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Short Abstract

This thesis addresses scattered data interpolation and image approximation, focusing on
reconstructions via partial differential equations (PDEs). While classical methods like
JPEG and JPEG2000 are widely used, PDE-based inpainting often yields better results
for images with low to medium texture content. We extend PDE-based approaches
by incorporating diverse features – colours, derivatives, and local integrals – into the
reconstruction process. Experiments show that these features can reduce the MSE by
more than 60% without increasing the data budget. The framework also supports nonlin-
ear operators and features. Since PDE-based methods are computationally demanding,
we develop fast inpainting techniques using adaptive finite elements on the CPU, and
multigrid solvers on the GPU. The latter enables real-time inpainting of 4K images.
Beyond efficiency, we tackle data selection for low-error reconstructions through spatial
and tonal optimisation. We propose greedy algorithms for spatial selection and fast
solvers for large-scale tonal optimisation problems. We also explore the link between
denoising and inpainting, showing their connection through probabilistic theory. Finally,
we present perceptual optimisation techniques for Monte Carlo rendering, aiming for
blue-noise error distributions that decay under low-pass filtering.
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Kurzzusammenfassung

Diese Arbeit behandelt die Scattered Data Interpolation und Bildapproximation mit
partiellen Differentialgleichungen (PDEs). Klassische Verfahren wie JPEG und JPEG2000
sind verbreitet, doch PDE-basiertes Inpainting liefert oft bessere Ergebnisse bei Bildern
mit geringer bis mittlerer Textur. Wir erweitern PDE-Ansätze durch Einbindung von
Farben, Ableitungen und lokalen Integralen. Experimente zeigen, dass diese Merkmale
den mittleren quadratischen Fehler (MSE) um mehr als 60% senken können – ohne
zusätzlichen Datenbedarf. Unser Ansatz unterstützt auch nichtlineare Operatoren.
Da PDE-Methoden rechenintensiv sind, entwickeln wir schnelle Inpainting-Techniken
mit adaptiven finiten Elementen (CPU) und Mehrgitterlösern für Grafikprozessoren
(GPUs). So wird Echtzeit-Inpainting von 4K-Bildern möglich. Zur Fehlerreduktion
optimieren wir die Datenauswahl räumlich und tonal. Wir schlagen Greedy-Algorithmen
für die räumliche Auswahl und schnelle Löser für große tonale Optimierungsprobleme vor.
Zudem etablieren wir einen Zusammenhang zwischen Entrauschen und Inpainting, der auf
einer wahrscheinlichkeitstheoretischen Beziehung basiert. Abschließend präsentieren wir
perzeptuelle Optimierungstechniken für Monte-Carlo-Rendering mit blauem Rauschen,
das unter Tiefpassfilterung abklingt.
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Abstract

This thesis is concerned with scattered data interpolation and approximation of images,
with a focus on reconstructions resulting from the solution of partial differential equations
(PDEs). Classical approaches for image reconstruction rely on the discrete cosine
transform (DCT – JPEG) and the discrete wavelet transform (DWT – JPEG2000), and
are widely used for compression. However, PDE-based inpainting has been shown to
outperform the latter for images with low to medium texture content.

In our work we augment previous PDE-based approaches with the ability to combine
a variety of features from which the image is to be reconstructed. Those are colours,
derivatives, and local integrals. Our experiments demonstrate that those features are
practically relevant as they can decrease the MSE by more than 60% for the exact same
data budget as standard approaches. The framework is theoretically well-founded and
it is general in the sense that it can also handle nonlinear inpainting operators and
nonlinear features.

In practice, PDE-based reconstruction is computationally intensive, especially compared
to approaches based on fast transforms (fast variants of the DCT and the DWT in JPEG
and JPEG2000). For this reason we develop fast inpainting methods based either on
reducing the problem size – by using adaptive finite element discretisations, or based on
speeding up the solution process – by combining state-of-the-art solvers such as multigrid,
Krylov methods, and domain decomposition, and parallelising them on the GPU. This
allows us to achieve real-time inpainting of 4K images.

Except for inpainting efficiency, we are also concerned with the problem of selecting data
that results in low-error reconstructions. The latter is made up of two parts: spatial
optimisation and tonal optimisation. The spatial optimisation is a hard combinatorial
problem for which we devise efficient greedy algorithms that result in high quality
reconstructions. The tonal optimisation is a simple least squares problem, but in the
context of image inpainting this problem is often very large. We design methods that
leverage the sparsity of our matrices in order to achieve fast tonal optimisation. Our
methods generalise to our feature inpainting framework.

Additionally, we study the relationship between denoising and inpainting, and show
that the two are intricately related. An averaging of multiple inpaintings results in an
approximation of a denoising process. The two are related by a rich probabilistic theory.

Last but not least, we develop algorithms for the perceptual optimisation of Monte Carlo
rendering. The goal is to optimise the integration sequences such that the resulting error
has a blue-noise distribution that decays quickly under low-pass filters.
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Chapter 1

Introduction

This thesis addresses the fundamental problem of function approximation, which underlies
a variety of tasks in image processing and computer graphics. The primary objective
of this work is to develop practical and efficient algorithms for sparsely approximating
image data. Before presenting these algorithms in the following chapters, we begin by
introducing the theoretical setup of the approximation problem.

1.1 Data Optimisation

Let the function we wish to approximate be f ∈ V, from some space of functions
V (typically L2 or RN) with domain Ω and codomain Rp (or Cp). The function f
may represent a continuous image f ∶ [0,1]2 → R, or a discrete digital image f ∶
{0, . . . ,W − 1} × {0, . . . ,H − 1} → R. It could also represent the parametrisation of a
surface f ∶ Ω→ R3, or the locations of the vertices f ∶ {0, . . . ,N − 1} → R3 of a triangular
piecewise-linear mesh surface. In any case, our goal will be to select a finite-dimensional,
dimUX =m, (potentially nonlinear) subspace UX ⊆ V , parametrised by some set X that
minimises the difference between f and v ∈ UX w.r.t. some given metric ϵ ∶ V ×V → [0,∞)

min
∣X ∣=m

min
v∈UX

ϵ(v, f). (1.1)

For the moment we take ∣X ∣ =m to be shorthand for: X such that dimUX =m. When
we introduce interpolating reconstruction, in Section 1.2, X will be a set of finitely many
points and ∣X ∣ =m will be the number of those points. It is a data budget constraint,
e.g., m can be the number of pixels we want to store from an image, or the number of
vertices we want to store from a triangular mesh. We term the minimisation over X –
spatial optimisation, and the inner minimisation – tonal optimisation. We elaborate on
the motivation for this terminology in Section 1.3 and Section 1.4.

While there are many reasonable error metrics, throughout most of this thesis we consider
the 2-norm since it is induced by an inner product and results in a simple problem
structure. Moreover the mean-squared-error (MSE) is widely used in image processing
and computer graphics. In Chapter 6 we also consider more intricate perceptual metrics
such as HDR-VDP-2 [161]. The choice of space UX is a non-trivial task and has a great

1



Chapter 1. Introduction 2

effect on the approximation quality and the ease of finding an optimum. The inner
minimisation problem (which we term tonal optimisation)

u ∈ argmin
v∈UX

∥v − f∥22, (1.2)

is typically much easier to solve. If UX is a linear space then it always results in a linear
system that has at least one solution. If the space UX is nonlinear we get a nonlinear
system of equations. In order to make the above concrete we next discuss the spaces UX
that we consider throughout the thesis.

1.2 Interpolating Reconstruction

Given a set of points X = {xi ∈ Ω ⊆ Rd ∶ 1 ≤ i ≤ m}, assume that there is a unique
function u ∈ UX , such that it interpolates f at the data points: u(xi) = f(xi), 1 ≤ i ≤m.
Throughout this work, we will often use the term inpainting interchangeably with
reconstruction, particularly in the context of image reconstruction. Specifically, we
refer to the reconstruction of an image from a sparse set of points as sparse image
inpainting (see for example [89]). This stands in contrast to classical non-sparse image
inpainting [30], which typically presents a less challenging and more well-posed problem.

1.2.1 Polyharmonic Inpainting

As a concrete example of a space UX consider the space of q-harmonic functions on Ω∖X
with reflecting boundary conditions on ∂Ω which interpolate arbitrary coefficients on X :

(−∆)qu(x) = 0, x ∈ Ω ∖ X ,
∂n(−∆)ℓu(x) = 0, x ∈ ∂Ω, 0 ≤ ℓ ≤ q − 1,

u(x) = f(x), x ∈ X ,
(1.3)

where n is the normal to the boundary ∂Ω. The usage and study of polyharmonic splines
for scattered data interpolation dates back to Harder and Desmarais [100], Duchon [76],
and Meinguet [165], albeit they consider an unbounded domain. A more recent work
applying [165] to inpainting is the paper by Kalmoun and Nasser [125]. For more
details on polyharmonic boundary value problems see the book by Gazzola, Grunau,
and Sweers [91].

For us the key point is that by the Sobolev embedding theorem we have that Hq(Ω) ⊂
Cr(Ω), if q > r + d

2 . That is, H
q(Ω) is a reproducing kernel Hilbert space (RKHS) if q

is greater than half of the dimension of Ω. This implies, for instance, that harmonic
inpainting with pointwise interpolation is well-posed in 1D, but not in 2D, since H1(Ω)
is not an RKHS in 2D. Indeed the Green’s functions of the Laplacian have logarithmic
singularities for d ≥ 2 – this applies also to our setting where Ω is a rectangle [166]. If we
discretise the harmonic inpainting problem we recover well-posedness in 2D as long as
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mask c harmonic inpainting u original image trui f

Figure 1.1: Harmonic inpainting with a 5% mask. Inpainting MSE: 38.24.

X ≠ ∅. However, the discrete reconstruction does inherit artifacts from the logarithmic
singularities in the continuous setting. The discrete counterpart of (1.3) is given as:

(I −C)Lqu = 0,
Cu =Cf , (1.4)

where C = diag(c) is the mask matrix constructed from the (inpainting) mask c ≈ 1X ,
and L ≈ −∆ approximates the negated Laplacian (typically with the 5-point stencil) with
reflecting boundary conditions. Often for convenience we combine the two equations:

(C + (I −C)Lq)u =Cf . (1.5)

However, we will see that this is not always feasible when we generalise the interpolation
data. The above problem has a unique solution when c ≠ 0, since the kernel of L
is spanned by 1 and a single interpolation point is sufficient to fix the mean as long
as Ω is connected. If Ω consists of several connected components, and L discretises
the negated Laplacian with reflecting boundary conditions on those, we need at least
one interpolation point per component. But then we can just decompose the problem
into as many decoupled problems as there are components. An illustration of harmonic
inpainting is provided in Figure 1.1. We also note that polyharmonic inpainting of surfaces
makes the matrix L dependent on u since the Laplace-Beltrami operator depends on the
surface’s geometry. That is of course the case if we use the Laplace-Beltrami operator –
if we take the topological Laplacian instead, the problem remains linear.

1.2.2 Edge-Enhancing Diffusion Inpainting

As a representative of a nonlinear space UX we consider the inpaintings derived from
edge-enhancing diffusion (EED) [236]:

−div(D(∇uσ)∇u) = 0, on Ω ∖ X ,
∂nu = 0, on ∂Ω,

u = f, on X .
(1.6)
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mask c EED inpainting u original image trui f

Figure 1.2: Illustration of EED inpainting with a 5% mask. Inpainting MSE: 14.95.

Here uσ denotes a Gaussian-smoothed version of u, defined as uσ = Kσ ∗ u, where Kσ

is a Gaussian kernel with standard deviation σ, and the convolution is performed with
reflecting boundary conditions over the domain Ω. The vector n is the normal on
∂Ω, and we have used a homogeneous Neumann (reflecting) boundary condition1. The
diffusion tensor D is constructed from the structure tensor J = ∇uσ∇u⊺σ, by setting all
of its eigenvalues to 1, except for the largest one. A diffusivity function is applied to the
largest eigenvalue µmax – we typically use the Charbonnier diffusivity with a contrast
parameter λ > 0:

µ′max =
1√

1 + µmax/λ2
. (1.7)

Incidentally, if µmax = ∣∇u∣2, the above corresponds to a term that appears in the Laplace-
Beltrami operator restricted to heightfields/function graphs. We use the discretisation
of anisotropic diffusion from [241], which results in the quasi-linear system of equations:

(C + (I −C)L(u))u =Cf . (1.8)

The matrix L(u) is now a function of u. That is, we have a quasi-linear system of
equations. An illustration of the inpainting is shown in Fig. 1.2. Note that the MSE
is less than half of that for harmonic inpainting despite of the fact that we store the
same amount of data. This illustrates the quality improvements that one can achieve by
considering suitable nonlinear spaces UX . A more generic nonlinear inpainting operator
ψ ∶ RN → RN (not necessarily quasi-linear) results in the following formulation:

Cu + (I −C)ψ(u) =Cf . (1.9)

1.2.3 Feature Inpainting

In our work we generalise the interpolation problem to not only interpolate pointwise
values, but also other features such as: weighted local integrals ∫Ωwudvol = ∫Ωwf dvol,

1In the above we have used ∂nu(∂Ω) = 0 since this is what previous inpainting implementations use.
It should be noted, however, that ∂Dnu(∂Ω) = 0 is a more natural boundary condition, that actually
reflects the flux across the boundary.
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derivatives ∂xu = ∂xf , or even nonlinear features. In the discrete setting let ϕi ∶ RN → RN

for 1 ≤ i ≤ k be a family of (potentially nonlinear) functions, and let ci be their
corresponding masks. We can collect those into vectors of k times the image size N :

ϕ = [ϕ⊺1 ⋯ ϕ⊺k]
⊺ ∶ RN → Rk⋅N , c = [c⊺1 ⋯ c⊺k]

⊺ ∈ Rk⋅N , C = diag(c). (1.10)

Then we can write the feature inpainting problem as follows:

(I −P (u))ψ(u) = 0, (1.11)

Cϕ(u) =Cϕ(f), (1.12)

where I −P (u) = I − (CJϕ(u))+CJϕ(u) is the orthogonal projection matrix onto the
kernel of the Jacobian of the constraints (we denote the Moore-Penrose inverse of A
with A+). We will not go into the details of the derivation of the above formulation here,
and instead we defer this to Chapter 2. Currently it suffices to know that in the most
general setting that we consider, the subspace U in which we approximate is technically
a function of c,ψ,ϕ: Uc,ψ,ϕ. In the continuous setting it is a function of X , ψ, ϕ: UX ,ψ,ϕ.
In the simplest case of linear inpainting with pointwise value interpolation we have
ψ(u) = Lu and ϕ(u) = u.

1.3 Tonal Optimisation

Consider the original data optimisation problem with the 2-norm as an error metric

min
∣X ∣=m

min
v∈UX
∥v − f∥22, (1.13)

where UX ≡ UX ,ψ,ϕ for some fixed inpainting operator ψ and feature families ϕ. If ψ and
ϕ are linear, then UX is a linear space. Then there exists a (potentially overcomplete)
basis

B = [b1 ⋯ bm] ∈ V , UX = {v(x) =
m

∑
j=1

gjbj(x) ∶ g ∈ Cm} . (1.14)

Plugging this into the inner minimisation we get the linear least-squares problem:

min
v∈UX
∥v − f∥22 = min

g∈Cm
∥
m

∑
j=1

gjbj − f∥
2

2

=
m

∑
i=1

m

∑
j=1

⟨bi, bj⟩gigj − 2
m

∑
i=1

gi⟨bi, f⟩ + ∥f∥22, (1.15)

where ∥v∥22 = ⟨v, v⟩. Differentiating and setting to zero yields the normal equations:

Gg = s, Gij = ⟨bi, bj⟩, si = ⟨bi, f⟩. (1.16)

The latter always have a solution, but the solution is unique only when the Gramian
G is invertible (i.e., the chosen interpolation points and features are not redundant).
In the nonlinear setting, let us denote the reconstruction as u(X ,g), where ϕ(u)∣X = g,
and ψ(u) = 0 holds on the kernel of the differential of the constraints. Then we have the
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nonlinear space
UX ,ψ,ϕ = {u(X ,g) ∶ Ω→ C ∶ g ∈ Cm}. (1.17)

If the reconstruction u(X ,g) is differentiable in the argument for the g variable, then
the columns of the Jacobian w.r.t. g provide a (potentially overcomplete) basis for the
tangent space. Then the counterpart to the linear normal equations are the nonlinear
normal equations:

⟨(∂eiu)(X ,g), u(X ,g) − f⟩ = 0, 1 ≤ i ≤m. (1.18)

That is, we want the error to be orthogonal to the tangent space – the linear setting is a
special case of this, where the tangent space can be assigned a constant basis. Note that
in the nonlinear setting the system is nonlinear which makes the problem much more
challenging.

In image processing and compression literature the inner minimisation problem

g∗(X) ∈ argmin
g∈Cm

∥u(X ,g) − f∥22, (1.19)

is known as the tonal optimisation problem. This is because for an inpainting with ϕ = id,
we are interpolating greyscale or colour values, i.e., tonal data. So the optimisation
of the coefficients g corresponds to the optimisation of tonal data. Of course, with
our extension of inpainting to other features, the term “tonal optimisation” becomes
somewhat of a misnomer, but we nevertheless use it throughout the thesis.

1.4 Spatial Optimisation

Consider the original data optimisation problem:

min
∣X ∣=m

min
v∈UX
∥v − f∥22. (1.20)

This time we focus on the outer minimisation. To that end we suppose that we have a
procedure that allows us to compute a minimiser for the tonal optimisation problem

g∗(X) ∈ argmin
g∈Cm

∥u(X ,g) − f∥22. (1.21)

We can then rewrite (1.20) as an optimisation only over X

min
∣X ∣=m

∥u(X ,g∗(X)) − f∥22. (1.22)

The optimisation over X is typically termed spatial optimisation as we are optimising
over the locations of the points in X . If we were to reduce the choice of the m points
in X to be chosen from a fixed set of N possible locations XN (e.g. the pixel grid of an
image, or the vertices of a triangular mesh), this becomes a combinatorial problem with
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search space of size

(N
m
) = N !

m! (N −m)! . (1.23)

The exhaustive search is intractable already in the setting of small images. For example,
with N = 256 × 256 and a reasonably low interpolation point density, m = ⌊5% ⋅N⌋, we
get an incredibly large search space of size

(N
m
) = ( 256 × 256

⌊256 × 256 × 20−1⌋) = (
65536
3276

) . (1.24)

Since the search space grows very quickly with the resolution, in practice we resort to
various (meta-)heuristics and greedy algorithms in order to find a solution close to the
minimiser in reasonable time.

If UX is an interpolating space over X , for efficiency purposes we can choose to substitute
the tonally optimal coefficients g∗(X) with interpolating ones ϕ(f)∣X :

X ∗ ∈ argmin
∣X ∣=m

∥u(X , ϕ(f)∣X ) − f∥. (1.25)

Most often it is (1.25) that is referred to as spatial optimisation. One can then apply a
tonal optimisation step given the fixed X ∗ from the above problem. This corresponds to
swapping the order of the minimisation problems – first spatial then tonal:

g∗ ∈ argmin
g∈Cm

∥u(X ∗,g) − f∥ such that X ∗ ∈ argmin
∣X ∣=m

∥u(X , f ∣X ) − f∥, (1.26)

compared to the original data optimisation problem (1.20) – first tonal then spatial:

X ∗ ∈ argmin
∣X ∣=m

∥u(X ,g∗(X)) − f∥ such that g∗(X) ∈ argmin
g∈Cm

∥u(X ,g) − f∥. (1.27)

Theoretically the global minimiser of (1.26) is worse as a minimiser of (1.20), since it is
minimising an objective with the minimisation order flipped. However, in practice the
formulation in (1.26) is much more efficient to work with when using greedy algorithms,
and counter-intuitively those often produce better results (see [111]) when applied to
(1.26). This is an instance where optimising an inexact model is much easier, and
thus yields a better approximate solution than optimising the exact model,
which may lead to a poorer approximate result – despite the exact model
theoretically having a superior (or at least not inferior) global minimum. For
this reason we discuss only interpolating spatial optimisation in Chapter 4.

The relationship of (1.26) to (1.27) is similar to the relationship between matching
pursuit and orthogonal matching pursuit [158, 200]. Speaking of the latter, in Section 1.5
we briefly discuss when our data optimisation problem (1.20) can be brought to the
optimisation formulation appearing in the literature on pursuit algorithms.
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1.5 Data Optimisation Formulation in Pursuit Algo-

rithms

In practice, the problem in (1.20) can be related to the sparse linear synthesis-based
approximation problem:

min
∥g∥0=m

∥u − f∥22, u(x) =
N

∑
j=1

gjbj(x), (1.28)

for which the classical pursuit algorithms [158, 200, 210] (matching pursuit, orthogonal
matching pursuit, basis pursuit, etc.) were developed2. We can relate the above
formulation to our interpolating analysis-based formulations if we have bi(xj) = δij for
1 ≤ i, j ≤ N , where xj ∈ XN . Then UX ⊆ UXN

for X ⊆ XN . As a special case this is
true for discretisations of the polyharmonic problem (1.4). In the discrete setting any
(well-posed) analysis-based interpolating linear inpainting is equivalent to a
transform-based reconstruction:

Cu + (I −C)Lu =Cf ⇐⇒ u = L+Ca +Vkerµ, U
∗
kerCa = 0, Cu =Cf , L = UΣV ∗,

(1.29)
where L plays the role of the transform, and the Moore-Penrose inverse L+ plays the
role of the inverse transform, which is used for the reconstruction up to vectors in the
kernel of L. If L is a discretisation of a linear differential operator (along with the
boundary conditions) then L+ is a discrete counterpart of its Green’s functions – the
inpainting-based and transform-based formulations are spectral counterparts
of each other. This is not the case any more when one considers more general
reconstructions such as through linear splines on a Delaunay triangulation [70] (this
is a synthesis instead of an analysis formulation). There X ⊆ XN implies UX ⊆ UXN

only if the triangulations are hierarchical – which is generally untrue for Delaunay
triangulations. The correspondence also fails in a nonlinear analysis formulation such
as in edge-enhancing diffusion inpainting (Green’s functions and the SVD are a linear
concept), or if we consider generalised interpolation of multiple families of features.

1.6 Own Contributions

Our main contributions are published in the proceedings [58, 120] from two conferences,
and in three journal papers [59, 88, 128]. I have presented results from the above works
at CAIP21 [58], SIGGRAPH22 [59], GAMM23 (unpublished extensions of [58]), and
ICASSP23 [120]. Below I list a brief summary of the publications on which this work is
based, as well as the corresponding chapters in the thesis.

Optimising Different Feature Types for Inpainting-Based Image Representa-
tions. In [120], we present the first general framework for inpainting with arbitrary

2Often in the literature the budget constraint and error minimisation appear flipped, but we can also
do so in our formulations if the goal is not a fixed budget but rather achieving a specific error threshold.
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features that can be expressed as linear equality constraints. This framework is built upon
a reformulation of harmonic inpainting as a constrained optimisation problem, enabling
us to combine the traditional pointwise colour interpolation constraints with more general
linear equality constraints. The solution is obtained via the Karush–Kuhn–Tucker (KKT)
conditions, resulting in a symmetric but indefinite linear system, which we solve using
the SYMMLQ algorithm [180]. Details and extensions of the inpainting framework to
the setting of nonlinear operators and nonlinear constraints are described in Chapter 2
of the thesis.

More significantly, we develop efficient spatial and tonal optimisation strategies tailored
to this novel inpainting formulation. The spatial optimisation automatically allocates
the data budget across different feature types. We identify a meaningful set of features –
colour values, derivatives, and local integrals – that enable us to substantially improve
the quality of the reconstruction. A description of the data optimisation and extensions
of it are presented in Chapter 4.

My main contributions to [120] include implementing and testing various solvers for
the indefinite system, theoretical insights into the reformulation of the problem as an
optimisation problem, the design of the spatial and tonal optimisation algorithms, and
a substantial portion of the programming code. The original idea was proposed by
Prof. Joachim Weickert, and the initial theoretical groundwork and code were primarily
developed by the first author, Ferdinand Jost. The final version of the code used to
generate the results was mostly based off my work. The contents in Chapter 2 and
Chapter 4 represent a substantial extension of the work presented in [120], and constitute
original research that is my own contribution. Two figures (Fig. 4.2 and Fig. 4.4) are
reproduced from the original work [120], while all other experiments on feature inpainting
are new and use the improvements and extensions discussed in the thesis.

Efficient Data Optimisation for Harmonic Inpainting with Finite Elements.
In [58] we extend sparse image inpainting with homogeneous diffusion by using finite
elements (FE). This considerably decreases the runtime compared to prior approaches
since we are able to greatly reduce the number of unknowns, while preserving a high
quality solution owing to the adaptivity of our FE mesh.

We also reformulate the tonal optimisation problem such that a nested conjugate
gradient solver is applicable, where the outer iterations optimise the tonal values, and
the inner iterations solve inpainting-like problems. For the spatial optimisation problem
we combine ideas from a previous approach based on error map dithering [131] and
Voronoi densification [68], and devise a Delaunay densification approach that allows
a trade-off between runtime and quality. Taken together, these allow us to efficiently
perform inpainting and optimise the reconstruction data on the CPU, with computational
efficiency that is orders of magnitude better than prior approaches. Chapter 3 and
Chapter 4 include parts of this work, and the extensions presented at GAMM23 are
briefly discussed in Section 3.1.7.

The main theoretical developments and all experiments presented in this paper are
my own. The initial idea, as well as valuable discussions and guidance in refining the
manuscript, were provided by Prof. Joachim Weickert.
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Efficient Parallel Algorithms for Inpainting-Based Image Representations of
4K Images. In [127] (note that this work currently remains unpublished, however,
parts of it are used in our published work on data optimisation [128]), we target state-of-
the-art efficiency for homogeneous diffusion inpainting by exploiting GPU parallelism
and judiciously integrating concepts from advanced solvers, including domain decom-
position methods, multigrid techniques, matrix-free approaches, and Krylov subspace
methods. The resulting performance surpasses all previous methods by several orders
of magnitude, enabling real-time inpainting of 4K images at over 60 frames per second
using homogeneous diffusion. The part from [127] to which I contributed the most is
reproduced in Chapter 3, along with the related work, experiments, and conclusion from
the original paper.

The work on domain decomposition stems from the first author, Niklas Kämper, and
thus I only briefly mention it in Chapter 3. My primary contribution involved the design
and implementation of the downsampling operator for the multigrid framework that
reduces leakage at coarser levels by incorporating the neighbourhood of masked pixels,
as well as its theoretical justification. Additionally, I contributed through discussions
with the first author and by assisting in the preparation of the manuscript. The initial
idea of integrating domain decomposition methods for inpainting was suggested by Prof.
Joachim Weickert.

Efficient Parallel Data Optimisation for Homogeneous Diffusion Inpainting
of 4K Images. In [128], we propose data optimisation techniques for homogeneous
diffusion inpainting that significantly outperform previous methods in both speed and
quality. Our approach integrates the efficient inpainting algorithm from [127] into both
the tonal and spatial optimisation. The spatial optimisation builds upon our method
introduced in [58], but incorporates a fast GPU-based Delaunay triangulation using the
jump flood algorithm [204]. Additionally, we employ an improved initialisation strategy
based on dithering the Laplacian magnitude [28], which enhances quality, particularly
when using a limited number of densification iterations.

The tonal optimisation extends the nested conjugate gradient framework from [58],
significantly accelerating it through GPU-based domain decomposition. A high-quality
initial guess is generated by interpolating local averages over the Voronoi partition, in a
manner similar to the approach in [120]. These improvements enable both spatial and
tonal optimisation on 4K images in under half a second.

I suggested and further extended the idea of exploiting the sparsity in the tonal op-
timisation based on my previous work [58] and improvements thereof. The domain
decomposition parts entirely belong to the first author Niklas Kämper. Other contribu-
tions of mine include the theoretical justification for the tonal optimisation’s initial guess,
its connection to local average interpolation, and the interpretation of the algorithm
as a Richardson iteration. I also contributed CPU implementations, stopping criteria,
visual results, and engaged in extensive discussions on both the tonal optimisation and
Delaunay-based densification. Generalisations of the tonal and spatial optimisation
methods from [128], to the setting of the feature inpainting framework, are presented
in Chapter 4. These generalisations represent original scientific contributions that I
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developed as part of this thesis. I do not discuss domain decomposition aspects since
the work on those belongs to the first author Niklas Kämper.

Connecting Image Inpainting with Denoising in the Homogeneous Diffusion
Setting. In [88] we study the relationship between inpainting and denoising. While
at first glance unrelated, it turns out that probabilistic estimators based on inpainting
operators can be interpreted as denoising methods. We provide a rich probabilistic
theory which we support with a multitude of experiments. Chapter 5 is a reproduction
of our work [88] with very minor changes.

Most of the formalisation of the probabilistic theory (Section 5.3.1) was contributed by
me, along with some experiments and code. However, the final experimental results
presented in the paper stem from code and experiments carried out by the first author
– Daniel Gaa. The acceleration by low-discrepancy sequences and the proofs in the
appendix are also my contribution. All other results were contributed by my other
co-authors.

Perceptual Error Optimisation for Monte Carlo Rendering. In [59] we improve
the perceptual quality of Monte Carlo rendering. We achieve this by optimising the seeds
of the integration sequences used in the (quasi-)Monte Carlo numerical estimation of the
light transport integrals in the formal solution of the rendering equation. The seeds are
optimised w.r.t. a simple perceptual metric, to which we apply a set of algorithms that
provide varying trade-offs between quality and speed, showing substantial improvements
over prior state-of-the-art. The algorithms are able to achieve a Monte Carlo noise
distribution that quickly decays under convolution with low-pass filters. We conduct
evaluations using both quantitative and error-based metrics. Chapter 6 is a reproduction
of our publication [59] with minor modifications.

All experiments were implemented and conducted by me. I also developed the main
theoretical concepts and their formulations. I gratefully acknowledge the valuable
discussions and substantial assistance in writing the manuscript provided by my co-
authors: Dr. Iliyan Georgiev, Dr. Karol Myszkowski, and Dr. Gurprit Singh. The initial
idea for the work was suggested by Dr. Gurprit Singh and was based off prior published
work by Georgiev and Fajardo [93], and Belcour and Heitz [103].

1.7 Organisation of the Thesis

In Chapter 1, we introduce the data optimisation problem, present the main inpainting
operators used throughout the thesis, list our contributions, and summarise the thesis
structure.

In Chapter 2, we introduce a generalisation of the inpainting framework that accommo-
dates linear and nonlinear inpainting operators and linear and nonlinear features, which
can be formulated in terms of equality constraints. We present experimental results
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demonstrating that the additional features yield significant quality improve-
ments (in some cases more than 60% MSE reduction). While this chapter is
partially based on our work [120] presented at ICASSP23, it constitutes a substantial
generalisation of the results presented in the conference paper. The extended formulation
does not require that the inpainting operator is linear or that it is the gradient of an energy
functional – this is crucial as EED inpainting is neither [244]. Furthermore, we extend the
framework to handle nonlinear features, and develop a sequential quadratic programming
(SQP)-inspired trust region approach in order to solve the resulting inpainting problem.

In Chapter 3, we discuss our fast inpainting approaches based on: the finite ele-
ment method (FEM) [58], and our multigrid strategy for the finite difference method
(FDM) [127, 128]. A brief introduction to FEM is provided in Section 3.1. This is
followed by experimental results demonstrating the quality improvements achieved using
the FEM framework. Notably, efficiency gains of over 10 times can be achieved
on the CPU even for small images. Additional results related to the efficiency
improvements and resolution scaling in the context of data optimisation are deferred to
Chapter 4. Section 3.1.7 outlines several extensions that significantly broaden the scope
of the methods introduced in [58]. In Section 3.2, we present our multigrid-based fast
inpainting approach from [127, 128], which, when combined with domain decomposition,
enables harmonic inpainting of 4K images at over 60 frames per second on the
GPU. With only minor modifications, Section 3.2 reproduces the part on multigrid from
our journal publication [128], as well as the related work, experiments, and conclusion.

Our algorithms for tonal and spatial optimisation are presented in Chapter 4. They
subsume the approaches from our FEM work [58], our efficient data optimisation meth-
ods [128], and the data optimisation framework for feature inpainting from [120]. The
algorithms described in the chapter are applicable to our feature inpainting frame-
work with its extensions from Chapter 2, they achieve a very good runtime-
to-quality ratio, and scale linearly in terms of the image resolution. The
chapter is a natural conclusion to the discussion of generalised inpainting from Chapter 2
and the fast inpainting methods from Chapter 3.

Chapter 5 reproduces our journal publication on denoising by inpainting [88], with
only small changes implemented for consistency. It explores the theoretical connection
between the seemingly distinct processes of denoising and inpainting. The theory offers
both deterministic and probabilistic interpretations, showing how an average of multiple
inpaintings can act as a denoising process. The key result is a relationship between
the mask density in homogeneous diffusion inpainting and the diffusion time
in homogeneous diffusion denoising. Within the context of this thesis, this chapter
serves as a conceptual bridge between the inpainting algorithms discussed in the preceding
chapters and their extension to denoising processes.

Chapter 6 reproduces our published work on perceptual error optimisation for Monte
Carlo rendering [59], with minor formatting and consistency-related adjustments. This
work focuses on optimising the integration sequences in Monte Carlo rendering to produce
error distributions that decay rapidly under low-pass filtering. It subsumes prior work
on the topic, provides a theoretical foundation for perceptual optimisation
in Monte Carlo rendering, and describes a series of practical algorithms.
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While not directly concerned with sparse mask optimisation, the work aligns with our
broader goal of faithful reconstruction – when we interpret the low-pass filter as a
reconstruction operator. Here, the optimisation is performed indirectly through the
integration sequences, which can be viewed as high-dimensional points in the spatial
optimisation framework. In that sense this chapter also combines ideas from inpainting
(the rendering process in this case) and denoising (the convolution with a model of
the human visual system’s point spread function), making it a natural follow-up to
Chapter 5.

Finally, a summary and a conclusion is given in Chapter 7, along with an outlook on
future work. A list of the figures and the tables, as well as the bibliography and the
appendices can be found at the end of the thesis.





Chapter 2

Feature Inpainting

In this chapter, we introduce a general framework for feature-based inpainting that
extends the classical inpainting to accommodate arbitrary features expressible as equality
constraints. These features can include derivatives, local integrals, and even nonlinear
features. The case of linear features combined with a linear inpainting operator, where
the inpainting is the gradient of an energy functional, is based on our work [120]. Here,
we present a substantial generalisation that supports nonlinear features in conjunction
with nonlinear inpainting operators, which are not necessarily derived from an energy
functional. This extension is grounded in a theoretical foundation that largely surpasses
the scope of [120]. To solve the resulting nonlinear feature inpainting problem, we develop
an algorithm inspired by principles from sequential quadratic programming (SQP) [177]
and trust region methods [61].

2.1 Outline

We begin with a brief overview of related work in Section 2.2. Next, in Section 2.3.1,
we revisit the feature inpainting formulation introduced in our conference paper [120].
We then motivate its extension to cases where the inpainting process is not derived
from the gradient of an energy functional – EED inpainting, and also settings where the
inpainting matrix L is non-symmetric.

Building on this, we incrementally generalise the feature inpainting framework across
several settings:

• Linear inpainting with linear features (Section 2.3.3),

• Nonlinear inpainting with linear features (Section 2.3.4),

• Quasi-linear inpainting with linear features (Section 2.3.5),

• Energy-based nonlinear inpainting with nonlinear features (Section 2.3.6),

• Generic nonlinear inpainting with nonlinear features (Section 2.3.7).

15
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Each section shortly discusses specific solution strategies tailored to its respective
setting. For the most general case, we discuss our proposed solver in Section 2.4. We
then demonstrate the performance of the theoretical framework through a series of
experiments in Section 2.5, focusing on visual comparisons. Efficiency analyses and
related experiments are presented in Chapter 3, while detailed MSE comparison tables
are included in Chapter 4, as these topics are more appropriately addressed in those
chapters. Finally, we conclude the chapter with insights and potential directions for
future work in Section 2.6.

2.2 Related Work

Several inpainting-based strategies allocate greyscale or colour interpolation constraints
along edges [46, 155] or isolines [216], but these methods are limited to using only pixel
intensity or colour values as features. Approaches that combine greyscale data with
discontinuity information have been proposed in [112, 118, 119]; however, these rely on
segmentation techniques that do not generalise to arbitrary feature types.

Other works have explored image reconstruction from specific features such as scale-space
extrema [129], zero-crossings [252], junctions [47], or SIFT descriptors [243]. While these
approaches are theoretically insightful, they have not led to practical methods with
competitive reconstruction quality. Additionally, KAZE features [7] have been proposed
for scale-space analysis, however, they are not used for reconstruction.

More recent methods that incorporate gradient information to improve reconstruction
quality include those by Brinkmann et al. [41] and Schneider et al. [211]. However, these
approaches also lack generality and do not support the integration of multiple feature
types.

Our published work [120] introduces a general and efficient framework for harmonic
inpainting with linear features. However, it does not address the extension to nonlinear
inpainting operators or nonlinear features. In the current chapter, we present such
a generalisation, enabling the use of arbitrary nonlinear features within a nonlinear
inpainting framework.

2.3 Feature Inpainting Framework

In the current section we start from the feature inpainting framework described in our
conference paper [120], and successively extend it until we arrive at a formulation for
nonlinearly constrained nonlinear inpainting.
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2.3.1 Linear Constrained Harmonic Inpainting

The discrete harmonic inpainting formulation in Equation (1.4) is limited to interpolating
pixel-wise colour data. While this already proves effective in practice, it naturally raises
the question of whether more complex features can be incorporated. In [120], we
reformulate harmonic inpainting as a constrained optimisation problem:

min
u

1

2 ∫Ω ∥∇u(x)∥
2 dx =min

u

1

2 ∫Ω u(x)(−∆)u(x)dx,

subject to u(x) = f(x), x ∈ X .
(2.1)

Its discrete counterpart is given by:

min
Cu=Cf

1

2
∥Du∥22 = min

Cu=Cf

1

2
u⊺Lu. (2.2)

In this formulation, the mask matrix C in the constraint Cu =Cf can be replaced by
any matrix A ∈ RM×N , enabling interpolation of arbitrary features expressible as linear
equality constraints, as demonstrated in [120]. The problem remains linear and can be
reformulated by using Lagrange multipliers:

min
Au=Af

1

2
u⊺Lu⇒ min

u∈RN
max
λ∈RM

1

2
u⊺Lu +λ⊺A(u − f).

The solution satisfies the symmetric but indefinite saddle-point system:

[
1
2(L +L⊺) A⊺

A 0
] [u
λ
] = [ 0

Af
] . (2.3)

Uniqueness of the solution is guaranteed if the compression of 1
2(L+L⊺) onto the kernel

of A is non-singular. For instance the Laplacian matrix L has a kernel spanned by the
vector 1, then if A ⋅ 1 ≠ 0 we get that the system matrix in (2.3) is non-singular. Thus,
including an average value constraint or a single pointwise interpolation constraint in
A suffices to ensure uniqueness. For symmetric discretisations such as the Laplacian,
we have 1

2(L + L⊺) = L. However, this does not hold for non-symmetric operators.
Importantly, this framework can be extended to support operators that are not derived
from a minimisation problem, which we explore in the next section.

