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Abstract. Matrix fields are important in many applications since they
are the adequate means to describe anisotropic behaviour in image pro-
cessing models and physical measurements. A prominent example is dif-
fusion tensor magnetic resonance imaging (DT-MRI) which is a medical
imaging technique useful for analysing the fibre structure in the brain.
Recently, morphological partial differential equations (PDEs) for dila-
tion and erosion known for grey scale images have been extended to
three dimensional fields of symmetric positive definite matrices.

In this article we propose a novel method to incorporate adaptivity
into the matrix-valued, PDE-driven dilation process. The approach uses a
structure tensor concept for matrix data to steer anisotropic morpholog-
ical evolution in a way that enhances and completes line-like structures
in matrix fields. Numerical experiments performed on synthetic and real-
world data confirm the gap-closing and line-completing qualities of the
proposed method.

1 Introduction

Initiated in the sixties by the pioneering research of Serra and Matheron on bi-
nary morphology [23, 31], this branch of image processing has developed into a
rich field of research. Numerous monographs e.g. [17,24,32,33,34] and proceed-
ings, e.g. [16,18,22] bear witness to the variety in mathematical morphology. The
building blocks of morphological operations are dilation and erosion. These are
usually realised by algebraic set operations involving a probing set, a so-called
structuring element, e.g. [34] for details. An alternative approach to dilation is
given [1] by the nonlinear partial differential equation (PDE)

∂tu = ‖∇u‖ =
√
|∂xu|2 + |∂yu|2 (1)

with initial condition u(x, y, 0) = f(x, y). The equation mimics the dilation of a
grey scale image f with respect to a ball-shaped structuring element of growing
radius t. PDEs of this type using a continuous size parameter t for the structuring
element give rise to continuous-scale morphology [1,2,6,29,35]. Equation (1) has
been extended in two ways:
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Firstly, in [5] adaptivity has been incorporated by introducing a speed function
β = β(u) into (1),

∂tu = β(u) · ‖∇u‖ (2)

Earlier attempts towards adaptivity have been made in [20, 26] where a local
switch between dilation and erosion with a nonadaptive structuring element leads
to a so-called morphological shock filter, and in [21] introducing morphological
amoebae described in a set-theoretic framework.

Secondly, in [8] scalar continuous morphology has been extended to a PDE-
driven morphology of matrix-valued images, matrix fields for short.

Matrix fields have received increasing attention over the recent years since they
are the appropriate data type to describe anisotropy in models or measurements
of physical quantities. For instance, diffusion tensor magnetic resonance imaging
(DT-MRI) became a valuable tool in medicine for in vivo diagnosis. It results
in three dimensional tensor fields that describe the diffusive properties of water
molecules, and as such the structure of the tissue under examination.

The goal of this article is to introduce adaptivity into morphology for matrix
fields. As it turns out it is advantageous to start for this generalisation from a
scalar adaptive formulation for d-dimensional data u in form of the PDE

∂tu = ‖M(u) · ∇u‖ (3)

with ∇u as a column vector and a data dependent, symmetric, positive semidef-
inite d × d-matrix M = M(u) rather than from (2). For example, for greyvalue

images (d = 2) one has M =
(

a b
b c

)
and (3) turns into

∂tu =
√

(a∂xu + b∂yu)2 + (b∂xu + c∂yu)2 (4)

An application of the mapping (x, y)� �→ M(x, y)� transforms a sphere cen-
tered around the origin into an ellipse. So, in fact, (3) describes a dilation with
an ellipsoidal structuring element. The matrix M must contain directional infor-
mation of the evolving u, and thus it may be derived from the so-called structure
tensor. The structure tensor, going back to [14, 27, 4], is a classic tool in image
processing to extract directional information from an image. It is given by

Sρ(u(x)) := Gρ ∗ (∇u(x) · (∇u(x))�
)

=
(
Gρ ∗ (∂xiu(x) · ∂xj u(x)

))
i,j=1,...,d

(5)

Here Gρ∗ indicates a convolution with a Gaussian of standard deviation ρ, how-
ever, more general averaging procedures can be used. For more details the reader
is referred to [3] and the literature cited there.

