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Abstract

Coherence-enhancing diffusion filtering is a striking application of
the structure tensor concept in image processing. The technique deals
with the problem of completion of interrupted lines and enhancement
of flow-like features in images. The completion of line-like structures
is also a major concern in diffusion tensor magnetic resonance imag-
ing (DT-MRI). This medical image acquisition technique outputs a
3D matrix field of symmetric 3× 3-matrices, and it helps to visualise,
for example, the nerve fibers in brain tissue. As any physical measure-
ment DT-MRI is subjected to errors causing faulty representations of
the tissue corrupted by noise and with visually interrupted lines or
fibers.
In this paper we address that problem by proposing a coherence-
enhancing diffusion filtering methodology for matrix fields. The ap-
proach is based on a generic structure tensor concept for matrix fields
that relies on the operator-algebraic properties of symmetric matrices,
rather than their channel-wise treatment of earlier proposals.
Numerical experiments with artificial and real DT-MRI data confirm
the gap-closing and flow-enhancing qualities of the technique pre-
sented.

Keywords: matrix field, symmetric matrix, diffusion tensor MRI, coherence-
enhancing diffusion filtering, CED, structure tensor

1 Introduction

One of the most pressing tasks in diffusion tensor magnetic resonance imaging
(DT-MRI) is the so-called fiber tracking [21]. In parts of the brain, e.g. the
corpus callosum, nerve fibers form bundles with a coherent structure. In
principle the matrix field produced by DT-MRI allows for the application
of fiber tracking techniques and hence for the accurate visualisation of the
nerve fibers. There is a vast literature on various techniques to achieve
this goal, see for example [10, 23, 8, 3, 22, 14, 11]. However, ubiquitous
measurement errors during acquisition cause gaps and interrupted fibers in
the final visualisation. It would be desirable to have a method available that
enhances flow-like patterns such as bundles of nerve fibers.
For scalar and vector-valued images a method achieving this goal is already
at our disposal: Coherence enhancing diffusion filtering [19].
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It is governed by the equation

∂tu− div (D · ∇u) = 0 in I × Ω,

∂nu = 0 in I × ∂Ω, (1)

u(x, 0) = f(x) in Ω,

where Ω ⊂ IRd is the image domain and I = [0, T [ a potentially unbounded
time interval.
To the authors‘ best knowledge, no extension of this method to matrix-valued
images, matrix fields for short, has been reported in the literature.
The essential ingredient in this equation is the diffusion tensor D of the
scalar image u which steers the diffusion process: It amplifies diffusion along
flow-like structures, and hinders diffusion perpendicular to those pattern.
Postponing the detailed construction of D to the subsequent Section 2, for
now we only remark that it is a function of the structure tensor [12] which
is given by

Sρ(u(x)) := Gρ ∗
(

∇u(x) · (∇u(x))⊤
)

=
(

Gρ ∗
(

∂xi
u(x) · ∂xj

u(x)
))

i,j=1,...,d

Here Gρ∗ indicates a convolution with a Gaussian of standard deviation ρ,
however, more general averaging procedures can be used. If ∇u(x) 6= 0 the
matrix

(

∇u(x) · (∇u(x))⊤
)

has rank one, the eigenvector ∇u(x) belongs to the only non-zero eigenvalue
|∇u(x)|2. The eigenvalues represent the contrast in the directions of the
eigenspaces. The averaging process then creates a matrix with full rank which
contains valuable directional information. Note that the averaging of the
structure tensor avoids cancellation of directional information. If one would
average the gradients instead, neutralisation of vectors with opposite sign
would occur. In many applications it is advantageous to use a presmoothed
image uσ := Gσ ∗ u instead of u in order to reduce the influence of noise
for better numerical results. The structure tensor is a classical tool in image
processing to extract directional information from an image, for more details
the reader is referred to [2] and the literature cited there.

