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Abstract. Most scale-space evolutions are described in terms of partial
differential equations. In recent years, however, nonlocal processes have
become an important research topic in image analysis. The goal of our
paper is to establish well-posedness and scale-space properties for a class
of nonlocal evolutions. They are given by linear integro-differential equa-
tions with measures. In analogy to Weickert’s diffusion theory (1998), we
prove existence and uniqueness, preservation of the average grey value, a
maximum–minimum principle, image simplification properties in terms
of Lyapunov functionals, and we establish convergence to a constant
steady state. We show that our nonlocal scale-space theory covers non-
local variants of linear diffusion. Moreover, by choosing specific discrete
measures, the classical semidiscrete diffusion framework is identified as
a special case of our continuous theory. Last but not least, we introduce
two modifications of bilateral filtering. In contrast to previous bilateral
filters, our variants create nonlocal scale-spaces that preserve the average
grey value and that can be highly robust under noise. While these filters
are linear, they can achieve a similar performance as nonlinear and even
anisotropic diffusion equations.

Keywords: nonlocal processes, scale-space, diffusion, integro-differential
equations, well-posedness, bilateral filtering

1 Introduction

Starting with Iijima’s pioneering work in 1962 [1] and its western counterparts
by Witkin [2] and Koenderink [3] two decades later, the scale-space concept has
become an integral part of many image processing and computer vision meth-
ods. For example, it is the backbone of the widely used SIFT detector for feature
matching [4].
Scale-spaces embed an original image f into a family {Ttf | t ≥ 0} such that
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T0f = f and larger values of t correspond to simpler representations of f . Nu-
merous attempts have been made to formalise this idea and supplement it with
additional assumptions in order to restrict the scale-space evolution to a spe-
cific class of processes, or even single out a unique scale-space in an axiomatic
way. Such evolutions include linear processes such as Gaussian scale-space [1–
3, 5–7], the Poisson scale-space [8] and its generalisation to α-scale-spaces [9].
Typical representatives of nonlinear scale-spaces are given by nonlinear diffu-
sion scale-spaces [10], the morphological equivalent of Gaussian scale-space [11],
and curvature-driven evolutions such as the affine morphological scale-space [12].
Moreover, also spatio-temporal scale-spaces have been considered [13, 14], and
regularisation methods have been identified as scale-spaces [15].

Many of these processes exhibit a local behaviour and can be described in
terms of partial differential equations (PDEs) or pseudodifferential equations.
More recently, however, nonlocal processes have become very popular in re-
search. For instance, bilateral filters [16, 17] and patch-based methods [18, 19]
are widely-used in image processing applications, and classical PDEs and varia-
tional methods have been generalised to nonlocal evolutions [20]. However, less
is known about scale-space theory for nonlocal processes. Related work can be
found in [25], where the authors develop nonlocal morphological scale-spaces as
an extension of [12].

The goal of our paper is to address this issue from the point of view of dif-
fusion processes. By restricting ourselves to a class of nonlocal evolutions that
are given by linear integro-differential equations, we establish well-posedness and
scale-space results that are in analogy to the diffusion framework by Weickert
[10]. This includes existence and uniqueness, preservation of the average grey
value, an extremum principle, a large class of Lyapunov functionals, and con-
vergence to a flat steady state. We show that our framework covers nonlocal
generalisations of Gaussian scale-space as well as space-discrete diffusion scale-
spaces. Moreover, we introduce two modifications of bilateral filtering that are
in accordance with our theory and can be much more robust under noise.

Our paper is organised as follows. In Section 2 we derive theoretical results on
well-posedness and scale-space properties. The third section discusses examples
and presents experiments. Our paper is concluded with a summary in Section 4.

2 Theoretical Results

Let us begin by giving a precise formulation of the problem we are concerned
with. For this matter let Ω ⊂ RN be a bounded N -dimensional image domain,
and let µ be a locally finite Borel measure in RN . We consider the following
linear evolution process:

∂tu(x, t) =

∫
Ω

K(x,y) (u(y, t)− u(x, t)) dµ(y) in Ω̄ × [0, t0] , (1)

u(x, 0) = f(x) in Ω̄ , (2)



A Linear Scale-Space Theory for Continuous Nonlocal Evolutions 3

with the subsequent assumptions:

(NL1) Regularity: K ∈ C(Ω̄ × Ω̄) and f ∈ C(Ω̄).