We will make use of the extended structure tensor concept for matrix fields
as proposed in [10]. There it was used to steer an coherence-enhancing diffusion
process for matrix fields, an anisotropic filtering process that has been proposed
for scalar and colour images in [36, 37].
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In [38, 7, 13] Di Zenzo‘s approach [12] to construct a structure tensor for
multi-channel images has been extended to matrix fields yielding a standard
structure tensor (using the notation of forthcoming Section 2): Jρ(U(x)) :=∑m

i,j=1 Sρ(Ui,j(x)) This construction has been refined to a customisable struc-
ture tensor in [30].

The article has the following structure: We will briefly convey in Section 2
basic notions of matrix analysis needed to establish a matrix-valued PDE for an
adaptively steered morphological dilation process. This includes a short account
of the construction of an extended structure tensor for matrix fields. In Section
3 we introduce the steering tensor that guides the dilation process adaptively.
We explain how the numerical scheme of Rouy and Tourin is generalised to the
matrix valued setting in Section 4. We compare in our experiments adaptive and
isotropic dilation with CED-diffusion when applied to synthetic matrix fields and
real DT-MRI data sets. We report on this comparison of the results in Section
5. The remarks in Section 6 conclude this article.

2 Matrix Analysis and an Extended Structure Tensor
Concept

This section contains the key definitions for the formulation of matrix-valued
PDEs. For a more detailed exposition the reader is referred to [9].

A matrix field is considered as a mapping U : Ω ⊂ R
d −→ Symm(R) from a

d-dimensional image domain into the set of symmetric m×m-matrices with real
entries, U(x) = (Up,q(x))p,q=1,...,m . The set of positive (semi-) definite matrices,
denoted by Sym++

m (R) (resp., Sym+
m(R)), consists of all symmetric matrices A

with 〈v, Av〉 := v�Av > 0 (resp., ≥ 0) for v ∈ R
m \ {0} . This set is of

special interest since DT-MRI produces data with this property. Note that at
each point x the matrix U(x) of a field of symmetric matrices can be diagonalised
yielding U(x) = V (x)�D(x)V (x), where V (x) is a orthogonal matrix, while D(x)
is a diagonal matrix. In the sequel we will denote m × m - diagonal matrices
with entries λ1, . . . , λm ∈ R from left to right simply by diag(λi).

The extension of a function h : R −→ R to Symm(R) is standard [19]: With a
slight abuse of notation we set h(U) := V �diag(h(λ1), . . . , h(λm))V ∈ Sym+

m(R),
h denoting now a function acting on matrices as well. Specifying h(s) = |s|, s ∈ R

as the absolut value function leads to the absolut value |A| ∈ Sym+
m(R) of a

matrix A. It is natural to define the partial derivative for matrix fields compo-
nentwise:

∂ωU = (∂ωUp,q)p,q=1,...,m (6)

where ω ∈ {t, x1, . . . , xd}, that is, ∂ω stands for a spatial or temporal derivative.
Viewing a matrix as a tensor (of second order), its gradient would be a third
order tensor according to the rules of differential geometry. However, we adopt a
more operator-algebraic point of view by defining the generalised gradient ∇U(x)
at a voxel x = (x1, . . . , xd) by

∇U(x) := (∂x1U(x), . . . , ∂xd
U(x))� (7)
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which is an element of (Symm(R))d, in close analogy to the scalar setting where
∇u(x) ∈ R

d. For W ∈ (Symm(R))d we set |W |p := p
√|W1|p + · · · + |Wd|p for

0 < p < +∞. It results in a positive semidefinite matrix from Sym+
m(R), the

direct counterpart of a nonnegative real number as the length of a vector in R
d.

There will be the need for a symmetric multiplication of symmetric matrices.
We opt for the so-called Jordan product A •J B := 1

2 (AB + BA) . It produces a
symmetric matrix, and it is commutative but neither associative nor distributive.