It is not straightforward to generalise both the structure and the diffusion
tensor concept to the setting of matrix-valued images.
To fix notation in this work matrix-valued images or matrix fields M(x) are
considered as mappings from IRd into the set Symn(IR) of symmetric n× n-
matrices

M : x 7→M =
(

mi,j(x)
)

i,j=1,...,n
∈ Symn(IR) .
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and denoted by capital letters while indexed lower case letters indicate their
components.
In [20, 4] di Zenso‘s approach to a structure tensor for multi channel images
is generalised: Each channel considered as independent scalar image gives
rise to a structure tensor, then these structure tensors are summed up to
give the structure tensor of Weickert

Jρ(U(x)) :=
n

∑

i,j=1

Sρ(ui,j(x))

This construction has been refined to a customisable structure tensor in [15].
There the resulting structure tensor is a weighted sum of tensors of scalar
quantities that are now not just the channels, but other meaningful scalar
quantities derived from the matrix field. The weights are provided by the
user, and depending on the choice of weights the emerging structure tensor
has a sensitivity for certain features of the matrix field. A special constel-
lation of the weights turns the customisable structure tensor into Weickert‘s
structure tensor. It is important to mention that in case of a 3D matrix field
of 3× 3 symmetric matrices these concepts yield also 3× 3 structure tensor,
the very same order as a 3D scalar image.
Here we opt for a different approach: We assume an operator-algebraic view
on symmetric matrices as finite dimensional instances of selfadjoint Hilbert
space operators. The exploitation of the algebraic properties of matrices,
ensures proper interaction between the different matrix channels. This is
a decisive advantage over the standard componentwise treatment of vector-
valued images.
Promising proposals to generalise nonlinear regularisation methods and re-
lated diffusion filters for scalar images to matrix fields have been made in
[7, 6]. These approaches are based on a basic differential calculus for matrix
fields, which will be useful in this context as well. Other approaches to ten-
sor field regularisation have a more differential geometric background [16, 9]
where the set of positive definite matrices is endowed with a Riemannian
metric stemming form the DT-MRI field.
In this paper we will present a general concept for a large size structure
tensor that carries all the directional information of the matrix field. We
will show how this information can be deduced from this large tensor by a
reduction process. This reduction process illuminates also its connection to
the structure tensors mentioned above.
The article is structured as follows: The next Section 2 is devoted to a brief
review of coherence enhancing diffusion (CED) filtering of scalar images.
Notions necessary to construct the diffusion tensor and A basic differential
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calculus for matrix fields necessary to construct the diffusion tensor is pro-
vided in Section 3. In Section 4 we propose a novel structure tensor concept
for matrix fields, study some of its properties by investigating the connection
to already known structure tensors for matrix-valued data. We then feature
the potential of this concept by proposing a coherence enhancing diffusion
for matrix fields in Section 5. We report on the results of our experiments
with matrix-valued coherence enhancing diffusion applied to real DT-MRI
images in Section 6. Section 7 is made up by concluding remarks.

2 Synopsis of Coherence Enhancing Diffusion

The rationale behind the construction of the diffusion tensor D is as fol-
lows: The matrix Sρ(u) as the positive average of different symmetric pos-
itive semidefinite matrices has the very same property. Hence Sρ(u) has a
orthonormal system {w1, . . . , wd} of eigenvectors corresponding to the non-
negative eigenvalues µ1 ≥ µ2 ≥ . . . ≥ µd ≥ 0 indicating the contrast in each
direction. In the line defined by wd, the coherence orientation the contrast
is the least compared to other orientations, since wd belongs to the smallest
eigenvalue µd. The coherence or anisotropy of an image structure essentially
is captured in eigenvalue distribution of the structure tensor Sρ. In [18] the
quantity

κ :=
d−1
∑

i=1

d
∑

j=i+1

(µi − µj)
2

is proposed to measure coherence. Strongly differing eigenvalues result in a
large value of κ, while similar values produce a small κ-value indicating a
structure with isotropic character. The matrix D has the same eigenvectors
as Sρ, however, its eigenvectors λi are altered via the tensor transfer map H

according to
λi := H(µi) := α for i = 1, . . . , d− 1

and

λd := H(µi) :=

{

α if κ = 0,
α + (1− α) exp

(

− C
κ

)

else.

with a threshold C > 0. Note that min{λi, i = 1..d} = α > 0, which causes
D to be uniformly positive definite and enforces a diffusion no matter how
isotropic (κ ↓0) the image structure becomes.
It is our task in this paper to extend the notion of diffusion tensor from scalar
images to matrix fields. Ultimately we aim at coherence enhancing diffusion
filtering of matrix fields. To do so we have to clarify what is meant by the
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partial derivative, the gradient and, most of all, the suitable structure tensor
of a matrix field. This is done in the next section.