The Constraint Matrix A. As an example, consider matrices representing different
features: identity/colours F1 = I, x derivatives F2 ≈ ∂x, y derivatives F3 ≈ ∂y, and local
integrals F4 ≈Kσ∗. To each of those we associate a mask c1, . . . ,c4. Then the constraints
matrix is formed as

A =CF =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C1

C2

C3

C4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F1

F2

F3

F4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C1F1

C2F2

C3F3

C4F4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ R(4⋅N)×N . (2.4)
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2.3.2 Compression of Inpainting Operators

An alternative approach to solving the linearly constrained minimisation problem

min
Au=Af

1

2
u⊺Lu (2.5)

is to decompose the solution space using orthonormal bases. Let the columns of Vker ∈
RN×(N−r) form an orthonormal basis for the kernel of A, and the columns of Vimg ∈ RN×r

form an orthonormal basis for its orthogonal complement (i.e., the image of A⊺). Then,
any solution u can be expressed as

u = uimg +uker = Vimgsimg +Vkersker. (2.6)

Substituting this into the constraint yields

Au =A(Vimgsimg +Vkersker) =AVimgsimg =Af Ô⇒ simg = V ⊺imgf . (2.7)

Substituting the decomposition into the objective function gives

E(u) = 1

2
u⊺Lu = 1

2
(Vimgsimg +Vkersker)⊺L(Vimgsimg +Vkersker)

= 1

2
s⊺kerV

⊺
kerLVkersker + s⊺kerV ⊺ker

L +L⊺
2

Vimgsimg +
1

2
s⊺imgV

⊺
imgLVimgsimg.

(2.8)

Using simg = V ⊺imgf , we minimise the energy with respect to sker, leading to the linear
system

V ⊺ker
L +L⊺

2
Vkersker = −V ⊺ker

L +L⊺
2

VimgV
⊺
imgf . (2.9)

This system has a unique solution if the compression V ⊺ker
L+L⊺

2 Vker is non-singular. While
derived in the context of minimisation, this formulation generalises to arbitrary linear
operators L ∈ RN×N , not necessarily symmetric or positive semi-definite. In such cases,
we consider the compressed system

V ⊺kerLVkersker = −V ⊺kerLVimgV
⊺
imgf . (2.10)

Equation (2.10) is equivalent to the augmented system

[L A⊺

A 0
] [u
λ
] = [ 0

Af
] , (2.11)

but it makes explicit that we are solving a problem involving the compression of L onto
the kernel of the constraints. This insight also extends to the nonlinear inpainting setting
(see Section 2.3.4) and to nonlinear constraints via linearisation (see Section 2.3.7).
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2.3.3 Linear Constrained Linear Inpainting

In order to relate (2.10) to the classical formulation

(C + (I −C)L)u =Cf , (2.12)

we define the orthogonal projection matrix P = VimgV
⊺
img and proceed as follows:

V ⊺kerLVkersker = −V ⊺kerLVimgV
⊺
imgf ,

VkerV
⊺
kerLVkerV

⊺
keru = −VkerV

⊺
kerLPg,

(I −P )L(I −P )u = −(I −P )LPu,
(P + (I −P )L)u = Pf .

(2.13)

This shows that the inpainting problem with generalised features corresponds to replacing
the mask matrix C with the orthogonal projection matrix P , which projects onto
span(A⊺)

(C + (I −C)L)u =Cf ⇒ (P + (I −P )L)u = Pf ,
where P 2 = P , P ⊺ = P , span(P ) = span(A⊺), ker(P ) = ker(A). (2.14)

The projection matrix P can be expressed using any (1, 4)-inverse1 of A as P =A(1,4)A.
Alternatively, the formulation can be written as

(I −P )Lu = 0,
Au =Af , (2.15)

analogous to (1.4). This is also equivalent to the augmented system

[L A⊺

A 0
] [u
λ
] = [ 0

Af
] , (2.16)

since λ can account for any component of Lu lying in the span of A⊺. The augmented
system (2.16) is particularly advantageous when computing matrix-vector products
with P is computationally expensive. If L is symmetric, one can apply the modified
conjugate residual (MCR) method for indefinite systems [52], or the minimal residual
(MINRES) method [86, 180]. For non-symmetric matrices L, suitable solvers include
the stabilised bi-conjugate gradient method (Bi-CGSTAB) [233], the conjugate gradient
method applied to the normal equations (CGNR) [32, 105, 206], and related variants
such as LSQR [181]. An illustration of this formulation in action is shown in Figure 2.1.

2.3.4 Linear Constrained Nonlinear Inpainting

For a nonlinear inpainting operator ψ ∶ RN → RN with linear equality constraints, we can
directly extend the previous result by analogy to (1.9) yielding the following inpainting

1A (1,4)-inverse M (1,4) of M satisfies MM (1,4)M =M and (M (1,4)M)∗ =M (1,4)M .
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grey values, MSE: 38.24 five features, MSE: 14.89 original image trui f

Figure 2.1: Comparison of harmonic inpainting using only grey-value features versus
five features (grey values, ∂x, ∂y, 3 × 3 and 5 × 5 binomial kernels). The mask density
is 5% in both cases. The reconstruction error is more than halved despite
using the same inpainting operator and mask density. Note the significantly
improved texture reconstruction of the hat.

formulation
Pu + (I −P )ψ(u) = Pf . (2.17)

A standard approach to solve this problem is to linearise ψ around a current iterate u

ψ(u + v) = ψ(u) + Jψ(u)v +O(∥v∥2), (2.18)

where Jψ denotes the Jacobian of ψ. This leads to the following Newton iteration

Puk+1 + (I −P )ψ(uk+1) = Pf ,
P (uk + vk) + (I −P )(ψ(uk) + Jψ(uk)vk) = Pf ,

(P + (I −P )Jψ(uk))vk = Pf −Puk − (I −P )ψ(uk).
(2.19)

The corresponding augmented system is

[Jψ(u
k) A⊺

A 0
] [ v

k

λk+1
] = [ −ψ(u

k)
Af −Auk] . (2.20)

A potential issue arises if the compression of Jψ(uk) on the kernel of A is singular. In
such cases, the system may be inconsistent, i.e., (I −P )ψ(uk) may not lie in the range
of (I −P )Jψ(uk). In practice, one can project ψ(uk) onto span(Jψ(uk)), e.g., using
CGNR, and adjust the right-hand side of (2.20) accordingly.

Alternatively, if the augmented system (2.20) is symmetric, one obtains the pseudoinverse
solution automatically by applying the conjugate residual (CR) solver [86] or the MINRES
method [86, 180], with the modification proposed in [150]. For non-symmetric systems,
the conjugate gradient method for the normal equations (CGNR) [32, 105, 206], initialised
with a vector orthogonal to the kernel (e.g., the zero vector), also yields the pseudoinverse
solution [101].
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It is important to note that in this formulation, ψ need not be the gradient of an energy
functional. The method directly linearises the inpainting equation

Pu + (I −P )ψ(u) = Pf ,

making it applicable to inpainting operators such as EED, which lack an energy [244].

Within this framework, computing the Jacobian Jψ of the inpainting operator is essential.
While automatic differentiation makes this feasible, it can be computationally intensive
and may yield a non-symmetric Jacobian if ψ ≠ ∇E for some energy functional E. In
Section 2.3.5, we demonstrate a simplification for quasi-linear inpainting operators (such
as EED), which take the form ψ(u) = L(u)u. This avoids the explicit computation of
the Jacobian and – if L(u) is symmetric – results in a symmetric system.

2.3.5 Linear Constrained Quasi-Linear Inpainting

If the inpainting operator has the form ψ(u) = L(u)u, we can avoid computing the
full Jacobian by employing a Kačanov iteration [102, 123] instead of a Newton iteration.
The Kačanov method effectively omits the term involving JL from the Jacobian Jψ:

Jψ(u) = L(u) + JL(u)u ≈ L(u). (2.21)

This approximation is valid in practice when JL does not vary too rapidly with u. For
instance, in EED inpainting, this corresponds to settings where the contrast parameter
λ is not too small.

Under this approximation, the inpainting formulation simplifies to

(P + (I −P )L(uk))uk+1 = Pf , (2.22)

with the corresponding augmented system

[L(u
k) A⊺

A 0
] [u

k+1

λk+1
] = [ 0

Af
] . (2.23)

This approach offers several advantages. If L(uk) is symmetric – as is the case for EED
– the system remains symmetric, whereas the full Jacobian Jψ(u) = L(u) + JL(u)u is
generally not symmetric due to the second term. Additionally, this formulation avoids
the potential inconsistency that may arise when projecting Jψ onto the kernel of A, since
the right-hand side is zero. As a result, solvers for consistent systems can be employed,
such as projected conjugate gradients or SYMMLQ [180] in the symmetric case, and
Bi-CGSTAB [233] in the non-symmetric case.

An illustration of the results obtained by using this formulation is shown in Figure 2.2.
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grey values, MSE: 14.95 five features, MSE: 10.77 original image trui f

Figure 2.2: Illustration of EED inpainting using only grey-value features versus
five features (grey values, ∂x, ∂y, 3 × 3 and 5 × 5 binomial kernels). The total mask
density is 5% in both cases. The reconstruction error improves by nearly 28%
compared to the already strong performance of classical EED inpainting.

2.3.6 Optimisation Formulation for Nonlinear Features

Here, we motivate an inpainting formulation with nonlinear features from an optimisation
perspective, analogous to the approach in Section 2.3.1. This serves as a precursor to
the formulation in the next section, which does not rely on an optimisation problem.

Let b ∶ RN → RM be a C2 nonlinear function representing the constraints, and let the
inpainting operator ψ(u) be the gradient of a C2 energy functional E ∶ RN → R, i.e.,
ψ(u) = ∇E(u). The inpainting task can then be formulated as an equality-constrained
optimisation problem:

min
b(u)=0

E(u) Ô⇒ min
u∈RN

max
λ∈RM

L(u,λ), L(u,λ) ∶= E(u) +λ⊺b(u). (2.24)

A stationary point of this saddle-point problem must satisfy the first-order optimality
conditions:

∇uL(u,λ) = ∇E(u) + J⊺b (u)λ = 0, (2.25)

∇λL(u,λ) = b(u) = 0. (2.26)

Linearising around the current iterate uk yields the following augmented system:

[∇uuL(u
k,λk) J⊺b (uk)

Jb(uk) 0
] [ v

k

λk+1
] = −[∇E(u

k)
b(uk) ] . (2.27)

In this formulation, we have:

∇E(u) = ψ(u), ∇uuL(u,λ) = Jψ(u) +H[b](u)λ = Jψ(u) +
M

∑
j=1

H[bj](u)λj, (2.28)

whereH[bj](u) denotes the Hessian of the j-th constraint function bj from the constraint
vector b. The system in (2.27) corresponds to the standard sub-problem solved at each
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iteration of sequential quadratic programming (SQP) [177].

2.3.7 Nonlinear System Formulation for Nonlinear Features

We now generalise the previous formulation by dropping the assumption that ψ = ∇E.
Instead, we begin directly from the stationarity conditions (2.25) and (2.26), which now
take the form:

ψ(u) + J⊺b (u)λ = 0, (2.29)

b(u) = 0. (2.30)

The above system is equivalent to:

(I −P (u))ψ(u) = 0, (2.31)

b(u) = 0, (2.32)

where I − P (u) denotes the orthogonal projector onto the kernel of the Jacobian
ker(Jb(u)) of the constraints. This generalises the linear formulation in (2.15), which is
recovered by setting b(u) =Au −Af and ψ(u) = Lu.

Equations (2.31) and (2.32) thus define the general nonlinear inpainting formulation
with nonlinear equality constraints: we enforce the constraints and require that ψ(u)
lies in the kernel of Jb(u). Linearising this system yields the compressed Jacobian
(I −P )Jψ(I −P ).

For large and sparse problems, it is often more practical to work with the augmented
system:

[Jψ(u
k) +H[b](uk)λk J⊺b (uk)
Jb(uk) 0

] [ v
k

λk+1
] = −[ψ(u

k)
b(uk) ] . (2.33)

In this system, it may happen that neither −ψ(uk) nor −b(uk) lies in the range of the
system matrix. While one could apply a least-squares solver such as CGNR directly,
in practice it is more consequent to project ψ(uk) onto span(Jψ(uk) +H[b](uk)λk)
and b(uk) onto span(Jb(uk)), and then modify the right-hand side accordingly. Based
on our experience, this projection step can be crucial for obtaining a meaningful search
direction in each SQP iteration.

In the quasi-linear setting, where ψ(u) = L(u)u and the approach from Section 2.3.5
is used, inconsistency in the system cannot arise unless the term H[b]λk reduces the
rank of L(uk). However, if both L(uk) and H[b](uk)λk are positive semi-definite, this
cannot occur, since for positive semi-definite matrices A and B, we have:

rank(A +B) ≥max(rank(A), rank(B)).

The Constraint Functions b. As an example, consider functions representing different
linear or nonlinear features: ϕ1, . . . ,ϕk ∶ RN → RN , and their associated masks c1, . . . ,ck.
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Then we can form b as follows:

b(u) =Cϕ(u) −Cϕ(f) =
⎡⎢⎢⎢⎢⎢⎣

C1(ϕ1(u) −ϕ1(f))
⋮

Ck(ϕk(u) −ϕk(f))

⎤⎥⎥⎥⎥⎥⎦
∈ R(k⋅N)×N . (2.34)

In the linear setting we have that Cϕ(u) =CFu =Au, and thus b(u) =Au −Af .

2.4 Solution Strategy

In the setting of linear constraints with a quasi-linear inpainting operator, as discussed
in Section 2.3.5, solving the inpainting problem is relatively straightforward. A few
Kačanov iterations (possibly damped [102]) typically suffice, and the resulting linear
systems (2.23) can be efficiently solved using, for example, the conjugate residual method.
In contrast, nonlinear constraints introduce significant complexity, as the normal and
tangent spaces of the constraints’ “manifold”2 vary from iteration to iteration. Below
we briefly describe our SQP-inspired algorithm for the nonlinear feature inpainting.
Standard SQP algorithms [61, 143] are applicable only to the optimisation formulation,
and for large problems they use a projected conjugate gradient solver [143]. From our
experiments we have seen that our algorithm is much more robust w.r.t. convergence to
the solution compared to standard SQP, even in the energy-derived inpainting setting
where classical SQP is still applicable.

Line Search vs Trust Region. Newton-type methods are not globally convergent
in general. To address this, globalisation strategies such as line search or trust region
methods are commonly employed [61, 177]. In our setting, we observed that line-search-
based SQP methods often fail to converge without additional regularisation, even when
using theoretically sound acceptance criteria [45]. This failure appears to stem partly
from rank deficiency in Jb and partly from the Newton directions becoming nearly
orthogonal to the gradient in ill-conditioned problems [230]. Forcing sequences that relax
solver tolerances [79] can help, but we have still experienced cases where the method
failed to converge. As such we focus on trust region approaches, which have proven to
be much more robust in our setting.

Byrd-Omojokun Step Decomposition. Trust region methods using Steihaug-Krylov
solvers [221] tend to be more robust in our problem setting, though they may still stall. A
key component is the quasi-normal step from the Byrd-Omojokun trust region framework
(see [143, 177]), which provides a reliable direction by solving:

min
vkN ∈C

k
∥vkN∥22 subject to ∥vkN∥2 ≤ ξ∆k, Ck = argmin

v
∥b(uk) + Jb(uk)v∥22, (2.35)

2We allow for the tangent spaces degenerating, i.e., the constraints’ hyper-surface does not need to
be regular.
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yielding the quasi-normal direction vkN . The full step is given by vkN = −J+b (uk)b(uk),
but the trust region constraint ξ∆k may necessitate truncation. Once feasibility is
improved, a tangential step vkT is computed to reduce the objective within the tangent
space:

[Jψ(u
k) +H[b]λk J⊺b (uk)
Jb(uk) 0

] [v
k
N + vkT
λk+1

] = [ −ψ(u
k)

Jb(uk)vkN
] , with ∥vkN + vkT ∥2 ≤∆k. (2.36)

This formulation ensures consistency with respect to the normality conditions.

Model and Merit Functions. In practice, both trust region constraints3 are enforced
using a Steihaug-CGNR solver, which terminates when the step size exceeds the trust
region radius. Since CGNR monotonically reduces the residual norm, we define the
model function as:

mk(v) =min
λ
∥(Jψ(uk) +H[b])v + J⊺b (uk)λ∥22 + ρ2∥b(uk) + Jb(uk)v∥22. (2.37)

The corresponding merit function is based on the residuals of the original nonlinear
system (2.29)–(2.30):

φk(v) =min
λ
∥ψ(uk + v) + J⊺b (uk + v)λ∥22 + ρ2∥b(uk + v)∥22. (2.38)

In practice, we omit the minimisation over λ and substitute λk+1 in mk(vk) and φk(vk),
and λk in mk(0) = φk(0). Empirically, λk converges toward the optimal multiplier as
the method progresses. The weight ρ can either remain fixed throughout or it can be
updated to more quickly enforce the constraints at the expense of the objective function.
Note that ξ should ideally be a function of ρ.

Trust Region Update. Step acceptance and trust region updates follow standard
rules [61, 177], based on the ratio of actual to predicted reduction:

rk =
ared

pred
= φk(0) − φk(vk)
mk(0) −mk(vk)

⇒ ∆k+1 ∈
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γ2∆k, if rk ≥ η2 and ∥vk∥ =∆k,

∆k, if rk ∈ [η1, η2),
γ1∆k, if rk < η1.

(2.39)

Here, 0 < η1 ≤ η2 ≤ 1 are thresholds for rejecting a step (rk < η1), accepting it without
changing the trust region (rk ∈ [η1, η2)), or accepting it and expanding the region (rk ≥ η2),
provided the step was constrained by the trust region. We have experimented with both
the practical parameters suggested in [61] and [177]. From our empirical experience the
parameters from [61] yield slightly faster convergence, however, the variation is not very
large.

3The trust region constraints are: ∥vkN∥2 ≤ ξ∆k from (2.35), and ∥vkN + vkT ∥2 ≤∆k from (2.36).
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2.5 Experiments

To illustrate the inpainting approach, we present a selection of representative results
without delving into extensive detail. A more thorough experimental evaluation is
deferred to the data optimisation chapter (Chapter 4), where it is more appropriately
situated in the context of algorithms designed for optimising reconstruction data.

2.5.1 Experimental Setup

Linear Features. We define five types of linear features, each expressible via boundary-
reflecting convolutions:

(ϕ1(v))i,j = vi,j, (ϕ2(v))i,j = vi+1,j − vi,j, (ϕ3(v))i,j = vi,j+1 − vi,j,

ϕ4(v) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 1 2 1 0
0 2 4 2 0
0 1 2 1 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗ v, ϕ5(v) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗ v.
(2.40)

Here, ϕ1 is the identity feature used for classical colour interpolation, ϕ2 and ϕ3

represent discrete derivatives, and ϕ4 and ϕ5 approximate Gaussian smoothing. Stencil
normalisation is handled automatically by our spatial optimisation in Chapter 4, so
multiplicative constants do not have any effect.

Nonlinear Feature. In the nonlinear setting, we replace ϕ5 with a weighted variance
feature:

(ϕ̃4)i,j(u) =
1

2

1

∑
k=−1

1

∑
l=−1

wkl(ui+k,j+l − µi,j)2, µi,j =
1

∑
k=−1

1

∑
l=−1

wklui+k,j+l, (2.41)

where the weighting stencil is the normalised version of the one used in ϕ4:

W = 1

16

⎡⎢⎢⎢⎢⎢⎣

1 2 1
2 4 2
1 2 1

⎤⎥⎥⎥⎥⎥⎦
. (2.42)

Harmonic Inpainting. For harmonic inpainting, we use the standard 5-point stencil
discretisation of the negated Laplacian:

(−∆u)(xi, yj) ≈ (Lu)i,j =
−ui−1,j + 2ui,j − ui+1,j

h2x
+ −ui,j−1 + 2ui,j − ui,j+1

h2y
, (2.43)

with reflecting boundary conditions: u0,j ∶= u1,j, uW+1,j ∶= uW,j, ui,0 ∶= ui,1, ui,H+1 ∶= ui,H .
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EED Inpainting. The matrix for EED inpainting is constructed following the discreti-
sation in [241]. We use the following parameters: contrast parameter λ = 1.0, Gaussian
pre-smoothing standard deviation σ = 0.8, and parameters α = 0.25, γ = 1.0 (for more
details on those see [241]). The EED inpainting process is initialised with the harmonic
inpainting result, followed by Kačanov iterations to compute the final solution.

2.5.2 Visual Comparisons

We provide visual comparisons for harmonic and EED inpainting that illustrate results
from our generalised inpainting framework. Results such as mean-squared-errors and the
generated masks for the different features are discussed in Chapter 4. We also illustrate
an inpainting with the nonlinear feature in Fig. 2.5, but unfortunately it does not produce
meaningful improvements, while the inpainting is many times more computationally
expensive. Consequently, the selection of good nonlinear features remains an open
problem.

Harmonic Inpainting. Figure 2.3 showcases the large difference between harmonic
inpainting with only colour interpolation and with the five linear features. We note that
the classical harmonic inpainting is both much blurrier and suffers from pronounced
logarithmic singularities. More visual comparisons can be found in Fig. 2.6. We highly
recommend zooming into the images on a computer in order to better appreciate the
difference. The differences are very obvious if one switches between the images on a
computer.

EED Inpainting. Figure 2.4 illustrates the visual difference between EED inpainting
with only colour interpolation and with the five features. The latter is less blurry and
wavy and has closed some image edges better. Additional visual comparisons can be
found in Fig. 2.7.

2.6 Conclusion

We have introduced a general theoretical framework for nonlinear inpainting with
nonlinear equality constraints. The key insight is that, unlike the classical formulation,
it is sufficient to replace the mask matrix C with the orthogonal projection matrix
P = J+b Jb, which rejects the kernel of the constraints’ Jacobian. This formulation aligns
with optimisation-based approaches and remains applicable even when the inpainting
operator is not derived from an energy functional.

Our theory highlights an important conceptual point: Prescribing a set of features inher-
ently alters the inpainting operator. The problem being solved involves the compression
of the operator onto the kernel of the linearised constraints – thus, feature selection
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implicitly defines the behaviour of the reconstruction process beyond just the pointwise
interpolation of the features.

A key strength of our formulation lies in its flexibility: it enables the seamless integration
of diverse features. Among these, we have identified colours, derivatives, and local
integrals as particularly effective, leading to significant improvements in reconstruction
quality.

While we have discussed various solution strategies, we have not yet addressed computa-
tional efficiency – this topic is partially explored in Chapter 3. Likewise, we have not
tackled the problem of optimally allocating feature types ratios, selecting interpolation
point locations, or determining the best coefficients at those points. These aspects are
the focus of Chapter 4.

Finally, we have not delved into a detailed study of practically relevant nonlinear
features, which remains an open direction for future research. Another promising avenue
is the extension of our framework to accommodate inequality-constrained features.
The theoretical foundation for this is straightforward, relying on the Karush-Kuhn-
Tucker (KKT) conditions resulting from an inequality-constrained optimisation problem.
However, solving such problems will require more sophisticated techniques, such as
inequality-constrained SQP-inspired methods or interior-point approaches. In terms of
practically relevant inequality-constrained features, one could, for example, enforce local
minima and maxima in order to prevent overshoots and undershoots – potentially a
useful modification for biharmonic inpainting.
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colour values only all five features original

Figure 2.3: Harmonic inpainting with linear features, 5% mask. Note the large
improvements in the closing of the edges and the suppression of the logarithmic
singularities inherent to harmonic inpainting.

colour values only all five features original

Figure 2.4: EED inpainting with linear features, 5% mask. Note the much sharper
result and better reconstructed edges.

lin. constr., MSE: 110.19 nonlin. constr., MSE: 108.24 original

Figure 2.5: windmill with four linear features (left) vs four linear features and the
nonlinear weighted variance feature (middle), 5% mask. Unfortunately the nonlinear
feature brings no tangible benefits.
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colour values only all five features original

Figure 2.6: Harmonic inpainting with the same total mask density. Photos by
Joachim Weickert – top to bottom: raindeer, quai, mirror, crab. Note the much
sharper mirror image reconstruction.
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colour values only all five features original

Figure 2.7: EED inpainting with the same total mask density. Photos by Joachim
Weickert – top to bottom: boats, madeira, garafia, flowers.





Chapter 3

Fast Inpainting Methods

Three of our works [58, 127, 128] discuss strategies for accelerating image inpainting.
Section 3.1 is based on our work [58], where we employ the finite element method
(FEM) [117, 144] to formulate inpainting on an adaptive triangular mesh. This approach
significantly reduces the system size, enabling a notable speed-up compared to standard
finite difference method (FDM) [168] implementations. Additionally, the use of a coarser
FEM mesh helps suppress the logarithmic singularities that are characteristic of harmonic
inpainting in two dimensions. We also discuss extensions to polyharmonic inpainting
that are not present in [58] but that we have presented at GAMM23.

In contrast, in Section 3.2 we reproduce parts of our work [127, 128] on fast harmonic
inpainting in the FDM setting. There we target GPU architectures, leveraging multigrid
and domain decomposition techniques to achieve real-time inpainting performance on
4K-resolution images. We focus on our main contribution there related to the multigrid
implementation.

3.1 FEM for Harmonic Inpainting

Finite difference methods (FDM) [168] and finite element methods (FEM) [117, 144] are
two classical numerical approaches for solving differential equations. FDM is typically
implemented on regular, equidistant grids – such as the pixel grid of digital images –
while FEM is particularly well-suited for adaptive meshes. As a result, the number of
unknowns in FDM grows rapidly with image resolution, whereas FEM allows fine control
over the number of unknowns through the mesh construction process. This flexibility
naturally motivates the use of an adaptive, lower-resolution FEM mesh to accelerate
inpainting compared to FDM.

In the context of FDM, a comparable idea would be to downsample the image. However,
this would result in a resolution that is too coarse in some regions and unnecessarily fine
in others, since classical FDM does not support adaptivity.

33
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3.1.1 Outline

We discuss related work in Section 3.1.2, after which we give an extremely brief description
of the finite element method (FEM) in Section 3.1.3, followed by the formulation of
harmonic inpainting in the finite element setting in Section 3.1.4. Specifics of our
implementation are discussed in Section 3.1.5. We illustrate our approach with some
experiments in Section 3.1.6. We showcase extensions that go beyond our work [58]
in Section 3.1.7, and present our preferred formulation for polyharmonic inpainting in
Section 3.1.8. We conclude the finite element section of this chapter in Section 3.1.9,
where we also discuss avenues for future research.

3.1.2 Related Work

Finite element methods (FEM) have been successfully applied to PDE-based models
for image denoising [20, 133, 196] and restoration [37, 226]. However, to the best of our
knowledge, they had not been used for PDE-based image approximation from sparse
data prior to our work [58]. They have been used for surface reconstruction, however, in
the work of Bae and Weickert [19]. Additionally, since the publication of our work, an
FEM inpainting-based approach has been used for MRI data [122].

3.1.3 Brief Description of FEM

Unlike the finite difference method, which fits polynomials and takes their pointwise
derivatives, the finite element method (FEM) relies on integral forms of the differential
equations by integrating against test functions v ∈ V. After this, the formulation is
typically brought to a weak form where the highest order of the derivatives is reduced
in half. This step can be skipped, but it is typically done because it allows one to
use simpler subspaces in the discretisation, and allows for weak solutions. Finally, one
discretises the resulting equations by considering finite-dimensional subspaces Vh ⊂ V,
Uh ⊂ U of the test space V and the trial space U . That is, let β1, . . . , βn ∈ V be a basis
for Vh and α1, . . . , αn ∈ U be a basis for U . Then we can write vh(x) = ∑ni=1 vihβi(x)
and uh(x) = ∑ni=1 uihαi(x). This reduces the problem to a finite-dimensional system of
equations which we can solve for the vectors of coefficients uh,vh ∈ Rn.

3.1.4 FEM Formulation of Harmonic Inpainting

Consider the harmonic inpainting problem on a domain Ω ⊆ Rd

−∆u(x) = 0, x ∈ Ω ∖ X ,
∂nu(x) = 0, x ∈ ∂Ω,
u(x) = f(x), x ∈ X ,

(3.1)
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where ∣X ∣ =m. The finite element method first multiplies the equation on both sides by
a test function v ∶ Ω→ R and then integrates both sides over the problem domain Ω

−∫
Ω
v∆udvold = 0. (3.2)

While one could directly apply a discretisation at this point, typically we first bring the
equation to a weak form in order to reduce the highest order derivative. We can achieve
this in the above by using the product rule

∇ ⋅ (vr) = ∇v ⋅ r + v∇ ⋅ r r=∇uÔ⇒ v∆u = ∇ ⋅ (v∇u) −∇v ⋅∇u. (3.3)

The next step is to integrate both sides and use the divergence theorem

−∫
Ω
v∆udvold = ∫

Ω
∇v ⋅∇udvold − ∫

Ω
∇ ⋅ (v∇u)dvold

= ∫
Ω
∇v ⋅∇udvold − ∫

∂Ω
v∂nudHd−1.

(3.4)

Thus, we have decreased the order of the spatial derivatives by half. Since ∂nu = 0 on
∂Ω (i.e. reflecting BCs) the boundary integral becomes zero. Then we end up with the
weak formulation where the spatial derivatives are halved:

∀v ∈ V , ∫
Ω
∇v ⋅∇udvold = 0, u∣X = v∣X . (3.5)

We can now replace u and v by their finite-dimensional approximations uh(x) =
∑nj=1 ujhαj(x) and vh(x) = ∑ni=1 vihβi(x). Plugging those in the weak formulation and
using linearity yields

n

∑
i=1

n

∑
j=1

vihu
j
h∫

Ω
∇βi ⋅∇αj dvold

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Wij

= 0.
(3.6)

The matrixW ∈ Rn×n is known as the stiffness matrix and it is a weak discretised version
of the negated Laplacian (up to rescaling by the mass matrix). For simplicity assume
that the basis functions βj and αj are interpolating over a set of points Y where X ⊆ Y .
That is, we have the Lagrange property

βj(yi) = δij = αj(yi), yi ∈ Y . (3.7)

Then we can enforce the interpolation constraint u∣X = f ∣X directly

uh(xi) =
n

∑
j=1

ujαj(xi) = ui = f i = f(xi), xi ∈ X . (3.8)

Moreover, we require that vh vanishes on the interpolation points

vh(xi) =
n

∑
j=1

vjβj(xi) = vi = 0, xi ∈ X . (3.9)
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Denote by I the set {1, . . . , n}, and let C ⊆ I be the mask index set, i.e.,

i ∈ C Ô⇒ yi ∈ X .

We can now incorporate the interpolation constraints in (3.6)

∑
i∈I

∑
j∈I

Wijv
i
hu

j
h = 0 Ô⇒ ∑

i∈I∖C

∑
j∈I∖C

Wijv
i
hu

j
h + ∑

i∈I∖C

∑
j∈C

Wijv
i
hf

j = 0. (3.10)

Since we want the above to hold for any vh ∈ Vh, we can consecutively set vh to be ei for
i ∈ I ∖ C, which results in the system

(C + (I −C)W )u =Cf , (3.11)

where ci = 1 if i ∈ C and ci = 0 otherwise, and C = diag(c). Note that the structure of
the system is similar to the one from the FDM method (1.5), which is unsurprising. The
main difference is that our negated Laplacian discretisation W arises from the finite
element method.

The only question that remains is how to construct βi and αi. In the next subsection we
take αi = βi and use the piecewise-linear hat functions corresponding to the P1 elements
for the basis.

3.1.5 Implementation

Our FEM formulation is based on a triangular mesh; see Fig. 3.1, right. Each mask
pixel is treated as a vertex in this mesh, and a subset, Y, of the remaining non-mask
pixels is selected as unknown vertices, based on the desired number of unknowns or
runtime constraints. If all non-mask pixels were included as unknowns, the resulting
discretisation would correspond to the standard 5-point stencil FDM formulation of the
Laplace equation.

Once the vertex set X ∪ Y is defined, we construct a Delaunay triangulation [195]. The
Delaunay property, which maximises the minimum angle in the triangulation, is beneficial
for numerical stability, as it improves the conditioning of the system matrices used in
both inpainting and tonal optimisation [208]. Additionally, this approach eliminates the
need to store mesh connectivity explicitly, since the mesh can be reconstructed directly
from the mask pixels X and unknown vertices Y [195].

We employ a linear FEM scheme: the reconstructed image is piecewise-linear within each
triangle and continuous across edges and vertices. Grey or colour values are prescribed at
mask pixels, while values at unknown vertices are computed by solving the linear system
derived from the FEM formulation in (3.11). Typically, we select as many unknown
vertices as there are mask pixels, i.e., ∣Y∣ = ∣X ∣, since our goal is to have ∣X ∣ + ∣Y∣ ≪ N ,
where N = width × heigh, in order to get a highly efficient method.

Given a Delaunay mesh containing at least one mask pixel, the system matrix in
(3.11) is symmetric and positive definite. Consequently, the solution can be efficiently
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FDM inpainting FEM inpainting Delaunay triangulation

Figure 3.1: Harmonic inpainting with FDM and FEM. Note the logarithmic singu-
larity suppression. Right: Delaunay triangulation used as the FEM mesh.

approximated using the conjugate gradient method [206]. The final image is obtained by
linearly interpolating the solution within each triangle, in order to assign values to the
remaining non-mask pixels that are not part of the mesh.

3.1.6 Experiments

In our experiments, we have tested mask densities of 4% and 10%, i.e., ∣X ∣ = 4% ⋅N
and ∣X ∣ = 10% ⋅N . As mentioned, we choose the FEM mesh such that ∣Y∣ = ∣X ∣, which
results in a relatively well-conditioned system, as only half of the points are unknowns.
In contrast, achieving such conditioning with FDM would require a mask density of 50%.
Moreover, the resulting system is significantly smaller – approximately one-tenth to
one-fifth of the size of the corresponding FDM system. This leads to an inpainting that is
more than ten times faster for a 256× 256 image compared to its FDM counterpart, with
the performance gap increasing as image resolution grows (the better conditioning plays
a significant role). The experiments w.r.t. performance were carried out on a system
with a Ryzen 4800H CPU, however, the factor 10 doesn’t generally change even on other
hardware.

Representative inpainting results are shown in Fig. 3.1, Fig. 3.2, and Fig. 3.3. Notably,
the logarithmic singularities characteristic of harmonic inpainting are absent in all cases
– this is due to the regularising effect of choosing ∣X ∣ + ∣Y∣ ≪ N . Additional results on
the acceleration of spatial and tonal optimisation with FEM inpainting are presented in
Chapter 4.

3.1.7 Extensions

Since the publication of [58], we have explored several extensions, all of which have
yielded negative results. Specifically, we have conducted experiments with the following
approaches:
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FEM original

Figure 3.2: FEM reconstructions with a 4% mask density and tonal optimisation.
Note the lack of logarithmic singularities.
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Figure 3.3: Top: A richly textured colour image of size 4896 × 3264 amounting to
ca. 16 million pixels. Photo: J. Weickert. Bottom: Our FEM reconstruction with a
10% mask density.
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• P2 triangle elements (quadratic polynomials) for harmonic inpainting,

• Morley, Bell, and Argyris elements for biharmonic inpainting,

• finite volume methods (FVM) and discontinuous Galerkin (DG) approaches.

Quadratic triangle elements P2 tend to increase the system’s bandwidth, which leads to
longer reconstruction times. In all of our tests, P2 elements do not perform better in
terms of reconstruction quality compared to the P1 elements. Bell and Argyris elements
provide C1 continuity, enabling a conforming discretisation of the biharmonic inpainting
problem. However, these did not yield better reconstruction results in terms of MSE
and incurred significantly higher runtimes. This is due to the increased complexity: Bell
elements have 18 degrees of freedom, and Argyris elements have 21, compared to just 3
for P1 elements.

Morley elements, piecewise-constant FVM, and discontinuous Galerkin methods produce
discontinuous reconstructions (see Fig. 3.4), which negatively impact the MSE. Moreover,
these elements do not offer any speed advantage over P1 elements. These findings
highlight that highly specialised schemes for specific PDEs do not necessarily
translate into more efficient or higher-quality image reconstructions.

FVM inpainted FEM inpainted original image

Figure 3.4: FVM vs FEM inpainting. Note the discontinuous reconstruction due
to the piecewise-constant Voronoi elements. If we choose piecewise-linear triangle
elements, the FVM inpainting is equivalent to the FEM one, since the two differ only
by the mass matrix.

3.1.8 Polyharmonic Inpainting with P1 Elements

We briefly discuss our preferred discretisation for polyharmonic inpainting. Consider the
biharmonic inpainting problem

(−∆)2u(x) = 0, x ∈ Ω ∖ X ,
∂n(−∆)u(x) = 0, x ∈ ∂Ω,

∂nu(x) = 0, x ∈ ∂Ω,
u(x) = f(x), x ∈ X .

(3.12)



Chapter 3. Fast Inpainting Methods 41

The weak formulation of the above problem involves a matrix

Sij = ∫
Ω
∆βi∆αj dvol

d. (3.13)

That is, we need at least C1 elements in general. However, if we set v = −∆u we could
decompose the problem into two coupled sub-problems (note that this is possible only for
specific boundary conditions, such as the reflecting boundary conditions in our setting):

(−∆)v(x) = 0, x ∈ Ω ∖ X ,
∂nv(x) = 0, x ∈ ∂Ω,

(−∆)u(x) = v(x), x ∈ Ω,
∂nu(x) = 0, x ∈ ∂Ω,
u(x) = f(x), x ∈ X .

(3.14)

We can now discretise each of those separately, resulting in:

Wu =Mv, (I −C)Wv = 0, Cu =Cf , (3.15)

where Mij = ∫Ω βiαj dvol
d is the mass matrix. Setting v =M−1Wu and substituting in

the second equation, while combining with the interpolating conditions yields

(C + (I −C)WM−1W )u =Cf . (3.16)

In other wordsWM−1W ≈ (−∆)2. We can generalise this to arbitrary integer powers of
the Laplacian, leading toW (M−1W )q−1 ≈ (−∆)q. To be more precise, the above should
really be

(M−1W )q ≈ (−∆)q. (3.17)

However we are able to get rid of one M−1 due to the right-hand side having a zero
in one of the equations, which yields a symmetric system matrix. This means that
polyharmonic inpainting can be implemented as

(C + (I −C)W (M−1W )q−1)u =Cf . (3.18)

For non-integer powers α ∈ R we can use

(C + (I −C)(M−1W )α)u =Cf . (3.19)

We note that this discretisation is non-conforming since P1 elements do not form a
subspace of the Sobolev space Hq(Ω) except when q = 1. Nevertheless, it is simple to
implement, efficient, and results in reconstructions that are on par or better than ones
using more complicated elements for biharmonic inpainting.

We illustrate some of the tonally optimised results with biharmonic inpainting in Fig. 3.5.
Note that while FEM biharmonic inpainting achieves the same quality as FDM biharmonic
inpainting, it is actually not better than FEM harmonic inpainting.
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FDM, −∆, MSE: 21.5 FDM, (−∆)2, MSE: 16.5

FEM, −∆, MSE: 16.3 FEM, (−∆)2, MSE: 16.5

Figure 3.5: Harmonic and biharmonic inpainting with FDM and FEM at 5% (both
are tonally optimised).

3.1.9 Conclusion

Our FEM harmonic inpainting implementation allows for notable efficiency gains over the
standard FDM approach. Even for small images we can achieve a computational runtime
improvement of over 10 times, and this gap grows larger as the resolution increases.
Moreover, the regularisation from the FEM mesh strongly suppresses the logarithmic
singularities associated with harmonic inpainting in 2D. On the other hand, biharmonic
FEM or more complex elements do not provide any qualitative or runtime benefits.
Natural avenues for future research are the evaluation of FEM for EED inpainting, as
well as extensions to surface reconstruction similar to the work of Bae and Weickert [19].
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3.2 Multigrid for Harmonic Inpainting

In [127, 128] we leverage domain decomposition and multigrid ideas for real-time in-
painting of 4K images on the GPU. This addresses one of the main challenges related to
the practicality of inpainting methods. In the current section we reproduce the part on
multigrid from [127], as the main contributions of the author of the current thesis were
specifically in that direction.

