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Abstract. We introduce a novel scale-space concept that is inspired by
inpainting-based lossy image compression and the recent denoising by
inpainting method of Adam et al. (2017). In the discrete setting, the
main idea behind these so-called sparsification scale-spaces is as follows:
Starting with the original image, one subsequently removes a pixel until
a single pixel is left. In each removal step the missing data are interpo-
lated with an inpainting method based on a partial differential equation.
We demonstrate that under fairly mild assumptions on the inpainting
operator this general concept indeed satisfies crucial scale-space proper-
ties such as gradual image simplification, a discrete semigroup property
or invariances. Moreover, our experiments show that it can be tailored
towards specific needs by selecting the inpainting operator and the pixel
sparsification strategy in an appropriate way. This may lead either to
uncommitted scale-spaces or to highly committed, image-adapted ones.
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1 Introduction

Lossy image compression methods and scale-spaces share similar philosophies in
a number of aspects: The former ones are based on information reduction, while
the latter ones aim at image simplification. Both the amount of information
reduction as well as the degree of image simplification can be steered by a free
parameter: the quality parameter which influences the compression rate, and
the scale parameter. Moreover, both concepts reveal naturally certain denoising
properties: For instance, wavelet shrinkage can be used both for compression as
well as for denoising, and nonlinear diffusion methods create scale-spaces that
offer structure-preserving denoising.

In view of these similarities, it is surprising that attempts of both commu-
nities to fertilise each other are still fairly limited. One of the reasons lies in
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the fact that both paradigms traditionally rely on different techniques: Typi-
cal lossy compression methods are based on orthogonal or unitary transforms
such as the discrete cosine or the discrete wavelet transforms [13,23], whereas
scale-spaces usually involve partial differential equations (PDEs) [2,9, 19, 25] or
pseudodifferential evolutions [6, 21].

One of the few notable attempts to connect both worlds goes back to Cham-
bolle and Lucier [4], who interpreted iterated shift-invariant wavelet shrinkage
as a nonlinear smoothing scale-space. Although these authors emphasised that
it is not given by a PDE, this statement may be questioned in view of several
equivalence results between iterated wavelet shrinkage and nonlinear diffusion
processes [26].

Inpainting-based compression [7] constitutes an alternative to classical
transform-based codecs: One stores only a carefully selected subset of all pixels
and reconstructs the missing image structures by inpainting which usually in-
volves PDEs. The less pixels are stored, the more information is discarded. This
suggests that also such approaches reveal scale-space properties. This claim is
also supported by a recent paper by Adam et al. [1], who use closely related
inpainting ideas and data sparsification concepts to design novel denoising meth-
ods.

Our Goals. In the present paper we use these ideas to introduce a novel
class of scale-space processes which we name sparsification scale-spaces. For the
sake of simplicity, we restrict ourselves to the discrete setting. The basic idea
of constructing such a scale-space is as follows: One starts with the original
image and gradually removes all pixels until only a single pixel remains. At
those locations where no information is kept, we interpolate the missing image
structure with some PDE-based inpainting. While this framework is strongly
inspired by inpainting-based image compression which uses similar sparsification
strategies [11], several questions have to be answered in this context, e.g.

— Can one prove that this scale-space representation creates indeed a simplify-
ing transformation? Does it also satisfy other typical scale-space properties
such as a semigroup structure or invariances?

— How powerful and flexible is this family of scale-spaces? Can it be made
uncommited or can one adapt it in order to reward important structures
with a larger lifetime over scales? Is it strongly dependent on the inpainting
operator?

Our paper will give answers to all these questions.

Structure of the Paper. Our publication is organised as follows. In Sec-
tion 2 we formalise the concept of discrete sparsification scale-spaces and es-
tablish a number of theoretical properties which show that our processes under
consideration indeed qualify as scale-spaces under fairly mild assumptions on
the inpainting operator. Section 3 is devoted to additional aspects of specific
interest, and it presents several experiments which illustrate the flexibility of the
sparsification scale-space framework. The paper is concluded with a summary
and an outlook in Section 4.