(NL2) Symmetry: K(x,y) = K(y,x) in Ω̄ × Ω̄.

(NL3) Nonnegativity: K(x,y) ≥ 0 in Ω̄ × Ω̄.

(NL4) Irreducibility: There exists a finite family of µ-measurable sets F :=
{Bi ⊂ Ω : 1 ≤ i ≤ p}, such that:

(i) There exists a constant c > 0 such that K(x,y) ≥ c whenever
B ∈ F and x,y ∈ B.

(ii) Ω =
⋃p
i=1Bi and µ(Bi ∩Bi+1) > 0 for 1 ≤ i ≤ p− 1.

We will see that not all of these assumptions will be necessary for our re-
sults: (NL1) is needed for establishing well-posedness, the proof of a maximum–
minimum principle involves (NL1) together with (NL3), while preservation of the
average grey value uses (NL1) and (NL2). The existence of Lyapunov functionals
and the convergence to a constant steady state require (NL1)–(NL4).

2.1 Well-Posedness

Let us first define a solution concept for (1)–(2).

Definition 1. We say that u ∈ C(Ω̄ × [0, t0]) is a solution of problem (1)–(2) if

u(x, t) = f(x) +

∫ t

0

∫
Ω

K(x,y)(u(y, s)−u(x, s)) dµ(y) ds , 0 ≤ t ≤ t0 . (3)

This definition allows us to prove the following result.

Proposition 1 (Existence and Uniqueness). There exists a solution of (1)–
(2), and this solution is unique.

Proof. The proof is similar to the one given in [21], where the authors con-
sidered this type of processes with a special function K(x,y) = J(x − y), for
some continuous radial and symmetric function J and with µ being equal to
the Lebesgue measure. The fixed point arguments in [21] also work under the
conditions of our more general framework. In our case, we consider the operator
given by the r.h.s. of (3) defined on the space C(Ω̄ × [0, t0]). �

Remark 1. We will interpret ∂tu as the right and left derivative when t = 0
and t = t0, respectively. In this case, the unique solution u in the sense of Def-
inition 1 satisfies (1)–(2). In fact, it is not hard to verify that the expression∫
Ω
K(x,y) (u(y, s)− u(x, s)) dµ(y) is continuous with respect to the variable s.

Thus, (3) and the fundamental theorem of integral calculus imply that ∂tu exists
and that (1)–(2) hold.
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2.2 Scale-Space Properties

Now that we have established the existence of a unique solution, we are in a
position to prove a number of scale-space results that are in analogy to the ones
for anisotropic diffusion [10].

Proposition 2 (Preservation of the Average Grey Value). The solution
of (1)–(2) preserves the average grey value:

1

µ(Ω)

∫
Ω

u(x, t) dµ(x) =
1

µ(Ω)

∫
Ω

f(x) dµ(x) for 0 ≤ t ≤ t0 . (4)

Proof. Integrating (3) over Ω with respect to µ and applying the Tonelli-Fubini
theorem together with (NL2), we obtain∫
Ω

(u(x, t)−f(x)) dµ(x) =

∫ t

0

∫
Ω

∫
Ω

K(x,y)(u(y, s)−u(x, s)) dµ(y) dµ(x) ds

= −
∫ t

0

∫
Ω

∫
Ω

K(x,y)(u(y, s)−u(x, s)) dµ(y) dµ(x) ds .

(5)

This implies the result. �

Proposition 3 (Preservation of Nonnegativity). If u is a solution of (1)–(2)
with f(x) ≥ 0, then

min
(x,t)∈Ω̄×[0,t0]

u(x, t) ≥ 0 . (6)

Proof. Assume that f(x) ≥ 0 and that min(x,t)∈Ω̄×[0,t0] u(x, t) < 0. Then there
exists an ε > 0 such that the function v := u+tε has a strictly negative minimum
in some point (xm, tm) ∈ Ω̄×]0, t0]. However,

0 = ∂tv(xm, tm) = ε+

∫
Ω

K(xm,y)(u(y, tm)− u(xm, tm)) dµ(y) > 0 . (7)

This is a contradiction. �

From this last proposition we get the following maximum–minimum principle.