All of the contributions in [127, 128] regarding domain decomposition are due to the
first author – Niklas Kämper. As such we provide only a short overview of the key
takeaways regarding domain decomposition methods for inpainting in Section 3.2.3. For
a complete treatment of the domain decomposition method we refer the reader to our
works [127, 128].

3.2.1 Outline

We review the work on fast inpainting in the FDM setting in Section 3.2.2. We then
provide a brief discussion of domain decomposition methods in Section 3.2.3. Basic
notions of multigrid are presented in Section 3.2.4 and Section 3.2.5. Since we are working
with a sparse mask, we give additional details on the construction of the coarser problems
in Section 3.2.6 and Section 3.2.6.1. We describe a naive mask values downsampling
approach in Section 3.2.6.2, however, the latter fails to preserve key properties of
harmonic inpainting. In Section 3.2.6.3 we design a downsampling strategy that is
specifically tailored to harmonic inpainting and allows us to achieve much better results.
Experiments that study the runtime-to-density scaling and the runtime-to-resolution
scaling are presented in Section 3.2.7. We conclude our discussion in Section 3.2.8, where
we also discuss future work.

3.2.2 Related Work

In the following we discuss prior work on accelerating diffusion-based inpainting. In
contrast to previous methods, we exploit the highly parallel nature of current GPUs and
do not rely on any sort of temporal coherence of subsequent video frames. We integrate
multigrid ideas, but complement them with a highly parallel domain decomposition
method.

Domain Decomposition in Image Processing. While domain decomposition
methods have not been used for sparse image inpainting, there exist a few domain
decomposition approaches for image processing tasks, such as denoising [55, 136, 250],
optic flow computation [137] or de-blurring [251].
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Multigrid Methods. Multigrid methods [38, 40, 98, 228, 246] belong to the most
efficient solvers for linear and nonlinear systems. They solve problems on multiple
resolutions simultaneously, in order to achieve uniform convergence for both high- and
low-frequency components of the error. Köstler et al. [139], Mainberger et al. [155], and
Di Martino and Facciolo [71], use them for homogeneous diffusion inpainting on mildly
parallel architectures such as multicore CPUs [155] or the Playstation 3 [139]. For the
smoothing operations on each level of the multigrid method, the listed works use a simple
Gauss-Seidel iteration [206]. Köstler et al. [139] also considered nonlinear anisotropic
diffusion with a coarse-to-fine multilevel method. While our approach also employs a
(full) multigrid method, we improve the downsampling by adapting it to the inpainting
operator, and we use a more sophisticated smoother, i.e. domain decomposition, that
better utilises GPU parallelism.

Green’s Functions. Another approach for accelerated inpainting goes back to Hoff-
mann et al. [113]. It is based on discrete Green’s functions [16, 29, 60]. They can be
used to decompose the inpainting problem into pixel-wise contributions from which the
reconstruction can be assembled as a linear combination. This leads to an alternative
system matrix of size ∣K ∣×∣K ∣ where ∣K ∣ is the number of known pixels, which determines
the coefficients in the linear combination. This approach has the advantage that its
runtime depends only on the number of mask pixels instead of the overall number of
pixels. For very sparse inpainting data it can, thus, outperform multigrid methods.
However, its system matrix is dense, and its size grows quadratically with the number
of mask pixels. Thus, for 4K images and typical mask densities between 1% and 5%
this approach is infeasible due to memory and runtime constraints. Kalmoun and
Nasser’s [125] approach is based on continuous Green’s functions used in the method of
fundamental solutions [132, 141]. They use a GMRES [206] solver with a fast multipole
method [95]. The closed-form of the Green’s functions coupled with the fast multipole
method allow them to avoid storing the system matrix circumventing the memory con-
straints. Nevertheless, the inpaintings are still not real-time even at low resolutions such
as 256 × 256.

Video Coding. In the context of video compression, Peter et al. [190] proposed a
method for nonlinear anisotropic diffusion inpainting. It relies on fast explicit finite
difference schemes [242], which are well-suited for parallelisation and benefit strongly
from a good initialisation available from the previous frame. With this advantage, they
were able to achieve real-time decoding of 640 × 480 videos on an Nvidia GeForce GTX
460 GPU. In our work we do not utilise such temporal coherence which allows us to be
more general. However, this also suggests that our methods can be made even faster
when applied to videos.

Two other real-time capable video codecs that exploit temporal coherence go back to
Andris et al. [13, 14]. They combine global homogeneous diffusion inpainting of keyframes
with optic flow based prediction for the frames in between. In [14] they achieve real-time
performance for FullHD colour videos on an Intel Xeon CPU W3565@3.20GHz, by
solving the inpainting with a multilevel conjugate gradient method [36].
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3.2.3 Domain Decomposition

Domain decomposition methods [73, 227] have similar convergence to block Jacobi (if
additive Schwarz is used) or block Gauss-Seidel (if multiplicative Schwarz is used). Seeing
as our method of choice in [127, 128] is optimised restricted additive Schwarz (ORAS),
the best convergence rate that it can achieve is O(√κ), and in the worst case it is O(κ),
where κ is the condition number of the system matrix. As such additive Schwarz has
slower convergence than conjugate gradients (CG) [206], and ORAS has the potential
to achieve similar convergence to CG. Yet in our harmonic inpainting implementation,
domain decomposition methods outperform conjugate gradients. The main reasons for
this are cache locality and parallelisation.

The main bottleneck when applying iterative solvers such as CG to large sparse problems
is memory reads and writes, as memory is not reused, and thus there are little benefits
from cache (or local/shared memory on the GPU). Methods that have localised iterations
such as additive and multiplicative Schwarz allow us to mitigate this, since we are able
to perform multiple iterations on smaller blocks that can fit in cache (or local/shared
memory on the GPU). This is true also for polynomial and block preconditioners.

The other benefit of additive Schwarz is that blocks are more or less independent of each
other and we can solve the sub-problems in parallel. This is especially useful on GPUs
where we have a large number of cores.

On the other hand, (single-level) domain decomposition methods cannot elide the fact
that lower-frequency modes of the error are slow to decay. The latter is most naturally
handled by multigrid methods, which allow a similar rate of error decrease over all
frequencies. Thus next we focus on the implementation of a multigrid method for
harmonic inpainting.

3.2.4 Two-Grid Cycle

Iterative solvers such as Jacobi [206], Gauss-Seidel [206], or the ORAS method [220]
reduce the high frequency modes of the error efficiently, but they are much slower at
decreasing the low frequencies. Multigrid addresses this by transferring the problem to a
coarser grid where the low frequencies appear as higher frequencies which can be reduced
more efficiently by the very same solvers. We first study the two grid formulation of
multigrid which consist of iterating what’s known as a two-grid cycle. Our two grids are
the original fine grid with grid spacing h, and a coarser grid with spacing H > h. In our
implementation, we set H = 2h.

We start the cycle k + 1 with an an approximation ukh of the solution uh of the problem
Ahuh = bh from the previous cycle k (or an initial approximation u0

h for k = 0). Here
Ah is the original system matrix and bh is the right-hand side (both on the original fine
grid). If we knew the true error uh −ukh we could correct our approximation to get the
true solution: ukh +(uh −ukh) = uh. Consequently, our goal is to find an approximation of
the error efficiently, by using the aforementioned idea of decimating different frequencies
of the error over different grids. The error uh − ukh typically contains both high- and
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low-frequency components. The high frequencies can be reduced by performing a few
iterations ϑpre of an iterative solver that dampens the high frequencies efficiently, also
called a smoother. Typical choices are damped Jacobi or Gauss-Seidel, or ORAS. This
results in the intermediate approximation of the solution

u
k+1/3
h = pre-smooth(Ah,bh,u

k
h, ϑpre). (3.20)

Provided we have used enough iterations ϑpre, the error ekh = bh −u
k+1/3
h will have only

negligible high-frequency components. We can then represent it almost perfectly on
the coarser grid. The transfer between the grids can be formalised using a restriction
matrix RH

h and a prolongation matrix P h
H . The two are designed so that sufficiently low

frequency components are reproduced exactly, while higher frequency components are
smoothed out to avoid aliasing.

A problem of the above formulation is that we do not know the error in practice, so we
cannot transfer it to the coarser grid. However, we know the residual and its relation to
the error:

rkh = bh −Ahu
k+1/3
h =Ahuh −Ahu

k+1/3
h =Ah (uh −uk+1/3h ) =Ahe

k
h. (3.21)

On the coarse grid this reads AHekH = rkH , where AH is an analogue of Ah on the
lower level. While the coarse matrix AH is usually constructed via the prolongation
and restriction operators, this would be impractical in our case, as we usually do not
explicitly store the system matrix. Instead, we directly discretise the inpainting problem
on the coarser grid (see Section 3.2.6). We get the coarse residual rkH by transferring the
fine grid residual rkh to the coarse grid:

rkH =RH
h r

k
h. (3.22)

In the two-grid cycle we then solve the coarse grid problem for the error exactly:

AHe
k
H = rkH . (3.23)

We note that the matrix AH is twice smaller in each dimension compared to Ah, thus
the computational cost is also reduced. The coarse grid error ekH can then be transferred
to the fine grid using the prolongation matrix, to get an approximation of the fine grid
error: ẽkh = P h

He
k
H . With this error approximation we can then correct our approximation

of the solution to obtain

u
k+2/3
h = uk+1/3 + ẽkh = uk+1/3 +P h

He
k
H . (3.24)

As a last step, a post-smoothing with ϑpost iterations is applied to smooth any high
frequency error components that have potentially been introduced by the previous
correction step:

uk+1h = post-smooth(Ah,bh,u
k+2/3
h , ϑpost). (3.25)

All of these steps together result in Algorithm 1. While solving AHxH = bH is generally
computationally cheaper than solving Ahxh = bh, for high resolution images even the
coarse problem is expensive. Thus, one often considers recursively applying this process



Chapter 3. Fast Inpainting Methods 47

Algorithm 1. Two-Grid Cycle

Input : current approximation ukh
Output : improved approximation uk+1h

1. Pre-smooth: u
k+1/3
h = smoother(Ah,bh,ukh, ϑpre)

2. Compute Residual: rkh = bh −Ahu
k+1/3
h

3. Restriction: rkH =RH
h r

k
h

4. Coarse Solve: AH ekH = rkH

5. Prolongation + Correction: u
k+2/3
h = uk+1/3h +P h

H e
k
H

6. Post-smooth: uk+1h = smoother(Ah,bh,u
k+2/3
h , ϑpost)

Fine

Coarse

Figure 3.6: Full multigrid scheme. Example with four resolution layers and a single
V-cycle for each level. The doubled lines represent the FMG prolongations to initialise
the V-cycle for the next finer level. Multigrid schematic courtesy of Niklas Kämper.

over a sequence of grids with decreasing resolution until a grid of a sufficiently low
resolution is reached. The latter results in an almost optimal workload of O(N logN)
for computing the solution. Another issue is how to choose a good initial guess u0

h. It
turns out that a good quality guess can be constructed efficiently by starting from the
coarsest level. The recursive approach with this initial guess has an optimal workload of
O(N). Both of these ideas are discussed in the following subsection.

3.2.5 V-Cycles and Full Multigrid

Instead of using only two resolution levels, we can extend the two-grid cycle to multiple
levels, by replacing the solve on the coarse level with another correction step on an even
coarser level. By iterating this process recursively until we reach a level that is coarse
enough for the lowest possible frequencies in our problem, we obtain a V-cycle. This
allows us to efficiently dampen different frequencies of the error at different resolutions.

We can improve the multigrid scheme even further, by providing a good but inexpensive
initialisation for the solution on the fine resolution level. Such an initialisation can be
obtained by computing an inpainting solution on a coarser grid and prolongating it to the
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fine resolution. This can be extended to a complete coarse-to-fine initialisation strategy.
Starting from a very coarse resolution grid, we successively refine the problem, where
inpainting solutions from coarser levels are interpolated and used as an initialisation
for finer ones. At each level a V-cycle is used to solve the resulting linear system. This
coarse-to-fine method with the error correction steps is called full multigrid (FMG).
Fig. 3.6 shows an illustration how the different grids are traversed in such an FMG
scheme. However, restriction and prolongation between different grids can be costly in
terms of runtime on parallel hardware such as GPUs, as they consist mainly of global
memory operations. To reduce the amount of restriction and prolongation operations
without losing the advantages of FMG, we propose to skip the V-cycles on the lower
levels and just use a single pre-smoothing iteration instead. This reduced FMG scheme,
is depicted in Fig. 3.7. For homogeneous diffusion inpainting, this reduced FMG scheme
is sufficient for a good convergence and improves the overall runtime compared to the
non-reduced scheme.

Fine

Coarse

Figure 3.7: Reduced full multigrid scheme. The initial guess is constructed in a
coarse-to-fine manner, also known as one-way or cascadic multigrid [36]. Then we
continue with additional V-cycle correction steps (a single V-cycle is visualised above).
Multigrid schematic courtesy of Niklas Kämper.

3.2.6 Lower Resolution Problems Construction

Full multigrid requires constructing a problem AHuH = bH on the coarser grid that
is similar in structure to Ahuh = bh on the finer grid. To achieve this, we employ
a downsampling ratio of two in each spatial direction, ensuring that the discrepancy
between the two problems remains minimal.

In the multigrid literature, the standard assumption is that the computational domain
has a rectangular boundary. Under this assumption, the geometry and connectivity of
the boundary are preserved during downsampling. In our setting, however, only the
reflecting Neumann boundary coincides with the rectangular image boundary. The
Dirichlet boundary, defined by the mask c, can be arbitrarily complex and typically
consists of scattered pixels with highly non-uniform density across the image domain.
Consequently, both the geometry and the connectivity of the Dirichlet boundary change
significantly when the grid is coarsened.

This distinction is important, as it is well known that grid transfer operations in multigrid
methods must be carefully adapted near boundaries to achieve optimal performance [246].
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256 × 256 128 × 128 64 × 64 32 × 32

Figure 3.8: Mask restriction example on trui with a 2% mask density. With each
resolution level the mask density increases while the connectivity of the mask changes.

3.2.6.1 Mask Downsampling

In order to construct coarser versions of the mask c, we use a specific dyadic downsampling
strategy: a pixel on the coarser level is marked as a mask pixel if any of its corresponding
finer-level pixels are mask pixels. This approach resembles max pooling rather than
average pooling. For an illustration of this process, see Fig. 3.8.

This strategy is conceptually similar to the method used in [164], although their work
involves simpler boundary configurations. We observe that downsampling in this manner
increases the density of the boundary set, which generally improves the efficiency of
solving the coarse-grid problem. However, this also alters the geometry and even
connectivity of the boundary on coarser levels, resulting in a coarse discretisation that
deviates significantly from the original fine-grid problem.

This discrepancy helps explain why a multigrid-preconditioned conjugate gradient solver
is not well suited to our problem, and why aggressive downsampling ratios – commonly
used in standard multilevel domain decomposition methods – are suboptimal in our
setting.

3.2.6.2 Näıve Mask Values Downsampling

Besides constructing the mask itself, we also need to determine lower-resolution counter-
parts bH =CHfH for the mask values bh =Chfh.

A näıve downsampling approach averages the values of all mask pixels within each 2 × 2
neighbourhood on the finer level. If a neighbourhood contains no mask pixels, the
corresponding coarse-level pixel is not considered part of the mask, and its right-hand
side value is set to zero.

As an example, the näıve coarse-level right-hand side value b2,2H for the coarse pixel c2,2H
is computed by averaging the values of the corresponding finer-level mask pixels in its
2 × 2 region.

c3,3h c4,3h
c3,4h c4,4h

,
b3,3h b4,3h
b3,4h b4,4h

, b2,2H =
c3,3h b3,3h + c

3,4
h b3,4h + c

4,3
h b4,3h + c

4,4
h b4,4h

max (1, c3,3h + c
4,3
h + c

3,4
h + c

4,4
h )

. (3.26)
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(a) näıve downsampling (b) modified downsampling

Figure 3.9: Illustration of the leakage caused by näıve dyadic downsampling for a
2% mask using only one-way multigrid (i.e. nested iteration).

As one might expect with such a complex boundary, the simple averaging and downscaling
approach described above is not ideal. A näıve average combines up to four mask values
from the finer level to compute the value of a single mask pixel on the coarser level.
However, a key observation specific to homogeneous diffusion inpainting is that the
influence of a mask pixel is localised to regions enclosed by other mask pixels. This
implies that näıve downsampling can cause mask pixels with originally localised effects on
the fine grid to exert influence beyond their intended boundaries on the coarse grid. This
phenomenon manifests as noticeable leakage across boundaries, leading to pronounced
colour bleeding near edges, as illustrated in Fig. 3.9. To rectify this, we modify the
downsampling procedure for the mask values by allowing mask pixels to suppress the
contribution of their neighbours.

3.2.6.3 Modified Mask Values Downsampling

If the four neighbours of a mask pixel are also mask pixels, then its value should not be
averaged on the coarser level, since its influence is already suppressed by its surroundings.
Importantly, these neighbours can be either fine-scale or coarse-scale mask pixels, as
long as they are direct neighbours, they contribute to suppressing the pixel’s influence.

As an example, consider the fine-level mask pixel c3,3h . Its direct neighbours include the
fine-grid pixels c3,4h and c4,3h , as well as the coarse-grid pixels c1,2H and c2,1H . An illustration
of this configuration is shown below, where the coarse pixel c2,2H is decomposed into its
fine-scale constituents: c3,3h , c3,4h , c4,3h , and c4,4h .

∗ c2,1H ∗

c1,2H
c3,3h c4,3h
c3,4h c4,4h

c3,2H

∗ c2,3H ∗

(3.27)
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To model this suppression effect, we assign each fine-grid pixel a weight in the averaging
process based on the number of its non-mask pixel neighbours. This leads to a modified
downsampling rule for computing the coarse-level right-hand side value b2,2H :

w3,3
h = c

3,3
h (4 − c

1,2
H − c

2,1
H − c

4,3
h − c

3,4
h ) , w3,4

h = c
3,4
h (4 − c

1,2
H − c

3,3
h − c

4,3
h − c

2,3
H ) ,

w4,3
h = c

4,3
h (4 − c

3,3
h − c

2,1
H − c

3,2
H − c

3,4
h ) , w4,4

h = c
4,4
h (4 − c

3,3
h − c

3,3
h − c

3,2
H − c

2,3
H ) ,

(3.28)

b2,2H =
w3,3
h b3,3h +w

3,4
h b3,4h +w

4,3
h b4,3h +w

4,4
h b4,4h

max (1,w3,3
h +w

3,4
h +w

4,3
h +w

4,4
h )

. (3.29)

The effect of this modification is illustrated in Figure 3.9, which exhibits significantly
less color bleeding than Figure 3.9. While the artifacts in the latter could be mitigated
through additional V-cycles or more sophisticated smoothers, the modified downsampling
approach reduces such issues at a much lower computational cost.

3.2.7 Experiments

After describing the technical details of our experimental setup in Section 3.2.7.1, we
illustrate its performance scaling behaviour in terms of the mask density in Section 3.2.7.3,
and in terms of the resolution in Section 3.2.7.4.

3.2.7.1 Experimental Setup

For the experimental evaluation of our full multigrid ORAS inpainting, we compare
against the cascadic multigrid ORAS approach from [126] and CG, as these methods
are suitable for parallelisation and can be efficiently implemented on a GPU. The
experiments for ORAS plus multigrid were conducted on a machine with an AMD Ryzen
5900X@3.7GHz CPU and an Nvidia GeForce GTX 1080 Ti GPU. We used state-of-the-
art optimised inpainting masks, obtained with a Delaunay densification strategy [128].
As optimised inpainting masks have local mask pixel densities of significant variance
across the image domain, it is much harder to inpaint images with them, compared
to regular or random masks. Thus, they are representative of the general case and we
restrict our experiments to them. We achieve an average runtime of 14.3 milliseconds,
which corresponds to a frame rate of nearly 70 frames per second.

3.2.7.2 Stopping Criterion

As a stopping criterion we use the relative decay of the Euclidean norm of the residual.
We note that this alone is not a good indicator of the true reconstruction error, which is
illustrated in Fig. 3.10. It shows the approximation quality in terms of the mean squared
error (MSE) with respect to a fully converged inpainting result for a relative residual
norm of 10−3. For both single level methods, we get MSEs of more than 1, which shows
that they are clearly not fully converged and would require a much stricter stopping
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Figure 3.10: MSE between the inpainting approximation and a converged inpainting
for a stopping criterion of 10−3. The full multigrid methods are closest to the converged
inpainting – with our full multigrid ORAS method performing the best. Both single
level methods are clearly not fully converged and would require a much stricter stopping
criterion for a reasonable approximation quality. Plot courtesy of Niklas Kämper.

criterion for a reasonable approximation quality. The multigrid methods, on the other
hand, offer significantly lower approximation errors, for the same relative residual norm
of 10−3. This also shows that the full multigrid methods perform better than the cascadic
ones. Due to this, we only consider multigrid methods from this point on, as they are
clearly superior. We use the relative residual norm of 10−3 as the stopping criterion, as
we have seen that this is sufficient for a reasonable approximation quality.

3.2.7.3 Mask Density Runtime Scaling

Fig. 3.11 shows the corresponding inpainting runtimes. We observe that the domain
decomposition methods clearly outperform their corresponding CG-based solvers by
more than a factor of 4. This demonstrates the capabilities of domain decomposition
methods over simpler algorithms. While the performance of the cascadic and the full
multigrid ORAS methods is similar for a mask density of 10%, our full multigrid method
clearly outperforms the cascadic approach for lower mask densities. This is because
even though both methods use a coarse-to-fine initial guess, only full multigrid performs
V-cycles that efficiently reduce lower frequency error modes. Since for sparser masks the
mask pixel contributions are lower frequency, those masks benefit much more from the
full multigrid approach. This allows us to perform real-time inpainting with 30 frames
per second for all tested densities and even 60 frames per second for mask densities
higher than 2%.
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3.2.7.4 Resolution Runtime Scaling

To evaluate our inpainting methods over different image sizes, we conduct experiments
over resolutions ranging from 480 × 270 to 3840 × 2160 with 5% masks. The results are
shown in Fig. 3.12. We can see that similar to the results from Fig. 3.11, our ORAS-based
inpainting methods are over four times faster than their CG-based counterparts on all
image resolutions. While both of our domain decomposition methods are able to inpaint
4K images in real-time, with at least 30 frames per second, the CG-based methods achieve
this only for FullHD resolutions. Fig. 3.12 also reveals that, at least for higher image
resolutions, all four methods show a nearly linear behaviour in the double logarithmic
plot. As the slope is approximately 1 for all methods, we observe an ideal linear scaling
behaviour.

3.2.8 Conclusion

One of the biggest challenges in inpainting-based compression has been the high com-
putational complexity associated with inpainting algorithms. While qualitatively those
are a viable alternative to transform-based approaches, standard solvers result in long
inpainting runtimes for larger images. Our work substantially alleviates this issue. By
adapting one of the most efficient concepts of numerical analysis – domain decomposi-
tion – and embedding it into a multigrid scheme, we are able to take advantage of the
computing power of modern parallel hardware. This has resulted in the most efficient
solver for sparse homogeneous diffusion inpainting. We have achieved, for the first time
ever, homogeneous diffusion inpainting at 60 frames per second for 4K colour images on
a contemporary GPU (in actuality four generations old). This suggests that even 8K res-
olution in real-time would be possible with the latest generation of GPUs. Furthermore,
most state-of-the-art methods for data optimisation on the encoding side rely on multiple
inpaintings. Thus, our work not only benefits the decoding side but is also able to improve
the runtime of encoding methods. This demonstrates that inpainting-based compression
has left its infancy to become a serious alternative to classical transform-based codecs
not only in terms of quality but also for real-time applications.

Our experience with homogeneous diffusion inpainting suggests that approaches like
ours, which judiciously adapt multiple numerical methods and exploit modern parallel
architectures, could also be successfully transferred to numerous other image processing
tasks.

Last but not least, while our work mainly focuses on mathematically sound algorithms,
we have nevertheless extracted interesting insights about the structure of homogeneous
diffusion inpainting and its interplay with numerical methods. We have seen that devising
methods that attempt to preserve continuous properties such as the localisation of the
Dirichlet boundary’s influence on coarser levels pays off. We have also observed the
relationship between mask density, cascadic, and full multigrid methods. The latter
are able to achieve much lower runtimes for low densities, since the basis functions at
low densities are inherently smoother. Finally, we noted that the widely used stopping
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Figure 3.11: Runtimes of cascadic and full multigrid methods for a stopping criterion
of 10−3. Our ORAS-based methods are more than 4 times faster than their corre-
sponding CG counterparts. Only our full multigrid ORAS method achieves real-time
performance for all densities. Plot courtesy of Niklas Kämper.
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Figure 3.12: The horizontal dashed lines represent real-time inpainting with 30 and
60 frames per second. Our full multigrid ORAS method achieves more than 60 frames
per second for a 4K resolution (last data point). With CG-based methods we achieve
real-time performance only up to a FullHD resolution (third data point from the right)
and only with approximately 45 frames per second. Plot courtesy of Niklas Kämper.

criterion based on the relative residual can be highly misleading, especially in the context
of image processing while using different classes of solvers.

In our ongoing research, we are working on extending our domain decomposition approach
to more sophisticated inpainting operators, such as anisotropic nonlinear diffusion. It
has been shown that those can offer an improved reconstruction quality compared to the
simple homogeneous diffusion inpainting.
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Data Optimisation Algorithms

As we emphasised in Chapter 1, data optimisation algorithms are crucial for the quality
of the reconstruction of inpainting methods. The main problem that we aim to solve is

X ∗ ∈ argmin
∣X ∣=m

∥u(X ,g∗(X)) − f∥ such that g∗(X) ∈ argmin
g∈Cm

∥u(X ,g) − f∥, (4.1)

where spatial optimisation (over X ) follows tonal optimisation (over g). We often replace
the latter by the simpler problem (4.2) where the spatial optimisation is done with respect
to an interpolating reconstruction u(X , f ∣X ), followed by a single tonal optimisation step

g∗ ∈ argmin
g∈Cm

∥u(X ∗,g) − f∥ such that X ∗ ∈ argmin
∣X ∣=m

∥u(X , f ∣X ) − f∥. (4.2)

Despite of the substitution in the above, the goal remains to minimise

min
∣X ∣=m

min
g∈Cm

E(X ,g), E(X ,g) = ∥u(X ,g) − f∥, (4.3)

which is the energy being minimised by (4.1), while in the worst case (4.2) may yield a
minimum only as good as the minimum of

min
∣X ∣=m

E(X), E(X) = ∥u(X , f ∣X ) − f∥. (4.4)

Spatial Optimisation. Throughout the rest of the chapter we focus on the discrete
setting where f ,u(X , ⋅) ∈ RN are the values on the N vertices of some mesh – typically
the values of the image pixels or the values of some function defined at the vertices of a
triangular mesh. The search space for the spatial optimisation problem in that setting
has size

(N
m
) = N !

m!(N −m)! = O ((
e ⋅N
m
)
m

) , (4.5)

which precludes us from performing an exhaustive search even for small images (e.g.
N = 256 ⋅ 256) with a fairly low mask density (e.g. m = 5% ⋅N). There are, of course,
special cases where the above problem is easy to solve. For example, if we consider
an orthogonal (unitary) transform, the best m-term approximation problem reduces to
just sorting the absolute values of the N transformed coefficients and choosing the m

55
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largest. Since the linear operators that we considered can be very far from orthogonal
(the condition number of our matrices is very large even for harmonic inpainting), or are
nonlinear, this is inapplicable in our setting. Consequently, we have to rely on some sort
of greedy algorithms or other (meta-)heuristics in order to find an approximate solution
of (4.1) or (4.2).

Tonal Optimisation. Generally, the tonal optimisation problem (i.e., the optimisation
with respect to g) is much simpler – for a linear inpainting (with linear features) and
∥ ⋅ ∥ being the 2-norm, this reduces to a linear least-squares problem. We can compute
its solution by solving a linear system. In contrast, the spatial optimisation problem
remains just as hard in the linear setting. Nevertheless, the main challenge in tonal
optimisation is solving the normal equations efficiently, since even in the linear setting
the system matrix is of size m ×m and is typically dense – we cannot even store the
latter in memory for moderately large images.

Publications. The contents of the current chapter are partially based on our data
optimisation for FEM [58], the improvements of the latter in [128] for FDM, and the
generalisation of the problem to feature inpainting from [120]. We further extend
the approach to our generalisation of the feature inpainting framework proposed in
Chapter 2. As such, the algorithms in the current chapter subsume our previous work
and also support nonlinear features. There is one exception: We do not discuss the
domain decomposition extension of the tonal optimisation, since the main contribution
in the latter is due to the first author of [128] – Niklas Kämper. Instead we focus on
our contributions related to the problem formulation, nested Krylov solvers, and the
Richardson iteration for the construction of the initial guess. We also provide extensions
that do not appear in [58, 120, 128].

4.1 Tonal Optimisation

Tonal optimisation is an important algorithmic step for achieving good quality recon-
structions. Often we can improve the MSE by 30% for spatially well-optimised masks,
and even larger improvements are to be had if the spatial optimisation did a poor job.

We mainly focus on tonal optimisation for linear inpainting with linear features, as this
is the setting with which our publications on the topic [58, 120, 128] are concerned with.
Our work on finite elements [58] describes a precursor to the tonal optimisation methods
developed in [120, 128]. Nevertheless, we also briefly discuss the FEM formulation, as it
differs in some aspects from the FDM approach, due to the interpolation involved in
FEM.
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4.1.1 Outline

We go over the related work on tonal optimisation for sparse inpainting in Section 4.1.2.
This is followed by the formulation of the linear least squares problem for the linear
feature inpainting framework in Section 4.1.3 – the latter is based on our work [120].
In Section 4.1.4 we discuss the application of Krylov methods to the “outer” tonal
optimisation problem, while in Section 4.1.5 we discuss the formulation and solution of
the “inner” inpainting-like problems. In Section 4.1.6 we describe a way to construct
a good initial iterate for the tonal optimisation based on [128], and also extend this
approach to the setting of feature inpainting. Experiments illustrating the performance of
our algorithms in the FEM and FDM setting are presented in Section 4.1.7, Section 4.1.8,
and Section 4.1.9. We conclude our discussion of tonal optimisation in Section 4.1.10,
where we also mention new potential research directions.

4.1.2 Related Work

Here we review some of the related work on tonal optimisation for image inpainting. For
brevity of notation we set R = B̃−1P̃ to be the reconstruction or inpainting matrix for a
linear inpainting process.

Inpainting Echoes. For smaller images, the matrix R can be computed and stored
explicitly. Its columns, known as inpainting echoes [156], are precomputed and stored
by Mainberger et al. [156], effectively forming the matrix R. Although they mention
that solving the normal equations involving R⊺R with an LU solver [106] is possible, it
proves too slow even for images of size 256 × 256. This supports the idea that iterative
solvers are necessary for larger images. They use a modified successive over-relaxation
(SOR) method [206] with under-relaxation and randomised traversal of mask points.
However, storing R becomes impractical for large images due to memory limitations,
and recomputing individual inpainting echoes during each iteration is computationally
prohibitive. Our method circumvents these issues by efficiently computing matrix-vector
products Rx without explicitly forming or storing R.

Green’s Functions. Homogeneous diffusion inpainting can also be formulated as a
linear combination of Green’s functions associated with the mask points [111, 113, 125].
These Green’s functions serve as a spectral analogue to the inpainting echoes. We denote
the matrix of Green’s functions for a given mask by G, leading to normal equations of
the form G⊺G [111]. A key advantage of this formulation is that products Gx can be
computed efficiently and without explicitly forming G, using fast orthogonal DCT-II
and DCT-III transforms [198]. Hoffman [111] constructs G⊺G explicitly and applies a
Cholesky decomposition, showing that for a small number of mask points, this approach
can outperform conjugate gradient methods used in the classical formulation. However,
this method does not scale well to larger images, making it unsuitable for our purposes.
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In the 1D setting, Plonka et al. [194] proposed a Green’s function-based method that
jointly optimises both the mask pixel locations and their tonal values. While effective in
one dimension, this approach is not applicable to our 2D image setting and shares the
same scalability limitations as Hoffman’s method due to its reliance on dense matrices.

Non-binary Mask Optimisation. Hoeltgen and Weickert [108] demonstrated that
thresholded non-binary mask spatial optimisation [35, 57, 109, 178] can be interpreted as
a joint tonal and binary mask spatial optimisation. Non-binary masks can be optimised
with sophisticated non-smooth optimisation strategies such as primal-dual algorithms,
which then indirectly perform a tonal optimisation. However, extending these methods to
colour images is non-trivial. Moreover, despite their strong performance, these approaches
are already computationally demanding even for relatively small images.

Neural-based Approaches. In addition to model-based approaches, neural networks
have recently been explored for efficient tonal optimisation. Peter et al. [192] introduced
the first neural network specifically designed for tonal optimisation in harmonic inpainting.
Their method is both memory-efficient and fast. Although the network is trained to
minimise the mean squared error (MSE), it does not explicitly solve the underlying
least squares problem, and therefore may not achieve the optimal MSE. Moreover, the
network was trained only on low-resolution images and exhibits poor performance on
high-resolution inputs such as 4K images. A näıve extension to 4K images would be
impractical due to memory and computational limitations of the training process.

Localisation-based Acceleration. Since the influence zone of a single mask pixel
is often limited for many inpainting operators, localisation strategies can be employed
to accelerate tonal optimisation. These strategies are particularly effective for perfectly
localised inpainting operators, such as Shepard interpolation with truncated Gaus-
sians [1, 187] or smoothed particle hydrodynamics [68]. For less local operators, artificial
localisation can be introduced through segmentation techniques [112, 119]. Similarly, in
homogeneous diffusion inpainting, the support of inpainting echoes can be restricted [111],
resulting in an approximate matrix R̃ that is no longer fully dense. However, even with
such approximations, the number of restricted echoes that must be computed and stored
remains substantial for high-resolution images.

Quantisation. In image compression, quantisation limits the number of available grey
or colour values. Incorporating quantisation directly into the tonal optimisation process
typically yields better visual quality than applying it as a post-processing step. Several
methods have been proposed to address this discrete optimisation problem, including
projection-based techniques [191] and stochastic strategies [162, 209]. However, since our
work focuses exclusively on the continuous optimisation problem, we do not incorporate
these approaches. Nevertheless, in a full compression pipeline, such methods could be
readily integrated to enhance performance.
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Error Balancing. An early precursor to tonal optimisation was introduced by Galić
et al. [89] in 2008. Their method adjusts the tonal values of each mask pixel based on
the inpainting error observed in neighbouring pixels. This not only helps to mitigate the
impact of singularities at mask locations but also enhances overall inpainting quality.
We have extended this concept both theoretically and practically, using it as an efficient
strategy to obtain a high-quality initialisation for our tonal optimisation algorithm.

4.1.3 The Linear Least Squares (LLS) Problem

We assume that we are working with the linear inpainting problem

(C + (I −C)L)u =Cf , (4.6)

or its generalisation to arbitrary linear features that can be written in terms of linear
equality constraints

(P + (I −P )L)u = Pf , P =A+A ⇐⇒ [L A⊺

A 0
] [u
λ
] = [ 0

Af
] . (4.7)

In the spatial optimisation problem, the goal is to replace the values Pf with a variable
Pg giving us the reconstruction as a function of Pg (we assume that C or P is fixed)

u(Pg) =B−1Pg, B = P + (I −P )L. (4.8)

We can now write the tonal optimisation problem, with respect to the Euclidean norm,
as a linear least squares problem

min
g∈RN
∥u(Pg) − f∥22 = min

g∈RN
∥B−1Pg − f∥22. (4.9)

Taking the gradient with respect to g and setting it to zero yields the normal equations

P ⊺B−⊺B−1Pg = P ⊺B−⊺f . (4.10)

The system matrix is generally dense because of the inverses involved, so a direct
factorisation of the above is feasible only for relative small images. The idea in [58]
is that while the inverses are dense, the matrix B = (P + (I −P )L) is sparse, so we
could apply an iterative solver whenever we need to compute products with the inverse,
which allows us to avoid storing a very large matrix. Such products arise in each
step, if we apply an iterative solver to the normal equations (4.10). Thus an efficient
approach is to have nested solvers – the outer solving the tonal optimisation problem,
while the inner solves the inpainting-like problems for the products with the matrices
B−1 = (P + (I −P )L)−1 and B−⊺ = (P + (I −P )L)−⊺.

FEM interpolation. In FEM, the system in (4.6) gives us only the values at the
vertices. We additionally have to interpolate over all image pixels in order to get the full
reconstruction. This should be accounted for in the tonal optimisation formulation. Let
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the interpolation matrix be Y ∈ RN×n, where Yij is the j-th FEM trial function evaluated
at the i-th image pixel, then the FEM inpainting has the form

u(Pg) = Y B−1Pg. (4.11)

Consequently, the normal equations become

P ⊺B−⊺Y ⊺Y B−1Pg = P ⊺B−⊺Y ⊺f . (4.12)

Since for P1 elements the basis functions have overlaps only for the one-ring neighbours
of a vertex, Y is sparse and we can efficiently evaluate products with Y ⊺Y .

4.1.4 Krylov Methods for the LLS Problem

One of the most efficient classes of linear system solvers are Krylov subspace methods. A
natural solver for linear least squares problems is the conjugate gradient for the normal
equations (CGNR), see Chapter 8 in [206] or Chapter 7.4 in [32], which monotonically
decreases the 2-norm of the residual in each step

∥r(Pg)∥2 = ∥u(Pg) − f∥2. (4.13)

It is equivalent to the conjugate gradient solver applied to the normal equations, but
rewritten so that it is more numerically stable, since the normal equations square the
condition number of the matrix in the minimisation problem and can lead to numerical
issues. A natural stopping criterion for the tonal optimisation problem is then based on
the percentage decrease per iteration of the squared Euclidean norm of the residual

∥rk+1∥22 > (1 − tol)∥rk∥22. (4.14)

For example we may require that the squared 2-norm (equivalent to the MSE up to
a constant) decreases by at least tol = 1% or tol = 0.1% per iteration. Generally, the
more ill-conditioned our inpainting matrix, the smaller we should set tol, as for more
ill-conditioned systems there are many steps that yield only a small decrease. We take a
minimum of 1% decrease for harmonic inpainting and 0.1% for biharmonic inpainting.

4.1.5 Krylov Methods for the Matrix-Vector Products

As we emphasised in Section 4.1.3, ideally we should not factorise or invert the inpainting
matrix, but instead use iterative solvers to evaluate the matrix-vector products. This
allows us to leverage the sparsity of the inpainting matrix.

If L is symmetric, we can also rewrite the inpainting system to be symmetric:

(P + (I −P )L)u = Pg
(P + (I −P )L(I −P ))u + (I −P )LPu = Pg

(P + (I −P )L(I −P ))u = (I − (I −P )L)Pg,
(4.15)
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where we have used that Pu = Pg in order to go from the second to the third equation.
For brevity of notation we define the following matrices:

B̃ = (P + (I −P )L(I −P )), P̃ = P − (I −P )LP . (4.16)

If L is symmetric then B̃ is symmetric, and we can write the normal equations as follows

P̃ ⊺B̃−2P̃ g = P̃ ⊺B̃−1f . (4.17)

Here all inverses involve the symmetrised inpainting matrix

B̃ = (P + (I −P )L(I −P )). (4.18)

If the latter is positive semi-definite we can apply the conjugate gradient (CG) [206]
solver to approximately compute products with its (pseudo-)inverse

q = B̃+p ⇐⇒ B̃q = p. (4.19)

If the matrix L is symmetric but indefinite we can use the conjugate residual (CR) [206],
SYMMLQ [180], or the MINRES solver [86, 180]. For non-symmetric L, solvers such as
the bi-conjugate gradient stabilised (Bi-CGSTAB) [233] can be employed.