3 Basic Differential Calculus for Matrix Fields

In this section we provide briefly the basic definitions for the formulation of
a differential calculus for matrix fields. This material is instigated in [5] but
for a more detailed exposition the reader is referred to [7].

1. Functions of matrices. The standard definition of a function h on
Symn(IR) is given by [13]:

h(U) = V ⊤diag(h(λ1), . . . , h(λn))V ∈ Symn(IR),

if U = V ⊤diag(λ1, . . . , λn)V is the spectral/eigen decomposition of the
symmetric matrix U , and if λ1, . . . , λn lie in the domain of definition
of h. We encountered already an example of a function of a symmetric
matrix; the diffusion tensor as a function of the structure tensor Sρ

with coherence κ under the tensor transfer map H , D = H(Sρ) .

2. Partial derivatives. Let ω ∈ {x1, . . . , xd, t} stand for a spatial or
temporal variable, and set (x, t) = (x1, . . . , xd, t). h partial derivative
for matrix fields is naturally defined componentwise as the limit of a
difference quotient:

∂ωU(x, t) = lim
h→0

U((x, t) + h · ek)− U(x, t)

h

=

(

lim
h→0

uij((x, t) + h · ek)− uij(x, t)

h

)

i,j

= (∂ωuij(x, t))
i,j

where ek := (0, . . . , 0, 1, 0, . . . , 0) ∈ IRd+1 stands for the kth unit vec-
tor of space-time IRd+1. The generalisation to directional derivatives
is straight forward, then ω would denote an appropriate unit vector.
Higher order partial differential operators, such as the Laplacian, or
other more sophisticated operators, find their natural counterparts in
the matrix-valued framework in this way as well. It is worth mentioning
that for the operators ∂ω a product rule holds:

∂ω(A(x) ·B(x)) = (∂ωA(x)) · B(x)) + A(x) · (∂ωB(x)) .
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3. Generalized gradient of a matrix field. The gradient of a matrix
field with sufficiently smooth component functions is defined via

∇U(x) := (∂x1
U(x), . . . , ∂xd

U(x))⊤ ∈ (Symn(IR))d

Hence, the generalised gradient ∇U(x) at a voxel x is regarded as an
element of the module (Symn(IR))d over Symn(IR) in close analogy to
the scalar setting where ∇u(x) ∈ IRd. In the sequel we will call a map-
ping from Rd into (Symn(IR))d a module field rather than a vector field.
Note that this definition of a generalised gradient is different from one
that might be expected when viewing a matrix as a tensor (of second or-
der). According to differential geometry concepts their derivatives are
tensors of third order. However, we adopt a operator-algebraic point of
view: The matrices are self-adjoint operators that can be added, multi-
plied with a scalar, and concatenated. Thus, they form an algebra, and
we aim at consequently replacing the field IR by the algebra Symn(IR)
in the scalar, that is, IR-based formulation of differential calculus.