Proposition 4 (Maximum–Minimum Principle). If u is a solution of (1)–
(2), then

min
z∈Ω̄

f(z) ≤ u(x, t) ≤ max
z∈Ω̄

f(z) ∀ (x, t) ∈ Ω̄ × [0, t0] . (8)

Proof. To prove the first inequality, we apply Proposition 3 to problem (1)–(2)
with f replaced by v0 := f −minx∈Ω̄ f . In fact, v0 ≥ 0, and it follows that the
solution v of this problem should satisfy v ≥ 0. However, from the linearity of
(1)–(2), we also know that v = u−minx∈Ω̄ f , which gives the result. The second
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inequality can be proven in a similar way, applying Proposition 3 to problem
(1)–(2) with f replaced by maxx∈Ω̄(f)− f . �

Our next goal is to analyse the behaviour of the solution of (1)–(2) as t0 →∞.
We will need the following lemma.

Lemma 1. Let r : R→ R be a convex C2 function. If u is a solution of (1)–(2),
then d

dt

∫
Ω
r(u(x, t)) dµ(x) exists for t ∈ [0, t0] (here we mean the right and left

derivative for t = 0 and t = t0, respectively). Moreover, this expression is equal
to
∫
Ω
r′(u(x, t)) ∂tu(x, t) dµ(x).

Proof. Let t ∈ [0, t0] and define Fh(x) := 1
h (r(u(x, t+ h))− r(u(x, t))) , for t, t+

h ∈ [0, t0]. Then, since r ∈ C2, we obtain from Remark 1 that ∂tr(u(x, t)) exists
for every (x, t) ∈ Ω̄ × [0, t0] and is equal to r′(u(x, t))∂tu(x, t) = limh→0 Fh(x).
On the other hand, since u ∈ C(Ω̄ × [0, t0]), we also know that

|Fh(x)| = |r′(u(x, tx))| (9)

for some tx ∈ [0, t0] such that |tx − t| < h. Thus, we may bound Fh(x) with
a constant M > 0 which is independent of x and h. This allows us to apply
Lebesgue’s convergence theorem to obtain that

lim
h→0

∫
Ω

Fh(x) dµ(x) =

∫
Ω

lim
h→0

Fh(x) dµ(x) , (10)

as wanted. �

In what follows we will denote the constant function that is equal to the av-
erage grey value of f by

ũ(x) :=
1

µ (Ω)

∫
Ω

f(z) dµ(z) ∀ x ∈ Ω̄ . (11)

With this notation we can state the following result.

Proposition 5 (Lyapunov Functionals). Let u be the solution of (1)–(2).
For any convex C2 function r : R→ R, the expression

V (t) = Φ(u(., t)) :=

∫
Ω

r(u(x, t)) dµ(x) (12)

is a Lyapunov functional, i.e.

(i) Φ(u(., t)) ≥ Φ(ũ) for all t ≥ 0.
(ii) V ∈ C1[0,∞[ and V ′(t) ≤ 0 for all t ≥ 0.

Moreover, if r′′ > 0, then V (t) is even a strict Lyapunov functional, i.e.

(iii) For all t ≥ 0 we have that Φ(u(., t)) = Φ(ũ), if and only if u(., t) = ũ µ-a.e.
in Ω.
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(iv) If t ≥ 0, then V ′(t) = 0, if and only if u(t) = ũ µ-a.e. in Ω.
(v) V (0) = V (T ) for T > 0, if and only if ∀t ∈ [0, T ] : u(x, t) = ũ µ-a.e. in Ω.

Proof.

(i) From Jensen’s inequality and the preservation of the average grey value we
obtain that

Φ(u(., t)) =

∫
Ω

r(u(z, t)) dµ(z) ≥
∫
Ω

r

(∫
Ω

u(z, t)

µ(Ω)
dµ(z)

)
dµ(y) = Φ(ũ) .

