m) into a so-called observation matrix

G = (g1| . . . |gm) ∈ R256×m , (14)

we compute the row-wise mean (i.e. the sample mean over all observations) ḡ of G.
Then we obtain the covariance matrix C as

C = U>ΣU =
1

m− 1

m∑
i=1

(gi − ḡ)(gi − ḡ)>. (15)

From this principal component decompositon, the sought basis functions φj (j=1,...,n)
can be found as the eigenvectors of the covariance matrix (the columns of U ). More-
over, the row-wise mean ḡ coincides with the 0-th basis function which is the mean
brightness transfer function φ̄. Furthermore, the diagonal matrix Σ contains the eigen-
values which represent the variance of the given data along the principal components.
This is a well-suited estimate for the relative magnitude of the coefficients. Hence, we
set the weights γj in the anisotropic coefficient regularization term (7) to be the inverse
square roots of the eigenvalues.

Figure 2 shows the estimated bases for the KITTI Vision Benchmark Suite and
compares it to an affine basis and the EMoR basis provided by [17]. We can see that
compared to the EMoR basis our basis functions for the KITTI benchmark rather model
illumination changes in the upper part of the dynamic range. Moreover, the mean bright-
ness transfer function is rather linear, since we do not estimate a camera response func-
tion as in [17] but a mapping between intensities (where identity is expected as average).
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Fig. 2. Comparison of different basis functions. From left to right: (a) Normalized affine basis.
(b) EMoR functions [16]. (c) Our basis functions learned from KITTI ground truth data.

Iterating the Estimation. The strategy we have described so far assumes a basis to
be given for the clustering step. Initially, however, only the training images and ground
truth flows are given. Thus, in our first iteration loop we omit the clustering step, treat
the whole images as one segment, and estimate one global brightness transfer function
per image pair. This leads to a first estimate for the basis which allows us then to perform
the clustering as described. The impact of iterating the estimation of the basis functions
on their shapes can be seen in Figure 3. While the mean BTF remains approximately
the identity, the main support of the other basis functions is even further shifted towards
the upper end of the dynamic range.
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Fig. 3. Impact of iterating the estimation of the KITTI basis functions. From left to right: (a)
Initial basis. (b) After one iteration. (c) After four iterations.

5 Evaluation

Our experiments are focused on the KITTI Vision Benchmark Suite [14] which of-
fers a large amount of images depicting driving scenarios with challenging illumination
changes. With our experiments we want to demonstrate that our method is very well
suited for this kind of real-world imagery. The runtime of our single core implementa-
tion on an Intel XEON workstation with 3.2 GHz is about 80 seconds for each of the
sequences (image size 1240×376). Results of our experiments are given in terms of the
bad pixel 3 (BP3) error measure that describes the percentage of estimated flow vectors
that differ by more than 3 pixels from the respective ground truth.
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Table 1. Comparison of different variants of our method on the full KITTI training set.

Configuration avg. BP3 error (occ)
Baseline (without illumination compensation) 11.17 %
Affine basis 11.07 %
EMoR basis 10.64 %
KITTI basis 10.71 %
KITTI basis (iterated) 10.19 %
KITTI basis (iterated, without gradient constancy) 10.65 %
KITTI basis (iterated, only gradient constancy) 10.95 %

Although our model contains a considerable number of parameters, effectively we
set most of them fixed, and only adjusted the three main model parameters α, β, and ν.
The contrast parameters for the sub-quadratic functions have been chosen fixed for all
experiments as (λd, λs, λ

1,2
illum) = (0.01, 0.5, 0.01). Concerning the K-Means clustering

step we kept K = 5 fixed as well. For the number n of basis functions we found n = 4
to be a good tradeoff between computational effort and accuracy.

Evaluation of Basis Functions. In our first experiment, we investigate the usefulness
of illumination estimation in general and analyze the impact of choosing different sets
of basis functions on the quality of the flow estimation. To this end, we have computed
the average BP3 errors of our method – with different bases as well as without any
illumination compensation – on the provided set of 194 training sequences. For each
configuration, we have optimized the parameters of our model w.r.t. the average BP3
error for the whole training set using the ground truth including occluded pixels (occ).