Furthermore, for later use in numerical schemes we have to clarify the notion
of maximum and minimum of two symmetric matrices A, B. In direct anaology
with relations known to be valid for real numbers one defines [8]:

max(A, B) =
1
2
(A + B + |A − B|) and min(A, B) =

1
2
(A + B − |A − B|) (8)

where |F | stands for the absolut value of the matrix F .
With this at our disposal we formulate the matrix-valued counterpart of (3)

as

∂tU = |M(U) • ∇U |2 (9)

with an initial matrix field F (x) = U(x, 0). Here M(U) denotes a symmetric
md×md-block matrix with d2 blocks of size m×m that is multiplied block-wise
with ∇U employing the symmetrised product "•". Note that | · |2 stands for
the length of M(U) •∇U in the matrix valued sense. The construction of M(U)
is detailed in Section 3 and relies on the so-called full structure tensor.

The full structure tensor SL for matrix fields as defined in [10] reads

SL (U) := Gρ∗
(∇U ·(∇U)�

)
=
(
Gρ∗

(
∂xiU · ∂xjU

))
i,j=1,...,d

(10)

with Gρ∗ indicating a convolution with a Gaussian of standard deviation ρ.
SL (U(x)) is a symmetric md × md-block matrix with d2 blocks of size m ×

m, SL (U(x)) ∈ Symd(Symm(IR)) = Symmd(IR). Typically for the 3D medical
DT-MRI data one has d = 3 and m = 3, yielding a 9 × 9-matrix SL . It can
be diagonalised as SL (U) =

∑md
k=1 λkwkw�

k with real eigenvalues λk (w.l.o.g.
arranged in decreasing order) and an orthonormal basis {wk}k=1,...,md of IRmd.

In order to extract useful d-dimensional directional information SL (U) ∈
Symmd(IR) is reduced to a structure tensor S(U) ∈ Symd(IR) in a generalised
projection step [10] using the block operator matrix TrA := diag(trA, . . . , trA)
containing the trace operation. We set Tr := TrIm where Im denotes the m×m
unit matrix. This operator matrix acts on elements of the space (Symm(IR))d as
well as on block matrices via formal block-wise matrix multiplication,

⎛
⎝

trA · · · 0
...

. . .
...

0 · · · trA

⎞
⎠
⎛
⎝

M11 · · · M1d...
. . .

...
Md1 · · · Mdd

⎞
⎠ =

⎛
⎝

trA(M11) · · · trA(M1d)...
. . .

...
trA(Md1) · · · trA(Mdd)

⎞
⎠ , (11)

provided that the square blocks Mij have the same size as A. The projection that
is conveyed by the reduction process condenses the directional information con-
tained in SL (U), for a more detailed reasoning we must refer the reader to [10]
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for the sake of brevity. The reduction operation is accompanied by an exten-
sion operation: The Im-extension is the mapping from Symd(IR) to Symmd(IR)
conveyed by the Kronecker product ⊗ :
⎛
⎜⎝

v11 · · · v1d

...
. . .

...
vd1 · vdd

⎞
⎟⎠�−→

⎛
⎜⎝

v11 · · · v1d

...
. . .

...
vd1 · · · vdd

⎞
⎟⎠⊗

⎛
⎜⎝

Im · · · Im

...
. . .

...
Im · · · Im

⎞
⎟⎠:=

⎛
⎜⎝

v11Im · · · v1dIm

...
. . .

...
vd1Im · · · vddIm

⎞
⎟⎠(12)

This resizing step renders a proper matrix-vector multiplication with the large
generalised gradient (∇U(x))� possible. By specifying the matrix A in (11) one
may invoke a priori knowledge into the direction estimation [10]. The research on
these structure-tensor concepts has been initiated by [38, 7]. The approaches to
matrix field regularisation suggested in [11] are based on differential geometric
considerations. Comprehensive survey articles on the analysis of matrix fields
using various techniques can be found in [39].

3 Steering Matrix M(U) for Matrix Fields

With this notions we are in the position to propose the steering matrix M in
the adaptive dilation process for matrix fields. We proceed in four steps:
1. The matrix field IRd � x �→ U(x) provides us with a module field of gen-

eralised gradients ∇U(x) from which we construct the generalised structure
tensor SL (U(x)) possibly with a certain integration scale ρ. This step cor-
responds exactly to the scalar case.