When we consider linear features inpainting, for efficiency reasons we should not form P
and should instead use the saddle-point system for the inpainting

[L A⊺

A 0
] [u
λ
] = [ 0

Ag
] . (4.20)

The latter is automatically symmetric if L is symmetric, but it is indefinite, so a CR
solver (see 6.8 in [206]) should be used as discussed in Section 2.3.3. This concludes the
theory for the tonal optimisation approaches that were applied in [58] and [120].

4.1.6 Initial Guess for Tonal Optimisation

Iterative solvers can significantly benefit from a well-chosen initial iterate. Therefore, we
briefly review the strategy proposed in [128] for constructing such an initial guess, and
then extend it to the feature inpainting setting.

Error Balancing. The method in [128] builds upon the approach by Galić et al. [89],
which does not address the full tonal optimisation problem but instead solves a simplified
surrogate problem. The core idea is to adjust the tonal value of each mask pixel by
incorporating the average signed inpainting error of its neighbours:

gi = ui +
1

∣N (i)∣ ∑j∈N(i)
(fj −uj) for ci = 1, (4.21)
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where N(i) denotes all direct neighbours of the mask pixel i, including diagonal neigh-
bours and the pixel itself.

Interpolation of Local Averages. We interpret the method described above as
performing a single step toward making the mask pixels interpolate the averages over
their neighbourhoods. This perspective is closely related to the local average constraints
introduced in [120].

Building on this interpretation, we generalise the method by introducing a weight matrix
W ∈ RN×N to define the averaging around the mask pixels. Instead of interpolating the
values of f directly at the mask pixels, we aim to interpolate the local averages (Wf)i,
leading to the following constraint:

CWB−1Cg =∶CWu =CWf . (4.22)

We solve equation (4.22) by using a modified Richardson iteration:

Cgℓ+1 =Cgℓ + τ(Cf −CWB−1Cgℓ). (4.23)

In our framework, the original method by Galić et al. corresponds to a single Richardson
step with step size τ = 1 and a simple choice of W . By performing multiple iterations,
we can further reduce the MSE.

We choose τ such that the scheme remains stable in the 2-norm, i.e., ∥C−τCWA−1C∥2 <
1. The iteration is terminated once the MSE begins to increase. This is justified
because the average interpolation problem is only an approximate surrogate for the tonal
optimisation problem and not equivalent to it.

Voronoi Diagram Average. To obtain a closer surrogate to the tonal optimisation
problem, we propose a more accurate approximation of each mask pixel’s influence zone.
The cells of the Voronoi diagram induced by the mask provide a reasonable estimate of
the regions affected by the inpainting echoes. Therefore, we suggest replacing the direct
neighbours in W with the neighbours defined by the Voronoi cell of each mask pixel.

Extension to Feature Inpainting. We go beyond our work in [120] and [128], and
extend this initial guess to the setting of the features inpainting framework. The main
idea remains the same except for the fact that we have multiple mask matrices C1, . . . ,Ck

for the k families of features F1, . . . ,Fk, such that Aj =CjFj. We then require that

AjWu(g) =AjWf , 1 ≤ j ≤ k. (4.24)

This Richardson update is overdetermined for g. One option is to use instead

PWu(g) = PWf Ô⇒ Pgℓ+1 = Pgℓ + τ(Pf −PWB−1Pgℓ). (4.25)
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Table 4.1: Runtime scaling with resolution of our tonal optimisation for optimised
4% masks. The reported times are for a system with a Ryzen 4800H CPU.

image size 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024
tonal opt. 0.03s 0.14s 0.53s 2.96s 12.77s

Another option is for us to modify the inpainting as follows

[L A⊺

A 0
] [u
λ
] = [ 0

Ag
] → [L A⊺

A 0
] [u
λ
] = [0

h
] . (4.26)

That is, we have replaced Ag by h. The latter is more in line with an approximation
framework than an interpolating one. Then the interpolation condition becomes

AjWu(h) =AjWf , 1 ≤ j ≤ k, (4.27)

which has the following Richardson update rule:

Cjh
ℓ+1 =Cjh

ℓ + τ(Ajf −AjWu(hℓ)), 1 ≤ j ≤ k. (4.28)

Practical Aspects. The construction of the initial guess typically incurs only half
the cost per iteration compared to the Krylov solver. Moreover, it requires very few
iterations, in which we see the greatest MSE improvements. As such it is more efficient
than running the Krylov solvers from a standard initial iterate that interpolates the data.
In fact, if time is a concern one can drop the Krylov optimisation altogether and use
just the initial iterate as a cheaper way to get a tonally optimised image of a slightly
worse quality.

We note that the method is general and is not necessarily restricted to the harmonic
inpainting setting discussed in [128]. We have applied it with much success in the
biharmonic setting.

4.1.7 Experiments: FEM Harmonic Inpainting

In Table 4.1 we demonstrate that our tonal optimisation method from [58] scales linearly
with the image size. This showcases the efficiency of our nested Krylov solver approach.
Note that in general factorisation methods would scale as O(N3), and one would very
quickly run out of memory as the image size grows.

On the other hand, in Table 4.2 we showcase the qualitative improvements that tonal
optimisation provides on optimised masks. We note that the MSE decrease can be
almost 30%. The left column corresponds to the number of densification iterations (the
more iterations the more work the spatial optimisation does).
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Table 4.2: MSE comparisons at 4% density without and with tonal optimisation.

Method
trui walter peppers

no TO with TO no TO with TO no TO with TO

Ours (n = 10) 44.62 30.07 19.09 12.62 43.20 29.83
Ours (n = 30) 40.58 28.21 16.35 11.09 38.37 28.11
Ours (n = 100) 37.60 26.62 15.92 11.21 36.68 28.85

4.1.8 Experiments: Initial Guess and Scaling

In this subsection we reproduce plots from our experiments in [128]. In Fig. 4.1 we
illustrate the effect of the initial guess, denoted as VI (Voronoi initialisation) – note that
the red curve starts much higher than the rest thanks to the initial guess, and this is
achieved in a fraction of the total time. In the figure, RAS refers to restricted additive
Schwarz applied to the tonal optimisation problem, which we do not discuss here. It
suffices to say that a Voronoi initialised CGNR solver is generally not far behind RAS+VI.
In Fig. 4.2 we see that the runtime-to-resolution scaling is linear – similar to our FEM
experiments. The curves are the result of averaged metrics from experiments on a set
of twelve natural 4K images. The experiments are from our journal publication [128]
and were conducted on a system with an AMD Ryzen 5900X@3.7GHz CPU and an
Nvidia GeForce GTX 1080 Ti GPU. Notably, the tonal optimisation and inpainting were
implemented on the GPU.

4.1.9 Experiments: Linear Feature Inpainting

Figure 4.2 demonstrates the effect of our tonal optimisation for feature inpainting. When
applied to spatially optimised representations using five feature types (colours, x and
y derivatives, and two blurring kernels), it reduces the mean squared error (MSE) by
approximately one third. It is also important to note that optimising the function values
does not increase the data volume – high-quality values require no more storage than
poor ones.

4.1.10 Conclusion

We developed an efficient tonal optimisation algorithm that also extends to linear feature
inpainting and FEM. The algorithm relies on nested Krylov solvers, which allowed us to
exploit the sparsity of the inpainting matrices, and circumvented the need of computing
and storing dense matrix factorisations. We empirically verified that our approach scales
linearly in terms of the image resolution and that it provides about a 30% decrease of the
MSE when applied to harmonic inpainting (including feature inpainting). An interesting
avenue for future work is the extension of the above method to nonlinear inpaintings
such as EED, and potentially also to nonlinear feature inpainting. One could apply
a Gauss-Newton, Levenberg-Marquardt, or a full Newton approach there. The main
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Figure 4.1: Effect of the initial guess for 5% mask densities. Plot courtesy of Niklas
Kämper.
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Figure 4.2: Runtime depending on the number of pixels (double logarithmic plot).
Plot courtesy of Niklas Kämper.

challenge is obviously the implementation of efficient solvers. It should also be mentioned
that the initialisation that we discussed can directly be applied to the nonlinear setting
without major modifications.
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without tonal optimisation with tonal optimisation

MSE: 23.25 MSE: 15.79

MSE: 157.30 MSE: 108.54

Figure 4.2: Test images elpaso and windmill and their sparse representations using
all five proposed feature types from Section 2.5.1 (total mask density: 5%) without and
with tonal optimisation. The tonal optimisation improves the reconstruction quality
by about one third. Note, however, the localised emphasis of the artifacts – this is also
a general drawback observed with tonal optimisation for classical harmonic inpainting
– it emphasises the logarithmic singularities, and is inherent to the inpainting operator.
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4.2 Spatial Optimisation

In the current section we describe our proposed algorithms from [58, 120, 128], and exten-
sions thereof, for approximately solving the spatial optimisation problem for interpolating
inpainting

min
∥c∥0=m

E(c), E(c) = ∥u(c,Cf) − f∥, (4.29)

or in the features inpainting setting [120] the more general problem

min
∥c∥0=m

E(c), E(c) = ∥u(c,CFf) − f∥, A =CF . (4.30)

Unlike in the tonal optimisation setting, we do not require that u is linear – our algorithms
are oblivious to this. Moreover, we can also allow nonlinear features, by considering the
problem

min
∥c∥0=m

E(c), E(c) = ∥u(c,Cϕ(f)) − f∥, (4.31)

where the function ϕ ∶ RN → Rk⋅N describes the considered families of (nonlinear) features

ϕ = [ϕ⊺1 ⋯ ϕ⊺k]
⊺
, c = [c⊺1 ⋯ c⊺k]

⊺
. (4.32)

Since our algorithm for the nonlinear setting subsumes the linear case, we directly state
its most general version.

4.2.1 Outline

We review related work in Section 4.2.2. This is followed, in Section 4.2.3, by an exposition
of the class of greedy strategies that we base our algorithms on. The latter rely on an
oracle, which we discuss in Section 4.2.4. The algorithms also use a partitioning of the
domain, in order to avoid clustering and improve the oracle. We discuss the partitioning
in Section 4.2.5. We present our Voronoi densification algorithm in Section 4.2.6. Then,
in Section 4.2.7, we study the connection between our approach and matching pursuit
algorithms. We empirically validate our spatial optimisation algorithm for FEM harmonic
inpainting in Section 4.2.8. In Section 4.2.9, we extend the experiments to the setting
of nonlinear feature inpainting. We conclude our discussion of spatial optimisation in
Section 4.2.10.

4.2.2 Related Work

Finding a subset of pixels to be stored that result in a high quality reconstruction is a
challenging combinatorial optimisation problem. Here we only focus on approaches for
sparse image inpainting in 2D. There are also a number of related works, for example
the free knot problem for spline interpolation [214].
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Analytic Approach. Belhachmi et al. [28] introduced a framework for mask opti-
misation based on a continuous shape-analytic interpretation of homogeneous diffusion
inpainting. This approach was later extended by Belhachmi and Jacumin [25, 27] to
handle noisy images. A key practical insight from their work is that the mask density
should increase with the absolute value of the Laplacian of the target image. In the
discrete setting, they propose generating such masks by applying dithering – such as
Floyd–Steinberg dithering [85] – to the absolute value of a smoothed Laplacian image.
This method is computationally efficient, as it avoids solving any inpainting problems.
However, the dithering approximation often results in limited reconstruction quality [156].
Our approach achieves significantly higher quality reconstructions, albeit at a higher cost.
We can, however, initialise our densification with the result from the analytic approach in
the first iterations, so that our method gracefully transitions into the analytic approach
if zero densification iterations are chosen.

Gradient-based Methods. High-quality non-binary inpainting masks can be obtained
using non-smooth optimisation techniques such as primal-dual solvers and optimal
control methods [35, 57, 109, 178]. However, for compression applications, these masks
must ultimately be binarised, which typically leads to a reduction in reconstruction
quality [108]. Despite this drawback, such methods still produce state-of-the-art results.
Their main limitation lies in their computational cost, as they are prohibitively slow even
for small images. Since our goal is to develop fast algorithms that scale efficiently to
large resolutions, we instead focus on greedy strategies that offer a favourable trade-off
between quality and runtime.

Sparsification. Mainberger et al. [156] proposed the probabilistic sparsification (PS)
algorithm, which begins with a fully populated mask and iteratively removes pixels until
the desired mask density is achieved. In each iteration, a subset of candidate pixels
is temporarily removed from the mask, and an error map is computed based on the
resulting inpainting. A fixed number of candidates – those with the highest pointwise
reconstruction errors – are then reinserted into the mask. This method is flexible and
can be adapted to various inpainting operators, including PDE-based approaches [156]
and linear spline interpolation over triangulations [70]. However, it is computationally
expensive. Moreover, because PS starts from a full mask, achieving low densities requires
many iterations, making it less efficient than densification strategies that begin with an
empty mask. Finally, PS is susceptible to suboptimal local minima due to its reliance on
pointwise error as an oracle and the limited predictive power of early-stage errors, which
are influenced only by local neighbourhoods. These limitations motivate the exploration
of densification strategies guided by oracles that adapt dynamically to the current mask
density.

Densification. Densification approaches begin with an empty mask and iteratively
insert new pixels. This strategy typically requires fewer iterations than sparsification-
based methods, especially in compression scenarios where target mask densities are
usually below 10%. In compression contexts, densification has been effectively applied
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to constrained data structures such as subdivision trees [72, 89, 191, 209]. In our work,
however, we focus on the more general case of unconstrained masks. Unconstrained den-
sification strategies have been successfully employed in various other settings, including
diffusion-based [26, 68, 229] and exemplar-based [131] inpainting, as well as linear inter-
polation on Delaunay triangulations [3, 80]. Notably, the work of Daropoulos et al. [68]
as well as our works [58, 120, 128] go beyond pixel-wise error metrics by aggregating
errors over mask-adaptive neighbourhoods defined by Voronoi diagrams [68, 120, 128]
or Delaunay triangulations [58, 128]. This leads to improved reconstruction quality.
Currently, Voronoi- and Delaunay-based densification strategies offer the best trade-off
between reconstruction quality and runtime for mask construction. As such, we adopted
these approaches as the foundation for the mask generation algorithms developed in our
work.

Non-local Pixel Exchange. Although densification methods often outperform spar-
sification ones, they remain inherently greedy and are therefore susceptible to getting
trapped in local minima. To address this limitation, Mainberger et al. [156] intro-
duced a global relocation strategy known as non-local pixel exchange (NLPE). This
method stochastically selects a mask pixel and a subset of non-mask pixels with high
pointwise reconstruction errors. It then evaluates the reconstruction quality resulting
from relocating the selected mask pixel to each candidate position, retaining the best
swap (which may be none). While NLPE can effectively escape local minima and yield
substantial improvements, it requires a large number of iterations to converge, making
it computationally expensive. A similar relocation strategy has also been applied to
optimise masks for linear spline interpolation over triangulations [162].

Neural-based Approaches. In recent years, several neural frameworks have been
proposed for mask generation, offering an alternative to model-based spatial optimisation.
Dai et al. [65] introduced a deep learning approach for adaptive sampling, employing
separate networks for inpainting and mask optimisation. To improve reconstruction
quality, Peter [188] jointly trains inpainting and spatial optimisation with Wasserstein
GANs. Alt et al. [9] focused specifically on homogeneous diffusion inpainting, training a
mask generator alongside a learned surrogate solver that approximates the inpainting
process, enabling efficient backpropagation. The efficiency has been improved further by
Peter et al. [192] with a modified network architecture.

However, these neural networks were trained only on low-resolution images, resulting in
poor performance on higher-resolution inputs. Direct training on high-resolution data
is infeasible on standard hardware due to memory and computational constraints. To
address this, Schrader et al. [213] proposed a coarse-to-fine strategy that divides the
image into smaller patches. Each patch is assigned a mask by a neural network, with the
local mask density guided by the average Laplacian magnitude, following the analytic
approach of Belhachmi et al. [28]. This enables efficient scaling to high resolutions,
allowing mask generation for 4K colour images in under 0.5 seconds on high-end GPUs.
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Video Coding. Most approaches to inpainting-based video compression, such as [14,
190], optimise the inpainting masks independently for each frame. In contrast, Breuß et
al. [39] propose a more temporally coherent strategy by optimising masks only for key
frames using the optimal control framework of Hoeltgen et al. [109]. For intermediate
frames, they employ optical flow to interpolate the masks, thereby reducing computational
cost while maintaining temporal consistency.

4.2.3 Densification and Sparsification

An efficient approach to tackling the spatial optimisation problem is based on iteratively
adding or removing new mask points over multiple iterations. In densification approaches
we start with an empty mask, and at each iteration we aim to add mask points with
locations chosen such that the error is decreased the most. In sparsification approaches
we start from a full mask, and aim to remove mask points in each iteration, such that
the error increases the least. Generally, densification approaches are a more natural
choice if we aim at a mask density under 50%, while sparsification approaches are more
efficient for mask densities over 50%. There are, however, other considerations, such
as the fact that adding points can usually localise the effect of previous points, while
removing points makes the effect of old points more global. Taking this into account
and also the fact that we target low densities, we choose to use a densification method.

Computational Cost of Full Densification (Sparsification). In the extreme case
we can add (remove) a single point per iteration and evaluate the error for all possible
candidates. This means that in step k we need to perform as many inpaintings as there
are zeros (ones) in ck−1 in order to evaluate the error. When summed over all steps, this
yields a total of m! (sparsification: (N −m)!) number of inpaintings. To reduce this, we
add (remove) multiple mask points per iteration, and evaluate the inpainting only at
some locations instead of all possible locations. Furthermore, instead of computing an
inpainting for all of the candidates and recomputing the MSE, we use an oracle that
tries to predict which are the best candidates. We discuss the oracle in Section 4.2.4 and
a way to avoid clustering when adding multiple mask points in Section 4.2.5.

4.2.4 Error Map

After each densification iteration we evaluate the signed error ek = uk − f in order to
try and predict at what locations new mask points should be introduced. Notably, if
we normalise the rows of the matrix F k = Jϕ(uk) (where ϕ are the features) w.r.t. the
2-norm, the product F k ⋅ ek gives us the dot products between the (linearisation of the)
features and the error. In the nonlinear setting this is motivated by the linearisation

ϕ(f) = ϕ(uk −ek) ≈ ϕ(uk)−Jϕ(uk) ⋅ek Ô⇒ ϕ(uk)−ϕ(f) ≈ Jϕ(uk) ⋅ (uk −f). (4.33)

That is, we can use Jϕ(uk)(uk −f) as an oracle in order to figure out where to introduce
a new point such that Jϕ(uk+1)(uk+1 − f) ≈ ϕ(uk+1) − ϕ(f) would be reduced. For
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Voronoi tessellation piecewise-constant approx. original image trui

Figure 4.3: A visualisation of the Voronoi tessellation induced by a mask, a piecewise-
constant approximation based on the Voronoi cells, and the original image.

linear features ≈ is of course an equality. We can expect that at locations where the
magnitude of these inner products is large, the specific feature can compensate well for
the error. This is similar in nature to the sensing step in matching pursuit [158, 200]
or thresholding [210], however, in our case we do not have the atoms giving the true
reconstruction. As such the magnitudes of the elements of F k ⋅ek typically underestimate
the error decrease – notably they ignore the additional decrease in a local neighbourhood
due to the inpainting operator. Moreover, if we try to introduce multiple points per
iteration, there is a danger that they cluster due to trying to reduce the same error. We
mitigate both of these issues in the next subsection.

4.2.5 Partition-based Densification

In order to disallow clustering when introducing multiple points, we partition the domain
and allow only a single point to be introduced per region. The partition should be
non-overlapping by definition and it should ideally be adapted to the current mask
structure. A simple partition with a multitude of desirable properties is given by the
Voronoi tessellation [18] – a visualisation of such a partition adapted to a mask is shown
in Figure 4.3. Then to handle the clustering problem we allow introducing only a single
point per cell. In order to mitigate the problem of F ⋅ e underestimating the error
decrease, we can integrate the squared error in each cell and choose to introduce new
mask points only in the cells with highest error. This works under the assumption that
locally the inpainting operator is able to decrease the error inside the cell. Within the
cell we add the mask point at index i where ∣(F ⋅ e)i∣ is the largest.

4.2.6 Voronoi Densification for Equality Constrained Features

Putting all of these ideas together leads us to a more general and improved version of the
algorithm from our previous works [58, 120, 128]. In it we employ a densification strategy
with an inpainting at each iteration, an error map computed from the latter, and a
Voronoi decomposition. The main difference is the support for nonlinear features. We also
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now normalise the rows of Jϕ(uk) w.r.t. the 2-norm instead of the 1-norm used in [120].
That is, F k =DkJϕ(uk) where Dk is a diagonal matrix with the reciprocals of the 2-
norms of the rows of Jϕ(uk). Another change from [120] is that we integrate the squared
error per cell, instead of the squared features’ errors. The listed modifications are more
in line with well-founded ideas from matching pursuit algorithms and yield considerable
improvements. The approach is described in Algorithm 2. A visual representation of the
inner workings of the algorithm is shown in Fig. 4.4.

Algorithm 2. Voronoi Densification for Feature Inpainting

Input : Original image g, number of iterations n, number of desired mask points m
Output : Inpainting mask c, reconstruction u
Initialise: Initial mask c with ⌈mn ⌉ mask pixels

1: for i = 1 to n − 1 do
2: Construct the Voronoi tessellation {Tj} of the current mask pixels.
3: Compute the inpainting uk = u(ck,Ckϕ(f)) and the error map ek = uk − f .
4: Compute the cells 2-norm errors ∀j, ek

Tj
= ∑i∈Tj(eki )2.

5: Find the ⌈mn ⌉ Voronoi cells {Tji}
⌈m
n
⌉

i=1 with the highest errors {ek
Tji
}⌈

m
n
⌉

i=1 .

6: For each cell in {Tji}
⌈m
n
⌉

i=1 find the entry in DkJϕ(uk) ⋅ek∣Tji with highest magnitude
and add it to the corresponding location in ck+1.

4.2.7 Relation to Matching Pursuit

In the literature, matching pursuit algorithms [158, 200] have been used to solve a simpler
and somewhat different version of the data optimisation problem, namely

min
a;∥c∥0≤m

∥DCa − f∥22, (4.34)

where D is a dictionary, a are coefficients, and c is the mask. The main difference
compared to our problem is that the dictionary is given, and that the reconstruction
u = DCa is linear in the coefficients. The above can in fact be reconciled with
linear inpainting with colour value interpolation constraints by considering the spectral
counterpart of the inpainting problem. That is, if we have an inpainting operator L, we
may consider its pseudoinverse

L+ = [Wimg Wker] [
Σ−111 0
0 0

] [U
⊺
img

U⊺ker
] , L = [Uimg Uker] [

Σ11 0
0 0

] [W
⊺
img

W ⊺
ker

] , (4.35)

and then any inpainting can be written as

u = L+Ca +Wkerµ, U⊺kerCa = 0. (4.36)

Here L+ plays the role of the dictionary. We also need a part from the kernel if the
operator is singular, but the optimal values for the latter can be computed directly
as µ = W ⊺

kerf , and then we can write the problem in a similar way as the classical
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input errors integrated errors output

Figure 4.4: Steps in a single iteration of our densification algorithm. The first
column is the output of the previous step. From top to bottom: reference image,
inpainting, mask with Voronoi diagram. The second column consists of the error
maps for the Dirichlet and ∂x features, and the maximum cell-wise integrated errors.
The third column contains cell-wise integrated errors for the Dirichlet and ∂x features,
and the selected ⌈m/n⌉ cells with largest errors that are to be refined (in white). The
last column shows the output of this iteration: reference image, new inpainting, and
updated mask with Voronoi diagram.

formulation:
min
∥c∥0≤m
U⊺

ker
Ca=0

∥L+Ca −WimgW
⊺
imgf∥22. (4.37)

Applying matching pursuit can work well provided the Moore-Penrose pseudoinverse L+

is not too ill-conditioned. If the matrix is ill-conditioned (which happens to be so even for
harmonic inpainting), one typically needs to consider orthogonal matching pursuit which
also performs a projection at each step. This has been done in 1D for harmonic and
biharmonic inpainting in the work by Plonka et al. [194]. Note that harmonic inpainting
in 1D is linear interpolation, while biharmonic inpainting is cubic interpolation.

In either case, it is clear that in the 2D setting performing a projection (i.e. tonal
optimisation) for each candidate pixel can prove to be prohibitively expensive. Moreover,
it is not directly clear how the linear feature formulation can be brought to a form such
as (if this is feasible at all):

u =DCa +Wkerµ. (4.38)
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Table 4.3: Runtime scaling with resolution of our spatial optimisation for FEM
harmonic inpainting with n = 10 densification iterations and a density of 4%.

image size 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024
spatial opt. 0.01s 0.03s 0.11s 0.49s 2.07s

An idea would be to consider D = (FL)+ (where M+ is the Moore-Penrose inverse),
which results in a synthesis and not an analysis approach, but we do not pursue this
further here, as it also does not generalise to nonlinear inpainting operators and nonlinear
features.

4.2.8 Experiments: FEM Harmonic Inpainting

We illustrate the almost linear runtime-to-resolution scaling of our densification approach
applied to the FEM harmonic inpainting in Table 4.3. The complexity of the spatial
optimisation is O(nq√κ), where n is the number of iterations, κ is the condition number
of the matrix, q is the number of non-zero entries in the matrix (at most 6× the number
of vertices of the FEM mesh).

We also compare our densification to a standard spatial optimisation approach from
the literature – probabilistic sparsification (PS) [156] – which we outperform both
qualitatively and runtime-wise. Our densification allows for a trade-off between runtime
and quality by increasing the number of densification iterations. For details see Table 4.4.

In terms of runtime, a probabilistic sparsification of a 256×256 image with the parameters
from [110] on a Ryzen 4800H CPU takes about 10 minutes, while our FEM densification
needs only 0.3 seconds. This shows that our method is 1800 times faster. This factor
grows rapidly with the image size: For 512 × 512 images, it is already 10,000 (4 hours
versus 1.3 seconds). And do note that we can qualitatively outperform the PS approach
by up to 50% (see the column walter in Table 4.4).

Table 4.4: MSE comparisons at 4% density for different numbers of densification
iterations n. We outperform prior approaches (PS) qualitatively and runtime-wise.

Method
trui walter peppers

no TO with TO no TO with TO no TO with TO

PS (q = 10−6) 66.11 36.04 32.96 19.24 44.85 28.58
Ours (n = 10) 44.62 30.07 19.09 12.62 43.20 29.83
Ours (n = 30) 40.58 28.21 16.35 11.09 38.37 28.11
Ours (n = 100) 37.60 26.62 15.92 11.21 36.68 28.85
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4.2.9 Experiments: Feature Inpainting

We also carry out spatial optimisation experiments for our feature inpainting framework.
The experimental setup is described in Section 4.2.9.1. We provide visual and qualitative
experiments in Section 4.2.9.2 for harmonic inpainting, and in Section 4.2.9.3 for EED
inpainting. We briefly mention the setting of nonlinear features in Section 4.2.9.4,
demonstrating that the framework is also valid in the nonlinear case, even if the chosen
nonlinear feature seems to be suboptimal.

4.2.9.1 Experimental Setup

Image Test Set. We conduct experiments on twelve 512 × 512 natural images that
exhibit a wide range of frequencies and structural patterns, see Fig. 2.6 and Fig. 2.7 for
a visualisation of eight of those images. For each image, we perform 30 densification
iterations, using different sampling densities tailored to each case. The densities are
chosen to ensure that the error remains noticeable, allowing for a meaningful visual
comparison between inpaintings with different feature sets. The only exception is the
nonlinear feature case, where we use only 10 densification iterations as each of those is a
100 times more expensive due to the cost of the nonlinear-constrained feature inpainting.
The inpaintings and features are as described in Section 2.5.1. The only difference is
that for images that contain higher frequencies such as shed, raindeer, madeira, and crab,
we use a lower pre-smoothing parameter σ = 0.1 in EED, which results in better quality.

Inpaintings with Linear Constraints. For the linear systems arising in linearly
constrained harmonic and EED inpainting we apply the modified conjugate residual
solver [52] to (2.16) and (2.23). We use a stopping criterion based on the residual
∥r∥2 ≤ 10−8∥r̃0∥2 where

∥r̃0∥2 = ∥(I −P )L(uk)Pf∥2 (4.39)

is the residual norm corresponding to an initial guess that satisfies the constraints.
The matrix-vector products with the projection P =A+A are computed by using the
conjugate gradient for the normal equations (CGNR) [206], with a stopping criterion of
10−12 and an initial iterate zero – this approximates the Moore-Penrose pseudoinverse
solution [101].

Inpaintings with Nonlinear Constraints. In the setting of nonlinear equality
constraints we use the SQP approach proposed in Section 2.4. As an initial guess to
the SQP iteration we take the solution from harmonic inpainting with only the linear
equality constraints being active. In each SQP step we use a Steihaug-CGNR solver for
the computation of the quasi-normal and tangential directions. We have found the latter
to be the most robust for SQP, e.g., compared to other solvers such as the modified
conjugate residual solver. The stopping criteria are based on the relative residual of the
normal equations ∥Mr∥ ≤ 10−8∥Mr0∥, where M is the system matrix in (2.36) for the
tangential step, and for the quasi-normal step we have M = J⊺b (uk).
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q boats 7% elpaso 3% shed 15% generator 3% raindeer 3% quai 3%
1 144.71 76.03 110.27 175.66 57.21 67.22
3 126.22 62.88 91.82 164.29 55.81 62.47
4 66.53 34.76 80.20 100.52 35.47 41.46
5 65.26 33.85 79.41 99.48 34.55 39.59

q mirror 3% madeira 8% garafia 7% flowers 3% crab 8% windmill 5%
1 127.39 75.09 134.43 195.40 332.53 184.91
3 120.32 66.88 122.16 192.56 292.70 161.65
4 44.98 59.08 70.00 87.46 240.72 81.20
5 43.01 58.53 68.16 79.17 238.12 78.94

Table 4.5: MSEs for harmonic inpainting with an increasing number of feature
families.

4.2.9.2 Harmonic Inpainting with Linear Features

We present a series of experiments demonstrating the robustness of our densification ap-
proach and its significant improvement over previous state-of-the-art for sparse harmonic
inpainting.

Mean Squared Error. Table 4.5 lists the MSEs for all twelve images for an increasing
set of feature types {ϕk}qk=1 while using the exact same total mask density. We are able
to decrease the MSE to be one third for the image mirror, and often we are able to halve
the MSEs. We note that the most beneficial feature is ϕ4 – the 3× 3 binomial kernel. As
expected, ϕ5 – the 5 × 5 binomial kernel – has little effect once ϕ4 is present, since it’s
just an approximation of Gaussian convolution with a larger standard deviation than for
ϕ4. The derivative features ϕ2 ≈ ∂x, ϕ3 ≈ ∂y have a more subtle effect than ϕ4 on natural
images – they are much better suited to cartoon-like or piecewise-constant images.

Inpaintings and Masks. Inpaintings along with masks for an increasing variety of
considered features are presented in Figure 4.6 and Figure 4.7. The figures demonstrate
the effect of increasing the number of features while keeping the same total mask density
– the mean squared error (MSE) generally decreases in a monotone way. This testifies to
the robustness of our optimisation and also illustrates the viability of the chosen features.

Improved Densification. We also improve upon the results from our previous
work [120]. There the five features’ MSE for elpaso and windmill at 5% were re-
spectively 23.25 and 157.30. With our new densification we are able to achieve MSEs of
15.27 and 78.95. This is mainly due to the improvements of our densification algorithm,
and partially due to replacing the 2 × 2 and 16 × 16 averages with the 3 × 3 and 5 × 5
binomial kernels.
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q boats 7% elpaso 3% shed 15% generator 3% raindeer 3% quai 3%
1 53.60 25.51 109.65 131.34 59.78 52.33
3 51.80 24.07 93.64 128.23 58.17 51.01
4 35.38 17.98 81.24 97.00 35.15 40.21
5 33.07 17.04 79.02 93.19 33.17 37.52

q mirror 3% madeira 8% garafia 7% flowers 3% crab 8% windmill 5%
1 31.94 75.92 67.26 112.15 328.00 91.00
3 30.42 69.49 67.09 111.95 297.27 85.92
4 19.87 58.88 44.22 74.29 241.04 61.13
5 19.11 57.99 42.26 67.84 236.42 56.35

Table 4.6: MSEs for EED inpainting with an increasing number of feature families.

4.2.9.3 EED Inpainting with Linear Features

We use edge-enhancing diffusion (EED) for nonlinear inpainting because it has demon-
strated very strong performance for sparse image inpainting with low- to mid-frequency
content [89]. By using a larger set of features, we are able to improve upon this already
strong approach.

Mean Squared Error. Table 4.6 shows the mean squared errors (MSEs) for all twelve
images using an increasing set of feature types {ϕk}qk=1, while keeping the total mask
density constant. We achieve up to 40% reduction in MSE. Similar to the harmonic
inpainting case, the most impactful feature – aside from the point interpolation – is
the binomial kernel feature ϕ4. In contrast, the derivative features ϕ2 and ϕ3 have
only a minor effect. This is because EED can inherently reconstruct edges from point
values alone, making gradient-like features somewhat redundant. This highlights an
important principle in feature selection: features should be chosen to complement
the specific weaknesses of the inpainting operator. In the harmonic inpainting
case the 3×3 and 5×5 stencils greatly help with suppressing the logarithmic singularities,
while the derivative features help to bring some directional edge data which harmonic
inpainting lacks due to its isotropic behaviour. The latter is not the case for EED which
can benefit from its strong anisotropy.

Inpaintings and Masks. Figure 4.6 and Figure 4.7 show inpainted images and their
corresponding masks for an increasing number of feature types. These examples illustrate
the effect of adding more features while keeping the total mask density fixed—resulting
in a generally monotonic decrease in mean squared error (MSE). The same images are
chosen as in the harmonic inpainting case in order to facilitate comparisons.

4.2.9.4 Inpainting with Nonlinear Features

In the context of nonlinear features, we compare two setups: harmonic inpainting using
the first four linear features {ϕk}4k=1, and harmonic inpainting using those same features
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lin. constr., MSE: 110.19 nonlin. constr., MSE: 108.24 original

Figure 4.5: windmill with 10 densification iterations: four linear features (left) vs
four linear features and the nonlinear weighted variance feature (middle).

plus the weighted variance feature, i.e., {ϕk}4k=1 ∪{ϕ̃4}. An illustrative example is shown
in Fig. 4.5, demonstrating the feasibility of incorporating nonlinear feature constraints.
However, the weighted variance feature does not produce significant improvements to
justify the added computational cost. Identifying more effective nonlinear features
remains an open direction for future research.

4.2.10 Conclusion

We presented an efficient approach for spatial optimisation of both linear and nonlinear
inpainting. The approach was general, in the sense that it also applies to our feature
inpainting framework. The significant quality gains achieved simply by incorporating
additional features emphasise that improving the modelling of the reconstruction process
can be as impactful – if not more so – than optimising the data selection itself.

Our experiments with edge-enhancing diffusion (EED) inpainting revealed that derivative
features contribute little to its reconstruction quality. This is consistent with the fact
that EED already excels at edge completion. The takeaway is that features should
be chosen to complement the specific weaknesses of the inpainting operator, targeting
structures it cannot reconstruct effectively on its own.

Promising directions for future work include extending the framework to handle inequal-
ity constraints, developing gradient-based data selection strategies, exploring machine
learning techniques, and identifying nonlinear features that offer a more favourable
trade-off between reconstruction quality and computational cost.
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Figure 4.6: Harmonic inpainting results for a combined total mask density of 3% for
elpaso produced with 30 densification iterations.
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Figure 4.7: Harmonic inpainting results for a combined total mask density of 5% for
windmill produced with 30 densification iterations.
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Figure 4.8: EED inpainting results for a combined total mask density of 3% for
elpaso produced with 30 densification iterations
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Figure 4.9: EED inpainting results for a combined total mask density of 5% for
windmill produced with 30 densification iterations.



Chapter 5

Denoising by Inpainting

5.1 Introduction

Investigating connections between different fields in image analysis has often been
rewarded with deep structural insights. Consider for example the link between variational
image inpainting [30, 78, 96, 163, 212] and optic flow computation [114, 173, 237] via
the concept of the filling-in effect. This effect is due to the smoothness term (regulariser)
of the models, which inserts information at locations where the data term is absent or
small in magnitude. The gradient flow for minimising the variational energy functional
leads to partial differential equations (PDEs) with a diffusion term.

While the filling-in effect has an obvious benefit for image inpainting, it can also lead
to more powerful optic flow methods. It produces a dense flow field from the sparse
information of the data term. Surprisingly, the parts of the flow field that are filled in by
the diffusion-like regularisation terms are usually the ones with the highest confidence [42].

Figure 5.1 shows a similar but hitherto hardly studied effect when performing sparse
inpainting on noisy data. There the known data – the so-called mask – is a scattered
set of pixels. The noisy mask pixels remain unchanged during the process, while the
unknown areas in between are interpolated smoothly by averaging information from the
noisy pixels. We thus again have a scenario, where the filled-in data are more reliable
than the known data. In the present manuscript we study how far this idea can lead us.

5.1.1 Our Contribution

The goal of our work is to shed some light on the connections between PDE-based
inpainting and denoising, two tasks which have coexisted for a long time, while their
links have hardly been studied so far. We bridge this gap by a detailed investigation of
the unconventional idea of denoising by inpainting. To facilitate a rigorous mathematical
analysis, we focus on homogeneous diffusion. As will be explained below, it constitutes
the most transparent and most foundational setting in both worlds.

The present chapter builds upon the conference publication [2], in which the basic
denoising by inpainting framework is established, and on our journal extension [88]. This

83
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(a) original (b) noisy (c) mask (d) inpainting

peppers σn = 30 3% density HD inpainting

Figure 5.1: Homogeneous diffusion (HD) inpainting on the test image peppers
(256 × 256 pixels, image range [0,255]) with additive Gaussian noise of standard
deviation σn = 30 that we do not clip. The mask pixels are randomly selected. Note
that the inpainted pixels are more reliable, since they average noisy information from
the neighbourhood. The visual difference is also reflected by the mean squared error
(MSE): The MSE of the noisy image in (b) is 904. Since the mask pixels are chosen
randomly and are not changed by the inpainting, the MSE at mask pixel locations in
(d) is still approximately 900. However, the total image MSE in (d) is only 475.

framework reconstructs a denoised version of an image by averaging the results of multiple
inpaintings obtained from distinct masks. Furthermore, two concrete implementations of
this framework are proposed in [2]: The first uses shifted regular masks and allows to
establish a relation between denoising by inpainting and classical diffusion filtering in
1D, while the second uses probabilistic densification to adapt the masks to the image
structures and enables an edge-preserving denoising behaviour.

We extend the aforementioned results by a much broader study of the framework in [2],
providing a fundamental understanding of the connections between PDE-based image
inpainting and denoising. Since denoising methods can also be used as plug-and-play
priors in algorithms for solving inverse problems [147, 203, 234], our relations between
inpainting and denoising approaches may have an even broader application spectrum.
Compared to [2], we introduce the following additional contributions:

• We show that the heuristically motivated DbI framework from [2] can be seen as a
representative of a general probabilistic framework, for which we derive a sound
theory. We argue that the denoising result obtained with such framework is an
approximation of a minimum mean squared error (MMSE) estimate.