(13)

(ii) From Lemma 1 we know that

V ′(t) =

∫
Ω

r′(u(x, t))
d

dt
u(x, t) dµ(x) . (14)

Then, from (1)–(2) we obtain that

2V ′(t) = 2

∫
Ω

∫
Ω

K(y,x) r′(u(x, t))(u(y, t)− u(x, t)) dµ(y) dµ(x)

=

∫
Ω

∫
Ω

K(y,x)(r′(u(x, t))− r′(u(y, t))) ·

· (u(y, t)− u(x, t)) dµ(y) dµ(x) (15)

where we used (NL2) for the second equality. Since r is convex we know
that r′ is nondecreasing. Therefore, the quantity (r′(u(x, t))−r′(u(y, t))) ·
· (u(y, t) − u(x, t)) is allways nonpositive and it follows from the nonneg-
ativity of K (NL3) that V ′(t) ≤ 0. Continuity of V (t) and V ′(t) follows
from the uniform continuity of u in Ω̄ × [0, t0] and (15).

(iii) If we assume that r is strictly convex, then we obtain from the strict
Jensen’s inequality that Φ(u(., t)) = Φ(ũ) if and only if u(x, t) = C µ-
a.e. for some constant C. However, from the preservation of the average
grey value (Proposition 2) we conclude that the only possibility is C = ũ,
as wanted.

(iv) From (15) and the irreducibility condition (NL4) we obtain that u is µ-a.e.
equal to a constant. However, this constant can only be ũ because of the
preservation of the average grey value. This proves the result.

(v) We use the fact that V is nonincreasing together with (iv). �

As explained in [10], Lyapunov functionals guarantee that a scale-space acts
image simplifying in many ways. By choosing specific strictly convex functions
for r, it follows that the scale-space evolution reduces all Lp norms for p ≥ 2, all
even central moments, and it increases the entropy of the image. Last but not
least, Lyapunov functionals are also useful for proving the following convergence
result.

Proposition 6 (Convergence) Let u be a solution of (1)–(2). Then

lim
t→∞

||u(t)− ũ||L2(Ω,µ) = 0 . (16)
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Proof. Let v = u − ũ be the solution of (1)–(2) when f is replaced by f − ũ.
If we consider the Lyapunov functional of Proposition 5 for the solution v, with
the particular choice r(x) = x2 in the definition (12) of V , we get that

lim
t→∞

||u(., t)− ũ||L2(Ω,µ) = ` , (17)

for some finite value ` ≥ 0, as a consequence of (i) and (ii) of Proposition 5.
Moreover, we know that∫ ∞

0

|V ′(t)|dt ≤ V (0)− lim
t→∞

V (t) <∞ . (18)

This implies that there exists a sequence ti such that limi→∞ ti = ∞ and
limi→∞ V ′(ti) = 0, or equivalently,

lim
i→∞

∫
Ω

∫
Ω

K(y,x)(u(y, ti)− u(x, ti))
2 dµ(y) dµ(x) = 0 . (19)

Now, for every B in the family F of condition (NL4) we may apply the Cauchy-
Schwartz inequality to obtain∫

B

∣∣∣∣u(x, t)− 1

µ (B)

∫
B

u(y, t) dµ(y)

∣∣∣∣2 dµ(x)

≤ 1

µ (B)

∫
B

∫
B

|u(y, t)− u(x, t)|2 dµ(x) dµ(y)

≤ 1

µ (B)

∫
B

∫
B

K(x,y)

c
|u(y, t)− u(x, t)|2 dµ(x) dµ(y) , (20)

where c > 0 is the lower bound for K in condition (NL4). Let us denote by hk(t)
the constant function defined on each Bk ∈ F of condition (NL4) that is equal
to 1

µ(Bk)

∫
Bk
u(x, t)dµ(x) for 1 ≤ k ≤ p. The last inequality and (19) imply that

||u(., ti)− hk(ti)||L2(Bk,µ) → 0 . (21)

Moreover, from (17) we know that u(., ti) is bounded in L2(Ω,µ). Therefore,
also hk(ti) is bounded. We may choose a subsequence of ti which we continue to
denote the same way, such that limi→∞ hk(ti) exists and is finite for 1 ≤ k ≤ p.
Furthermore, the quantity γ := min {µ(Bk ∩Bk+1) : 1 ≤ k ≤ p− 1} is positive
because of (NL4). Therefore, we obtain that

γ|hk(t)− hk+1(t)|2 ≤ |hk(t)− hk+1(t)|2
∫
Bk∩Bk+1

dµ(x)

= ||hk(t)− hk+1(t)||L2(Bk∩Bk+1,µ)

≤ ||u(., t)− hk(t)||L2(Bk,µ) + ||u(., t)− hk+1(t)||L2(Bk+1,µ)