The results of this experiment are presented in Table 1. On the one hand, they
clearly show that the benefit of using the classical affine model of Gennert and Ne-
gahdaripour [15] is rather limited compared to the baseline method without any illumi-
nation compensation – on average the error does hardly decrease. On the other hand, we
can observe a clear improvement when choosing or learning a more suitable (and less
ad-hoc) set of basis functions. Moreover, our experiments show that refining the basis
functions iteratively allows to further improve the results. In the end, our proposed il-
lumination model has been able to impove results for 81% of all training sequences.
Finally, we also analyze the impact of the gradient constancy assumption. To this end,
we consider variants of our method where the gradient constancy term has either been
disabled or is the only constancy assumption. The two last rows of Table 1 show that
in both cases the results deteriorate. This underlines our considerations from Section 2:
The gradient term provides an improved initialization of the flow in early iterations,
where the coefficient fields have not yet converged. However, the gradient term alone
cannot provide sufficient information for estimating the basis coefficients since it con-
siders only local differences, but establishes a mapping between absolute grey values.

Analysis of Transfer Functions and Coefficient Fields. In our second experiment we
shed light on the coefficients that are estimated jointly with the optical flow. To this end,
we have picked one of the training sequences with moderate illumination changes, see



12 Demetz, Stoll, Volz, Weickert, and Bruhn

Figure 4, and another sequence with severe illumination changes, see Figure 5. The two
figures show the first frame of the respective sequence together with the estimated flow
as well as the four computed coefficient fields. Furthermore, we have highlighted inter-
esting locations in the images using colored squares. The brightness transfer functions
at those locations – that can be computed as linear combinations of the learned basis
functions weighted by the estimated local coefficients – are jointly depicted in a graph
using the corresponding colors.

For our first challenging example (Figure 4), the flow field appears reasonably ac-
curate, which is confirmed by a BP3 error of only 9.41%. Since the lighting changes
in that image sequence are rather global, the extracted brightness transfer functions are
similar in shape. In fact, they only differ in the upper end of the dynamic range. As
can be seen from the BTFs, the image becomes darker. This is mainly reflected by the
strongly negative values in the coefficient field c1 (that belongs to a positive basis func-
tion). Moreover, slight local variations of the BTFs can be observed in the coefficient
plots, in particular in the plots of the coefficient fields c2, c3, c4. An example, where
our model has actually estimated significantly differing BTFs for different parts of the
image is presented in Figure 5. Particularly challenging in this sequence are the inter-
reflections in the windshield in front of the camera. However, the flow field is still of
reasonable quality (BP3 of 5.33%). Apart of the spatially varying BTFs, one can also
observe that the inter-reflections are reproduced by the corresponding coefficient fields.
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Fig. 4. Estimated coefficients and BTFs. Left column, from top to bottom: First frame of KITTI
training sequence #15 with three highlighted positions, estimated optical flow field, plot of the
three corresponding brightness transfer functions. Plot colors coincide with the marker colors.
Right column, from top to bottom: Estimated coefficient fields c1 to c4. Coefficients have been
shifted such that a grey value of 127 denotes a coefficient of 0. Brighter values denote positive
coefficients, darker values negative coefficients.
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Fig. 5. Estimated coefficients and BTFs. Left column, from top to bottom: First frame of KITTI
training sequence #114 with three highlighted positions, estimated optical flow field, plot of the
three corresponding brightness transfer functions. Plot colors coincide with the marker colors.
Right column, from top to bottom: Estimated coefficient fields c1 to c4. Coefficients have been
shifted such that a grey value of 127 denotes a coefficient of 0. Brighter values denote positive
coefficients, darker values negative coefficients.

Table 2. Error statistics of our method for the bad pixel measure with varying thresholds (BP2 -
BP5), averaged over all sequences of the KITTI evaluation benchmark.