• We provide convergence estimates for the framework and propose a deterministic
sampling approach to boost the convergence.

• We prove a general relation between the mask density of regular masks in the DbI
framework and the diffusion time of homogeneous diffusion filtering in 1D. We also
propose an empirical generalisation of this result to 2D for uniform random masks.

• We integrate a step that optimises the grey values at the selected mask pixels
(tonal optimisation) into the DbI framework. We investigate its effect on the
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MMSE estimate and perform experiments which confirm that tonal optimisation
can improve the denoising performance of DbI in practice.

• We show that the different spatial optimisation approaches in the DbI framework
correspond to specific posterior distributions. We compare two such strategies (the
one presented in [2] and a novel one) in terms of quality and provide the formulations
for the respective probability distributions. Our experiments demonstrate that this
data optimisation leads to an edge-preserving denoising behaviour.

• We replace homogeneous diffusion inpainting in the DbI framework by biharmonic
inpainting and show that it is unable to improve denoising results. This confirms
one of our key insights: The hitherto hardly practised data optimisation can be as
powerful as widely used operator optimisations.

Why Homogeneous Diffusion ? Our decision to focus on homogeneous diffusion is
based on several reasons:

• For denoising and image simplification, one should keep in mind that homogeneous
diffusion filtering is equivalent to Gaussian convolution. The Gaussian is the only
convolution kernel that is separable and rotation invariant. The diffusion evolution
generates a Gaussian scale-space representation [115, 152, 219], which is one of
the most widely-used scale-spaces and forms the basis of highly successful interest
point detectors such as SIFT [153] and its numerous variants.

• In inpainting applications, homogeneous diffusion is particularly popular in inpainting-
based compression [89], where one stores only a sparse subset of all pixels and
reconstructs the image in the decoding phase by inpainting. By optimising the
stored data, homogeneous diffusion can achieve surprisingly faithful reconstructions
[156]. Moreover, its simplicity allows a detailed theoretical analysis [28], it frees
the user from specifying parameters, and one can achieve real-time performance
on current PC hardware even for large images [126].

• Last but not least, there exist already well-understood connections between diffusion
processes for denoising and other approaches, such as variational regularisation
methods [176, 207] and wavelets [74, 240], but also deep neural network architectures
[10, 205]. Thus, establishing also connections to inpainting ideas gives more
comprehensive insights into various paradigms beyond diffusion-based denoising.

This discussion also implies that it is not the goal of the present chapter to design
novel approaches that outperform the most recent state-of-the-art approaches
for denoising or inpainting. This is reserved for future research that may benefit
from the foundational insights in our manuscript.

5.1.2 Outline

We review related work in Section 5.1.3. In Section 5.2 we briefly introduce the basic idea
behind diffusion filtering and its application to image denoising and image inpainting.
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In Section 5.3 we present the framework for denoising by inpainting from [2] and show
that it can be interpreted as a Monte Carlo approach for approximating an MMSE
estimate. We additionally provide convergence results, and suggest a method to boost the
convergence by employing low-discrepancy sequences. In Section 5.4 we relate denoising
by inpainting with non-adaptive masks to classical diffusion filtering. In Section 5.5 we
present strategies for adaptively selecting the mask pixels in the DbI framework, which
leads to space-variant denoising behaviour. Our experiments and results are presented
in Section 5.6, and we conclude the chapter in Section 5.7.

5.1.3 Related Work

Since we consider image inpainting as well as image denoising, we give an overview of
some relevant methods from both fields and relate them to our work.

PDE-based Denoising and Inpainting. We borrow several ideas from sparse PDE-
based inpainting methods [89]. We mostly restrict ourselves to homogeneous diffusion
inpainting [46], which can be implemented very efficiently [14, 58, 113, 125, 126, 155],
and – in spite of its simplicity – can produce convincing results for suitably chosen
data [28, 35, 39, 57, 109, 111, 156, 178]. Especially on piecewise constant images, such
as cartoon images, depth maps or flow fields, homogeneous diffusion inpainting in
conjunction with edge or segment information performs very well [46, 90, 112, 118, 119,
149, 155]. This even allows some of these methods [118, 119] to outperform HEVC [222]
on such data. Nonlinear diffusion inpainting methods, e.g., edge-enhancing diffusion
(EED) inpainting [89, 238], can improve reconstruction quality for sparse inpainting,
enabling lossy image codecs [89, 121, 209] competitive to JPEG [185] and JPEG2000 [225].
On the other hand, such methods are more complex due to their nonlinearity. This
complexity also carries over to the data optimisation process. Higher-order inpainting
operators can also be used for sparse inpainting [44, 57, 89, 209, 224], but can be more
sensitive to noise. The quality of PDE-based sparse inpainting approaches strongly
depends on the stored data, and in our denoising by inpainting framework we incorporate
ideas from spatial optimisation [28, 35, 57, 58, 109, 111, 155, 156, 178] and tonal
optimisation [57, 58, 111, 156, 187]. To interpret the filtering results of the denoising by
inpainting framework, we compare to classical diffusion-based image denoising methods.
Aside from the simple homogeneous diffusion [115], we also consider methods that adapt
the diffusion operator to the given image, namely linear space-variant diffusion [87] and
nonlinear diffusion [186]. We choose these methods because they are closest conceptually
so we expect them to provide useful insights.

Patch-based Denoising and Inpainting. Patch- or exemplar-based methods are
another class of inpainting methods, and work especially well with textured data. The
idea is to copy similar patches from known to unknown regions. Efros and Leung have
proposed the first exemplar-based inpainting method [78], but many versions have been
developed since then (e.g., [4, 17, 21, 63]), including the method of Facciolo et al. for
sparse inpainting [83]. Inpainting approaches combining PDE-based and patch-based
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methods have also been presented [31, 189]. Inspired by the method of Efros and
Leung [78], a patch-based denoising method called NL-means [43] has been proposed.
It denoises an image based on a nonlocal weighted averaging of similar image patches.
Other algorithms such as the famous BM3D algorithm [64] are also based on the filtering
of image patches. These observations further substantiate the ties between denoising
and inpainting. The NL-means method can even be interpreted as a case of a denoising
by inpainting approach, although it does not use the inpainting ideas as directly as we
do. Of course, a direct application of patch-based inpainting techniques would lead to
the copying of erroneous noisy data, and not to a denoising effect.

Sparse Signal Approximation. A popular approach in the field of image denoising
relies on the idea that signals (and images) can be represented as a linear combination of a
smaller number of basis signals – so-called atoms – that are selected from a dictionary [81].
Such a dictionary might for example consist of the basis vectors of a suitable transform,
that makes the signal representation sparse (e.g., a wavelet transform [157] or a discrete
cosine transform (DCT) [6]). The task is to find the atoms that best represent the
given signal [56, 75, 158]. To fill in missing information in images, several authors also
consider sparse representations in some transform domain such as the DCT [97] or the
shearlet domain [134]. This shows another bridge between the two tasks of denoising
and inpainting. Hoffmann et al. [113] relate linear PDE-based inpainting methods to
concepts from sparse signal approximation. They solve the inpainting problem with
the help of discrete Green’s functions [29, 60], which can be interpreted as atoms in a
dictionary. This allows for a sparse representation of the inpainting solution. Kalmoun et
al. [125] follow a similar approach by solving homogeneous diffusion inpainting with the
charge simulation method [132, 141]. An application of homogeneous diffusion inpainting
with Green’s functions is the video codec by Andris et al. [14]. We justify certain design
choices within the DbI framework with results from this field. Notably, homogeneous
diffusion inpainting is based on the idea that the Laplacian of the reconstructed image is
mostly sparse. On the other hand, the DbI framework combines multiple noisy sparse
representations in order to get a denoised but non-sparse representation. The latter can
be studied rigorously from a Bayesian denoising perspective, which is why we discuss
this next.

Bayesian Denoising. The study of denoising has also been carried out from a proba-
bilistic perspective. Here, the assumption is that some prior information regarding the
noise distribution and/or the image distribution is available. This can be incorporated in
a denoising framework through Bayes’ rule, such that the final denoised result is condi-
tioned on this information about the distributions. The latter provides a correspondence
between classical denoising variational methods and specific Bayesian priors [82, 99, 148].
The standard approach is to employ statistical inference approaches, such as maximum
likelihood (ML) estimation, maximum a posteriori (MAP) estimation, or minimum mean
squared error (MMSE) estimation. Both the MAP and MMSE approach rely on a
posteriori density, and as such they require a model of the distribution of considered
classes of images. One of the first such models uses a Gibbs distribution for the prior [92].
Subsequently, a number of works have built upon this idea. The most relevant to our
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setting is that by Larsson and Selen [145], which studies MMSE estimation in the context
of sparse vector representations. Our sparse inpaintings can be interpreted as such
sparse vector representations. Moreover, in the current work we show that the averaging
performed in [2] is in fact a Monte Carlo approach to approximate an MMSE estimate.

Cross-Validation. We also see the work of Craven and Wahba [62] on (generalised)
cross-validation as conceptually related to parts of our work. Cross-validation can be
used to optimise parameters in denoising models [62, 145, 248]. It removes data points
from given noisy observations and judges the quality of a parameter selection in terms of
the model’s capability to reconstruct the data at these locations. Related ideas are also
pursued in [50]. Probabilistic densification [112] and sparsification [156], two concepts
from spatial optimisation that we consider in our framework, also use the error of the
inpainted reconstruction at left out locations – in our case also on noisy data. Yet, both
applications differ, as the goal of the latter methods is to construct an inpainting mask
and not to optimise model parameters.

Neural Denoising and Inpainting. In recent years, many very powerful methods
for inpainting and denoising have been proposed that rely on neural networks. They
are, however, not a topic of our paper, since we aim at gaining structural insights into
the connections between inpainting and denoising. Such results on classical approaches
are still relevant in the learning era [82]. They may serve as foundations for deep
learning-based methods, and model- and learning-based approaches may be fused to
obtain powerful and transparent algorithms. It is our hope that in the long run, our
insights can also be beneficial to neural approaches.

5.2 Basics of Diffusion Filtering

In its original context of physics, diffusion is a process that equilibrates particle concentra-
tions. When working with images, we interpret the grey values as particle concentrations
and use diffusion processes as smoothing filters that balance grey value differences. To
this end, we define the original greyscale image as a function f ∶ Ω → R, with Ω ⊂ R2

being a rectangular image domain. Similarly, u ∶ Ω × [0,∞) → R denotes the evolving,
filtered image. Then the diffusion evolution is described by the following PDE:

∂tu(x, t) = div(g∇u(x, t)) for x ∈ Ω, t ∈ (0,∞). (5.1)

Here t denotes time, ∇ = (∂x, ∂y)T is the spatial gradient, div(v) = ∂xvx + ∂yvy is the
spatial divergence, and the scalar diffusivity g determines the local smoothing activity.
We discuss different choices of g in Section 5.2.1. Note that g can be extended to a
diffusion tensor to introduce anisotropy into the process [236], but since we do not
consider such a case in this chapter, we refrain from discussing it here. We equip the
PDE with an initial condition at time t = 0 and reflecting boundary conditions at the
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image boundary ∂Ω:

u(x,0) = f(x) for x ∈ Ω, (5.2)

∂nu(x, t) = 0 for x ∈ ∂Ω, t ∈ (0,∞), (5.3)

where n is the outer normal vector at the image boundary. Solving this initial boundary
value problem for u yields a family of filtered images {u(⋅, t) ∣ t ≥ 0}.

5.2.1 Diffusion for Image Denoising

In image denoising the image f is a noisy version of the noise-free ground truth image
fr. In our case we assume zero-mean additive white Gaussian noise, i.e., f = fr + n with
n ∈ N(0, σ2

n). Diffusion processes are good candidates for image denoising tasks thanks
to their smoothing properties. Depending on the form of the diffusivity g, different
processes are obtained.

5.2.1.1 Homogeneous Diffusion

By setting g ≡ 1, (5.1) simplifies to ∂tu = ∆u, with ∆u = ∂xxu + ∂yyu being the Laplacian
operator. The resulting process is known as homogeneous diffusion [115]. Its analytical
solution in the unbounded image domain R2 is given by a convolution of the original
image with a Gaussian kernel Kσ with standard deviation σ =

√
2t. The resulting images

{u(⋅, t) ∣ t ≥ 0} constitute the so-called Gaussian scale-space [115, 239]. Since g is selected
to be constant, the smoothing strength is the same across the entire image. Therefore,
not only the noise is reduced, but also semantically important image structures such as
edges are smoothed.

5.2.1.2 Linear Space-Variant Diffusion

To overcome the drawbacks of homogeneous diffusion, one can make the process space-
variant by selecting a diffusivity function that varies depending on the structure of the
initial image f [87]. This is called linear space-variant diffusion. If edges and other
high-gradient features are to be preserved, the diffusivity should be decreasing with
increasing gradient magnitude of the image, so that that the smoothing would be reduced
at edges. An example for a suitable function is the Charbonnier diffusivity [54]:

g(∣∇f ∣2) = 1√
1 + ∣∇f ∣2λ2

, (5.4)

where ∣ ⋅ ∣ denotes the Euclidean norm. The contrast parameter λ > 0 is used to distinguish
locations where smoothing should be applied (for ∣∇f ∣ ≪ λ, we get gλ → 1) and locations
where it should be reduced (for ∣∇f ∣ ≫ λ, we obtain gλ → 0).
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5.2.1.3 Nonlinear Diffusion

Alternatively, one can make the diffusivity function g dependent on the evolving image
u. This allows to update the locations where smoothing is reduced during the evolution,
by choosing them based on the image u, which becomes gradually smoother and less
noisy. The resulting process ∂tu = div(g(∣∇u∣2)∇u) is nonlinear [186]. The feedback
mechanism throughout the evolution helps steering the process to achieve better results.

5.2.2 Diffusion for Image Inpainting

Diffusion processes can also be used to fill in missing information in images [46, 51, 238].
Particularly, they allow to reconstruct an image from only a small number of pixels
by propagating information from known to unknown areas [89]. The set of known
pixels is called the inpainting mask and is denoted by K ⊂ Ω. To recover the image,
the information at the unknown locations is computed as the steady state (t →∞) of
a diffusion process, while the values at mask locations are preserved. The parabolic
inpainting formulation is obtained by modifying (5.1) and (5.2) accordingly:

∂tu(x, t) = div(g∇u(x, t)) for x ∈ Ω ∖K, t ∈ (0,∞), (5.5)

u(x, t) = f(x) for x ∈K , t ∈ [0,∞), (5.6)

u(x,0) = 0 for x ∈ Ω ∖K, (5.7)

∂nu(x, t) = 0 for x ∈ ∂Ω, t ∈ (0,∞). (5.8)

For g ≡ 1, (5.5) is the homogeneous diffusion PDE [115] and we talk about homogeneous
diffusion inpainting (also called harmonic inpainting). We almost exclusively consider
homogeneous diffusion inpainting in the remainder of this chapter, so we set g ≡ 1 in the
following. Instead of computing the steady state of the parabolic diffusion equation, we
may solve the corresponding boundary value problem:

−∆u(x) = 0 for x ∈ Ω ∖K, (5.9)

u(x) = f(x) for x ∈K, (5.10)

∂nu(x) = 0 for x ∈ ∂Ω. (5.11)

The problem may be written equivalently using the variational formulation

min
u
∫
Ω
∣∇u(x)∣2 dx, such that u(x) = f(x) for x ∈K. (5.12)

This suggests the interpretation that the inpainting is designed to penalise the gradient
magnitude of the reconstruction, i.e., it inherently promotes smoothness. In order to
simplify the discretisation of the boundary value problem formulation, we introduce a
mask indicator function c = 1K (we use the term mask synonymously for the set K and
the function c), that takes the value 1 at points from K and 0 elsewhere. This allows us
to combine (5.9) and (5.10) into a single equation

(c(x) + (1 − c(x))(−∆))u(x) = c(x)f(x) for x ∈ Ω. (5.13)
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5.2.3 Discrete Homogeneous Diffusion Inpainting

Since we are working with digital images, the above considerations need to be translated
to the discrete setting. We therefore discretise the images on a regular pixel grid of size
nx ×ny. Then we write them as vectors of length N = nxny that are obtained by stacking
the discrete images column-by-column, e.g., f ,u ∈ RN . Furthermore, let L ∈ RN×N

denote the five-point stencil discretisation matrix of the negated Laplacian (−∆) with
reflecting boundary conditions ∂nu(x) = 0 for x ∈ ∂Ω. Additionally, let C = diag(c) be
the diagonal matrix with the mask vector c ∈ {0,1}N discretising c, and let I be the
N ×N identity matrix. Then the discrete version of (5.13) can be formulated as the
linear system of equations:

(C + (I −C)L)u =Cf , (5.14)

and the reconstruction can be written explicitly as

u = r(c,f) = (C + (I −C)L)−1Cf . (5.15)

The inverse of the inpainting matrix Mc ∶=C + (I −C)L exists as long as C ≠ 0 [155].
To deal with the case C = 0 we define r(0,f) ∶= 1

N 1
Tf , i.e., we take the average. If we

want to approximate the image f instead of interpolating it over C, we can replace Cf
with Cg, where

g ∈ argmin
h ∶h∣c̄=0

∥r(c,h) − f∥22. (5.16)

Here h∣c is the restriction of h to c and h∣c̄ is the restriction of h to the complement
c̄ = 1 − c. The optimisation is thus only over h∣c since the remainder of the values are
irrelevant for the inpainting result, so we set them to zero. The least squares problem is
known as the tonal optimisation problem and we discuss its implications for the current
work in Section 5.3.1.1. Additionally, we observe that the reconstruction is linear in g.
This motivates us to write it as a linear combination of basis vectors with weights given
by g∣c. Let Bc ∶= (M−1

c )∣I×C be the restriction of M−1
c to the columns corresponding to

non-zeros in c, and we set m = ∥c∥0 to be the number of non-zeros in c. By denoting the
columns as {bkc}

m
k=1, i.e., Bc = [b1c . . . bmc ], we can write the reconstruction as

u = r(c,g) =M−1
c Cg =Bc g∣c =

m

∑
k=1

(g∣c)k bkc. (5.17)

We see that the columns of Bc are the basis vectors induced from r and c. They are also
termed inpainting echoes [77, 156]. We note that inpainting with g∣c = f ∣c constructs the
interpolant over c in the space span(Bc) ⊆ RN . Since the tonal optimisation solution
can be written as g∣c = (Bc)+f , where (Bc)+ is the Moore-Penrose pseudo-inverse,
we note that r(c,g) = Bc(Bc)+f is the orthogonal projection of f on the subspace
span(Bc) ⊆ RN , i.e., the best approximant of f in this space.



Chapter 5. Denoising by Inpainting 92

5.3 Our Denoising by Inpainting Framework

We now present the basic idea and the framework for denoising by inpainting proposed in
the conference paper [2] upon which our published work [88] and this chapter are based.
Since the framework inherently links inpainting and denoising, it is well-suited to study
connections between the two tasks. As previously mentioned, we use diffusion-based
inpainting – specifically homogeneous diffusion inpainting – for image denoising, by only
keeping a sparse subset of the noisy input data and by reconstructing the rest. Inpainting
on noisy images differs from the classical setting and poses additional challenges. During
the inpainting process, grey values at mask locations are not altered. As they might
contain errors from the noise, these mask pixels are less trustworthy than inpainted
pixels, which combine information from their surrounding mask pixels. While we want
to exploit the filling-in effect in unknown areas, this observation implies that a single
inpainted image cannot give satisfactory denoising results. Therefore, we compute
multiple inpaintings with different masks and obtain the final result by averaging them.
This ensures that none of the pixels remain unchanged (unless a pixel is contained in
all masks). In the current work, we further mitigate the issue of noisy mask pixels by
employing tonal optimisation (see Section 5.3.1.1). If we denote the n different masks by
{cℓ}nℓ=1, we can generate the inpaintings {vℓ}nℓ=1 via

vℓ = r(cℓ,f) = (Cℓ + (I −Cℓ)L)−1Cℓf . (5.18)

We obtain the final denoising result ⟨u⟩n by averaging:

⟨u⟩n =
1

n

n

∑
ℓ=1

vℓ = 1

n

n

∑
ℓ=1

r(cℓ,f). (5.19)

As we fix the inpainting operator (for a discussion of denoising by biharmonic inpainting
see Section 5.6.4), the only freedom in the framework lies in the selection of the different
masks. This is in contrast to the common strategy in denoising, where all available
data is used and the operator is optimised instead. To study the effects of different
data selection strategies, we will borrow several ideas from mask optimisation for image
compression. To obtain multiple different masks as our framework requires, we rely on
some degree of randomness in the mask generation processes (see Section 5.5). Since we
make use of stochastic strategies, we formalise and study DbI from a probabilistic point
of view in the following subsection.

5.3.1 Probabilistic Theory

As seen in (5.19), the denoised image is the result of averaging n inpaintings from n
different masks, that are generated by some mask optimisation process. In the following,
we interpret this from a probabilistic point of view. This allows us to formalise the
DbI framework from the conference paper [2] and provides us with tools to study and
boost the convergence of our methods in Section 5.3.1.4 and Section 5.3.1.5, respectively.
We take the masks {cℓ}nℓ=1 to be independent and identically distributed samples from
a predetermined distribution conditioned on f , with a conditional probability mass
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function (PMF) p(c∣f). Then the estimator u converges to the following conditional
expectation for n→∞:

E[⟨u⟩n∣f] = E [
1

n

n

∑
ℓ=1

r(cℓ,f)∣f] = 1

n

n

∑
ℓ=1

E[r(c,f)∣f] = ∑
c∈{0,1}N

r(c,f)p(c∣f). (5.20)

The second equality holds because the masks were assumed to be identically distributed,
and thus E[r(cℓ,f)∣f] = E[r(c,f)∣f] for any c sampled with the same PMF p. The
fourth equality follows from the definition of the conditional mathematical expectation.
We note that from this probabilistic point of view, spatial adaptivity is provided through
the design of the PMF p. The following proposition shows that the DbI result constitutes
a minimum mean squared error (MMSE) estimate. This emphasises its optimality under
certain assumptions.

Proposition 1 (DbI as an MMSE Estimate). The expectation (5.20) of the DbI averaging
(5.19) can be interpreted as an MMSE estimate under prior assumptions on the image
and noise distributions, i.e., it solves the minimisation problem

min
u∈RN

E[∥u −w∥22∣f] = min
u∈RN

E[∥u − r(c,f)∥22∣f]. (5.21)

Proof. We can rewrite the minimisation problem (5.21) as

min
u∈RN

E[∥u − r(c,f)∥22∣f] = min
u∈RN

∑
c∈{0,1}N

∥u − r(c,f)∥22 p(c∣f). (5.22)

Taking the derivative w.r.t. u and setting it to zero results in the MMSE estimate

uMMSE = E[r(c,f)∣f] = ∑
c∈{0,1}N

r(c,f)p(c∣f). (5.23)

By (5.20) this is the same as the expectation E[⟨u⟩n] of the DbI estimator ⟨u⟩n.

The estimate uMMSE is close to fr (and ⟨u⟩n is close to fr), whenever v = r(c,f) with
c ∼ p(c∣f) provides a good model for the distribution from which fr is assumed to
originate. This formalisation of DbI as an estimator for the MMSE estimate therefore
provides an additional justification for the DbI framework as an image denoising approach.

5.3.1.1 MMSE and Tonal Optimisation

The classical DbI formulation (5.19) from [2] employs an interpolating inpainting. It is
natural to extend the framework to the best approximating inpainting, computing the
denoised image ⟨u⟩n as

⟨u⟩n =
1

n

n

∑
ℓ=1

r(cℓ,gℓ), (5.24)

where the masks {cℓ}nℓ=1 are selected as before, while {gℓ}nℓ=1 are the solutions to the
corresponding tonal optimisation problems (5.16). Next we show that after relaxing
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assumptions on the grey values compared to Theorem 1, the MMSE estimate actually
corresponds to DbI with an approximating inpainting instead of an interpolating one.

Proposition 2 (DbI with Approximating Inpainting as an MMSE Estimate). The
DbI result based on a best approximating inpainting (5.24) can also be interpreted as
an MMSE estimate, assuming that the grey values h are now also a random variable
conditioned on f .

Proof. Firstly, we note that the minimisation problem for the MMSE now differs, as the
expectation has to be taken over the grey values h as well:

min
u∈RN

E[∥u −w∥22∣f] = min
u∈RN

E[∥u − r(c,h)∥22∣f]

= min
u∈RN

∑
c∈{0,1}N

E[∥u − r(c,h)∥22∣f ,c]p(c∣f)

= min
u∈RN

∑
c∈{0,1}N

(∫
h∈RN

∥u − r(c,h)∥22 p(h∣f ,c)dh)p(c∣f).

(5.25)

As before, differentiation w.r.t. u yields the MMSE estimate

uMMSE = E[r(c,h)∣f] = ∑
c∈{0,1}N

E[r(c,h)∣f ,c]p(c∣f), (5.26)

which is similar to (5.23), but now contains the expectation

E[r(c,h)∣f ,c] = ∫
h∈RN

r(c,h)p(h∣f ,c)dh. (5.27)

To compute E[r(c,h)∣f ,c], we need to know the a posteriori density p(h∣f ,c). If we
assume that the noise is normally distributed n = (r(c,h) − f) ∼ N(0, σ2

nI), and that
the grey values restricted to the mask h∣c are normally distributed h∣c ∼ N(0, σ2

h∣c
I),

then the expectation can be calculated [145] as

E[r(c,h)∣f ,c] =BcE[h∣c∣f ,c] =Bc

⎛
⎝
σ2
n

σ2
h∣c

I +BT
cBc

⎞
⎠

−1

BT
c f . (5.28)

Since we do not know σh∣c and because the assumption of the normality of the grey
values may not be a very plausible one, we can dispense away with it by taking σh∣c →∞,
which results in a tonally optimised inpainting:

lim
σh∣c→∞

E[r(c,h)∣f ,c] =Bc lim
σh∣c→∞

⎛
⎝
σ2
n

σ2
h∣c

I +BT
cBc

⎞
⎠

−1

BT
c f =Bc(Bc)+f . (5.29)

Using Bc(Bc)+f = r(c, (Bc)+f), the new MMSE estimate differs with (5.23) only in
that we have approximation instead of interpolation:

uMMSE = ∑
c∈{0,1}N

E[r(c,h)∣f ,c]p(c∣f) = ∑
c∈{0,1}N

r(c, (Bc)+f)p(c∣f). (5.30)

This corresponds exactly to the expectation of the approximating DbI formulation.
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We note that the above analysis did not require r to be linear in f except for the
approximation of f . Given a fixed c, a natural extension to nonlinear operators could
use nonlinear least-squares to compute something similar to B+cf . By using the ap-
proximating formulation, we project the image onto the various sub-spaces induced
by the inpainting operator r and the mask c. We will show in Section 5.6.3.2 that in
practice, tonal optimisation is able to improve quality and to reduce the variance of
MMSE denoising, since it mitigates the error from the interpolation of noisy mask pixels
and provides representations that are closer to f in terms of MSE.

5.3.1.2 Interpreting Tonal Optimisation as MAP Estimate

Not directly related to the classical averaging formulation of DbI, but nevertheless
interesting and a valuable extension, is the fact that spatial and tonal optimisation for
a single inpainting can also be framed as a maximum a posteriori (MAP) estimate. In
MAP estimation, instead of minimising the MSE, we want to find an inpainting w that
maximises the posterior:

argmax
w

p(w∣f) = argmax
c,h

p(h,c∣f) = argmax
c,h

p(f ∣h,c)p(h∣c)p(c). (5.31)

We have assumed that w = r(c,h) is an injection, so we have p(w∣f) = p(r(c,h)∣f) =
p(h,c∣f). In the non-injective case one gets a set

p(w∣f) = p(r−1(w)∣f) = p({h,c ∶ w = r(c,h)}∣f), (5.32)

which does not change the derivation meaningfully, except for introducing additional
technical details. Thus, for the sake of clarity, we proceed with the injective case, but a
similar argument holds in the general setting. The maximisation problem (5.31) can be
split into two optimisation problems:

max
c,h

p(f ∣h,c)p(h∣c)p(c) =max
c
(max

h
p(f ∣h,c)p(h∣c))p(c). (5.33)

The inner one optimises over the grey values h given a mask c, and the outer one optimises
over the masks c. If we again assume that f = r(c,h) +n, where n ∼ N(0, σ2

nI), then
the density p(f ∣h,c) is given by a Gaussian

p(f ∣h,c) = 1

(2πσ2
n)N/2

exp(−∥r(c,h) − f∥
2
2

σ2
n

) . (5.34)

Assuming also that the grey values are normally distributed, i.e., h∣c ∼ N(0, σ2
h∣c
I), then

the minimisation problem w.r.t. h is what we call the regularised tonal optimisation
problem:

argmax
h∣c̄=0

exp
⎛
⎝
−∥r(c,h) − f∥

2
2

σ2
n

− ∥h∣c∥
2
2

σ2
h∣c

⎞
⎠
= argmin

h∣c̄=0

∥Bch∣c − f∥22 +
σ2
n

σ2
h∣c

∥hc∥22, (5.35)
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where the solution is the same as in (5.28):

h∣∗c =
⎛
⎝
σ2
n

σ2
h∣c

I +BT
cBc

⎞
⎠

−1

BT
c f . (5.36)

Note that this can already be used for denoising with just a single inpainting with a mask
c, provided that we know the ratio of the variances of the noise and the grey values. The
above expression suggests that we can then just apply a regularised tonal optimisation
to get the best MAP estimate. As before, we may take σh∣c →∞ to get classical tonal
optimisation if desired. Of course, we also need to optimise w.r.t. the masks according
to p(c). In fact, if we take p(c) = 0 for ∥c∥0 ≠m, and p(c) being equal for all ∥c∥0 =m,
then we get the spatial optimisation problem with tonally optimised values:

min
∥c∥0=m

∥r(c,h∣∗c(f)) − f∥22. (5.37)

If we take the interpolating case, we get the classical spatial optimisation problem [156]:

min
∥c∥0=m

∥r(c,f) − f∥22. (5.38)

The above further motivates using spatial optimisation for denoising in both the interpo-
lation and approximation cases; see Section 5.5.

5.3.1.3 Bayesian Interpretation

In this subsection, we discuss how the above approaches fit in a general Bayesian
perspective, which allows for meaningful interpretations of the occurring probabilities.
This is valuable as MMSE and MAP estimates rely on a posterior p(w∣f). Using Bayes’
rule, this posterior can be rewritten as

p(w∣f) = p(f ∣w)p(w)
p(f) = p(f ∣w)p(w)

∫RN p(f ∣w)p(w)dw
, (5.39)

where p(w) is the probability density function (PDF) for the distribution of images
w from which we assume fr to originate. The likelihood p(f ∣w) is the noise PDF,
which in our case is a Gaussian. The term p(f) is just a normalisation constant that is
irrelevant in practice, since it is not a function of w. This shows that the task of finding
a proper posterior distribution corresponds to introducing an appropriate prior p(w)
under a given noise distribution p(f ∣w). This is known to be crucial for good denoising
performance of Bayesian methods, and links our DbI framework to such approaches.

Incorporating the Inpainting Operator. To introduce an inpainting operator r
into the above model, we make the assumption that any w is synthesised as w = r(c,h)
for some mask c and some grey values h∣c. Since now the model depends on the masks



Chapter 5. Denoising by Inpainting 97

we can rewrite the PDF as

p(w∣f) = ∑
c∈{0,1}N

p(w∣f ,c)p(c∣f), (5.40)

which is where the conditional mask PMF p(c∣f) comes into play – this is the other
key ingredient for DbI along with the inpainting operator. We will see that this PMF
allows us to introduce spatial adaptivity (Section 5.5.2, Figure 5.9) for operators that
are otherwise not spatially adaptive. Finally, we can also rewrite p(w∣f ,c) using Bayes’
rule in order to relate the above formulation to (5.39):

p(w∣f ,c) = p(f ∣w,c)p(w∣c)
p(f ∣c) = p(f ∣w,c)p(w∣c)

∫RN p(f ∣w,c)p(w∣c)dw
. (5.41)

This provides a similar interpretation, but now we have knowledge about the mask. As
before p(f ∣w,c) models the noise, but now p(w∣c) models the distribution of the grey
values defining w given c, i.e., the distribution of h∣c. As before, the denominator is a
normalisation constant that is not practically relevant.

The Mask Posterior. Bayes’ rule allows us to explore further theoretical considera-
tions about the involved mask probabilities. We can study the mask posterior p(c∣f) in
more detail, using

p(c∣f) = p(f ∣c)p(c)
p(f) . (5.42)

Now p(c) models the probability of the mask c being generated (irrespective of f) and
p(f ∣c) models some measure of the noise and image content in relation to the mask. In
practice, ideally the density 1TE[c]/N should be chosen to be inversely proportional to
the standard deviation of the noise. Similarly if we know that the noise distribution is
space-variant, or if we suspect that features (e.g. edges) are present, we can choose the
local density of c to account for that: higher for more prominent edges, lower for higher
noise variance. The weight of these choices is modelled by p(f ∣c). Selecting p(c) is less
trivial, as it needs to match the mask distribution of natural images, i.e., the distribution
of natural images from the perspective of the masks used in the inpainting operator. It is
simpler to choose it based on the density, i.e., p(c) = p(∥c∥0/N), which makes it blind to
spatial variations, or to just choose it as a constant, if we have no data on it. Note that
these considerations are meant to provide a different view on the mask posterior and
an alternative strategy on how to construct it. The adaptive mask selection methods
that we consider in this work directly induce a mask posterior p(c∣f) and do not model
p(f ∣c) or p(c). They are based on strategies from the noise-free case in image inpainting
and we adapt and extend them to the noisy case. For all the approaches that we consider,
we state their induced PMFs p(c∣f) (see Equation (5.64), Theorem 5, Appendix A.2).

On the Importance of the Inpainting Operator. A crucial question is whether
an inpainting operator r is suitable for modelling natural images in a sparse and robust
manner, such that noise can be attenuated by averaging multiple nearby representations
of a noisy image from a lower-dimensional image manifold. For r being homogeneous
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diffusion inpainting, we know that it has been used successfully for image compression of
natural images with low to medium frequencies [155]. Moreover, we present new results
in Section 5.4 that relate the MMSE estimate to homogeneous diffusion denoising. The
large body of literature on sparse image approximation and compression should provide a
reasonable selection of good inpainting operators r. In the current work we also consider
biharmonic inpainting (see Section 5.6.4).

Interplay between the Mask PMF and Homogeneous Diffusion. The basis
vectors Bc for homogeneous diffusion are generally low-frequent and smooth, with the
local frequency depending on the local density of the mask points. For a constant
PMF p(c∣f), i.e., a homogeneous mask density, we get a process similar to isotropic
homogeneous diffusion, and it is in fact approximately equivalent to it, as we demonstrate
later in Section 5.4.2 and Section 5.4.3. As such it also shares its drawbacks, i.e.,
smoothing equally over image structures and noise. More sophisticated denoising
methods such as space-variant diffusion allow for steering the smoothing away from
image structures by relying on a guidance image, e.g., the gradient magnitude ∣∇u∣.
Similarly, we may use the PMF p(c∣f) to guide the denoising. One instance of a PMF
that we consider is inspired by a result for mask selection in inpainting. Belhachmi
et al. [28] have argued that the local density of an optimal inpainting mask c should
be proportional to the pixelwise magnitude of the Laplacian ∣Lf ∣. In our setting this
translates to constructing a PMF p such that E[c∣f] ∼ ∣Lf ∣; see Section 5.5.2.

5.3.1.4 Convergence

A question which arises is how well the estimator ⟨u⟩n approximates the MMSE estimate
uMMSE = E[⟨u⟩n∣f] as a function of the number of samples n. We consider this scaling
behaviour in the next proposition.

Proposition 3 (Convergence of the DbI Estimator). The root mean square error (RMSE)√
MSE(⟨u⟩n,E[⟨u⟩n∣f]) between the estimator ⟨u⟩n and its expectation E[⟨u⟩n∣f] scales

as O(n−1/2), where n is the number of sampled masks.

Proof. We first recall that we can decompose the MSE between some estimator θ̂ and
some fixed parameter θ into a variance and a bias part:

MSE(θ̂,θ) = E[∥θ̂ − θ∥22]
= E[∥θ̂ −E[θ̂]∥22] + ∥E[θ̂] − θ∥22
= V[θ̂] +Bias(θ̂,θ)2.

(5.43)

If we consider the MSE between the estimator ⟨u⟩n and its expectation E[⟨u⟩n∣f], the
bias vanishes and we have MSE(⟨u⟩n,E[⟨u⟩n∣f]) = V[⟨u⟩n∣f]. The variance V[⟨u⟩n∣f]
is given by

V[⟨u⟩n∣f] = V [
1

n

n

∑
ℓ=1

r(cℓ,f)∣f] = 1

n2

n

∑
ℓ=1

V [r(c,f)∣f] = 1

n
V[r(c,f)∣f]. (5.44)
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The second equality holds because the masks are independent and identically distributed.
For a finite variance V[r(c,f)∣f], the root mean square error between the estimator
and its expectation thus scales as O(n−1/2).

5.3.1.5 Acceleration by Low-Discrepancy Sequences

When the masks are random variables, as noted in Section 5.3.1.4, we have a somewhat
slow convergence of O(n−1/2). Informally this means that to decrease the RMSE by a
factor 4 we would need 16 times as many samples. The natural question arises whether
we can do better by trading randomness for a more structured sampling strategy. The
answer is positive, as in the context of integration (and our problem can be framed as
such w.r.t. the counting measure), a prominent approach for speeding up convergence is
the use of low-discrepancy sequences. These sequences fill up space more uniformly than
random sequences. The uniformity is typically quantified using the (star) discrepancy of
the sequence. Theoretically, the Koksma-Hlawka inequality [140] allows one to bound the
numerical integration error, i.e., ∥⟨u⟩n −E[⟨u⟩n∣f]∥2 in our case, by using the product
of the discrepancy of the sequence and the variation of the integrand. In practice this
usually translates to a convergence that can reach as high as O(n−1) which is much
better than the O(n−1/2) convergence for the purely random case. Experimental results
illustrating a boost to the convergence in the DbI setting are presented in Section 5.6.2.

5.4 Linking Denoising by Inpainting to Homoge-

neous Diffusion

The simplest approaches for mask selection in the DbI framework are those that are
independent of the image that is to be filtered (p(c∣f) ≡ p(c)). We consider shifted
regular masks as well as randomly selected masks. They are characterised by a spatially
flat expectation E[c] = const. In the following, we briefly introduce regular masks, show
how they can be used in the DbI framework and discuss the resulting filtering behaviour.
Then we derive relations between DbI with regular masks and homogeneous diffusion
filtering in 1D. Afterwards, using random masks instead of regular masks, we empirically
extend those results to the 2-D setting.

5.4.1 Regular Masks

Regular masks are created by generating a pattern with each r-th pixel in x- and each
s-th pixel in y-direction being added to the mask. We can then shift such a mask in
both directions to obtain multiple masks. If we assume an nx × ny pixel grid, we can
create such a regular mask via

ci,j =
⎧⎪⎪⎨⎪⎪⎩

1 if imod r = 0 and j mod s = 0,
0 else.

(5.45)
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We have s options of shifting this regular mask in x-direction and r options in y-direction,
adding up to n = rs total possible configurations. Denoting by p ∈ {0, . . . , r − 1} and
q ∈ {0, . . . , s − 1} the shift in x- and y-direction, respectively, we can write the shifted
masks as

cps+q+1i,j =
⎧⎪⎪⎨⎪⎪⎩

1 if imod r = p and j mod s = q,
0 else.