Sparsification Scale-Spaces 3
2 Theoretical Results

In this section we provide a formalisation of discrete sparsification scale-spaces,
and we show that they satisfy all essential properties of a space- and time-discrete
scale-space.

2.1 Formalisation of Discrete Sparsification Scale-Spaces

To define our sparsification scale-space in a discrete setting, we have to select
its two components first: a sparsification strategy, and an inpainting method
that involves a scale-space operator. Thus, we will first elaborate on these two
concepts and then present our formal definition.

Sparsification Strategy. We represent a discrete greyscale image with N
pixels by a vector f € RV, Let its corresponding index set be denoted by J =
{1,...,N}. We define a known data sequence (K*))" ;' of N nested subsets of .J
by imposing two conditions:

— The first set K© satisfies K° = J.
— For ¢ = 1,....N—1, every set K’ is a subset of K*~! and contains N —¢
elements.

Thus, K* is created by removing a single index my from K¢~!. Different strate-
gies for pixel removal will be discussed in Section 3.

Instead of specifying a known data sequence (K Z)éV: 61, we can equivalently

specify its sparsification path m = (mq,...,my—1). Obviously the sparsification
path offers a very compact representation of the known data sequence, which is
useful when we want to store this information.

Another equivalent representation of the known data sequence is the mask
sequence. It consists of a sequence (Ce)é\f:f)l of diagonal matrices C* € RV*N
with the following property: The diagonal elements cﬁi are 1 if 4 € K*, and 0
elsewhere.

Scale-Space Induced Inpainting. Apart from these sparsification con-
cepts, we also need a discrete inpainting method. To this end, we consider a
linear operator A € R¥*Y or a nonlinear operator A(u) : RY — RV*N that
generates a space-discrete scale-space evolution {u(t)|t > 0} via

u(0) = f, (1)
du

Here we have chosen the nonlinear formulation, which includes the linear one. We
assume that this scale-space satisfies classical requirements that can be classified
into three categories [2]:

— architectural properties (e.g. the semigroup property),
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— simplification properties (such as energy minimisation properties, the ex-
istence of a Lyapunov functional, or causality in terms of a maximum-—
minimum principle),

— invariances (e.g. w.r.t. additive shifts in the grey values).

This space-discrete scale-space can be seen as a dynamical system. Typically it
arises from a space discretisation of a continuous scale-space which evolves an
image under a partial differential equation (PDE), e.g. a diffusion equation [25].
Moreover, the structure of A also involves discretisations of boundary conditions,
such as reflecting (homogeneous Neumann) boundary conditions.

To use the operator A(w) for inpainting purposes, let us assume that we are
given some image f € RV, and that its grey values are only reliable in a subset
K of its pixel set J. Then one can inpaint the missing information in J \ K by
solving the following problem for w:

Clu—f) — (I-C)A(w)u = 0 (3)

where T € RV*V is the identity matrix, and the diagonal matrix C denotes the
inpainting mask associated to the known pixel set K. Thus, our restoration u is
identical to f on K, and it is inpainted with the operator A (u) in J \ K. This
operator uses the data f in K as additional Dirichlet boundary data.

One may wonder if it is natural to base an inpainting process on a scale-space
operator. Actually this makes a lot of sense: It is not difficult to see that basically
all PDE-based inpainting operators enjoy scale-space properties, although some
representatives such as higher-order operators may not have been used in this
context. For more details on PDE-based inpainting we refer to [22].