4. For the sake of completeness we include the formal definition of the
generalized structure tensor of a matrix field here. We will
discuss its derivation, properties and application in the next section.
The novel structure tensor for a matrix field is given by

SL (U(x)) := Gρ ∗
(

∇U(x) · (∇U(x))⊤
)

=
(

Gρ ∗
(

∂xi
U(x) · ∂xj

U(x)
))

i,j=1,...,d
. (2)

5. Symmetrised product of symmetric matrices. The product of
two symmetric matrices A, B ∈ Symn(IR) is not symmetric unless the
matrices commute. However, it is vital to our interests to have a sym-
metrised matrix product at our disposal. There are numerous options
to define a symmetrised matrix product, however, we concentrate on a
specific one known from algebra and called Jordan product:

A •J B =
1

2
(AB + BA) for A, B ∈ Symn(IR) . (3)

For commuting A and B we have A •J B = A · B. This product is
commutative and distributive but not associative. It is one half of
the anti-commutator of A and B, but due to its additive structure no
determinant product rule holds. Most important, it does not preserve
the positive semidefinitness of its arguments as the following simple
example shows:
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(

2 0
0 0

)

•J

(

1 1
1 1

)

=
1

2

((

2 2
0 0

)

+

(

2 0
2 0

))

=

(

2 1
1 0

)

with det

(

2 1
1 0

)

= −1

Remarks:
1) It should be mentioned that the logarithmic multiplication introduced in
[1] and given by A•LB := exp(log(A)+log(B)) is defined only for positive def-
inite matrices. However, the matrix-valued diffusion proposed here requires
the multiplication to be able to cope with the factor matrices being indefi-
nite. Furthermore matrix fields that are not necessarily positive semidefinite
should also be within the reach of our PDE-based filtering. Hence the loga-
rithmic multiplication is not suitable for our purpose.

2) The proposed notions for a calculus on symmetric matrix fields are ex-
tensions of the calculus of scalar multivariate functions. As such it must
be possible to regain the scalar calculus from the newly introduced matrix-
valued framework by specification. There are two ways to view scalar calculus
as a special case of the matrix calculus: Clearly, setting n = 1 turns the ma-
trix field into a scalar function. However, one can also embed the set of real
numbers IR into the set of symmetric matrices Symn(IR) by the identification
IR ∋ r ←→ r · In with the n×n identity matrix In. Hence, aside from having
a certain simplicity, it is mandatory that the proposed extensions collapse
to the scalar calculus when making the transition from scalar functions to
matrix fields in one way or the other.
We summarised the definitions from above and juxtapose them with their
scalar counterparts in the subsequent small table 3. The matrix field U(x) is
assumed to be diagonisable with U = (uij)ij = V ⊤diag(λ1, . . . , λn)V , where
V ∈ O(n), the set of all orthogonal n× n-matrices, and λ1, . . . , λn ∈ IR .
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Setting scalar valued matrix-valued

function h :



IR −→ IR
x 7→ h(x)

h :



Symn(IR) −→ Symn(IR)
U 7→ V ⊤diag(h(λ1), . . . , h(λn))V

partial ∂ωu, ∂ωU := (∂ωuij)ij
,

derivatives ω ∈ {t, x1, . . . , xd} ω ∈ {t, x1, . . . , xd}

∇u(x) := (∂x1
u(x), . . . , ∂xd

u(x))⊤, ∇U(x) := (∂x1
U(x), . . . , ∂xd

U(x))⊤,
gradient

∇u(x) ∈ IRd ∇U(x) ∈ (Symn(IR))d

structure

tensor
Gρ ∗

`

∇u(x) · (∇u(x))⊤
´

SL (U(x)) := Gρ∗
`

∇U(x) · (∇U(x))⊤
´

product a · b A •J B := 1

2
(AB + BA)

Table 1: Extensions of elements of scalar valued calculus (middle) to the
matrix-valued setting (right).

4 The Structure Tensor SL for Matrix Fields

4.1 Derivation of SL

With the terminology introduced above we infer for the directional derivative
of x 7→ U(x) in direction v ∈ Sd−1:

∂vU(x) :=
d

dh
U(x + h · v) |h=0 =

d
∑

k=1

(∂xk
uij(x)) vk

= (∇U(x))⊤







v1 In

...
vd In







= vd ∂x1
U(x) + · · ·+ vd ∂xd

U(x) ∈ Symn(IR)