Error Out-Noc Out-All Avg-Noc Avg-All
2 pixels 8.84 % 14.14 % 1.5 px 2.8 px
3 pixels 6.52 % 11.03 % 1.5 px 2.8 px
4 pixels 5.38 % 9.29 % 1.5 px 2.8 px
5 pixels 4.64 % 8.11 % 1.5 px 2.8 px

Comparison to the Literature. In our third experiment, we compare our method to
other approaches from the literature. To this end, we evaluated our method on the KITTI
test sequences using the optimized parameters (α, β, ν)=(5.2, 3, 6.25). The correspond-
ing results are shown in Tables 2 and 3. While Table 2 gives detailed information on the
performance of our algorithm in non-occluded and all regions for different thresholds
of the bad pixel error measure (BP2 - BP5), Table 3 shows the performance of our algo-
rithm compared to other pure two-frame optical flow methods without stereo constraints
(such constraints are likely to fail in realistic scenarios with independently moving ob-
jects). As one can see, our method is among the leading optical flow approaches in
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this benchmark. In particular, when considering all pixels (i.e. also occluded regions),
our method ranks first and is significantly more accurate than previous approaches. This
clearly demonstrates that performing a joint estimation of illumination changes and mo-
tion can outperform methods discarding illumination information by using invariants.

Table 3. Comparison of pure two-frame optical flow methods for the KITTI evaluation sequences.
Superscripts denote the rank of each method in the corresponding column at time of submission.

Method Out-Noc Out-All Avg-Noc Avg-All
DDR-DF 6.03 % 1 13.08 % 2 1.6 px 5 4.2 px 3

TGV2ADCSIFT 6.20 % 2 15.15 % 4 1.5 px 2 4.5 px 4

Our method 6.52 % 3 11.03 % 1 1.5 px 2 2.8 px 1

Data-Flow 7.11 % 4 14.57 % 3 1.9 px 6 5.5 px 5

EpicFlow 7.19 % 5 16.15 % 5 1.4 px 1 3.7 px 2

DeepFlow 7.22 % 6 17.79 % 6 1.5 px 2 5.8 px 7

TVL1-HOG 7.91 % 7 18.90 % 10 2.0 px 7 6.1 px 8

MLDP-OF 8.67 % 8 18.78 % 9 2.4 px 9 6.7 px 11

DescFlow 8.76 % 9 19.45 % 11 2.1 px 8 5.7 px 6

CRTflow 9.43 % 10 18.72 % 8 2.7 px 11 6.5 px 9

C++ 10.04 % 11 20.26 % 12 2.6 px 10 7.1 px 12

C+NL 10.49 % 12 20.64 % 13 2.8 px 13 7.2 px 13

IVANN 10.68 % 13 21.09 % 14 2.7 px 11 7.4 px 14

fSGM 10.74 % 14 22.66 % 15 3.2 px 15 12.2 px 15

TGV2CENSUS 11.03 % 15 18.37 % 7 2.9 px 14 6.6 px 10

6 Conclusions and Outlook

In this work we have addressed the problem of estimating the optical flow under uncon-
trolled illumination. In contrast to recent state-of-the-art methods that simply discard
illumination information, we have proposed a novel variational model for jointly esti-
mating both illumination changes and optical flow. In this context, we have contributed
in three different ways: (i) In order to find a meaningful representation of illumination
changes we have learned brightness transfer basis functions from previously segmented
training data. (ii) By imposing a complementary regularizer on the corresponding coef-
ficient fields we have been able to achieve a sharp separation between areas of different
illumination changes while maintaining smoothness of the resulting flow field itself. (iii)
By embedding both the basis functions and the coefficient regularization into a recent
variational framework, we achieve state-of-the-art accuracy on the KITTI benchmark,
outperforming competing approaches based on illumination-invariant assumptions.

This shows that approaches that additionally estimate relevant information, such as
illumination changes, are a worthwhile alternative to approaches that simply discard
that information for the sake of robustness. Moreover, such approaches can be used to
provide subsequent algorithms with this additional information improving the overall
performance. Future work includes the online learning of basis functions as well as the
development of efficient numerical schemes on the GPU to speed up the computation.
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