Sparsification Scale-Spaces. Having a sparsification strategy and an in-
painting process at our disposal, it is not difficult to define a sparsification scale-
space. Let f = (fi)Y¥; € RY be our image, (Ke)évzf)l a known data sequence,
(CHNE its associated mask sequence, and let A (u) denote a scale-space in-
duced inpainting operator. Then we define a (space- and time-discrete) sparsifi-
cation scale-space (uz)(é\[:?)l of f as the solution set of the following sequence of
inpainting problems:

C'lu—f) — (I-CA(W)u" =0 (¢(=0,..,N-1). (4)

If we interpret this equation as a space-discrete elliptic PDE, our time-discrete
scale-space solves a sequence of elliptic problems. In this sense, it has some
structural similarities with scale-spaces created by the iterative regularisation
methods of Radmoser et al. [17]. The central remaining question, however, is
the following: In which sense does a sparsification scale-space satisfy the typical
scale-space properties? It shall be answered next.

2.2 Scale-Space Properties

The good news after the somewhat tedious formalisation in the previous sub-
section is that it makes a subsequent analysis of the scale-space properties of
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sparsification scale-spaces surprisingly simple and intuitive. Let us now verify
six important properties.

Property 1 (Original Image as Initial State).

For ¢ = 0, Equation (4) comes down to
C'tu’—f) — (I-C°) A(u’)u’ =0, (5)

where C° denotes the mask associated to K°. However, K° is defined as the full
index set .J, which implies that C? is identical to the identity matrix I. In this
case, Equation (5) simplifies to u’ — f = 0.

Property 2 (Semigroup Property).

The semigroup property states that one can construct a scale-space in a cascadic
manner. This property follows directly from the fact that u’ depends only on f
and the nested known data sequence (K é)éV: Bl. As long as one keeps f and this
sequence, the sparsification scale-space has an obvious semigroup structure: A
result «‘T" can be obtained in ¢4 n steps by starting from u® = f, or in n steps

by starting from u’.

Property 3 (Maximum—Minimum Principle).

Traditionally, maximum-minimum principles are related to causality in the sense
of Hummel [8]. They state that during the scale-space evolution, the greyscale
range of the gradually simplified images lies in the range of the original image. For
sparsification scale-spaces this property is always satisfied whenever the scale-
space induced inpainting operator A(w) fulfils a maximum-minimum principle:

Then the inpainting solution u’ = (uf)¥, satisfies

min f; < min f; < u! < max fi < maxf; for all 7 € J, (6)

jeJ jEK? - JEK? jeJ

since the known data sequence (Ké)é\!ol is nested and starts with K° = J.

Property 4 (Lyapunov Sequences).

Often the scale-space evolution (2) can be derived as the gradient descent evolu-
tion of some energy function E(u). For instance, in a linear setting with operator
A, one minimises the quadratic form

E(u)=iu"Au. (7)

In our inpainting setting, we have additional interpolation constraints on the set
K*, which obviously results in a larger energy. By increasing ¢, we reduce the
nested constraint set K¢, which means that we also reduce the energy gradually.
This discussion shows that energy minimisation properties of the scale-space
operator A(u) allow us to interpret the energy as a Lyapunov sequence for the
sparsification scale-space, i.e.

E@w) < E@'™) forf=1,.,N—1. (8)
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Lyapunov sequences provide important criteria for the simplification properties
of scale-spaces [25]. Interestingly, they may even exist when no energy function is
known: For instance, it is sufficient that the operator A(u) satisfies a maximum-—
minimum principle. Then the nested known data sequence (K e)é\[: 51 implies that
the total image contrast
d(u’) = maxu’ —minu! = max f; — min f; 9

() e -y ieK>§ i ieK?! i )

decreases in £. Thus, (@(ue))é\i: 61 can be regarded as a Lyapunov sequence. Re-

cently such sequences based on the total image contrast have been introduced
by Welk et al. [27] to establish scale-space properties for FAB diffusion.

Property 5 (Invariances).

Any invariance of the scale-space induced inpainting operator A(u) is directly
inherited to its sparsification scale-space.

Property 6 (Convergence to a Flat Steady-State).