This expression is a symmetric matrix but aside from that in complete anal-
ogy to the corresponding real-valued term in the scalar case. In the scalar
setting the direction of steepest descent/ascent would be be given by the
direction that optimises the directional derivative. However, in the matrix
valued setting the entries of the generalised gradient are matrices and finding
an optimal unit vector v that optimises the matrix-valued directional deriva-
tive is hindered by practical as well as theoretical obstacles: An optimisation
relies on the presence of a total ordering, but on Symn(IR) only partial order-
ing relations do exist. And even after choosing an partial ordering,e.g. the
Loewner ordering, it is not clear how to obtain the optimal v in a reasonable
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computational effort. A way out of this difficulty is the projection of the set
of symmetric matrices Symn(IR) onto the real numbers by a so-called linear
form. Each linear form on Symn(IR) is of the form of a scalar product,

M 7−→ 〈A, M〉 := trA(M) := tr(A ·M)

with a matrix A ∈ Symn(IR), [13]. Then one simply has

argmax{trA(∂vU(x)) | ‖v‖ = 1} =
1

√

∑d

1(trA(∂xi
U(x)))2

(

trA(∂x1
U(x)), . . . , trA(∂xd

U(x))
)

.

We write tr = trI . Depending on the choice of A we obtain the direction of
strongest change at one point x in the matrix field, or which boils down to the
same thing: The strongest change in the scalar image x 7−→ trA(U(x)). Ap-
parently this approach suffers from the same weakness as the direct direction
estimation in scalar images, the danger of cancellation through averaging.
This reveals the need for a structure tensor for matrix fields and also its
basic construction principle. It is close at hand to define a structure tensor
for matrix fields as follows:

SL (U(x)) := Gρ∗
(

∇U(x)·(∇U(x))⊤
)

=
(

Gρ∗
(

∂xi
U(x) · ∂xj

U(x)
))

i,j=1,...,d

Here Gρ∗ indicate a convolution with a Gaussian of standard deviation ρ or,
more general, another appropriate averaging procedure. The parameter ρ is
suppressed to avoid notational clutter. We list some immediate properties of
this construct:

1. SL (U(x)) is a symmetric nd × nd-block matrix with d2 blocks of size
n × n, SL (U(x)) ∈ Symd(Symn(IR)) = Symnd(IR). The symmetry
follows from the fact that for all i, j = 1, . . . , d

(∂xi
U(x) · ∂xj

U(x))⊤ = (∂xj
U(x))⊤ · (∂xi

U(x))⊤

= ∂xj
U(x) · ∂xi

U(x) .

2. The structure tensor SL can be diagonalised as

SL (U) =

nd
∑

k=1

ρkwkw
⊤
k

with real eigenvalues λk (w.l.o.g. arranged in decreasing order) and an
orthonormal basis {vk}i=1,...,nd of IRnd.
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The usefulness of this construction will rise and fall with an positive answer
to the following question:

How can we extract useful d-dimensional directional information from this
large structure tensor SL ?

In the case of of a structure tensor S ∈ Sym+
d (IR) for a scalar image its

eigenvectors provide all the important directional information of the image.
However, in the matrix-valued setting the eigenvectors vi of SL (U) are nd-
dimensional vectors and they lack immediate physical interpretation. Hence,
as such they do not provide really useful d-dimensional directional informa-
tion. Instead, let us find an analog to the Rayleigh quotient of S

argmax {v⊤
(

G ∗ ∇u ∇u⊤
)

v
∣

∣ v ∈ IRd, ‖v‖ = 1}

in the matrix field framework. We consider

(v1 In · · · vd In)SL (U(x))







v1 In

...
vd In







=







v2
1 Gρ ∗ (∂x1

U)2 · · · v1v2 Gρ ∗ (∂x1
U · ∂xd

U)
...

. . .
...

v1vd Gρ ∗ (∂xd
U · ∂x1

U) · · · v2
d Gρ ∗ (∂xd

U)2







Now we have to choose the real numbers v1, . . . , vd in an optimal way. Again
we are facing difficulties caused by the absence of total ordering for matrices.
In the case of a scalar image u (a matrix field with 1 × 1-matrices) the
optimal v is the unit eigenvector corresponding to the largest eigenvalue of
the structure tensor S. It will turn out to be convenient to utilise the notion
of operator matrix.
The idea is to reduce SL (U) ∈ Symnd(IR) to a structure tensor S(U) ∈
Symn(IR) in a generalised projection step employing the block operator ma-
trix

TrA :=





trA · · · 0
...