(22)

for 0 ≤ k ≤ p− 1. These inequalities, together with (NL4) and (21), allow us to
conclude that all hk(ti) converge to the same constant. Hence, it follows that u
converges in L2(Ω,µ) to a constant. This implies that the value ` in (17) has to
be 0 as wanted. �
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3 Examples

3.1 Continuous Setting with Shift-Invariant Kernels

Let us consider the specific problem

∂tu(x, t) =

∫
Ω

J(x− y) (u(y, t)− u(x, t)) dy, in ]0, t0]×Ω , (23)

u(x, 0) = f(x) in Ω , (24)

with f ∈ L1(Ω) and some nonnegative radial function J ∈ C(RN ,R) such that
J(0) > 0 and

∫
RN J(x) dx = 1. Notice that since we restrict ourselves to contin-

uous initial data, i.e. f ∈ C(Ω̄), it is not difficult to check that (23) satisfies all
conditions (NL1)–(NL4). Thus, we may apply the results of the previous section,
for µ equal to the Lebesgue measure of RN .
Interestingly, this process was studied also in [21]. The authors proved that the
family of solutions uε of (23) with J replaced by an appropriate rescaled version
Jε, approximates the solution of the usual Neumann problem for homogeneous
diffusion. More precisely, if v is a solution of

∂tu = ∆u in ]0, t0]×Ω , (25)

du

dν
= 0 on ∂Ω , (26)

u(x, 0) = f(x) in Ω , (27)

where ν denotes the outer normal vector to ∂Ω, then

lim
ε→0
‖uε − v‖L∞(Ω×[0,t0]) = 0 . (28)

For this reason, the nonlocal problem (23) solves a diffusion problem. In other
words, observe that using any kernel J as specified above will always lead us
to Gaussian scale-space. This statement has its stochastic counterpart in the
central limit theorem, which tells us that an iterated application of a smoothing
kernel converges to a Gaussian. This motivates us to consider more general filters
below, where the kernel can be a space-variant function of the initial image f .

3.2 Discrete Setting

Now we discuss the case when the measure µ is a discrete measure concentrated
on a finite subset of Ω. We will focus on the one-dimensional case since the
extension to higher dimension is straightforward.

Let Ω =]0, 1[ and let h = 1
M for some fixed integer M > 1. Moreover, we define

µ as the restriction to Ω of the discrete measure that is concentrated on the set
Zh :=

{
h(z− 1

2 ) ; z ∈ Z
}

. In what follows we set ki,j := K((i−1
2 )h, (j−1

2 )h) and
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ui(t) := u((i− 1
2 )h, t) for 1 ≤ i, j ≤ M . With these choices, the problem (1)–(2)

becomes

d

dt
ui =

M∑
j=1

ki,j(uj − ui) (1 ≤ i ≤M) , (29)

ui(0) = fi (1 ≤ i ≤M) . (30)

This is a semidiscrete evolution process for the vector u := (u1, u2, ..., uM )>.
Conditions (NL1)-(NL4) imply that the matrix K = (ki,j)

M
i,j=1 is symmetric,

nonnegative, and irreducible. Notice that (29) can be written as

d

dt
u(t) = Au(t) , (31)

u(0) = f , (32)

where f = (f1, f2, ..., fM )> and A = (ai,j)
M
i,j=1 is the matrix with entries

ai,j =

{
ki,j (i 6= j) ,

−
∑
n 6=i

ki,n (i = j) . (33)

This process satisfies all the properties of the semidiscrete framework for aniso-
tropic diffusion considered in [10]. In fact, since K is a matrix, the corresponding
linear operator is Lipschitz-continuous. Moreover, K is symmetric, has nonneg-
ative entries, and is irreducible. Thus, it follows that A is Lipschitz-continuous,
symmetric, has nonegative off-diagonal entries, and is irreducible. Moreover, (33)
implies that A has zero row sums. These are the conditions required in [10].

Remarks 2.

(a) Note that the fact that in the linear case, the semidiscrete diffusion frame-
work is covered by our nonlocal continuous framework is a benefit of our
formulation in terms of measures.

(b) This also shows that Weickert’s semidiscrete diffusion theory is more general
than his continuous one, which requires local processes in terms of PDEs.