(5.46)

Clearly, the created masks are independent of the image. Furthermore, the mask
density is constant over the entire image, leading to the same smoothing strength at
all locations, solely determined by the total mask density, i.e., by the spacing. If r = s,
this smoothing is equally strong in x- and y-direction. Visually one then observes a
smoothing behaviour that resembles the one of homogeneous diffusion filtering (see
Figure 5.2(c) and Figure 5.2(d)). The influence of the mask density on the smoothing
strength can be observed in Figure 5.2(d) and Figure 5.2(e).

(a) original (b) noisy (c) HD (d) DbI-R (e) DbI-R

peppers σn = 30 T = 1.35 r = s = 3 r = s = 5

Figure 5.2: Comparison of homogeneous diffusion (HD) and denoising by inpainting
with regular masks (DbI-R) on the test image peppers with σn = 30. Figure 5.2(c) and
Figure 5.2(d) show the visual similarities of both methods. Figure 5.2(d) and Fig-
ure 5.2(e) illustrate the influence of the expected density 1TE[c]/N on the smoothness
of the reconstruction: Figure 5.2(e) was intentionally chosen with a density that is too
low resulting in too much smoothing.

The similarity between the methods can not only be observed visually, but also established
theoretically: Next we provide a derivation in the 1-D case for regular masks relating
the diffusion time of homogeneous diffusion to the mask density in DbI.

5.4.2 Mathematical Analysis in 1D

We consider a discrete 1-D signal f and regular inpainting masks with spacing r and shift
p ∈ {0, . . . , r − 1}. It is known that in 1D, homogeneous diffusion inpainting and linear
interpolation are equivalent. Thus, an inpainted pixel at position i can be described in
terms of its two neighbouring mask pixels. We denote the distance between the pixel i
and its neighbouring mask pixel on the left by ℓ ∶= ∣i − p∣mod r, which implies that for
mask pixels we have ℓ = 0. Accordingly, the distance to the mask pixel on the right is
given by r − ℓ. The interpolated value at pixel i for mask ℓ + 1 is then

vℓ+1i = r − ℓ
r
fi−ℓ +

ℓ

r
fi+r−ℓ. (5.47)
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To obtain the final result, the inpaintings from the r shifted masks are averaged. We get

ui =
1

r

r−1

∑
ℓ=0

vℓ+1i = 1

r
(fi +

r−1

∑
ℓ=1

r − ℓ
r
fi−ℓ +

ℓ

r
fi+r−ℓ)

= 1

r2
(rfi +

r−1

∑
ℓ=1

ℓ (fi−(r−ℓ) + fi+(r−ℓ))) ,
(5.48)

where the last line reveals the general form of the filter in dependence of the spacing r:
The filter is given by a hat kernel with central weight 1/r and width 2r−1. In Theorem 4
we demonstrate that this kernel can be seen as a consistent discretisation of ∂tu = ∂xxu.
Consequently, convolution with such a kernel approximates Gaussian smoothing, which
explains the visual similarity of the results in Figure 5.2. Since the spacing r determines
the size of the smoothing kernel, we explicitly see the connection between the mask
density and the smoothing strength. For the special case of r = 2, (5.48) yields

ui =
fi−1 + 2fi + fi+1

4
, (5.49)

which is exactly a single step of an explicit scheme for homogeneous diffusion with step
size T = 1

4 and initial signal f (assuming grid size h = 1). If we reformulate (5.48) in a
way that resembles an explicit scheme for homogeneous diffusion, we can derive a general
connection between the spacing r (and thus the density) of denoising by inpainting
with regular masks and the time step size of such an explicit scheme, which we state in
Theorem 4.

Theorem 4 (Connection between Mask Density and Diffusion Time). Given the r
shifted regular inpainting masks in 1D, each of density d = 1/r, denoising by inpainting
approximates explicit homogeneous diffusion at time

T = 1 − d2
12d2

(5.50)

Proof. In (5.48) we derived the general form of the filter corresponding to denoising by
inpainting with regular masks of spacing r as

ui =
1

r2
(rfi +

r−1

∑
ℓ=1

ℓ (fi−(r−ℓ) + fi+(r−ℓ))) . (5.51)

We can rewrite this in the following manner:

ui =
1

r2
(rfi +

r−1

∑
ℓ=1

ℓ (fi−(r−ℓ) + fi+(r−ℓ)))

= 1

r2
(r2fi − 2

r−1

∑
ℓ=1

ℓfi +
r−1

∑
ℓ=1

ℓ (fi−(r−ℓ) + fi+(r−ℓ)))

= fi +
1

r2

r−1

∑
ℓ=1

ℓ (fi−(r−ℓ) − 2fi + fi+(r−ℓ)) ,

(5.52)
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where we have used that ∑r−1ℓ=1 ℓ = (r−1)r2 . Then we may write

ui − fi =
1

r2

r−1

∑
ℓ=1

ℓ (fi−(r−ℓ) − 2fi + fi+(r−ℓ))

= 1

r2

r−1

∑
ℓ=1

ℓ(r − ℓ)2
fi−(r−ℓ) − 2fi + fi+(r−ℓ)

(r − ℓ)2

=
r−1

∑
ℓ=1

ℓ(r − ℓ)2
r2

fi−(r−ℓ) − 2fi + fi+(r−ℓ)
(r − ℓ)2 .

(5.53)

By approximating fi±(r−ℓ) via a Taylor expansion and using the sampling distance h, we
can derive the time step size as

ui − fi =
r−1

∑
ℓ=1

ℓ(r − ℓ)2
r2

fi−(r−ℓ) − 2fi + fi+(r−ℓ)
(r − ℓ)2

=
r−1

∑
ℓ=1

(ℓ(r − ℓ)
2

r2
)(h2 dxxf ∣i +

h4(r − ℓ)2
12

dxxxxf ∣i +O(h6))

= h2
r−1

∑
ℓ=1

(ℓ(r − ℓ)
2

r2
)(dxxf ∣i +O(h2))

≈ h2
r−1

∑
ℓ=1

(ℓ(r − ℓ)
2

r2
) dxxf ∣i .

(5.54)

We end up with an approximation of an explicit scheme with time step size

T = h2
r−1

∑
ℓ=1

ℓ(r − ℓ)2
r2

= h
2(r2 − 1)

12
. (5.55)

Using that the density is the inverse of the grid spacing and setting h = 1, we derive the
final relation between T and the density d, given by

T = 1 − d2
12d2

. (5.56)

5.4.3 Empirical Extension to 2D

To derive the relationship to the diffusion time in the 1-D case we used the fact that the
solution of the Laplace equation with Dirichlet boundaries is given by linear interpolation.
That is, we know the closed form of the inpainting echoes in 1D. In 2D a closed form
solution for those is not known, however they may be computed numerically. Thus our
goal is to establish a relationship between the diffusion time and the density numerically.

We take as a starting point the ansatz from the 1-D case that the diffusion time T is
given as 1−d2

12d2 , but generalise it to the form T ≈ 1−dγ

βdγ . Provided that this conjecture is
correct we only need to find the constants β and γ. Since regular masks only allow for a
stepwise adaptation of the mask density, they are not well-suited for generating a large
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number of data points at different densities. Therefore, we use uniform random masks
instead, which also have a spatially flat expectation, i.e., E[c] = const.

First we numerically tabulate the relationship between the density and the diffusion
time. That is, given a density d we find the diffusion time T (d) which minimises the
difference between the filter matrices:

T (d) = argmin
T≥0

∥ADbI(d) −AHD(T )∥2F . (5.57)

Here ∥ ⋅ ∥F is the Frobenius norm, and the matrices are the DbI filter matrix resulting
from a probability mass function for masks with expected density d, and the matrix
modelling homogeneous diffusion at time T using an implicit Euler discretisation:

ADbI(d) ∶= E [(C + (I −C)L)−1C] ,
1

N
1TE[c] = d, (5.58)

AHD(T ) ∶= (I + TL)−1 . (5.59)

We estimate ADbI using 1024 sampled masks. Then, having the relationship d↦ T (d)
we find that T (d) ≈ 1−dγ

βdγ for β = 4.58, γ = 1.3, which is illustrated in Figure 5.3. Note
the high quality of the data fit, which confirms the accuracy of the derived relation.
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Figure 5.3: The fit based on the ansatz 1−dγ

βdγ with β = 4.58, γ = 1.3 and the
tabulated correspondence between density and diffusion time. The results are obtained
with denoising by inpainting with uniform random masks and an implicit scheme for
homogeneous diffusion. They show that also in 2D our ansatz captures the relation
between mask density and diffusion time very accurately.

5.5 Spatial Optimisation for Denoising by Inpainting

As we have seen in Section 5.4, the use of non-adaptive masks restricts the DbI frame-
work, as it entails a non-adaptive smoothing behaviour. Furthermore, our results from
Section 5.3.1 emphasise the importance of spatial optimisation in the context of image
denoising. In [2], an adaptive mask selection approach enables the framework to perform
edge-preserving image filtering, although the simple homogeneous diffusion inpainting
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operator by itself is space-invariant. This approach thus implies a different paradigm
for image denoising: Instead of optimising the denoising operator, one can optimise
the data. In this section, we will first present the strategy that was proposed in [2].
Then we propose an alternative, simpler approach that eventually gains its power by the
application of tonal optimisation.

5.5.1 Densification Method

Two well-known mask selection strategies from image compression are probabilistic
sparsification [156] and densification [112], which build the mask in an iterative way
using a top-down and a bottom-up strategy, respectively.

In probabilistic sparsification, we start with a full mask and take away the least important
pixels from a number of randomly selected candidates in each iteration. To identify those
pixels, we temporarily exclude all candidates from the mask and compute an inpainting.
Then the candidate locations with the highest local (i.e., pixelwise) reconstruction error
are added back to the mask as they are assumed to be the most important, while the
others remain permanently excluded. This process is repeated until the desired mask
density is reached. In probabilistic densification, the initial mask is empty and again
a number of candidate pixels are selected. Given an inpainting with the current mask
(in the first step some pixels have to be chosen at random) we select and add those
candidates to the mask that have the highest local reconstruction error.

In the noisy setting, special care is required as the pixel selection based on the local
reconstruction error is not reliable. The local error does not allow the algorithm to
distinguish between noise and important image structures, such as edges. If a pixel
contains strong noise, this creates a large local error because – just like edges – the noise
cannot be reconstructed by the smooth inpainting. Introducing such a noisy pixel into
the mask is not desirable. We cure this problem by judging the importance of a pixel
based on its effect on the global reconstruction error. We do this by calculating a full
inpainting for each candidate pixel. While this improves the quality of the selected mask,
it drastically increases the run time.

Even though in the noise-free setting densification and sparsification yield results of
comparable quality [111], this is different when handling noisy data. For sparsification
we initially have very dense masks. If we exclude candidate pixels from such masks, the
reconstructions often only differ at the locations of these pixels. Therefore, sparsification
tends to keep noisy pixels in the mask, even when a global reconstruction error is
computed. This problem does not occur in probabilistic densification, as for a sparse
mask, the candidate pixels have a global influence. The result of this effect is illustrated
in Figure 5.4. Here, densification is able to select appropriate pixels that lead to an
almost perfect result while sparsification fails to reconstruct the image properly.

Thus, we opt for a probabilistic densification algorithm based on a global error compu-
tation, which is described in Algorithm 3 and has been proposed in [2]. An additional
advantage of this probabilistic densification method is that it does not only select pixels
at useful locations (e.g., close to edges), but also implicitly avoids picking pixels that
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are too noisy, as they would have a negative impact on the reconstruction quality. The
method can be interpreted according to the probabilistic mask generation framework from
Section 5.3, and we provide the implied mask probabilities in the following proposition.

Proposition 5 (Mask Probabilities implied by the Densification Method). A mask c
generated by probabilistic densification has the conditional probability density function

p(c∣f) = ∑
σ∈Sm

pσ(c∣f), (5.60)

where m = ∥c∥0 is the number of mask pixels, the sum is taken over the group Sm of
permutations of the ordering of the m mask pixels, and pσ(c∣f) denotes the probability
that the m mask points were introduced in the order σ. The latter is the product of the
probabilities of selecting one mask pixel at each step:

pσ(c∣f) = pmσ (c∣f) . . . p1σ(c∣f). (5.61)

The probability of picking the k-th mask pixel (according to the permutation σ) at step k
has the following form:

pkσ(c∣f) =
α

∑
β=1

1

β

(Neq−1
β−1
)(Ngt

α−β
)

(N−k
α
)

, (5.62)

where α is the number of candidates considered per step, Ngt is the number of non-mask
pixels at step k that would have resulted in an inpainting with a higher MSE if they were
chosen instead of the k-th mask pixel in σ, and Neq is the number of non-mask pixels
that would have resulted in the same MSE.

Proof. We present the proof of this result in Appendix A.1.

5.5.2 Acceleration via the Analytic Results of Belhachmi et al.

As the global error computation in the previous approach requires calculating an inpaint-
ing for each candidate pixel, the run time is substantial. Therefore, we propose another
approach, with the goal of a faster mask generation process. We refer to this method as
the analytic method. It is based on the results of Belhachmi et al. [28]. They have shown
that the mask density for homogeneous diffusion inpainting should be proportional to
the pointwise magnitude of the Laplacian ∣Lf ∣. Additionally, they suggest using the
Gaussian-smoothed version fσ ∶=Kσ ∗f of f even in the noise-free setting. Here Kσ is a
discrete approximation of a Gaussian with standard deviation σ. This step proves even
more beneficial in our setting, since we are calculating the Laplacian of noisy data, and
regularising f helps considerably for constructing a reasonable guidance image ∣Lfσ ∣.

As we require multiple different binary masks for our framework, we sample from ∣Lfσ ∣
by using a simple and fast Poisson sampling. Given a density image d ∈ [0,1]N , we can
sample a mask according to it by generating a uniform random number vi ∼ U[0,1] for



Chapter 5. Denoising by Inpainting 106

(a) input (b) sparsification (c) densification

original MSE: 76.07 MSE: 1.98

noisy (σn = 30) optimised mask optimised mask

Figure 5.4: Comparison of sparsification and densification on a synthetic test image
with σn = 30 [2]. For both methods, the mask density d was optimised with a grid
search w.r.t. the MSE. The noisy gradient image is not reconstructed adequately
by sparsification, since it favours keeping noisy pixels in the first iterations due to
localisation. Densification does not suffer from this problem and thereby achieves a
better denoised reconstruction.

Algorithm 3. Mask densification with global error computation [2].

Input: Noisy image f ∈ RN , number of candidates α, desired final mask density d.

Initialisation: Mask c = 0 is empty.

Compute:
do

1. Choose randomly a set A ⊂ {k ∈ {1, ...,N} ∣ ck = 0} with α candidates.
for all i ∈ A do

2. Set temporary mask mi such that ∀k ∈ {1, ..., α} ∖ {i} ∶mi
k = ck, m

i
i = 1.

3. Compute reconstruction ui from mask mi and image data f .

end for

4. Set c = argmin
mi, i ∈A

MSE(ui,f). This adds one mask point to c.

while pixel density of c smaller than d.

Output: Mask c of density d.
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each pixel i and then thresholding at di:

ci =
⎧⎪⎪⎨⎪⎪⎩

1 if vi ≤ di,
0 if vi > di.

(5.63)

Then the probability mass function pd for sampling a mask c given the density image d
is

pd(c) =
1

P

N

∏
i=1

(di)ci(1 − di)1−ci , P = ∑
c∈{0,1}N

N

∏
i=1

(di)ci(1 − di)1−ci . (5.64)

By construction the mask would have an expected density equal to the mean value of d.
In our approach we set the per pixel probabilities to

d =min{C ∣Lfσ ∣,1} , (5.65)

where the minima are taken pointwise, and C is a constant chosen such that the mean
value of d is equal to the desired mask density. Figure 5.5 shows the pipeline for mask
generation with this method. One can observe in Figure 5.5(b) that d is strongly affected
by the noise despite the pre-smoothing. This is because we calculate second-order
derivatives that are even more sensitive to noise. When sampling from this image the
mask is drawn towards noisy pixels. To counteract this, we propose to perform an
additional outer smoothing of the probability image d, after the absolute value of the
Laplacian is taken, thus modifying it to

d =min{C (Kρ ∗ ∣Lfσ ∣) ,1} , (5.66)

with a post-smoothing parameter ρ. Our proposed selection strategy offers an instant
generation of adaptive masks, in a sense that it does not require the calculation of any
inpainting. Furthermore, it provides a transparent formulation of the mask PMF (see
(5.64)) and as such exhibits a specifically simple interpretation in the context of our
probabilistic framework in Section 5.3.1. On the other hand, contrary to probabilistic
densification it does not have a mechanism to avoid noisy mask pixels. To obtain the
best possible results, the pre-smoothing parameter σ, the post-smoothing parameter ρ,
and the desired mask density have to be optimised depending on the image content and
the noise level.

Note that Belhachmi et al. [28] apply Floyd-Steinberg dithering [85], which includes
an error diffusion in the binarisation process. This strategy can be equipped with a
random component in order to generate multiple masks, which makes it an alternative
to Poisson sampling for us. We have tested both methods and found that there is no
advantage in using Floyd-Steinberg dithering. Thus, we opt for the simple Poisson
sampling. Nonetheless, we give the mask probabilities for sampling with error diffusion
methods in Appendix A.2.



Chapter 5. Denoising by Inpainting 108

(a) noisy (σn = 30) (b) density image d

(c) sampled masks (d) inpaintings

(e) averaged result··
·

··
·

··
·

··
·

Figure 5.5: Pipeline for mask generation with the analytic method. (a) Test
image trui with σn = 30. (b) Target image (without post-smoothing) from which
masks are sampled. (c) Three examples of Poisson-sampled masks. (d) Corresponding
homogeneous diffusion inpaintings. (e) Averaged inpaintings (from 32 masks), final
denoising result.

5.6 Experiments

In this section, we present our experiments. They evaluate our theories and compare
the different DbI strategies in practice. Firstly, we confirm the accuracy of the 1-D
relation that we derived for DbI with regular mask in Section 5.4.2. We also display the
corresponding results in 2D. Next, we show that the theoretical convergence estimates
from Section 5.3.1.4 also hold in practice and evaluate the gain through low-discrepancy-
based sampling (see Section 5.3.1.5). Furthermore, we assess the spatial and tonal mask
optimisation approaches. To this end, we compare DbI to PDE-based methods of similar
structural complexity. Aside from homogeneous diffusion, we choose linear space-variant
diffusion and nonlinear diffusion as representatives of methods that are based on operator
optimisation. Lastly, we consider the denoising by biharmonic inpainting to further
investigate the question of data optimisation vs. operator optimisation.

5.6.1 Relation Between DbI and Homogeneous Diffusion

In Section 5.4.2 we derived a relation between the mask density d and the diffusion time
T , given by T = (1 − d2)/(12d2). To confirm that this relation allows for a good estimate
of the diffusion time in practice, we perform an experiment on a 1-D signal, which is
generated by extracting the 128th row of the peppers test image. Homogeneous diffusion
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is implemented using explicit Euler and the spatial discretisation from (5.49) with the
number of iterations chosen such that the desired diffusion time T is reached. The result
in Figure 5.6 demonstrates that the diffusion time obtained via Theorem 4 is a good
approximation.

(a) r = 5, T = 2.0 (b) r = 10, T = 8.25
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Figure 5.6: Comparison of denoising by inpainting with shifted regular masks (DbI-
R) and homogeneous diffusion (HD) on a one-dimensional signal (128th row of the
test image peppers). We display a section from the original signal and filtered versions
obtained with denoising by inpainting with regular masks of spacing r and homogeneous
diffusion filtering with diffusion time T , calculated according to Theorem 4. We see
that both filters lead to very similar results, confirming that the approximation from
the theorem is indeed realistic.

In Section 5.4.3 we extended this relation to 2D, yielding T = (1−dγ)/(βdγ) with β = 4.58
and γ = 1.3. To confirm this, we now consider the 2-D peppers test image. We perform
denoising by inpainting with 1024 randomly selected masks, as well as homogeneous
diffusion filtering with the diffusion time calculated according to the above relation and
compare the results. The experiments in Figure 5.7 visually and qualitatively confirm
the accuracy of the relation in 2D.

5.6.2 Convergence

As we have shown in Section 5.3.1.4 the estimator converges to its expectation at a
rate of O(n−1/2) w.r.t. the RMSE. In Section 5.3.1.5 we introduced the idea of using
low-discrepancy sequences. Theoretically, they should lead to much faster convergence,
thus here we test whether this also holds in practice. In the experiments we again use the
256×256 test image peppers. We use two sampling strategies for the masks, whose sample
means c = 1

n ∑
n
ℓ=1 c

ℓ converge to the same expectation E[c∣f]. As a representative of a
low-discrepancy sequence we use the R2 sequence [201] to create a sampling threshold
in each pixel (see [201] for details). This leads to a more regular sampling pattern
compared to using a purely random threshold. To make the experiment relevant to
realistic scenarios, we use the analytic mask selection method from Section 5.5.2. We first
test the mask convergence. To this end, we create 216 = 65536 masks via Poisson sampling
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(a) d = 5% (b) T ≈ 10.5 (c) d = 1% (d) T ≈ 86.7

DbI-Ran HD Filtering DbI-Ran HD Filtering

Figure 5.7: Comparison of denoising by inpainting with 1024 random masks (DbI-
Ran) and homogeneous diffusion (HD) on the test image peppers. The diffusion times
T corresponding to the mask densities d are calculated according to the result from
Section 5.4.3. The MSE between (a) and (b) is 0.61 and the MSE between (c) and (d)
is 6.37. This shows that the empirically derived relation is accurate, even for longer
diffusion times.

and consider their average as converged to the expectation E[c∣f]. Then we sample
masks with both sampling strategies and observe how the RMSE between sample mean
and expectation evolves with n. Of course, we are more interested in the convergence of
the DbI result ⟨u⟩n. Therefore, following a similar approach as for the masks, we create
an individual “converged” DbI result for the two sampling methods, and again consider
the RMSE between ⟨u⟩n and the respective reference images. Figure 5.8 shows that
the simple Poisson sampling leads to a convergence rate of O(n−1/2) for the masks as
well as for the DbI result, which is perfectly in line with the theory from Section 5.3.1.4.
Through low-discrepancy sampling this rate approaches O(n−1). By fitting a curve
through the data, we get a convergence rate of O(n−0.77) for the masks and O(n−0.78)
for the DbI result. The O(n−1) estimate is typically achieved for low dimensions, so the
difference of our results can be explained by the high dimensionality of our sampling
problem. The experiments confirm that the sampling strategy based on low-discrepancy
sequences is indeed able to improve the convergence in practice.

5.6.3 Data Optimisation for Denoising by Inpainting

In the next step, we investigate the edge-preserving filtering behaviour achieved by
the use of adaptive masks. We first test the two spatial optimisation methods and
compare the results to classical diffusion models. We show that DbI can yield results
comparable to certain space-variant diffusion methods. Then we discuss the effect of
tonal optimisation in the DbI setting. It should be noted that these experiments are
meant to provide an illustration of the mask optimisation strategies and not to achieve
the best denoising quality. As we have shown, these strategies can be applied in a more
general setting than DbI with homogeneous diffusion inpainting. They are valid for the
general probabilistic framework from Section 5.3.1, and as such they also extend to more
complex operators (including nonlinear ones).
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(a) Mask Convergence (b) DbI Convergence

22 23 24 25 26 27 28 29

mask number n

10−2

10−1

√
‖c

−
E[
c
|f
]‖2 2

PS

a · np, p = −0.50

LD

a · np, p = −0.77

22 23 24 25 26 27 28 29

mask number n

10−1

100

√
‖〈
u
〉 n

−
E[
〈u

〉 n
|f
]‖2 2

PS

a · np, p = −0.50

LD

a · np, p = −0.78

Figure 5.8: Convergence results for denoising by inpainting with the analytic method
with Poisson sampling (PS) vs. low-discrepancy-based sampling (LD). (a) shows the
convergence of the masks and (b) the convergence of the DbI result.

We perform experiments on the three standard test images trui, peppers and walter
with a resolution of 256 × 256, that are corrupted with additive Gaussian noise with
standard deviations σn ∈ {10,20,30} that we do not clip. To ensure a fair comparison,
we optimise the mask density and if required the pre- and post-smoothing parameter
for the denoising by inpainting methods w.r.t. the MSE to the original image. We do
this individually for each image and for each noise level using a grid search. In practice,
these parameters need to be adapted to the noise level and the image content. We create
32 masks with each of the mask selection methods, except for the regular masks where
the number is determined by the spacing and thus by the density. For the proposed
probabilistic densification algorithm we set the number of candidate pixels per iteration
to 16.

5.6.3.1 Spatial Optimisation

Firstly, we investigate the different spatial selection strategies proposed in Section 5.5
and compare the denoising results with the standard diffusion methods presented in
Section 5.2.1. For the diffusion methods, which we discretise with an explicit scheme, we
optimise the stopping time and if required the contrast parameter of the Charbonnier
diffusivity [54].

As can be seen in Table 5.1, inpainting with regular masks leads to unsatisfying results,
slightly worse than those obtained with homogeneous diffusion filtering. This is expected
given the connections derived in Section 5.4.1. Note that the stopping time in homoge-
neous diffusion filtering can be tuned continuously, while the spacing of the regular mask
can only be adapted in integer steps. The analytic method based on Poisson sampling
of the smoothed Laplacian magnitude improves the results, especially at lower noise
levels. Figure 5.9(c) shows how the mask pixels accumulate around important image
structures, enabling an edge-preserving filtering behaviour. The densification method
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is able to further improve those results. The reason for this improvement can be seen
in Figure 5.9(d). On top of selecting pixels at reasonable positions, the error in the
mask is reduced drastically in comparison to the analytic method, because densification
implicitly avoids noisy pixels. The adaptive mask selection strategies enable the denoising
by inpainting method to produce results that are comparable to linear space-variant
diffusion filtering. However, it cannot reach the quality of nonlinear diffusion. This is
not surprising, as a feedback mechanism throughout the inpainting process is missing.
Nonetheless, the results reveal that proper data optimisation enables DbI to compete
with methods that optimise the operator, if they are of comparable complexity.

Although qualitatively the densification approach is better than the analytic method, its
required run time is orders of magnitude larger, and this only gets worse for images of
higher resolution. Due to the required number of inpaintings, the densification method
takes about an hour to create a single mask with 10% density for our 256 × 256 pixel
test images. In contrast, the analytic and the regular approaches allow instant mask
generation in approximately a millisecond. Thus, the analytic method yields a reasonable
spatial mask pixel distribution in a very short time and clearly has potential, if the
error in the mask pixels can be reduced. We show next that this can be achieved by
complementing the mask selection strategies with tonal optimisation.

Table 5.1: Results (MSE) for denoising by inpainting with regular masks, the
densification method and the analytic method with 32 masks (fewer masks for the
regular mask method). Comparison to classical diffusion-based denoising methods.

trui peppers walter
noise level σn 10 20 30 10 20 30 10 20 30

D
b
I regular 27.30 57.29 86.46 35.31 64.40 91.79 22.63 50.13 79.16

densification 19.34 42.72 68.01 24.36 47.27 69.89 13.40 29.65 47.65
analytic 21.49 49.71 79.79 25.14 51.70 79.91 16.41 37.83 62.08

D
iff

homogeneous 24.12 50.18 76.12 32.16 59.77 84.58 19.65 42.76 66.87
lin. space-var. 17.89 42.62 69.57 24.03 47.47 72.67 13.31 32.30 55.37

nonlinear 16.21 34.99 54.66 22.63 40.48 57.54 11.89 25.31 39.49

5.6.3.2 Tonal Optimisation

As mentioned in Section 5.3.1.1, tonal optimisation leads to an MMSE estimate that is
approximating instead of interpolating. If one assumes that mask pixels are erroneous
due to the noise, this is certainly a desirable behaviour. We will evaluate its effect in the
following. To this end, we apply tonal optimisation to the masks obtained by each of our
spatial optimisation methods. We optimise the tonal values for each individual mask,
before once again averaging the respective inpaintings to obtain the final denoised result.

The results in Table 5.2 reveal that the methods that do not consider the noise in the
selection process get the greatest boost in performance. This confirms the conjecture that
tonal optimisation is able to mitigate the negative effect of noisy mask pixels selection.
We also observe that tonal optimisation decreases the error in the mask pixels for those
methods. In Figure 5.9, the MSE at mask locations decreases from 405.09 to 271.80 for
the regular mask, and from 410.63 to 306.62 for the analytic method. For probabilistic
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(a) input (b) regular (c) densification (d) analytic

original Mask MSE: 405.09 Mask MSE: 345.23 Mask MSE: 410.63

noisy (σn = 20) MSE: 64.40 MSE: 47.27 MSE: 51.70

Figure 5.9: Results for denoising by inpainting with 32 masks (six masks for the
regular mask method) for the different spatial optimisation methods on the test image
peppers with σn = 20. Top row: (a) original image, (b)-(d) one representative out of
all the masks for every method. The MSE is computed at mask pixels. Bottom row:
(a) noisy image, (b)-(d) denoising by inpainting results with optimised parameters and
the MSE in the entire image. We see that our analytic method and the densification
method adapt the mask point locations to the structure of the image. Densification
additionally avoids choosing noisy mask pixels, leading to a smaller error in the mask
pixels and eventually to a better reconstruction.

densification, tonal optimisation barely changes the final results, as well as the mask
MSE (which even increases slightly from 345.23 to 356.12 in the example).

We see that tonal optimisation enables the analytic method to produce results of quality
comparable to those of the densification method, and of better quality than space-
variant diffusion. Although the tonal optimisation step takes some additional seconds,
the analytic method is still orders of magnitude faster than the densification method.
Figure 5.10 shows a selection of resulting images comparing the two adaptive mask
selection methods with tonal optimisation and linear space-variant diffusion, as the
diffusion method that leads to the most similar results.

5.6.4 Denoising by Biharmonic Inpainting

Our previous results reveal that optimising the data instead of the operator constitutes
an interesting alternative for image denoising. To further substantiate this idea, we
now adapt the inpainting operator within the DbI framework. We consider biharmonic
inpainting as a representative of a higher-order polyharmonic operator.
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Table 5.2: Results (MSE) for denoising by inpainting with regular masks, the
densification method and the analytic method with 32 masks (less masks for the
regular mask method) including tonal optimisation. Comparison to classical diffusion-
based denoising methods.

trui peppers walter
noise level σn 10 20 30 10 20 30 10 20 30

D
b
I regular 22.32 48.77 76.06 32.65 60.92 87.05 16.36 39.54 64.45

densification 18.46 41.56 67.72 24.42 47.28 70.21 12.35 28.13 45.92
analytic 17.24 39.49 63.17 23.68 46.43 68.55 12.08 27.66 45.36

D
iff

homogeneous 24.12 50.18 76.12 32.16 59.77 84.58 19.65 42.76 66.87
lin. space-var. 17.89 42.62 69.57 24.03 47.47 72.67 13.31 32.30 55.37

nonlinear 16.21 34.99 54.66 22.63 40.48 57.54 11.89 25.31 39.49

(a) noisy input (b) lin. sp.-var. (c) densification (d) analytic

trui, σn = 30 MSE: 69.57 MSE: 67.72 MSE: 63.17

peppers, σn = 20 MSE: 47.47 MSE: 47.28 MSE: 46.43

walter, σn = 10 MSE: 13.31 MSE: 12.35 MSE: 12.08

Figure 5.10: Visual comparison of linear space-variant diffusion and denoising by
inpainting with the densification method and the analytic method on three test images
with noise. Both DbI methods are using tonal optimisation.
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It has been shown that the biharmonic operator can have quality advantages over
homogeneous diffusion (i.e., the harmonic operator) in classical sparse inpainting [57, 89,
209]. Biharmonic inpainting is given by the PDE

(c(x) + (1 − c(x))∆2)u(x) = c(x)f(x) for x ∈ Ω, (5.67)

with ∆2u = ∂xxxxu + 2∂xxyyu + ∂yyyyu and reflecting boundary conditions ∂nu(x) = 0 and
∂n∆u(x) = 0 for x ∈ ∂Ω. It can be derived from the following variational formulation
(analogously to (5.12)):

min
u
∫
Ω
(∆u(x))2 dx, such that u(x) = f(x) for x ∈K. (5.68)

This shows that biharmonic inpainting penalises second-order derivatives. Biharmonic
inpainting does not suffer from the typical singularities at mask points that homogeneous
diffusion inpainting produces. On the other hand it can produce over- and undershoots,
since it does not guarantee a maximum-minimum principle. We evaluate the potential of
biharmonic inpainting for denoising by comparing it to homogeneous diffusion inpainting.
To ensure that the results reflect the quality of the operators, we first perform the
experiment on fully random masks.

Our results in Table 5.3 show that biharmonic inpainting does lead to an improvement,
and it is largest at low noise levels. This is to be expected, as the method is not as radical
as homogeneous diffusion inpainting, since it penalises second degree instead of first
degree derivatives. However, already tonal optimisation as a first data optimisation step
neutralises this advantage and the two methods perform similarly. These results support
our reasoning that data optimisation plays a significant role for the denoising abilities
of our framework, being more important than the use of more complex, higher-order
models. Further experiments on spatially optimised masks (see Table 5.4) confirm our
findings, and even shift the advantage towards homogeneous diffusion inpainting. When
comparing to previous results from classical sparse image inpainting, one has to consider
that the singularities, that homogeneous diffusion inpainting suffers from, are suppressed
by the averaging in the DbI framework. Thus, this disadvantage of homogeneous diffusion
inpainting does not come into play in our scenario. Lastly, one should keep in mind that
biharmonic inpainting leads to a higher condition number of the inpainting matrix, and
consequently each inpainting is numerically more burdensome and less efficient.

Table 5.3: Results (MSE) for denoising by inpainting with 32 random masks using
homogeneous diffusion (HD) and biharmonic (BI) inpainting, without and with tonal
optimisation (TO).

trui peppers walter
noise level σn 10 20 30 10 20 30 10 20 30

HD, without TO 30.53 65.51 100.51 36.01 71.20 104.21 26.93 60.21 94.37
BI, without TO 24.23 56.37 93.51 33.28 66.61 102.49 19.16 48.19 82.92
HD, with TO 23.10 49.83 76.57 31.98 59.75 85.28 18.09 41.79 66.40
BI, with TO 22.21 49.74 77.25 33.27 61.84 87.92 16.52 39.53 65.03
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Table 5.4: Results (MSE) for denoising by inpainting with 32 masks obtained with
the analytic method using homogeneous diffusion (HD) and biharmonic (BI) inpainting,
without and with tonal optimisation (TO).

trui peppers walter
noise level σn 10 20 30 10 20 30 10 20 30

HD, without TO 21.49 49.71 79.79 25.14 51.70 79.91 16.41 37.83 62.08
BI, without TO 19.01 47.47 82.39 25.83 55.42 90.28 14.16 37.15 68.25
HD, with TO 17.24 39.49 63.17 23.68 46.43 68.55 12.08 27.66 45.36
BI, with TO 17.18 40.45 66.13 25.35 49.27 72.68 11.74 27.22 45.70

5.7 Conclusions

Our work is the first that links the tasks of PDE-based image inpainting and denoising
in a systematic way, by providing an explicit connection between homogeneous diffusion
inpainting and denoising through a relation between the diffusion time and the mask
density. Our denoising by inpainting (DbI) framework achieves denoising by averaging
inpainting results with different sparse masks of the same density. It constitutes a
means to investigate the connections between PDE-based denoising and inpainting and
allows us to evaluate the denoising potential of PDE-based inpainting methods. We
have established a probabilistic theory with convergence estimates for the framework,
and have extended it to a deterministic version by the use of low-discrepancy sequences.
We have further shown that this framework computes an approximation to an MMSE
estimate. For non-adaptive masks we have linked the framework to classical diffusion
via a one-to-one relationships between the mask density and the diffusion time. We
have demonstrated that a simple operator can exhibit space-variant filtering behaviour,
when supplemented with adaptive data selection strategies. Experiments with a higher-
order inpainting operator, which can be more powerful than homogeneous diffusion
inpainting [57, 89, 209], have underlined the importance of choosing appropriate data
over more complex operators. For data optimisation specific to denoising by inpainting,
we have presented two distinct, fundamental strategies. The densification method from
the conference paper [2] aims at finding pixels that represent the data well. Thereby,
it implicitly avoids the selection of noisy mask pixels during spatial optimisation. On
the contrary, we have proposed a new approach, where the selection of noisy pixels is
tolerated in the spatial optimisation but is compensated for by the tonal optimisation.

Our work constitutes an unconventional, new viewpoint on image denoising: By using a
simple inpainting operator but focusing on adequate data selection we shift the priority
from optimising the filter model to optimising the considered data. Moreover, our
densification strategy allows us to find the most trustworthy pixels in the data. This
shows that simple filter operators such as homogeneous diffusion can give deep insights
into data. Last but not least, we have seen that the filling-in effect is not only useful in
variational optic flow models and in PDE-based inpainting, but also in denoising. This
emphasises its fundamental role in digital image analysis, which is in full agreement with
classical results from biological vision [245].

While our focus in the present chapter was on gaining fundamental insights into the
potential of inpainting ideas for denoising, our future work will deal with various
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modifications to make these ideas also applicable to more recent denoising methods. To
this end, we are going to consider more sophisticated inpainting operators [209] and
data selection strategies [68], including neural ones [192], and the incorporation of more
advanced types of data [120]. Such future work should also extend our theory to, e.g.,
space-variant and nonlinear operators.





Chapter 6

Perceptual Error Optimisation
for Monte Carlo Rendering

6.1 Introduction

Monte Carlo sampling produces approximation error. In rendering, this error can cause
visually displeasing image artifacts, unless control is exerted over the correlation of the
individual pixel estimates. A standard approach is to decorrelate these estimates by
randomising the samples independently for every pixel, turning potential structured
artifacts into white noise.

In digital halftoning, the error induced by quantising continuous-tone images has been
studied extensively. Such studies have shown that a blue-noise distribution of the
quantisation error is perceptually optimal [231], achieving substantially higher image
fidelity than a white-noise distribution. Recent works have proposed empirical means
to transfer these ideas to image synthesis [5, 93, 103, 104]. Instead of randomising the
pixel estimates, these methods introduce negative correlation between neighbouring
pixels, exploiting the local smoothness in images to push the estimation error to the
high-frequency spectral range.

We propose a theoretical formulation of perceptual error for image synthesis which
unifies prior methods in a common framework and formally justifies the desire for
blue-noise error distribution. We extend the comparatively simpler problem of digital
halftoning [146] where the ground-truth image is given, to the substantially more complex
one of rendering where the ground truth is the sought result and thus unavailable. Our
formulation bridges the gap between multi-tone halftoning and rendering by interpreting
Monte Carlo estimates for a pixel as its admissible ‘quantisation levels’. This insight
allows virtually any halftoning method to be adapted to rendering. We demonstrate
this for the three main classes of halftoning algorithms: dither-mask halftoning, error
diffusion halftoning, and iterative energy minimisation halftoning.

Existing methods [93, 103, 104] can be seen as variants of dither-mask halftoning. They
distribute pixel error according to masks that are optimised w.r.t. a target kernel,
typically a Gaussian. The kernel can be interpreted as an approximation to the human
visual system’s point spread function [66, 183]. We revisit the kernel-based perceptual
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model from halftoning [11, 183, 223] and adapt it to rendering. The resulting energy can
be directly used for optimising Monte Carlo error distribution without the need for a
mask. This formulation helps us expose the underlying assumptions of existing methods
and quantify their limitations. In summary:

• We formulate an optimisation problem for rendering error by leveraging kernel-based
perceptual models from halftoning.