. . .
...

0 · · · trA



 (4)

containing the trace operation. Again we set Tr := TrI . This operator matrix
acts on elements of the space (Symn(IR))d as well as on block matrices via
formal blockwise matrix multiplication.




trA · · · 0
...

. . .
...

0 · · · trA









M11 · · · M1n...
. . .

...
Mn1 · · · Mnn



 =





trA(M11) · · · trA(M1n)
...

. . .
...

trA(Mn1) · · · trA(Mnn)



 ,
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provided that the square blocks Mij are compatible with trA, that means
here, have the same size as A. The reason for choosing trA as reduction
operators is their homogeneity:

trA(t M) = t trA(M) for all t ∈ IR.

Note that A = I provides the leading example since





trA · · · 0
...

. . .
...

0 · · · trA









M11 · · · M1d...
. . .

...
Md1 · · · Mdd





=





tr · · · 0
...

. . .
...

0 · · · tr









A · · · 0
...

. . .
...

0 · · · A









M11 · · · M1d...
. . .

...
Md1 · · · Mdd





The subsequent result gives a first insight into the role of this reduction
operation and its connection to other structure tensors:

Proposition: (Weickert’s Tensor as an Elementary Reduction of SL )
Let U(x) ∈ Symn(IR) be a d-dimensional matrix-field. Then the Weickert
tensor Jρ is a reduced version of SL ,

Tr SL(U) = Jρ(U) ∈ Symn(IR).

Proof: First we realise that we can disregard the convolution with a Gaus-
sian Gρ with integration scale ρ or any other linear averaging process since
the trace operation commutes with such linear mappings. Therefor we can
deal with the partial derivatives ∂xi

ui,j of the matrix components directly.
Fix p, q ∈ {1, . . . , d}. Then the (p, q)th component of Weickert’s structure
tensor is given by

Jρ(U) =
d

∑

i,j

∂xp
ui,j · ∂xq

ui,j .

However, we obtain for the (p, q)th component of the reduced version of the
large structure tensor SL(U)

tr(∂xp
U∂xq

U) =
d

∑

i=1

(

∂xp
U∂xq

U
)

i,i
=

d
∑

i=1

d
∑

j=1

(∂xp
ui,j · ∂xq

uj,i)

=
d

∑

i=1

d
∑

j=1

(∂xp
ui,j · ∂xq

uj,i),
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where the symmetry of the matrix U accounts for the last equality. This
proves the assertion.
The reduction operation is accompanied by an extension operation defined
via the Kronecker product:

Definition: (Extension via Kronecker product)
The In-extension operation is the mapping from Symd(IR) to Symnd(IR) given
by the Kronecker product ⊗:







v11 · · · v1d

...
. . .

...
vd1 · vdd






7−→







v11 · · · v1d

...
. . .

...
vd1 · · · vdd






⊗







In · · · In

...
. . .

...
In · · · In







:=







v11In · · · v1dIn

...
. . .

...
vd1In · · · vddIn






.

If the d× d-matrix (vij)ij is Kronecker-multiplied with







C · · · 0
...

. . .
...

0 · · · C













In · · · In

...
. . .

...
In · · · In






=







C · · · C
...

. . .
...

C · · · C







we speak of a C-extension.

4.2 A novel diffusion tensor D for matrix fields

Now it is possible to give an analog D to the diffusion tensor D in the
framework of matrix fields. We proceed in four steps:

1. The matrix field IRd ∋ x 7→ U(x) provides us with an module field of
generalised gradients ∇U(x) from which we construct the generalised
structure tensor SL U(x) possibly with a certain integration scale ρ.
This step corresponds exactly to the scalar case.