(c) Extensions to higher dimensions can be obtained by choosing Ω ⊂ RN and
the measure µn := µ× µ× ....× µ, where the product is taken n times, and
µ is a discrete measure concentrated on Zh :=

{
h(z − 1

2 ) ; z ∈ Z
}

as above.

3.3 A Scale-Space Variant of Bilateral Filtering

Bilateral filtering goes back to Aurich and Weule [16] and became popular by a
paper of Tomasi and Manduchi [17]. In a continuous notation, it filters a greyscale
image f : Ω → R by means of spatial and tonal averaging with Gaussian weights:

u(x) =

∫
Ω
gλ(|f(y)−f(x)|) gρ(|y−x|) f(y) dy∫
Ω
gλ(|f(y)−f(x)|) gρ(|y−x|) dy

, (34)
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Fig. 1. Bilateral scale-space evolution (35) of a test image (256 × 256 pixels, ρ = 5,
λ = 10). From left to right: t = 0, 500, 10000, and 200000.

where gρ(s) := exp(−s2/(2ρ2)). While bilateral filtering is a nonlocal process, it
does not preserve the average grey value. Moreover, it is typically applied in a
noniterative way.
We propose the following modification that leads to an evolution equation:

∂tu(x, t) =
1

c

∫
Ω

gλ(|f(y)−f(x)|) gρ(|y−x|)
(
u(y, t)− u(x, t)

)
dy , (35)

where c :=
∫
Ω
gρ(y) dy performs a normalisation of the spatial weighting. In

our terminology, this is a nonlocal linear scale-space with the specific kernel
K(x,y) = 1

c gλ(|f(y)− f(x)|) gρ(|y−x|) and the Lebesgue measure µ. It is
straightforward to check that it satisfies the requirements (NL1)–(NL4) of our
theory. This implies e.g. that it preserves the average grey value.

Figure 1 illustrates such a scale-space evolution. It has been obtained with an
explicit finite difference scheme. As predicted by the theory, we observe that the
image is gradually simplified. For t→∞, it converges to a flat steady state with
the same average grey value as the initial image. It is remarkable how well the
localisation of edges is preserved.

3.4 Robustified Bilateral Scale-Space

While our bilateral integro-differential equation (35) gives an interesting scale-
space evolution, its performance under noise is less favourable. The reason is
easy to understand: Noise creates large values for |f(y)−f(x)|, such that the
corresponding tonal weight gλ(|f(y)−f(x)|) becomes very small. As a result,
noisy structures are rewarded by a longer lifetime in scale-space. Similar prob-
lems are also well-known for the Perona–Malik diffusion filter [22]. Therefore,
we can also use a similar strategy to overcome this problem: Following Catté
et al. [23], we replace the image f in the argument of the tonal weight gλ by a
Gaussian-smoothed variant fσ, where σ denotes the standard deviation of the
Gaussian. Hence, our robustified bilateral evolution is given by

∂tu(x, t) =
1

c

∫
Ω

gλ(|fσ(y)−fσ(x)|) gρ(|y−x|)
(
u(y, t)− u(x, t)

)
dy . (36)
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[b]

Fig. 2. (a) Left: Noisy test image, 128 × 128 pixels. (b) Middle: After processing
with the robustified bilateral process (36) with σ = 2, ρ = 5, λ = 1.4, and t = 500. (c)
Right: After rescaling the filtered result from (b) to the greyscale interval [0, 255].

Its behaviour is illustrated in Fig. 2. We observe that this process is well-suited
for removing even a large amount of noise, while keeping the semantically im-
portant edge structures. Its performance is comparable to the edge-enhancing
anisotropic nonlinear diffusion filter from [24]. However, this is achieved with a
linear process, that does not require to struggle with the numerical challenges
of implementing anisotropic filters with a diffusion tensor.

4 Conclusions

In our paper we have established a nonlocal scale-space theory. To this end,
we have studied a general type of linear nonlocal problems and have proven
scale-space properties. We have shown that some existing diffusion methods can
be interpreted within this general formulation. More importantly we have also
introduced two modifications of bilateral filtering that satisfy our nonlocal scale-
space requirements and can be highly robust under noise.
In our future work we intend to generalise our theory from the linear to the
nonlinear setting, such that its applicability is further broadened.
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