2. We infer d-dimensional directional information by reducing SL (U(x)) with
trA by means of the block operator matrix TrA leading to a symmetric d×d-
matrix S, for example S = Jρ if A = Im,

S(x) := TrA

(SL (U(x))
)

(13)

3. The symmetric d × d-matrix S is spectrally decomposed, and the following
mapping is applied:

H :
{

R
d
+ −→ R

d

(λ1, . . . , λd) �−→ c
λ1+···+λd

(λd, λd−1, . . . ,
K
c · λ1)

, (14)

with constants c, K > 0. H applied to S yields the steering matrix M ,

M := H(S) (15)

Observe that the ellipsoid associated with the matrix M is flipped if com-
pared with S and, depending on the choice of K, more excentric than the
one accompanying S.

4. Finally we enlarge the d × d-matrix M to a md × md-matrix M by the
extension operation:

M = M ⊗

⎛
⎜⎝

Im · · · Im

...
. . .

...
Im · · · Im

⎞
⎟⎠ (16)
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4 Matrix-Valued Numerical Schemes

In the context of PDE-based mathematical morphology, first-order finite dif-
ference methods such as the Osher-Sethian scheme [25] and the Rouy-Tourin
method [28] are reasonable choices for solving the scalar PDE (4). We choose the
latter in our experiments. The variant we present for the sake of brevity in its
two-dimensional form reads

un+1
i,j = un

i,j + τ

(
max

(
1
hx

max
(−Dx

−un
i,j , 0

)
,

1
hx

max
(
Dx

+un
i,j , 0

))2

+ max
(

1
hy

max
(−Dy

−un
i,j , 0

)
,

1
hy

max
(
Dy

+un
i,j, 0

))2
)1/2

(17)

In the latter formulation we employ the notation un
ij as the grey value of the

image u at the pixel centred at (ihx, jhy) ∈ R
2 at the time-level nτ of the

Fig. 1. (a) Top left: 2D slice of original 3D matrix field. (b) Top right: Adaptive
dilation with of the original data with K = 25, ρ = 1 after t = 0.3. (c) Bottom left:
Standard PDE-based dilation mimicing a ball-shaped structuring element after t = 1.
(d) Bottom right: CED-filtering with ρ = 4 after t = 10.
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evolution. Additionally we use standard abbreviations for forward and backward
difference operators, i.e., Dx

+un
i,j := un

i+1,j−un
i,j and Dx

−un
i,j := un

i,j−un
i−1,j .

and spatial grid size hx, hy. This scheme approximates, in the pixel (ihx, jhy)

ux ≈ max
(

1
hx

max
(−Dx

−un
i,j , 0

)
,

1
hx

max
(
Dx

+un
i,j, 0

))
(18)

uy ≈ max
(

1
hy

max
(−Dy

−un
i,j , 0

)
,

1
hy

max
(
Dy

+un
i,j, 0

))
(19)

Using this approximations, we modify the original Rouy-Tourin scheme (17) in
an obvious manner to obtain a numerical scheme for the adaptive version of the
PDE-based dilation (3). The extension to higher dimensions poses no problem.
Since linear combinations and elementary functions such as the square, square-
root or absolute value function for matrix fields are now at our disposal it is
straightforward to define one sided differences in x-direction for 2D matrix fields
of m × m-matrices:

Dx
+Un(i, j) := Un((i + 1)hx, jhy) − Un(ihx, jhy) ∈ Symm(R) (20)

Dx
−Un(i, j) := Un(ihx, jhy) − Un((i − 1)hx, jhy) ∈ Symm(R) (21)

Fig. 2. (a) Left: 2D slice of 3D DT-MRI data set. (b) Right: Adaptive dilation of
the original data with K = 10, ρ = 1, t = 0.5.
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In order to avoid confusion with the subscript notation for matrix components we
used the notation U(i, j) to indicate the (matrix-) value of the matrix field eval-
uated at the voxel centred at (ihx, jhy) ∈ R

2. The y-direction (and z-direction
in 3D) is treated accordingly. The notion of supremum and infimum of two ma-
trices – as needed in a matrix variant of Rouy-Tourin – has been provided by
(8). Having these generalisations at our disposal a modified, adaptive version of
the Rouy-Tourin scheme is available now in the setting of matrix fields simply
by replacing grey values un

ij by matrices Un(i, j).