• Our formulation unifies prior blue-noise error distribution methods and makes all
their assumptions explicit, outlining general guidelines for devising new methods in a
principled manner.

• Unlike prior methods, our formulation simultaneously optimises for both the magnitude
and the image distribution of pixel error.

• We devise four different practical algorithms based on iterative minimisation, error
diffusion, and dithering from halftoning.

• We demonstrate substantial visual improvements over prior art, while using the same
input rendering data.

6.1.1 Outline

We review the related work in Section 6.2. We then present the perceptual error model
used throughout this chapter in Section 6.3. In Section 6.4 we discuss the optimisation
problem resulting from our formulation. We consider practical applications of the
framework in Section 6.5. In Section 6.6 we discuss various extensions that are relevant
to rendering. In Section 6.7 we provide a multitude of experiments that illustrate the
power of our formulation. We discuss some additional aspects in Section 6.8, and then
conclude the chapter in Section 6.9.

6.2 Related Work

Our work focuses on reducing and optimising the distribution of Monte Carlo pixel-
estimation error. In this section we review prior work with similar goals in digital
halftoning (Section 6.2.1) and image synthesis guided by energy-based (Section 6.2.2)
and perception-based (Section 6.2.3) error metrics. We achieve error reduction through
careful sample placement and processing, and discuss related rendering approaches
(Section 6.2.4).

6.2.1 Digital Halftoning

Digital halftoning [146] involves creating the illusion of continuous-tone images through
the arrangement of binary elements; various algorithms target different display devices.
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Bayer [23] developed the widely used dispersed-dot ordered-dither patterns. Allebach
and Liu [8] introduced the use of randomness in clustered-dot ordered dithering. Ulichney
[231] introduced blue-noise patterns that yield better perceptual quality, and Mitsa
and Parker [170] mimicked those patterns to produce dither arrays (i.e., masks) with
high-frequency characteristics. Sullivan et al. [223] developed a Fourier-domain energy
function to obtain visually optimal halftone patterns; the optimality is defined w.r.t.
computational models of the human visual system. Analoui and Allebach [11] devised a
practical algorithm for blue-noise dithering through a spatial-domain interpretation of
Sullivan et al.’s model. Their approach was later refined by Pappas and Neuhoff [183].

The void-and-cluster algorithm [232] uses a Gaussian kernel to create dither masks with
isotropic blue-noise distribution. This approach has motivated various structure-aware
halftoning algorithms in graphics [53, 179, 182]. In the present work, we leverage the
kernel-based model [11, 183] in the context of Monte Carlo rendering [124].

6.2.2 Quantitative Error Assessment in Rendering

It is convenient to measure the error of a rendered image as a single value; vector norms
like the mean squared error (MSE) are most commonly used. However, it is widely
acknowledged that such simple metrics do not accurately reflect visual quality as they
ignore the perceptually important spatial arrangement of pixels. Various theoretical
frameworks have been developed in the spatial [140, 175] and Fourier [215] domains to
understand the error reported through these metrics. The error spectrum ensemble [48]
measures the frequency-space distribution of the error.

Many denoising methods [253] employ the aforementioned metrics to obtain noise-free
results from noisy renderings. Even if the most advanced denoising techniques driven by
such metrics can efficiently steer adaptive sampling [49, 130, 142], they locally determine
the number of samples per pixel, ignoring the aspect of their specific layout in screen
space.

Our optimisation framework employs a perceptual MSE-based metric that accounts for
both the magnitude and the spatial distribution of pixel-estimation error. We argue that
the spatial sample layout plays a crucial role in the perception of a rendered image; the
most commonly used error metrics do not capture this aspect.

6.2.3 Perceptual Error Assessment in Rendering

The study of the human visual system (HVS) is still ongoing, and well understood are
mostly the early stages of the visual pathways from the eye optics, through the retina, to
the visual cortex. This limits the scope of existing HVS computational models used in
imaging and graphics. Such models should additionally be computationally efficient and
generalise over the simplistic stimuli that have been used in their derivation through
psychophysical experiments.
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Contrast Sensitivity Function. The contrast sensitivity function (CSF) is one of
the core HVS models that fulfils the above conditions and comprehensively characterises
overall optical [69, 247] and neural [217] processes in detecting contrast visibility as a
function of spatial frequency. While originally modelled as a band-pass filter [22, 67],
the CSF’s shape changes towards a low-pass filter with retinal eccentricity [184, 202]
and reduced luminance adaptation in scotopic and mesopic levels [249]. Low-pass
characteristics are also inherent for chromatic CSFs [34, 171, 249]. In many practical
imaging applications, e.g., JPEG compression [199], rendering [197], or halftoning [183],
the CSF is modelled as a low-pass filter, which also allows for better control of image
intensity. By normalising such a CSF by the maximum contrast-sensitivity value, a
unit-less function akin to the modulation transfer function (MTF) can be derived
[66, 159, 160, 217, 223] that after transforming from the frequency to the spatial domain
results in the point spread function (PSF) [11, 183]. Following Pappas and Neuhoff
[183], we approximate such a PSF by a Gaussian filter; the resulting error is practically
negligible for a pixel density of 300 dots per inch (dpi) and observer-to-screen distance
larger than 60 cm.

Advanced Quality Metrics. More costly, and often less robust, modelling of the
HVS beyond the CSF is performed in advanced quality metrics [67, 154, 161]. Such
metrics have been adapted to rendering to guide the computation to image regions where
the visual error is most strongly perceived [33, 34, 84, 172, 197, 235]. An important
application is visible noise reduction in path tracing via content-adaptive sample-density
control [33, 34, 197]. Our framework enables significant reduction of noise visibility for
the same sampling budget.

6.2.4 Blue-noise Error Distribution in Rendering

Mitchell [169] first observed that high-frequency error distribution is desirable for stochas-
tic rendering. Only recently, Georgiev and Fajardo [93] adopted techniques from halfton-
ing to correlate pixel samples in screen space and distribute path-tracing error as blue
noise, with substantial perceptual quality improvements. Heitz et al. [104] built on this
idea to develop a progressive quasi-Monte Carlo sampler that further improves quality.
Ahmed and Wonka [5] proposed a technique to coordinate quasi-Monte Carlo samples in
screen space inspired by error diffusion.

Motivated by the results of Georgiev and Fajardo [93], Heitz and Belcour [103] devised
a method to directly optimise the distribution of pixel estimates, without operating on
individual samples. Their pixel permutation strategy fits the initially white-noise pixel
intensities to a prescribed blue-noise mask. This approach scales well with sample count
and dimension, though its reliance on prior pixel estimates makes it practical only for
animation rendering where it is susceptible to quality degradation.

We propose a perceptual error framework that unifies these two general approaches,
exposing the assumptions of existing methods and providing guidelines to alleviate some
of their drawbacks.
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image image spectrum kernel spectrum product spectrum

ϵϵϵw ∣̂ϵϵϵw∣2 ∣ĝgg∣2 ∣ĝgg∣2 ⊙ ∣̂ϵϵϵw∣2

ϵϵϵb ∣̂ϵϵϵb∣2 ∣ĝgg∣2 ∣ĝgg∣2 ⊙ ∣̂ϵϵϵb∣2

Figure 6.1: Error images ϵϵϵw and ϵϵϵb with respective white-noise, ∣̂ϵϵϵw∣2, and blue-noise,
∣̂ϵϵϵb∣2, power spectra. For a low-pass kernel ggg modelling the PSF of the HVS (here a
Gaussian with std. dev. σ = 1), the product of its spectrum ∣ĝgg∣2 with ∣̂ϵϵϵb∣2 has lower
magnitude than the product with ∣̂ϵϵϵw∣2. This corresponds to lower perceptual sensitivity
to ϵϵϵb, even though ϵϵϵw has the same amplitude as it is obtained by randomly permuting
the pixels of ϵϵϵb.

6.3 Perceptual Error Model

Our aim is to produce Monte Carlo renderings that, at a fixed sampling rate, are
perceptually as close to the ground truth as possible. This goal requires formalising the
perceptual image error along with an optimisation problem that minimises it. In this
section, we build a perceptual model upon the extensive studies done in the halftoning
literature. We will discuss how to efficiently solve the resulting optimisation problem in
Section 6.4.

Given a ground-truth image III and its quantised or stochastic approximation QQQ, we
denote the (signed) error image by

ϵϵϵ =QQQ − III. (6.1)

To minimise the error, it is convenient to quantify it as a single value. A common
approach is to take the L1, L2, or L∞ norm of the image ϵϵϵ interpreted as a vector.
Such simple metrics are permutation-invariant, i.e., they account for the magnitudes of
individual pixel errors but not for their distribution over the image. This distribution is
an important factor for the perceived fidelity, since contrast perception is an inherently
spatial characteristic of the HVS (Section 6.2.3). Our model is based on perceptual
halftoning metrics that capture both the magnitude and the distribution of error.
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6.3.1 Motivation

Halftoning metrics model the processing done by the HVS as a convolution of the error
image ϵϵϵ with a kernel ggg:

E = ∥ggg ∗ ϵϵϵ∥22 = ∥ĝgg ⊙ ϵ̂ϵϵ∥22 = ⟨∣ĝgg∣
2
, ∣̂ϵϵϵ∣2⟩. (6.2)

The convolution is equivalent to the element-wise product of the corresponding Fourier
spectra ĝgg and ϵ̂ϵϵ, whose 2-norm in turn equals the inner product of the power spectra
images ∣ĝgg∣2 and ∣̂ϵϵϵ∣2. Sullivan et al. [223] optimised the error image ϵϵϵ to minimise the
error (6.2) w.r.t. a kernel ggg that approximates the HVS’s modulation transfer function
∣ĝgg∣ (MTF) [66]. Analoui and Allebach [11] used a similar model in the spatial domain
with a kernel that approximates the PSF1 of the human eye. That kernel is low-pass,
and the optimisation naturally yields blue-noise2 distribution in the error image [11], as
we show later in Fig. 6.6. The blue-noise distribution can thus be seen as by-product of
the optimisation which pushes the spectral components of the error to the frequencies
least visible to the human eye (see Fig. 6.1).

To better understand the spatial aspects of contrast sensitivity in the HVS, the MTF
is usually modelled over a range of viewing distances [67]. This is done to account
for the fact that with increasing viewer distance, spatial frequencies in the image are
projected to higher spatial frequencies onto the retina. These frequencies eventually
become invisible, filtered out by the PSF which expands its corresponding kernel in
image space. We recreate this experiment to see the impact of distance on the image
error. In Fig. 6.2, we convolve white- and blue-noise distributions with a Gaussian kernel
of increasing standard deviation corresponding to increasing observer-to-screen distance.
The high-frequency blue-noise distribution reaches a homogeneous state (where the tone
appears constant) faster compared to the all-frequency white noise. This means that
high-frequency error becomes indiscernible at closer viewing distances, where the HVS
ideally has not yet started filtering out actual image detail which is typically low- to
mid-frequency. In Section 6.6 we discuss how the kernel’s standard deviation encodes
the viewing distance w.r.t. to the screen resolution.

6.3.2 Our Model

In rendering, the value of each pixel i is a light-transport integral. Point-sampling its
integrand with a sample set S yields a pixel estimate Qi(S). The signed pixel error
is thus a function of the sample set: ϵi(S) = Qi(S) − Ii, where Ii is the reference (i.e.,
ground-truth) pixel value. The error of the entire image can be written as

ϵϵϵ(SSS) =QQQ(SSS) − III, (6.3)

where SSS = {S1, . . . , SN} is an “image” containing the sample set for all N pixels. With
these definitions, we can express the perceptual error in Eq. (6.2) for the case of Monte

1The MTF is the magnitude of the Fourier transform of the PSF.
2The term “blue noise” is often used loosely to refer to any isotropic spectrum with minimal

low-frequency content and no concentrated energy spikes.
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σ = 0 σ = 0.25 σ = 0.5 σ = 1

Figure 6.2: The appearance of blue noise (left images) converges to a constant image
faster than white noise (right images) with increasing observer distance, here emulated
via the standard deviation σ of a Gaussian kernel. We provide a formal connection
between σ and the viewing distance in Section 6.6.

Carlo rendering as a function of the sample-set image SSS, given a kernel ggg:

E(SSS) = ∥ggg ∗ ϵϵϵ(SSS)∥22. (6.4)

Our goal is to minimise the perceptual error (6.4). We formulate this task as an
optimisation problem:

min
SSS∈ΩΩΩ

E(SSS) = min
SSS∈ΩΩΩ
∥ggg ∗ (QQQ(SSS) − III)∥22. (6.5)

The minimising sample-set image SSS yields an image estimate QQQ(SSS) that is closest to the
reference III w.r.t. the kernel ggg. The search space ΩΩΩ is the set of all possible locations for
every sample of every pixel. The total number of samples in SSS is typically bounded by
a given target sampling budget. Practical considerations may also restrict the search
space ΩΩΩ, as we will exemplify in the following section.

Note that the classical MSE metric corresponds to using a zero-width (i.e., one-pixel)
kernel ggg in Eq. (6.4). However, the MSE accounts only for the magnitude of the error ϵϵϵ,
while using wider kernels (such as the PSF) accounts for both magnitude and distribution.
Consequently, while the MSE can be minimised by optimising pixels independently,
minimising the perceptual error requires coordination between pixels. In the following
section, we devise strategies for solving this optimisation problem.

6.4 Discrete Optimisation

In our optimisation problem (6.5), the search space for each sample in every pixel
is a high-dimensional unit hypercube. Every point in this so-called primary sample
space maps to a light-transport path in the scene [193]. Optimising for the sample-set
image SSS thus entails evaluating the contributions QQQ(SSS) of all corresponding paths. This
evaluation is costly, and for any non-trivial scene, QQQ is a function with complex shape
and many discontinuities. This precludes us from studying all (uncountably infinite)
sample locations in practice.
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Figure 6.3: Vertical search space optimisation.

To make the problem tractable, we restrict the search in each pixel to a finite number of
(pre-defined) sample sets. We devise two variants of the resulting discrete optimisation
problem, which differ in their definition of the global search space ΩΩΩ. In the first
variant, each pixel has a separate list of sample sets to choose from (“vertical” search
space). The setting is similar to that of (multi-tone) halftoning [146], which allows us to
import classical optimisation techniques from that field, such as iterative minimisation,
error diffusion, and mask-based dithering. In the second variant, each pixel has one
associated sample set, and the search space comprises permutations of these assignments
(“horizontal” search space). We develop a greedy iterative optimisation method for this
second variant.

In contrast to halftoning, in our setting the ground-truth image III—required to compute
the error image ϵϵϵ during optimisation—is not readily available. Below we describe our
algorithms assuming the ground truth is available; in Section 6.5 we will discuss how to
substitute it with a surrogate to make the algorithms practical.

6.4.1 Vertical Search Space

Our first variant considers a “vertical” search space where the sample set for each of the
N image pixels is one of M given sets:3

ΩΩΩ = {SSS = {S1, . . . , SN} ∶ Si ∈ {Si,1, . . . , Si,M}} . (6.6)

The objective is to find a sample set Si for every pixel i such that all resulting pixel
estimates together minimise the perceptual error (6.4). This is equivalent to directly
optimising over the M possible estimates Qi,1, . . . ,Qi,M for each pixel, with Qi,j =
Qi(Si,j). These estimates can be obtained by pre-rendering a stack of M images

3For notational simplicity, and without loss of generality, we assume that the number of candidate
sample sets M is the same for all pixels; in practice can vary per pixel.
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QQQj = {Q1,j, . . . ,QN,j}, for j = 1..M . The resulting minimisation problem reads:

min
OOO ∶Oi∈ {Qi,1,...,Qi,M}

∥ggg ∗ (OOO − III)∥22. (6.7)

This problem is almost identical to that of multi-tone halftoning. The difference is that
in our setting the “quantisation levels”, i.e., the pixel estimates, are distributed non-
uniformly and vary per pixel as they are not fixed but are the result of point-sampling a
light-transport integral. This similarity allows us to directly apply existing optimisation
techniques from halftoning. We consider three such methods, which we outline in Alg. 1
and describe next.

Iterative minimisation. State-of-the-art halftoning methods attack the problem (6.7)
directly via greedy iterative minimisation [11, 183]. After initialising every pixel to a
random quantisation level, we traverse the image in serpentine order (as is standard
practice in halftoning) and for each pixel choose the level that minimises the energy.
Several full-image iterations are performed; in our experiments convergence to a local
minimum is achieved within 10–20 iterations.

As a further improvement, the optimisation can be terminated when no pixels are
updated within one full iteration, or when the perceptual-error reduction rate drops
below a certain threshold. Traversing the pixels in random order allows terminating at
any point but converges slightly slower.

Error diffusion. A classical halftoning algorithm, error diffusion scans the image pixel
by pixel, snapping each reference value to the closest quantisation level and distributing
the resulting pixel error to yet-unprocessed nearby pixels according to a given kernel κκκ.
We use the empirically derived kernel of Floyd and Steinberg [85] which has been shown
to produce an output that approximately minimises Eq. (6.7) [107]. Error diffusion is
faster than iterative minimisation but yields less optimal solutions.

Dithering. The fastest halftoning approach quantises pixel values using thresholds
stored in a pre-computed dither mask (or matrix) [218]. For each pixel, the two
quantisation levels that tightly envelop the reference value (in terms of brightness) are
found, and one of the two is chosen based on the threshold assigned to the pixel by the
mask.

Dithering can be understood as performing the perceptual error minimisation in two
steps. First, an offline optimisation encodes the error distribution optimal for the target
kernel ggg into a mask. Then, for a given image, the error magnitude is minimised by
restricting the quantisation to the two closest levels per pixel, and the mask-driven choice
between them applies the target distribution of error.



Chapter 6. Perceptual Error Optimisation for Monte Carlo Rendering 128

Algorithm 1: Three algorithms to (approximately) solve the vertical search space
optimisation problem (6.7). The output is an imageOOO = {O1, . . . ,ON}, given a reference
image III and a stack of initial image estimates QQQ1, . . . ,QQQM . Iterative minimisation
updates pixels repeatedly, for each selecting the estimate that minimises the perceptual
error (6.4). Error diffusion quantises each pixel to the closest estimate, distributing
the error to its neighbours based on a kernel κκκ. Dithering quantises each pixel in III
based on thresholds looked up in a dither mask BBB (optimised w.r.t. the kernel ggg).

1: function IterativeMinimisation(ggg, III, QQQ1, . . . , QQQM , OOO, T )
2: OOO = {Q1,rand, . . . ,QN,rand} ← Init each pixel to random estimate

3: for T iterations do
4: for pixel i = 1..N do ← E.g., random or serpentine order

5: for estimate Qi,j ∈ {Qi,1, . . . ,Qi,M} do
6: if Oi == Qi,j reduces ∥ggg ∗ (OOO − III)∥22 then
7: Oi = Qi,j ← Update estimate

8: function ErrorDiffusion(κκκ, III, QQQ1, . . . , QQQM , OOO)
9: OOO = III ← Initialise solution to reference

10: for pixel i = 1..N do ← E.g., serpentine order

11: Oold
i = Oi

12: Oi ∈ argminQi,j
∥Oold

i −Qi,j∥22
13: ϵi = Oold

i −Oi Æ Diffuse error ϵi to yet-unprocessed neighbours

14: for unprocessed pixel k within support of κκκ around i do
15: Ok += ϵi ⋅ κk−i
16: function Dithering(BBB, III, QQQ1, . . . , QQQM , OOO)
17: for pixel i = 1..N do Æ Find tightest interval [Qlow

i ,Qhigh
i ]

18: Qlower
i = argmaxQi,j ∶ ∣Qi,j ∣ ≤ ∣Ii∣ ∣Qi,j ∣ containing Ii

19: Qupper
i = argminQi,j ∶ ∣Qi,j ∣ > ∣Ii∣

∣Qi,j ∣
20: if ∣Ii∣ − ∣Qlower

i ∣ < Bi ⋅ (∣Qupper
i ∣ − ∣Qlow

i ∣) then
21: Oi = Qlower

i ÄSet Oi to Qlower
i or Qupper

i using threshold Bi

22: else
23: Oi = Qupper

i

6.4.2 Horizontal Search Space

We now describe the second, “horizontal” discrete variant of our minimisation formu-
lation (6.5). It considers a single sample set Si assigned to each of the N pixels, all
represented together as a sample-set image SSS. The search space comprises all possible
permutations Π(SSS) of these assignments:

ΩΩΩ = Π(SSS), with SSS = {S1, . . . , SN}. (6.8)

The goal is to find a permutation π(SSS) that minimises the perceptual error (6.4). The
optimisation problem (6.5) thus takes the form

min
π∈Π(SSS)

∥ggg ∗ (QQQ(π(SSS)) − III)∥22. (6.9)
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Figure 6.4: Horizontal search space optimisation.

We can explore the permutation space Π(SSS) by swapping the sample-set assignments
between pixels. The minimisation requires updating the image estimate QQQ(π(SSS)) for
each permutation π(SSS), i.e., after every swap. Such updates are costly as they involve
re-sampling both pixels in each of potentially millions of swaps. We need to eliminate
these extra rendering invocations during the optimisation to make it practical. To that
end, we observe that for pixels solving similar light-transport integrals, swapping their
sample sets gives a similar result to swapping their estimates. We therefore restrict
the search space to permutations that can be generated through swaps between such
(similar) pixels. This enables an efficient optimisation scheme that directly swaps the
pixel estimates of an initial rendering QQQ(SSS).

Error decomposition. Formally, we express the estimate produced by a sample-
set permutation in terms of permuting the pixels of the initial rendering: QQQ(π(SSS)) =
π(QQQ(SSS)) +∆∆∆(π). The error ∆∆∆ is zero when the swapped pixels solve the same integral.
Substituting into Eq. (6.9), we can approximate the perceptual error by

E(π) = ∥ggg ∗ (π(QQQ(SSS)) − III + ∆∆∆(π))∥22 (6.10a)

≈ ∥ggg ∗ (π(QQQ(SSS)) − III)∥22 + ∥ggg∥21∑
i

d(i, π(i)) = Ed(π), (6.10b)

where we write the error E(π) as a function of π only, to emphasise that everything else
is fixed during the optimisation. In the approximation Ed, the term d(i, π(i)) measures
the dissimilarity between pixel i and the pixel π(i) it is relocated to by the permutation.
The purpose of this metric is to predict how different we expect the result of re-estimating
the pixels after swapping their sample sets to be compared to simply swapping their
initial estimates. It can be constructed based on knowledge or assumptions about the
image.
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Algorithm 2: Given a convolution kernel ggg, a reference image III, an initial sample-set
assignment SSS, and an image estimateQQQ(SSS) computed with that assignment, our greedy
algorithm iteratively swaps sample-set assignments between neighbouring pixels to
minimise the perceptual error Ed (6.10b), producing a permutation π of the initial
assignment.

1: function IterativeMinimisation(ggg, III, SSS, QQQ(SSS), T , R, π)
2: π = identity permutation ← Initialise solution permutation

3: for T iterations do
4: for pixel i = 1..N do ← E.g., random or serpentine order

5: π′ = π Æ Find best pixel in neighbourhood to swap with

6: for pixel j in (2R+1)2 neighbourhood around i do
7: if Ed(πi⇆ j(SSS)) < Ed(π′(SSS)) then ← Eq. (6.10b)

8: π′ = πi⇆j ← Accept swap as current best

9: π = π′

Local similarity assumption. Our implementation uses a simple binary dissimilarity
function that returns zero when i and π(i) are within some distance r and infinity
otherwise. We set r ∈ [1, 3]; it should ideally be locally adapted to the image smoothness.
This allows us to restrict the search space Π(SSS) only to permutations that swap adjacent
pixels where it is more likely that ∆∆∆ is small. More elaborate heuristics could better
account for pixel (dis)similarity.

Iterative minimisation. We devise a greedy iterative minimisation scheme for this
horizontal formulation, similar to the one in Alg. 1. Given an initial image estimate
QQQ(SSS), produced by randomly assigning a sample set to every pixel, our algorithm goes
over all pixels and for each considers swaps within a (2R + 1)2 neighbourhood; we use
R = 1. The swap that brings the largest reduction in the perceptual error Ed is accepted.
Algorithm 2 provides pseudocode. In our experiments we run T = 10 full-image iterations.
As before, the algorithm could be terminated based on the swap reduction rate or the
error reduction rate.

The parameter R balances between the cost of one iteration and the amount of exploration
it can do. Note that this parameter is different from the maximal relocation distance r
in the dissimilarity metric, with R ≤ r.

Due to the pixel (dis)similarity assumptions, the optimisation can produce some mispre-
dictions, i.e., it may swap the estimates of pixels for which swapping the sample sets
produces a significantly different result. Thus the image π(QQQ(SSS)) cannot be used directly
as a final estimate. We therefore re-render the image using the optimised permutation π
to obtain the final estimate QQQ(π(SSS)).

6.4.3 Discussion

Search space. We discretise the search space ΩΩΩ to make the optimisation problem (6.5)
tractable. To make it truly practical, it is also necessary to avoid repeated image
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estimation (i.e., QQQ(SSS) evaluation) during the search for the solution SSS. Our vertical (6.7)
and horizontal (6.9) optimisation variants are formulated specifically with this goal in
mind. All methods in Algs. 1 and 2 operate on pre-generated image estimates that
constitute the solution search space.

Our vertical formulation takes a collection of M input estimates {Qi,j = Qi(Si,j)}Mj=1 for
every pixel i, one for each sample set Si,j . Noting that Qi,j are MC estimates of the true
pixel value, this collection can be cheaply expanded to a size as large as 2M − 1 by taking
the average of the estimates in each of its subsets (excluding the empty subset). In
practice only a fraction of these subsets can be used, since the size of the power set grows
exponentially with M . It may seem that this approach ends up wastefully throwing
away most input estimates. But note that these estimates actively participate in the
optimisation and provide the space of possible solutions. Carefully selecting a subset per
pixel can yield a higher-fidelity result than blindly averaging all available estimates, as
we will show repeatedly in Section 6.7.

In contrast, our horizontal formulation builds a search space given just a single input
estimate Qi per pixel. We consciously restrict the space to permutations between nearby
pixels, so as to leverage local pixel similarity and avoid repeated pixel evaluation during
optimisation. The disadvantage of this approach is that it requires re-rendering the
image after optimisation, with uncertain results (due to mispredictions) that can lead
to local degradation of image quality. Mispredictions can be reduced by exploiting
knowledge about the rendering function QQQ(SSS), e.g., through depth, normal, or texture
buffers. This is further explored in the supplemental of our paper [59] upon which
this chapter is based. Additionally, while methods like iterative minimisation (Alg. 2)
and dithering (Section 6.5.2) can be adapted to this search space, reformulating other
halftoning algorithms such as error diffusion is non-trivial.

A hybrid formulation is also conceivable, taking a single input estimate per pixel (like
horizontal methods) and considering a separate (vertical) search space for each pixel
constructed by borrowing estimates from neighbouring pixels. Such an approach could
benefit from advanced halftoning optimisation methods, but could also suffer from
mispredictions and require re-rendering. We leave the exploration of this approach to
future work.

Finally, it is worth noting that discretisation is not the only route to practicality.
Equation (6.5) can be optimised on the continuous space ΩΩΩ if some cheap-to-evaluate
proxy for the rendering function is available. Such a continuous approximation may be
analytical (based on prior knowledge or assumptions) or obtained by reconstructing a
point-wise evaluation. However, continuous-space optimisation can be difficult in high
dimensions (e.g., number of light bounces) where non-linearities and non-convexity are
exacerbated.

Optimisation strategy. Another important choice is the optimisation method. For
the vertical formulation, iterative minimisation provides the best flexibility and quality
but is the most computationally expensive. Error diffusion and dithering are faster but
only approximately solve Eq. (6.7).
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One difference between classical halftoning and our vertical setting is that quantisation
levels are non-uniformly distributed and differ between pixels. This further increases
the gap in quality between the image-adaptive iterative minimisation and error diffusion
(which can correct for these differences) and the non-adaptive dithering, compared to
the halftoning setting. The main advantage of dithering is that it involves the kernel ggg
explicitly, while the error-diffusion kernel κκκ cannot be related directly to ggg.

6.5 Practical Application

We now turn to the practical use of our error optimisation framework. In both our discrete
formulations from Section 6.4, the search space is determined by a given collection of
sample sets Si,j for every pixel i, with j = 1...M (in the horizontal setting M = 1). The
optimisation is then driven by the corresponding estimates Qi,j. We consider two ways
to obtain these estimates, leading to different practical trade-offs: (1) direct evaluation of
the samples by rendering a given scene and (2) using a proxy for the rendering function.
We show how prior works correspond to using either approach within our framework,
which helps expose their implicit assumptions.

6.5.1 Surrogate for Ground Truth

The goal of our optimisation is to perceptually match an image estimate to the ground
truth III as closely as possible. Unfortunately, the ground truth is unknown in our setting,
unlike in halftoning. The best we can do is substitute it with a surrogate image I ′I ′I ′. Such
an image can be obtained either from available pixel estimates or by making assumptions
about the ground truth. We will discuss specific approaches in the following, but it is
already worth noting that all existing error-distribution methods rely on such a surrogate,
whether explicitly or implicitly. And since the surrogate guides the optimisation, its
fidelity directly impacts the fidelity of the output.

6.5.2 A-posteriori Optimisation

Given a scene and a viewpoint, initial pixel estimates can be obtained by invoking the
renderer with the input samples: Qi,j = Qi(Si,j). A surrogate can then be constructed
from those estimates; in our implementation we denoise the estimate-average image
(Section 6.7.1). Having the estimates and the surrogate, we can run any of the methods
in Algs. 1 and 2. Vertical algorithms directly output an image OOO; horizontal optimisation
yields a sample-set image SSS that requires an additional rendering invocation: OOO =QQQ(SSS).

This general approach of utilising sampled image information was coined a-posteriori
optimisation by Heitz and Belcour [103]; they proposed two such methods. Their
histogram method operates in a vertical setting, choosing one of the (sorted) estimates
for each pixel based on the respective value in a given blue-noise dither mask. Such
sampling corresponds to using an implicit surrogate that is the median estimate for every
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pixel, which is what the mean of the dither mask maps to. Importantly, any one of the
estimates for a pixel can be selected, whereas in classical dithering the choice is between
the two quantisation levels that tightly envelop the reference value (Section 6.4.1) [218].
Such selection can yield large error, especially for pixels whose corresponding mask values
deviate strongly from the mask mean. This produces image fireflies that do not appear
if simple estimate averages are taken instead (see Fig. 6.7).

The permutation method of Heitz and Belcour [103] operates in a horizontal setting.
Given an image estimate, it finds pixel permutations within small tiles that minimise
the distance between the estimates and the values of a target blue-noise mask. This
matching transfers the mask’s distribution to the image signal rather than to its error.
The two are equivalent only when the signal within each tile is constant. The implicit
surrogate in this method is thus a tile-wise constant image. In our framework the use of a
surrogate is explicit, which enables full control over the quality of the error distribution.

6.5.3 A-priori Optimisation

Optimising perceptual error is possible even in the absence of information about a
specific image. In our framework, the goal of such an a-priori approach (as coined by
Heitz and Belcour [103]) is to compute a sample-set image SSS by using surrogates for
both the ground-truth image III and the rendering function QQQ(SSS), constructed based on
smoothness assumptions. The samples SSS can then produce a high-fidelity estimate of
any image that meets those assumptions.

Lacking prior knowledge, one could postulate that every pixel i has the same rendering
function: Qi(⋅)=Q(⋅); the image surrogate I ′I ′I ′ is thus constant. While in practice this
assumption (approximately) holds only locally, the optimisation kernel ggg is also expected
to have compact support. The shape of Q can be assumed to be (piecewise) smooth and
approximable by a cheap analytical function Q′.

With the above surrogates in place, we can run our algorithms to optimise a sample-set
image SSS. The constant-image assumption makes horizontal algorithms well-suited for
this setting as it makes the swapping-error term ∆∆∆ in Eq. (6.10a) vanish, simplifying
the perceptual error to E(π(SSS)) = ∥ggg ∗ π(ϵϵϵ(SSS))∥22. This enables the optimisation to
consider swaps between any two pixels in the error image ϵϵϵ(SSS). That image can be
quickly rendered in advance, by invoking the render-function surrogate Q′ with the input
sample-set image.

Georgiev and Fajardo [93] take a similar approach, with swapping based on simulated
annealing. Their empirically motivated optimisation energy uses an explicit (Gaussian)
kernel, but instead of computing an error image through a rendering surrogate, it
postulates that the distance between two sample sets is representative of the difference
between their corresponding pixel errors. Such a smoothness assumption holds for
bi-Lipschitz-continuous functions. Their energy can thus be understood to compactly
encode properties of a class of rendering functions.

Heitz et al. [104] adopt the approach of Georgiev and Fajardo [93], but their energy
function replaces the distance between sample sets by the difference between their
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corresponding pixel errors. The errors are computed using an explicit render-function
surrogate. They optimise for a large number of simple surrogates simultaneously, and
leverage a compact representation of Sobol sequences to also support progressive sampling.
These two prior works have been related to ours more formally in the supplemental
material of our paper [59], on which this chapter is based. The latter also shows how our
perceptual error formulation can be incorporated into the method of Heitz et al. [104].

The approach of Ahmed and Wonka [5] performs on-the-fly scrambling of a Sobol sequence
applied to the entire image. Image pixels are visited in Morton Z-order modified to
breaks its regularity. The resulting sampler diffuses Monte Carlo error over hierarchically
nested blocks of pixels giving a perceptually pleasing error distribution. However, the
algorithmic nature of this approach introduces more implicit assumptions than prior
works, making it difficult to analyse.

Our theoretical formulation and optimisation methods enable the construction of a-priori
sampling masks in a principled way. For horizontal optimisation, we recommend using
our iterative algorithm (Alg. 2) which can bring significant performance improvement
over simulated annealing; such speed-up was reported by Analoui and Allebach [11] for
dither-mask construction. Vertical optimisation is an interesting alternative, where for
each pixel one of several sample sets would be chosen; this would allow for varying the
sample count per pixel. Note that the ranking-key optimisation for progressive sampling
of Heitz et al. [104] is a form of vertical optimisation.

6.5.4 Discussion

Our formulation expresses a-priori and a-posteriori optimisation under a common frame-
work that unifies existing methods. These two approaches come with different trade-offs.
A-posteriori optimisation utilises sampled image information, and in a vertical setting
requires no assumptions except for what is necessary for surrogate construction. It
thus has potential to achieve high output fidelity, especially on scenes with complex
lighting as it is oblivious to the shape and dimensionality of the rendering function,
as first demonstrated by Heitz and Belcour [103]. However, it requires pre-sampling
(also post-sampling in the horizontal setting), and the optimisation is sensitive to the
surrogate quality.

Making aggressive assumptions allows a-priori optimisation to be performed offline
once and the produced samples SSS to be subsequently used to render any image. This
approach resembles classical sample stratification where the goal is also to optimise sample
distributions w.r.t. some smoothness expectations. In fact, our a-priori formulation
subsumes the per-pixel stratification problem, since the perceptual error is minimised
when the error image ϵϵϵ(SSS) has both low magnitude and visually pleasing distribution.
Two main factors limit the potential of a-priori optimisation, especially on scenes with
non-uniform multi-bounce lighting. One is the general difficulty of optimising sample
distributions in high-dimensional spaces. The other is that in such scenes the complex
shape of the rendering function, both in screen and sample space, can easily break
smoothness assumptions and cause high (perceptual) error.
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Our kernelOur kernel

hhh = ggghhh = ggg hhh = δδδhhh = δδδ

(a) Kernel comparison (b) Kernel sharpening effect

Linear errorLinear error Tone-mapped errorTone-mapped error

Ground truthGround truth

Grayscale errorGrayscale error Color errorColor error

Ground truthGround truth

(c) Tone mapping (ACES) (d) Color handling

Figure 6.5: (a) Our binomial Gaussian approximation ggg (3×3 pixels,σ =
√
2/π)

performs on par with state-of-the-art halftoning kernels. (b) Setting the reference-image
kernel hhh in Eq. (6.12) to a zero-width δδδ kernel sharpens the output. (c) Incorporating
tone mapping via Eq. (6.13). (d) Incorporating colour via Eq. (6.14).

To test the capabilities of our formulation, in the following we focus on the a-posteriori
approach. In the supplemental document of our paper [59] we had also explored a-priori
optimisation based on our framework. The two approaches can also be combined, e.g.,
by seeding a-posteriori optimisation with a-priori-optimised samples whose good initial
guess can improve the quality and convergence speed.
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Input (white noise) Low-pass (blue noise) Band-stop (green noise) High-pass (red noise)

Band-pass (violet noise) Low-pass anisotropic Spatially varying

Figure 6.6: Our formulation (6.5) allows optimising the error distribution of an image
w.r.t. arbitrary kernels. Here we adapt our horizontal iterative minimisation (Alg. 2)
to directly swap the pixels of a white-noise input image. Insets show the power spectra
of the target kernels (top left) and the optimised images (bottom right).

6.6 Extensions

Our perceptual error formulation (6.4) approximates the effect of the HVS PSF through
kernel convolution. In this section we analyse the relationship between kernel and viewing
distance, as well as the impact of the kernel shape on the error distribution. We also
present extensions that account for the HVS non-linearities in handling tone and colour.

Kernels and viewing distance As discussed in Section 6.3.1, the PSF is usually
modelled over a range of viewing distances. The effect of the PSF depends on the
frequencies of the viewed signal and the distance from which it is viewed. Pappas and
Neuhoff [183] have found that the Gaussian is a good approximation to the PSF in the
context of halftoning. They derived its standard deviation σ in terms of the minimum
viewing distance for a given screen resolution:

σ = 0.00954

τ
, where τ = 180

π
2arctan( 1

2RD
) . (6.11)

Here τ is the visual angle between the centres of two neighbouring pixels (in degrees)
for screen resolution R (in 1/inches) and viewing distance D (in inches). The minimum
viewing distance for a given standard deviation and resolution can be contained via

the inverse formula: D = (2R tan ( π
180

0.00954
2σ
))−1. Larger σ values correspond to larger

observer distances; we demonstrate the effect of that in Fig. 6.2 where the images
become increasingly blurrier. In Fig. 6.5a, we compare that Gaussian kernel to two
well-established PSF models from the halftoning literature [94, 174]. We have found the
differences between all three to be negligible; we use the cheaper to evaluate Gaussian in
all our experiments.
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Decoupling the viewing distances. Being based on the perceptual models of the
HVS [11, 223], our formulation (6.4) assumes that the estimate QQQ and the reference III
are viewed from the same (range of) distance(s). The two distances can be decoupled by
applying different kernels to QQQ and III:

E = ∥ggg ∗QQQ −hhh ∗ III∥22. (6.12)

Minimising this error makes QQQ appear from some distance Dggg similar to III seen from a
different distance Dhhh. The special case of using a Kronecker delta kernel hhh = δδδ, i.e., with
the reference III seen from up close, yields E = ∥ggg ∗QQQ − III∥22. This has been shown to have
an edge enhancing effect [12, 183] which we show in Fig. 6.5b. We use hhh = δδδ in all our
experiments.

Tonemapping. Considering that the optimised image will be viewed on media with
limited dynamic range (e.g., screen or paper), we can incorporate a tone-mapping
operator T into the perceptual error (6.4):

E = ∥ggg ∗ ϵϵϵT ∥22 = ∥ggg ∗ (T (QQQ) − T (III))∥22. (6.13)

Doing this also bounds the per-pixel error ϵϵϵT = T (QQQ) − T (III), suppressing outliers and
making the optimisation more robust in scenes with high dynamic range. We illustrate
this improvement in Fig. 6.5c, where an ACES [15] tone-mapping operator is applied to
the optimised image. Optimising w.r.t. the original perceptual error (6.4) yields a noisy
and overly dark image compared to the tone-mapped ground truth. Accounting for tone
mapping in the optimisation through Eq. (6.13) yields a more faithful result.