A discrete sparsification scale-space consists of N images {u’,...,u™~1}. The
final image u™N~! is always obtained by inpainting with a single mask pixel.
In this case, a scale-space induced inpainting operator A(w) that implements
reflecting boundary conditions will create a flat image.

This completes our discussion of the essential properties that are satisfied
by sparsification scale-spaces. We observe that all properties are either directly
inherited from the scale-space induced inpainting operator or follow from the
nested structure of the known data sequence.

3 Specific Aspects and Experiments

Our theoretical framework from the previous section allows to define sparsifica-
tion scale-spaces for any PDE-based scale-space operator that can be expressed
by the minimisation of an energy. Therefore, many well-known filters are viable
for this task. The simplest one is the harmonic operator (also known as homo-
geneous diffusion) [9], but our model also covers higher-order linear operators
such as biharmonic inpainting [5]. Moreover, a variety of nonlinear filters are also
applicable. For instance, all operators investigated by Peter et al. [16] fit into
the framework. This includes the nonlinear isotropic Perona—Malik model [14]
as well as anisotropic filters, such as the approach of Tschumperlé and Deriche
[24] or the method of Roussos and Maragos [18].

The experiments in Fig. 1 illustrate the influence of different inpainting meth-
ods on the behaviour of the corresponding sparsification scale-space. With the
same randomly sparsified masks, both scale-space simplify the image in a similar
fashion. In both cases, we start with the original image at 100 % mask density.
The density acts as the scale parameter: With decreasing number of mask pixels,
the reconstructions gradually loose detail until only a single pixel remains and
we reach a constant steady-state. Note that this implies that for an image with
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m X n pixels, we reach a finite extinction time after m-n — 1 discrete time steps.
Visually, the inpainting results at intermediate time steps differ significantly due
to the individual properties of the operators: Harmonic inpainting creates visible
singularities at the locations of known data. They are caused by the logarithmic
singularity of the Green’s function of the 2D Laplacian. Biharmonic inpainting
yields much smoother results, since its Green’s function is continuously differen-
tiable. For more information on Green’s functions we refer the reader to [12].

In addition to the influence of the inpainting approach, sparsification scale-
spaces depend significantly on the order in which mask points are removed. The
framework from Section 2 only requires that a single pixel is removed in each
discrete time step, but it does not prescribe which one. For a given inpainting
operator, this order of removal, the sparsification path, uniquely defines the
scale-space.

On one hand, sparsification strategies can be uncommitted, such as the ran-
dom removal of one mask point per step in Fig. 1. It does not depend on the
original image in any way. By randomising the removal, we ensure that the life-
time expectation of each pixel is identical. Thus, the notion of uncommittedness
must be understood in a statistical sense. On the other hand, our framework
also allows adaptive sparsification that takes into account the image structure.
Fig. 2 shows results of a global adaptive sparsification strategy that has been
inspired by the denoising by inpainting approach of Adam et al. [1]. In each
step, we remove the single mask point that yields the smallest mean squared
error (MSE) of the reconstruction. To speed up this algorithm, we consider 200
randomly selected mask points as candidates for removal in every iteration in-
stead of an exhaustive search. Both the homogeneous and biharmonic inpainting
yield considerably different results compared to the uncommitted sparsification
path of Fig. 2. The adaptive sparsification assigns different life times to different
pixels according to their importance for the reconstruction. This preserves im-
portant features of the original image over a longer period of time. Although the
inpainting operators are still linear, this adaptive behaviour resembles nonlinear
scale-spaces such as the Perona-Malik model, where image edges selected by a
contrast parameter have a longer survival time in scale-space [14]. However, it
should be noted that the adaptive sparsification is parameter-free.

Apart from denoising by inpainting, adaptive inpainting scale-spaces are
of significant importance for image compression. Stochastic sparsification ap-
proaches similar to the one in our experiment have been proposed to identify
known data to be stored in inpainting-based codecs [11,15]. In particular, there
are variants of sparsification [15] that allow to store the corresponding masks
efficiently as a binary tree. This concept is the foundation of the most successful
inpainting-based codecs [7,20]. Thus, sparsification scale-spaces have a direct
impact on practical applications in the field of image compression.