5 Experiments

The matrix data are visualised as an ellipsoid in each voxel via the level sets of
quadratic form {v ∈ R

2v : v�U−2(i, j)v = const.} associated with the matrix

Fig. 3. (a) Top left: Enlarged section of the original data of figure 2 showing the genu
area. (b) Top right: Adaptive dilation of the original data with K = 10, ρ = 1, t = 0.5.
(c) Bottom left: Standard PDE-based dilation mimicing a ball-shaped structuring
element with t = 0.5. (d) Bottom right: CED-filtering with ρ = 1 after t = 0.5.



PDE-Driven Adaptive Morphology for Matrix Fields 255

Fig. 4. (a) Top left: Enlarged section of the original data of figure 2 showing the
splenium area. (b) Top right: Adaptive dilation of the original data with K = 10,
ρ = 1, t = 0.5. (c) Bottom left: Standard PDE-based dilation mimicing a ball-shaped
structuring element with t = 0.5. (d) Bottom right: CED-filtering with ρ = 1 after
t = 0.5.

U(i, j) ∈ Sym+
3 (R) representing the matrix field at voxel (ihx, jhy). By using

U−2 the length of the semi-axes of the ellipsoid correspond directly with the
three eigenvalues of the matrix. Changing the constant const. amounts to a
mere scaling of the ellipsoids. Note that only positive definite matrices produce
ellipsoids as level sets of its quadratic form. In all our experiments we compare
the results of the proposed matrix-valued adaptive dilation with the isotropic
dilation [8] , and with the matrix-valued coherence-enhancing diffusion from [10].
For the explicit numerical schemes we used a time step size of 0.1, grid size
hx = hy = 1, and c = 0.01 · K in (14).

Figure 1 shows a synthetic data set of size 32×32 representing an interrupted
diagonal stripe built from cigar-shaped ellipsoids of equal size.

All methods succeed to some degree to fill the gaps. In the case of the proposed
adaptive dilation the gap is filled almost completely with tensors comparable
in size with the original ones while the width of the stripe is not altered at
all. However, the numerical scheme has a slight bias towards the directions of
the coordinate system entailing in the appearance of mild artefacts. Standard
dilation fills the gap basically as a side effect of the isotropic dilation process
which leads also to a considerable widening of the ribbon-like structure. CED for
matrix fields produces indeed small cigar-shaped ellipsoids at the location of the
gap. But the process is considerably slower than any of the dilation processes
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and the neighbouring ellipsoids become smaller due to the property of mass
conservation. Additionally an undesirable widening of the stripe is observed.

We also tested the proposed method on a real DT-MRI data set of a human
head consisting of a 128 × 128 × 38-field of positive definite matrices. Figure 2
shows the lateral ventricals in a 40 × 55 2D section before and after applying
adaptive dilation with speed parameter K = 10, integration scale ρ = 1 and
stopping time t = 0.5. For a better comparison we display two enlarged regions
of interest in Figures 3 and 4, namely the genu and the splenium areas, resp..
We observe that adaptive dilation preserves the shape of the ventricles better
than the isotropic dilation, while enhancing slightly the directional structure of
the fibre tracts surrounding the ventricles. Due to measurement errors the fibre
tracts are interrupted in the original Figures 3(a) and 4(a). These holes in the
anisotropic regions (splenium) are quickly filled by the adaptive dilation while
CED-filtering will take much longer to do so.

6 Conclusion

In this article we have presented a novel method for an adaptive, PDE-based
dilation process in the setting of matrix fields. The evolution governed by a
matrix-valued PDE is guided by a steering tensor, the construction of which
relies on an extended structure tensor concept for matrix fields. A matrix-valued
extension of the Rouy-Tourin-scheme that allows to include directional informa-
tion is employed to solve the novel PDE. Experiments on positive semidefinite
DT-MRI and synthetic data confirm that the novel adaptive dilation process
displays line-enhancing and gap-closing qualities, and as such it is superior to
standard isotropic dilation which extends structures in all directions. It is also a
valuable alternative in terms of quality and speed to coherence-enhancing diffu-
sion filtering for matrix fields, an anisotropic processes which aims at enhancing
flow-like structures as well but may suffer from dissipative effects. Future re-
search will concentrate on improving the numerical realisation of our adaptive
dilation.
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