Colourhandling. While the HVS reacts more strongly to luminance than colour,
ignoring chromaticity entirely (e.g., by computing the error image ϵϵϵ from per-pixel
luminances) can have a negative effect on the distribution of colour noise in the image.
To that end, we can penalise the perceptual error of each colour channel c ∈ C separately:

E = ∑
c ∈C

λc∥gggc ∗ (QQQc − IIIc)∥22 , (6.14)

where λc is a per-channel weight. In our experiments, we use an RGB space C = {r, g,b},
set λc = 1, and use the same kernel gggc = ggg for every channel. Figure 6.5d shows the
improvement in colour noise over using greyscale perceptual error. Depending on the
colour space, the per-channel kernels may differ (e.g., YCbCr) [223].

As an alternative, one could decouple the channels from the input estimates and optimise
each channel separately, assembling the results into a colour image. In a vertical setting,
this decoupling extends the optimisation search space size from M to M ∣C∣.

Kernel shape impact. To test the robustness of our framework, we analyse kernels
with spectral characteristics other than isotropic blue-noise in Fig. 6.6. We run our
iterative pixel-swapping algorithm (Alg. 2) to optimise the shape of a white-noise input,
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which produces a spectral distribution inverse to that of the target kernel. The rightmost
image in the figure shows the result of using a spatially varying kernel that is a convex
combination between a low-pass Gaussian and a high-pass anisotropic kernel, with the
interpolation parameter varying horizontally across the image. Our algorithm can adapt
the noise shape well.

6.7 Experiments

We now present empirical validation of our error optimisation framework in the a-
posteriori setting described in Section 6.5.2. We render static images and animations of
several scenes, comparing our algorithms to those of Heitz and Belcour [103].

6.7.1 Setup

Perceptual error model. We build a perceptual model by combining all extensions
from Section 6.6. Our estimate-image kernel ggg is a binomial approximation of a Gaus-
sian [151]. For performance reasons and to allow smaller viewing distances we use a

3×3-pixel kernel with standard deviation σ =
√
2/π (see Fig. 6.5a). Plugging this σ value

into the inverse of Eq. (6.11), the corresponding minimum viewing distance is D = 4792/R
inches for a screen resolution of R dpi (e.g., 16 inches at 300 dpi). We recommend viewing
from a larger distance, to reduce the effect of our 3×3 kernel discretisation. We use a
Dirac reference-image kernel: hhh = δδδ, and incorporate a simple tone-mapping operator T
that clamps pixel values to [0,1]. The final error model reads:

E = ∑
c ∈{r,g,b}

∥ggg ∗ T (QQQc) − δδδ ∗ T (I ′I ′I ′c)∥22, (6.15)

where I ′I ′I ′ is the surrogate image whose construction we describe below. For dithering
we convert RGB colours to luminance, which reduces the number of components in the
error (6.15) to one.

Methods. We compare our four methods from Algs. 1 and 2 to the histogram and
permutation of Heitz and Belcour [103]. For our vertical and horizontal iterative
minimisations we set the maximum iteration count to 100 and 10 respectively. For
error diffusion we use the kernel of Floyd and Steinberg [85] and for dithering we use a
void-and-cluster mask [232]. For our horizontal iterative minimisation we use a search
radius R = 1 and allow pixels to travel within a disk of radius r = 1 from their original
location in the dissimilarity metric. For the permutation method of Heitz and Belcour
[103] we obtained best results with tile size 8×8. (Our r = 1 approximately corresponds
to their tile size 3×3.)

Rendering. All scenes were rendered with PBRT [193] using unidirectional or bidirec-
tional path tracing. None of the methods depend on the sampling dimensionality, though
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we set the maximum path depth to 5 for all scenes to maintain reasonable rendering
times. The ground-truth images have been generated using a Sobol sampler with at least
1024 samples per pixel (spp); for all test renders we use a random sampler. To facilitate
numerical-error comparisons between the different methods, we trace the primary rays
through the pixel centres.

Surrogate construction. To build a surrogate image for our methods, we filter the
per-pixel averaged input estimates using Intel Open Image Denoise [116] which also
leverages surface-normal and albedo buffers, taking about 0.5 sec for a 512 × 512 image.
Recall that the methods of Heitz and Belcour [103] utilise implicit surrogates.

Image-quality metrics. We evaluate the quality of some of our results using the
HDR-VDP-2 perceptual metric [161], with parameters matching our binomial kernel.
We compute error-detection probability maps which indicate the likelihood for a human
observer to notice a difference from the ground truth.

Additionally, we analyse the local blue-noise quality of the error image ϵϵϵ = T (QQQ) − T (III).
We split the image into tiles of 32×32 pixels and compute the Fourier power spectrum
of each tile. For visualisation purposes, we apply a standard logarithmic transform
c ln(1 + ∣ϵ̂∣) to every resulting pixel value ϵ̂ and compute the normalisation factor c per
tile so that the maximum final RGB value within the tile is (1, 1, 1). Note that the error
image ϵϵϵ is computed w.r.t. the ground truth III and not the surrogate, which quantifies
the blue-noise distribution objectively. The supplemental material of our paper [59]
contains images of the tiled power spectra for all experiments.

We compare images quantitatively via traditional MSE as well as a metric derived from
our perceptual error formulation. Our perceptual MSE (pMSE) evaluates the error (6.15)
of an estimate image w.r.t. the ground truth, normalised by the number of pixels N
and channels C: pMSE = E

N ⋅C . It generalises the MSE with a perceptual, i.e., non-delta,
kernel ggg. Table 6.1 summarises the results.

6.7.2 Rendering comparisons

All methods. Figure 6.7 shows an equal-sample comparison of all methods. Vertical
methods select one of the 4 input samples per pixel; horizontal methods are fed a
2-spp average for every pixel, and another 2 spp are used to render the final image after
optimisation. Our methods consistently perform best visually, with the vertical iterative
minimisation achieving the lowest perceptual error, as corroborated by the HDR-VDP-2
detection maps. Error diffusion is not far behind in quality and is the fastest of all
methods along with dithering. The latter is similar to Heitz and Belcour’s histogram
method but yields a notably better result thanks to using a superior surrogate and
performing the thresholding as in the classical halftoning setting (see Section 6.5.2).
Horizontal methods perform worse due to noisier input data (half spp) and worse
surrogates derived from it, and also mispredictions (which necessitate re-rendering).
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Figure 6.7: Comparison of our algorithms against the permutation and histogram
methods of Heitz and Belcour [103] with equal total sampling cost of 4 spp. Bottom
row shows HDR-VPD-2 error-detection maps (blue is better, i.e., lower detection
probability). Our vertical iterative minimisation achieves highest fidelity. Error
diffusion produces similar quality. Our horizontal iterative optimisation does better
than the permutation method.
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Figure 6.8: With a search space of only 4 spp, our vertical iterative minimisation
outperforms histogram sampling [103] with 16× more input samples. Please zoom in
to fully appreciate the differences; the full-size images are included in the supplemental
material of our paper [59].

F
ra
m
e
16

PermutationPermutation Iterative (ours)Iterative (ours) PermutationPermutation Iterative (ours)Iterative (ours) PermutationPermutation Iterative (ours)Iterative (ours)

F
ra
m
e
1

F
ra
m
e
1
6

P
re

d
ic
ti
o
n

Figure 6.9: Comparison of our horizontal iterative minimisation against the permu-
tation method of Heitz and Belcour [103] (with retargeting) on 16-frame sequences of
static scenes rendered at 4 spp. Our method does a better job at improving the error
distribution frame-to-frame.
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Ours still uses a better surrogate than Heitz and Belcour’s permutation and is also able
to better fit to it.

Vertical methods. In Fig. 6.8 we compare our vertical iterative minimisation to the
histogram sampling of Heitz and Belcour [103]. Both select one of several input samples
(i.e., estimates) for each pixel. Our method produces a notably better result even when
given 16× fewer samples to choose from. The perceptual error of histogram sampling
does not vanish with increasing sample count. It dithers pixel intensity rather than
pixel error, thus more samples help improve the intensity distribution but not the error
magnitude.

Figure 6.10 shows our most capable method: vertical iterative minimisation with search
space extended to the power set of the input samples (with size 24 − 1 = 15 for 4 input
spp; see Section 6.4.3). We compare surrogate-driven optimisation against the best-
case result—optimisation w.r.t. the ground truth. Both achieve high fidelity, with
little difference between them and with pronounced local blue-noise error distribution
corroborated by the tiled power spectra.

Horizontal methods & animation. For rendering static images, horizontal methods
are at a disadvantage compared to vertical ones due to the required post-optimisation
re-rendering. As Heitz and Belcour [103] note, in an animation setting this sampling
overhead can be mitigated by reusing the result of one frame as the initial estimate for
the next. In Fig. 6.9 we compare their permutation method to our horizontal iterative
minimisation. For theirs we shift a void-and-cluster mask in screen space per frame and
apply retargeting, and for ours we traverse the image pixels in different random order.
We intentionally keep the scenes static to test the methods’ best-case abilities to improve
the error distribution over frames.

Starting from a random initial estimate, our method can benefit from a progressively
improving surrogate that helps fine-tune the error distribution via localised pixel swaps.
The permutation method operates in greyscale within static non-overlapping tiles. This
prevents it from making significant progress after the first frame. While mispredictions
cause local deviations from blue noise in both results, these are stronger in the permutation
method’s. This is evident when comparing the corresponding prediction images—the
results of optimisation right before re-rendering. The permutation’s retargeting pass
breaks the blocky image structure caused by tile-based optimisation but increases the
number of mispredictions.

The supplemental video to our published work [59] shows animations with all methods,
where vertical ones are fed a new random estimate per frame. Even without accumulating
information over time, these consistently beat the two horizontal methods. The latter
suffer from mispredictions under fast motion and perform similarly to one another,
though ours remains superior in the presence of temporal smoothness. Mispredictions
could be eliminated by optimising frames independently and splitting the sampling
budget into optimisation and re-rendering halves (as in Fig. 6.7), though at the cost of
reduced sampling quality.
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Figure 6.10: Comparison of our methods against the permutation approach of Heitz
and Belcour [103] at 4 spp; for the horizontal methods we show the result of the 16th

frame of static-scene rendering. Our two iterative minimisation algorithms yield the
best quality, while error diffusion is fastest (see Tables 6.1 and 6.2).

Additional comparisons. Figure 6.10 shows additional results from our horizontal
and vertical minimisation and error diffusion. We compare these to the permutation
method of Heitz and Belcour [103] which we found to perform better than their histogram
approach on static scenes at equal sampling rates. For the horizontal methods we show
the results after 16 iterations. Our methods again yield lower error, subjectively and
numerically (see Tables 6.1 and 6.2).

6.8 Discussion

6.8.1 Bias Towards Surrogate

While ultimately we want to optimise w.r.t. the ground-truth image, in practice we have
to rely on a surrogate. In our experiments we use reasonably high-quality surrogates,
shown in Fig. 6.13, to best demonstrate the capabilities of our framework. But when
using a surrogate of low quality, fitting too closely to it can produce an estimate with
artifacts. In such cases less aggressive fitting may yield lower perceptual error. We
augment the perceptual error with a term that penalises deviations from the initial
estimate QQQinit (which case of vertical optimisation is obtained by averaging the input
per-pixel estimates):

EC = (1 − C)∥ggg∥21∥QQQ −QQQinit∥22 + CE. (6.16)

The parameter C ∈ [0,1] encodes our confidence in the surrogate quality. Setting C = 1
reverts to the original formulation (6.15), while optimising with C = 0 yields the initial
image estimate QQQinit. Optimising w.r.t. this energy can also be interpreted as projecting
the surrogate onto the space of Monte Carlo estimates in ΩΩΩ, with control over the fitting
power of the projection via C.

In Fig. 6.11, we plug the extended error formulation (6.16) into our vertical iterative
minimisation. The results indicate that the visually best result is achieved for different
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Figure 6.11: Balancing our iterative optimisation between the surrogate (top row)
and the initial estimate (bottom row) via the parameter C from Eq. (6.16). For
high-quality surrogates (left and middle columns), the best result is achieved for values
of C close to 1. In contrast, strong structural artifacts (right column) call for lowering
C to avoid fitting too closely to the surrogate. The (subjectively) best image in each
column is outlined in red.
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values of C depending on the surrogate quality. Specifically, when optimising w.r.t. the
ground truth, the fitting should be most aggressive: C = 1. Conversely, if the surrogate
contains structural artifacts, the optimisation should be made less biased to it, e.g., by
setting C = 0.5. Other ways to control this bias are using a more restricted search space
(e.g., non-power-set) and capping the number of minimisation iterations of our methods.
Note that the methods of Heitz and Belcour [103] rely on implicit surrogates and energies
and thus provide no control over this trade-off. We have found that their permutation
method generally avoids tiling artifacts induced by their piecewise constant surrogate
due to the retargeting step blurring the prediction image (shown in Fig. 6.9 zoom-ins);
however, this blurring adds mispredictions which deteriorate the final image quality. Our
methods provide better fits, target the error explicitly, and are much superior when the
surrogate is good. With a bad surrogate, ours can be controlled to never do worse than
theirs.

6.8.2 Denoising

Our images are optimised for eliminating error and preserving features when blurred
with a given kernel. This blurring can be seen as a simple form of denoising, and it is
reasonable to expect that the images are also better suited for general-purpose denoising
than traditional white-noise renderings are [24, 103]. However, we have found that
obtaining such benefit is not straightforward.

In Fig. 6.12 we run Intel Open Image Denoise on the results from our vertical iterative
minimisation. On the left scene, the input samples ➀ have white-noise image distribution
with large magnitude; feeding their per-pixel averages to the denoiser, it cannot reliably
separate the signal from the noise and produces conspicuous artifacts. Using this denoised
image ➁ as a surrogate for our optimisation yields a “regularised” version ➂ of the input
that is easier for the denoiser to subsequently filter ➃. This process can be seen as
projecting the initial denoised image back onto the space of exact per-pixel estimates
(while minimising the pMSE) whose subsequent denoising avoids artifacts. Note that
obtaining this improved result requires no additional pixel sampling.

On the right scene in Fig. 6.12, the moderate input-noise level is easy for the denoiser
to clean while preserving the faint shadow on the wall. Our optimisation subsequently
produces an excellent result which yields a high-fidelity image when convolved with the
optimisation kernel ggg. Yet that same result is ruined by the denoiser which eradicates the
shadow, even though subjectively its signal-to-noise ratio is higher than that of the input
image. Overall, the denoiser blurs our result ➂ aggressively on both scenes, eliminating
not only the high-frequency noise but also lower-frequency signal not present in auxiliary
input feature buffers (depth, normals, etc).

It should not be too surprising that an image optimised for one smoothing kernel does
not always yield good results when filtered with other kernels. As an example, Fig. 6.6
shows clearly that the optimal noise distribution varies significantly across different
kernels. While our kernel ggg has narrow support and fixed shape, denoising kernels vary
wildly over the image and are inferred from the input in order to preserve features.
Importantly, modern kernel-inference models (like in the used denoiser) are designed (or
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Figure 6.12: By regularising a noisy input, our optimisation can help a denoiser
avoid producing artifacts (left scene), even though it targets a different (perceptual)
smoothing kernel ggg. However, it can also cause elimination of image features during
denoising (right scene, the shadow).

trained) to expect mutually uncorrelated pixel estimates [116]. This white-noise-error
assumption can also yield wide smoothing kernels that are unnecessarily aggressive for
blue-noise distributions; we suspect this is what hinders the denoiser from detecting
features present in our optimised results whose pixels are highly correlated.

Our firm belief is that denoising could consistently benefit from error optimisation,
though that would require better coordination between the two. One avenue for future
work would be to tailor the optimisation to the kernels employed by a target denoiser.
Conversely, denoising could be adapted to ingest correlated pixel estimates with high-
frequency error distribution; this would enable the use of less aggressive smoothing
kernels (see Fig. 6.2) and facilitate feature preservation. As a more immediate treatment,
image features could be enhanced before or after our optimisation to mitigate the risk of
them being eliminated by denoising.

6.8.3 Performance and Utility

Throughout our experiments, we have found that the tested algorithms rank in the
following order in terms of increasing ability to minimise perceptual error on static
scenes at equal sampling cost: histogram sampling, our dithering, permutation, our
error diffusion, our horizontal iterative, our vertical iterative. The three lowest-ranked
methods employ some form of dithering which by design assumes (a) constant image
signal and (b) equispaced quantisation levels shared by all pixels. The latter assumption
is severely broken in the rendering setting where the “quantisation levels” arise from
(random) pixel estimation. Our vertical methods (dithering, error diffusion, iterative)
are more practical than the histogram sampling of Heitz and Belcour [103] as they can
achieve high fidelity with a much lower input-sample count. Horizontal algorithms are
harder to control due to their mispredictions which are further exacerbated when reusing
estimates across frames in dynamic scenes.



Chapter 6. Perceptual Error Optimisation for Monte Carlo Rendering 147

Method
Bathroom Classroom Gray Room Living Room

MSE pMSEMSE pMSE MSE pMSEMSE pMSE
×10−2 ×10−3 ×10−2 ×10−3 ×10−2 ×10−2 ×10−2 ×10−3

Random (4-spp average) 1.40 3.15 3.13 7.91 7.91 3.02 3.37 5.61
Vertical: Histogram [103] (1/4 spp) 3.58 6.29 7.11 13.08 11.49 6.67 5.75 9.88
Vertical: Error diffusion (1/4 spp) 1.22 2.27 4.91 7.03 8.76 2.82 2.08 2.31
Vertical: Dithering (1/4 spp) 1.31 3.31 4.36 11.63 8.46 5.07 2.27 4.43
Vertical: Iterative (1/4 spp) 2.32 2.02 6.00 6.10 9.07 2.97 4.32 1.86
Vertical: Iterative (power set, 1/15 “spp”) 1.26 1.66 3.12 4.91 7.53 2.82 2.46 1.13
Horizontal: Permut. [103] (frame 16, 4 spp) 1.40 2.79 3.15 7.25 7.90 2.84 3.38 3.14
Horizontal: Iterative (frame 16, 4 spp) 1.52 2.06 3.83 5.31 8.34 2.41 3.59 1.59

Random (16-spp average) 0.49 1.47 1.55 4.89 3.77 1.04 1.23 2.18
Vertical: Histogram [103] (4/16 spp) 1.40 2.37 3.12 6.20 7.88 2.72 3.36 3.57
Vertical: Error diffusion (4/16 spp) 0.41 1.20 0.94 3.85 4.00 0.87 0.86 1.07
Vertical: Dithering (4/16 spp) 0.50 1.52 1.15 4.69 4.12 1.36 1.09 1.82
Vertical: Iterative (4/16 spp) 0.90 1.10 2.03 3.35 5.17 0.84 2.30 0.84

Method
Modern Hall San Miguel Staircase White Room

MSE pMSEMSE pMSE MSE pMSEMSE pMSE
×10−2 ×10−2 ×10−2 ×10−3 ×10−3 ×10−3 ×10−2 ×10−3

Random (4-spp average) 5.22 1.70 3.58 8.92 8.88 5.60 2.78 7.98
Vertical: Histogram [103] (1/4 spp) 11.43 3.60 6.84 16.52 18.90 6.69 5.75 14.09
Vertical: Error diffusion (1/4 spp) 4.86 1.33 5.07 8.50 6.87 5.08 2.19 5.16
Vertical: Dithering (1/4 spp) 5.25 1.80 3.74 11.19 7.80 5.36 2.51 7.95
Vertical: Iterative (1/4 spp) 7.15 1.29 5.51 7.05 10.50 4.45 3.98 5.00
Vertical: Iterative (power set, 1/15 “spp”) 4.55 1.18 3.31 5.85 7.08 4.31 2.26 4.58
Horizontal: Permut. [103] (frame 16, 4 spp) 5.21 1.51 3.59 8.51 8.87 5.40 2.72 6.73
Horizontal: Iterative (frame 16, 4 spp) 5.46 1.18 3.94 7.31 7.67 4.30 2.93 4.72

Random (16-spp average) 2.14 0.80 1.10 4.67 3.39 3.78 1.35 3.62
Vertical: Histogram [103] (4/16 spp) 5.23 1.48 3.52 6.82 7.13 4.09 2.77 5.77
Vertical: Error diffusion (4/16 spp) 1.68 0.66 1.33 4.70 2.76 3.69 0.73 2.13
Vertical: Dithering (4/16 spp) 1.93 0.83 1.49 5.38 3.09 3.73 0.91 2.98
Vertical: Iterative (4/16 spp) 3.03 0.64 2.39 4.02 4.46 3.14 1.75 1.99

Table 6.1: MSE and pMSE (Section 6.7.1) metrics for various methods (ours in
bold) and scenes. For horizontal methods we show the metrics for the 16th frame
of static-scene rendering. In each section we highlight the lowest error number per
column. For the same number of samples per pixel (spp), our methods consistently
outperform those of Heitz and Belcour [103]—the current state of the art, except our
dithering can do worse than their permutation method.
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Method Bathroom Classroom Gray Room Living Room

Vertical: Histogram [103] (1/4 spp) 0.06 0.07 0.11 0.06
Vertical: Error diffusion (1/4 spp) 0.04 0.03 0.04 0.04
Vertical: Dithering (1/4 spp) 0.04 0.03 0.04 0.04
Vertical: Iterative (1/4 spp) 18.44 111.41 12.82 15.26
Vertical: Iterative (power set, 1/15 “spp”) 95.09 404.12 59.69 83.41
Horizontal: Permutation [103] (frame 16) 0.10 0.10 0.10 0.11
Horizontal: Iterative (frame 16) 23.04 21.57 22.00 30.08

Method Modern Hall San Miguel Staircase White Room

Vertical: Histogram [103] (1/4 spp) 0.02 0.09 0.08 0.06
Vertical: Error diffusion (1/4 spp) 0.01 0.06 0.04 0.04
Vertical: Dithering (1/4 spp) 0.01 0.05 0.04 0.04
Vertical: Iterative (1/4 spp) 5.43 29.09 15.21 19.45
Vertical: Iterative (power set, 1/15 “spp”) 23.93 137.89 35.39 102.05
Horizontal: Permutation [103] (frame 16) 0.03 0.21 0.10 0.14
Horizontal: Iterative (frame 16) 8.48 36.36 23.78 22.76

Table 6.2: Optimisation run times (in seconds) for various methods (ours in bold)
and scenes using 4 input samples per pixel (spp), excluding sampling and surrogate
construction. For horizontal methods we report the average time over 16 frames. Our
error diffusion and dithering avoid sorting and are fastest; though dithering-based,
Heitz and Belcour’s approaches use sorting. Our iterative minimisation methods are
slowest (but can be sped up; see Section 6.8.3).

Our iterative minimisations can best adapt to the input and also directly benefit from
the extensions in Section 6.6 (unlike all others). However, they are also the slowest, as
evident in Table 6.2. Fortunately, they can be sped up by several orders of magnitude
through additional optimisations from halftoning literature [11, 135].

Error diffusion is often on par with vertical iterative minimisation in quality and with
dithering-based methods in run time. In a single-threaded implementation it can
outperform all others; parallel error-diffusion variants exist too [167].

Practical utility. Our methods can enhance the perceptual fidelity of static and
dynamic renderings as demonstrated by our experiments. For best results and maximum
flexibility, we suggest using our vertical iterative optimisation, optionally with the
efficiency improvements mentioned above. Figure 6.11 illustrates that in practical
scenarios (middle and right columns) this method can improve upon both the surrogate
(top row) and the input-estimate average (bottom row) for a suitable value of the
confidence parameter C. For maximum efficiency we recommend using our vertical error
diffusion. To obtain a surrogate, we recommend regularising the input estimates via fast
denoising or more basic bilateral or non-local-means filtering. Our optimisation can then
be interpreted as reducing bias or artifacts in such denoised images (see Fig. 6.11). Simple
denoising of the result may yield better quality than traditional aggressive denoising of
the input samples.



Chapter 6. Perceptual Error Optimisation for Monte Carlo Rendering 149

Modern living roomModern living room Grey & white roomGrey & white room San MiguelSan Miguel

Wooden staircaseWooden staircase Japanese classroomJapanese classroom White roomWhite room

BathroomBathroom Modern hallModern hall

Figure 6.13: Collage of the surrogates used in our experiments, obtained by denoising
the input estimates using Intel Open Image Denoise [116].

Progressive rendering. Our optimisation methods produce biased pixel estimates
through manipulating the input samples; this is true even for a-priori methods where the
sampling is completely deterministic. Nevertheless, consistency can be achieved through
a simple progressive-rendering scheme: For each pixel, newly generated samples are
cumulatively averaged into a fixed set of per-pixel estimates that are periodically passed
to the optimisation to obtain an updated image. Each individual estimate will converge to
the true pixel value, thus the optimised image will also approach the ground truth—with
bounded memory footprint. Interestingly, convergence is guaranteed regardless of the
optimisation method and surrogate used, though better methods and surrogates will
yield better starting points. Lastly, adaptive sampling is naturally supported by vertical
methods as they are agnostic of differences in sample counts between pixels.

6.9 Conclusion

We devise a formal treatment of image-space error distribution in Monte Carlo rendering
from both quantitative and perceptual aspects. Our formulation bridges the gap between
halftoning and rendering by interpreting the error distribution problem as an extension
of non-uniform multi-tone energy minimisation halftoning. To guide the distribution of
rendering error, we employ a perceptual kernel-based model whose practical optimisation
can deliver improvements not achievable by prior methods given the same sampling
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data. Our model provides valuable insights as well as a framework to further study the
problem and its solutions.

A promising avenue for future research is to adapt even stronger perceptual error models.
Prior work has already demonstrated a strong potential in reducing Monte Carlo noise
visibility error using visual masking [34, 197]. Robust metrics, other than squared L2
norm, can also be considered with possible nonlinear relationships.

Our framework could conceivably be extended beyond the human visual system, i.e., for
optimising the inputs to other types of image processing such as denoising. For such
tasks, one could consider lifting the assumption of a fixed kernel to obtain an even more
general problem where the kernel and sample distribution are optimised simultaneously
(or alternatingly).



Chapter 7

Conclusion and Outlook

7.1 Conclusion

In the current thesis we have developed efficient strategies for sparse PDE-based image
reconstruction. We have improved upon prior approaches both in terms of quality and
efficiency. Our feature inpainting framework from Chapter 2 allows us to achieve MSE
improvements of more than 60% while using the same total mask density. We have seen
that if the features are selected to complement for the inpainting operator’s weaknesses
they can even suppress artifacts such as the logarithmic singularities inherent to harmonic
inpainting in 2D. This is achieved thanks to our spatial optimisation algorithm from
Chapter 4, which automatically allocates the percentage of relevant features by adapting
to the image and inpainting operator. In the setting of harmonic inpainting we see
that our spatial optimisation replaces most of the pointwise interpolation constraints by
local integral constraints. The latter circumvents the logarithmic singularities problem,
since interpolation of local integrals is well-defined even in the continuous setting, unlike
interpolation of pointwise values for H1(Ω) “functions” in 2D. Our spatial optimisation
provides further insights, as it allocates few derivative features to EED inpainting. The
reason for this stems from the fact that EED already has a mechanism for inferring edges.
This emphasises the principle that one should choose features that complement
the inpainting operator.

A major obstacle to the widespread adoption of PDE-based reconstruction methods has
been their high computational cost and limited scalability – especially when compared
to fast, transform-based codecs like JPEG and JPEG2000. For nearly orthogonal or
unitary transforms, even spatial and tonal optimisation becomes trivial, as the best
m-term approximation can be obtained simply by thresholding the magnitudes of the
transformed coefficients. This simplicity does not extend to classical PDE-based methods
such as harmonic and EED inpainting. In these cases, the associated matrices are far
from orthogonal and often exhibit very large condition numbers. As a result, analytic
strategies like the one proposed by Belhachmi et al. [28] must rely on error diffusion
rather than straightforward thresholding, yet still result in masks that are far from
optimal.

To address these challenges, we have placed a strong emphasis on efficiency throughout
our work, particularly in Chapter 3 and Chapter 4 of this thesis. On the CPU, we

151
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reformulated harmonic inpainting within a finite element method (FEM) framework and
employed adaptive Delaunay triangulations. This approach reduced both the condition
number and the number of unknowns, enabling linear runtime scaling of both inpainting
and data optimisation with respect to image resolution. As an unexpected by-product,
the adaptive mesh also allowed us to suppress the logarithmic singularities characteristic
of harmonic inpainting. On the GPU, we achieved real-time performance for 4K image
inpainting by carefully integrating multigrid methods, domain decomposition, and Krylov
subspace solvers. Additionally, we explored several strategies to enhance the efficiency
of tonal optimisation.

The development of efficient and high quality algorithms for inpainting enabled us, in
Chapter 5, to shift our focus towards exploring the relationship between denoising and
inpainting. Rather surprisingly, we have seen that the two are tightly linked, and we could
establish a relationship between the mask density in homogeneous diffusion inpainting,
and the diffusion time in homogeneous diffusion denoising. Our formulation relating the
two worlds was based on an interpretation of the averaging of multiple inpaintings as
an estimator for a denoising process. We provided a comprehensive probabilistic and
deterministic theory for the latter, that was not tied to a specific inpainting or mask
generation process.

Finally, in Chapter 6, we developed a theoretical framework for perceptual error op-
timisation in Monte Carlo rendering. Our work provides a solid foundation for the
previously heuristic motivation behind favouring blue noise error distributions. Blue
noise is desirable because it decays rapidly under low-pass filtering, making it less
perceptible in rendered images. Our framework allowed us to generalise a number of
classical halftoning algorithms such as dithering, error-diffusion, and iterative energy
minimisation halftoning, to the Monte Carlo rendering setting.

7.2 Outlook

While our work addresses several practical challenges and theoretical questions, it also
offers promising directions for future research. For instance, in our feature inpainting
framework we did not explore the inequality-constrained case. The theoretical extension
is relatively straightforward – it is sufficient to consider the Karush-Kuhn-Tucker (KKT)
conditions for the inequality-constrained optimisation problem. The main difficulty
lies in developing efficient algorithms to solve the resulting problem in the inpainting
setting, since the latter results in very large and sparse problems. For the equality-
constrained case, we proposed an SQP-inspired algorithm. This naturally suggests using
an inequality-constrained SQP-inspired approach in the inequality-constrained setting.
Interior point methods could also be explored as a viable alternative.

Another open problem is identifying practically useful nonlinear features. While incor-
porating nonlinear inpainting into our feature framework led to substantial qualitative
improvements, simply replacing linear features with their nonlinear counterparts did
not result in better reconstructions. In the context of inequality-constrained inpainting,
however, a promising idea for feature design emerges: we could enforce local minima
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and maxima in order to prevent overshoots and undershoots. This could be beneficial
for operators like biharmonic inpainting.

In our FEM inpainting experiments we observed that extensions to the biharmonic
setting did not yield benefits. A natural next step would be to explore FEM EED
inpainting. A more ambitious direction would be to move towards the reconstruction of
surfaces from sparse data as in the work of Bae and Weickert [19], which is a more natural
application area for FEM. In fact, adapting the methods developed in this thesis to
surface settings is relatively straightforward. This primarily involves replacing standard
differential operators with their differential geometric counterparts on manifolds. For
example, the 5-point stencil Laplacian can be replaced by the cotangent Laplacian, which
discretises the Laplace-Beltrami operator on triangular meshes. Naturally, this transition
introduces new challenges – it makes harmonic inpainting nonlinear in the surface setting,
which requires algorithmic adaptations.

One notable limitation of our efficient inpainting methods is that they were specifically
tailored to harmonic inpainting. However, techniques such as multigrid and domain
decomposition are not inherently restricted to this setting – they can be adapted to
polyharmonic inpainting, and with more effort, potentially to other nonlinear models
such as EED. This represents an important direction for future research, especially
given that EED significantly outperforms harmonic inpainting in terms of reconstruction
quality.

Although our theory of denoising via inpainting is quite comprehensive, the connection
between diffusion and inpainting in the 2D setting was demonstrated only empirically. A
natural and important extension of this work would be to develop a rigorous theoretical
proof of this relationship in two dimensions.

Last but not least, we note that our framework for perceptual error optimisation in
Monte Carlo rendering has already served as a base for other works. The most closely
related work extends our framework to the spatio-temporal setting [138].
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Appendix A

Denoising by Inpainting

A.1 Proof of Theorem 5

We derive the expression for the stated probability in Theorem 5 of Chapter 5 for step
k + 1 here. At the beginning of step k + 1, Algorithm 3 has already inserted k mask
pixels yielding the mask ck. At the end of step k + 1 we want to have inserted a new
mask pixel that is not in ck. Consequently, we can select a pixel only from the set Ik of
remaining empty mask pixel locations, with ∣Ik∣ = N − k. The algorithm samples a set X
of α distinct candidates from Ik uniformly at random (there are CN−k

α different ways to
do so):

X = {X1, . . . ,Xα ∈ Ik ∶ Xi ≠Xj for i ≠ j}. (A.1)

Then one chooses the candidate X∗ ∈ X with lowest reconstruction error (w.r.t. the noisy
image f):

X∗ ∈ X ∗ = argmin
X∈X

Ek(X), Ek(X) ∶= ∥r(ck + eX ,f) − f∥22, (A.2)

where eX ∈ RN is the zero vector modified with a one at the location corresponding to
mask point X. The minimiser does not have to be unique; in fact the set of minimisers

X ∗ = {Xi ∈ X ∶ Ek(Xi) =min
X∈X

Ek(X)} (A.3)

may have more than one element (∣X ∗∣ > 1) in which case we choose X∗ uniformly at
random from X ∗ with probability 1

∣X ∗∣ . This completes step k + 1, now with a specific

X∗ = x∗ and corresponding mask ck+1 = ck + ex∗ . If the desired number of mask points
have been achieved the algorithm ends, otherwise one proceeds to step k + 2 in the exact
same manner.

After we have inserted mask pixel x∗ ∈ Ik we want to be able to compute the probability
Pr(X∗ = x∗) of this occurring. This is equal to the probability of x∗ having been selected
as a candidate:

Pr(x∗ ∈ X) = CN−k−1
α−1 /CN−k

α = α

N − k , (A.4)

multiplied by the probability Pr(x∗ ∈ X ∗ ∣x∗ ∈ X) that x∗ ends up in X ∗, which is in
turn multiplied by the probability Pr(X∗ = x∗ ∣x∗ ∈ X ∗) = 1

∣X ∗∣ of having picked x∗ from
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X ∗ uniformly at random. We thus have the following chain of conditional probabilities:

Pr(X∗ = x∗) = Pr(X∗ = x∗ ∣x∗ ∈ X ∗)Pr(x∗ ∈ X ∗)
= Pr(X∗ = x∗ ∣x∗ ∈ X ∗)Pr(x∗ ∈ X ∗ ∣x∗ ∈ X)Pr(x∗ ∈ X)

= 1

∣X ∗∣ Pr(x
∗ ∈ X ∗ ∣x∗ ∈ X) α

N − k .
(A.5)

We can write the terms involving X ∗ in the following manner:

1

∣X ∗∣ Pr(x
∗ ∈ X ∗ ∣x∗ ∈ X) =

α

∑
β=1

1

β
Pr(x∗ ∈ X ∗ ∧ ∣X ∗∣ = β ∣x∗ ∈ X). (A.6)

The probability on the right-hand side can be rewritten as requiring β of the candidates
to have energy equal to Ek(x∗) and the remaining α − β having a strictly larger energy:

Pr(x∗ ∈ X ∗ ∧ ∣X ∗∣ = β ∣x∗ ∈ X) =

= Pr
⎛
⎝
(
β

⋀
i=1

Ek(Xi) = Ek(x∗)) ∧ (
α

⋀
j=β+1

Ek(Xj) > Ek(x∗))
RRRRRRRRRRR
x∗ ∈ X

⎞
⎠
.

(A.7)

To compute the above probabilities we would need to know the total number of pixels
from Ik with energy equal to Ek(x∗):

Neq ∶= ∣{x ∈ Ik ∶ Ek(x) = Ek(x∗)}∣, (A.8)

and the total number of pixels from Ik having a strictly higher energy:

Ngt ∶= ∣{x ∈ Ik ∶ Ek(x) > Ek(x∗)}∣. (A.9)

From the requirement ∣X ∗∣ = β, it follows that we need to choose β pixels that have
energy equal to Ek(x∗). However, x∗ ∈ X so Ek(X) = Ek(x∗) with probability 1 for at
least one candidate X = x∗. Then β − 1 elements Xi remain to be selected from Neq − 1
locations, the total number of possibilities being C

Neq−1
β−1 . Finally the remaining α − β

candidates must be selected from Ngt locations, resulting in C
Ngt

α−β options. Using this we
can compute the probability

1

∣X ∗∣ Pr(x
∗ ∈ X ∗ ∣x∗ ∈ X) =

α

∑
β=1

1

β

C
Neq−1
β−1 C

Ngt

α−β

CN−k−1
α−1

. (A.10)

Ultimately we get the following probability for step k + 1:

Pr(X∗ = x∗) = α

N − k
α

∑
β=1

1

β

C
Neq−1
β−1 C

Ngt

α−β

CN−k−1
α−1

=
α

∑
β=1

1

β

C
Neq−1
β−1 C

Ngt

α−β

CN−k
α

. (A.11)

Through the probabilistic densification procedure the exact same mask c, with ∥c∥0
mask pixels, can be constructed in ∥c∥0! different ways (the same set of mask pixels
being introduced in all possible orders). That is, we get the probability mass function
pσ(c∣f) over masks that also retain the order of insertion of their mask pixels (e.g., we
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can modify c by setting entries equal to one, to be equal to k: the step in which those
were inserted). To get the usual probability mass function over binary masks we need
to sum up the above probabilities over all ∥c∥0! permutations of point insertion orders.
The main issue for practicality is that Neq and Ngt must be known, which would require
evaluating all possible ∣Ik∣ = N − k inpaintings for a single step. Nevertheless, Monte
Carlo can be used to estimate the probabilities.

A.2 Probability for Error Diffusion Masks

Error diffusion halftoning (e.g., Floyd-Steinberg dithering [85]) can be used to produce
a binary mask c ∈ {0,1}N from a continuous density image d ∈ [0,1]N . The process
involves iterating over the image pixels (e.g., in serpentine order), binarising a single pixel
at a given step, and then diffusing the error arising from the binarisation to the set of
currently non-visited pixels. This results in a sequence of images d = d1,d2, . . . ,dN+1 = c.
The binarisation happens according to a thresholding step, which usually reads:

ck = dk+1k =
⎧⎪⎪⎨⎪⎪⎩

0 for dkk < 0.5,
1 for dkk ≥ 0.5.

(A.12)

Since we want to get multiple masks stochastically, we randomise the process by sampling
a uniform random number vk ∈ [0,1] for pixel k, and then perform thresholding:

ck = dk+1k =
⎧⎪⎪⎨⎪⎪⎩

0 for dkk < vk,
1 for dkk ≥ vk.

(A.13)

Then the probability mass function for mask c constructed from density image d is

pd(c) =
1

P

N

∏
k=1

(dkk(c))ck(1 − dkk(c))1−ck , P = ∑
c∈{0,1}N

N

∏
k=1

(dkk(c))ck(1 − dkk(c))1−ck . (A.14)

In the above dkk(c) are assumed to be clamped to [0,1]. Note that while this bears
similarity to Poisson sampling (see (5.64)), the probability dkk(c) is conditioned on
the probabilities in the k previous steps. Algorithmically it is trivial to compute the
numerator of the probability during the error diffusion process.
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