The distinction between uncommitted and committed scale-spaces sheds
some light on an interesting additional aspect: Traditional uncommitted scale-
spaces such as the Gaussian scale-space try to remove information as quickly
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and completely as possible. Sometimes this criterion is even stated explicitly,
e.g. in Iijima’s principle of maximum loss of figure impression [10]. On the other
hand, a committed scale-space that aims at representations which are useful for
image compression tries to achieve the exact opposite: It simplifies an image
while aiming at a maximal preservation of the figure impression. It is nice and
useful that sparsification scale-spaces allow to accommodate both philosophies.

4 Conclusions and Future Work

We have introduced and analysed a new scale-space concept: sparsification scale-
spaces. They simplify a digital image via a gradual removal of pixels and inpaint
the discarded image structures. By construction, they offer a great flexibility
which lies in the freedom how their two ingredients are chosen:

— The sparsification path can be uncommitted or adaptive. In the latter
case one follows a specific task-driven strategy, which allows e.g. structure-
preserving image simplification.

— For the inpainting operator, any PDE-based scale-space operator is permis-
sible that can be derived from energy minimisation or satisfies a maximum-—
minimum principle.

Our theoretical analysis has shown that sparsification scale-spaces satisfy all
reasonable assumptions on a space- and time-discrete scale-space. They are either
inherited from the scale-space properties of the underlying inpainting operator
or they follow from the nested structure of the gradually sparsified inpainting
data.

Interestingly, sparsification scale-spaces differ from most other scale-spaces
in a number of aspects:

— The space discretisation of the image directly implies a natural time discreti-
sation: It is determined by the number of pixels. We are not aware of any
other scale-space which shares this property.

— After finitely many time steps, adaptive scale-spaces reach their finite ex-
tinction time. Apart from a few exceptions such as the total variation (TV)
flow [3] and evolutions based on mean curvature motion or its affine invariant
variant [2], this behaviour is not often met in the scale-space literature.

— Sparsification scale-spaces are perfectly suited for compression applications:
If we disregard specific coding aspects such as quantisation, an adaptive
sparsification scale-space can contain the entire family of compressed ver-
sions of the original image. This natural link between scale-space ideas and
compression concepts is new and has been made possible by the paradigm of
inpainting-based image compression. It may lay the foundations of a more
fruitful exchange of ideas between both fields, and it may also inspire novel
denoising methods.
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harmonic biharmonic
inpainted inpainted
e e

65,356 px (100%)

5,215 px (=~ 8%)

579 px (=~ 0.88%)

123 px (~ 0.18%)

1 px (=~ 0.0015%)

Fig.1: Randomly Sparsified Scale-Spaces: A sparsification with purely ran-
dom selection of the removed pixels provides the same mask for harmonic and
biharmonic inpainting. These uncommitted scale-spaces differ only due to the
inpainting operator.
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harmonic biharmonic
mask inpainted mask inpainted
el b ali

65,356 px (100%)

5,215 px (=~ 8%)

579 px (=~ 0.88%)

123 px (~ 0.18%)

1 px (=~ 0.0015%)

Fig.2: Adaptively Sparsified Scale-Spaces: An image-adaptive stochastic
sparsification leads to different masks for harmonic and biharmonic inpainting.
Important image structures such as edges are better preserved than for an un-
committed sparsification scale-spaces.
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In our future work, we are going to analyse and evaluate a broader spectrum
of representatives within the large family of sparsification scale-spaces, covering
e.g. also nonlinear methods and approaches that are not derived from a varia-
tional formulation.

It should be noted that we have restricted ourselves to discrete scale-spaces
so far. Interestingly, the entire framework can also be extended to continuous
sparsification scale-spaces. However, since their theory involves more technical
challenges, it will be treated in a journal paper.
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