2. We infer reliable d-dimensional directional information by reducing
SL U(x) with trA with the help of the block operator matrix given
in (4) leading to a symmetric d × d-matrix S, for example S = Jρ if
A = In.

S :=





trA · · · 0
...

. . .
...

0 · · · trA



SL U(x) .
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3. The symmetric d×d-matrix S is spectrally decomposed, and the tensor
transfer map H is applied to S yielding the diffusion tensor D,

D := H(S) .

4. Finally we enlarge the d × d-matrix D to a nd × nd-matrix D by the
extension operation:

D = D ⊗













C · · · 0
...

. . .
...

0 · · · C













In · · · In

...
. . .

...
In · · · In












.

This last step gives another possibility to steer the filter process by the choice
of the matrix C. However, this is the subject of current research. For this
work we restricted ourselves to C = In.

5 Coherence-Enhancing Diffusion Filtering for

Matrix Fields

Now we have gathered the necessary ingredients to formulate the matrix-
valued equivalent to the scalar coherence enhancing diffusion as expressed in
equation (1).

∂tU −

d
∑

i=1

∂xi

(

D • ∇U
)

= 0 in I × Ω,

U(x, 0) = F (x) in Ω,

Note that the Jordan-multiplication in D · ∇U is understood in the block-
wise sense of partitioned matrices. Moreover, we translated the divergence
differential operator acting on a vector-valued function u = (u1, . . . , ud)
div u =

∑d
i=1 ∂xi

u into its matrix-valued counterpart acting on a module
field W ∈ Symn(IR)d by

div W =
d

∑

i=1

∂xi
W .

The numerical algorithm is inspired by the explicit scheme in [17]. We used
a matrix-valued version employing the calculus framework for matrix fields
as presented before.
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6 Experiments

We use two data sets in our numerical experiments: The artificial matrix
fields of 3×3-symmetric matrices exhibit various coherent structures ranging
from simple line-like to curved features, figures 1–4. Important is the fact
that these structures are not complete but interrupted. We will use these data
to demonstrate the gap-closing and enhancing properties of our technique.
The other matrix fields stems from a 2-D slice extracted from a 3-D DT-MRI
data set of size of a 128× 128× 30 of a human head, see Fig. 5.
The data are represented as ellipsoids via the level sets of the quadratic form
{x⊤A−2x = const. : x ∈ IR3} associated with a matrix A ∈ Sym+(3). By
using A−2 the length of the semi-axes of the ellipsoid correspond directly
with the three eigenvalues of the matrix. We have added random positive
definite matrices to the data to demonstrate the denoising capabilities of
our coherence enhancing filtering, CED-filtering for short. The eigenvectors
of this noise were obtained by choosing Gaussian-distributed numbers with
standard deviation σ = 1000.0 and taking the absolute value for positive
definiteness. The high standard deviation can be explained by the fact that
in real-world data the typical eigenvalues are in the order of magnitude of
1000. The eigenvectors of the artificial noise result in choosing three uni-
formly distributed angles and rotating the matrix by these angles around the
coordinate axes. The resulting data is shown in Fig. 2.
The artificial data set displayed in Fig. 1 imitates a crossing of nerve fibers.
Depending on the choice of the reduction matrix A in trA either the di-

agonal directed downward, A =
(

1 −1
−1 1

)

, or the one directed upward,

A =
(

1 1
1 1

)

, is given preference in the CED-filtering results. If no priority

is set, A = I, a homogeneous structure is developing in the center, as it is
expected due to the high symmetry of the image, see Fig. 1(d).
A impression of the denoising and gap-closing capabilities can be obtained
from the results in Fig. 2. The noisy version of a artificial data set with a grid-
like is CED-filtered. As before the directional preferences are conveyed by

the reduction matrices A =
(

1 0
0 0

)

for the x-direction and A =
(

0 0
0 1

)

for

the y-direction. The noise is removed and the lines in the selected direction
are getting completed.
Fig. 3 shows the results of directionally selective CED-filtering if the di-
rection of the coherent structure (here the y-direction) does not coincide
with the direction of the ellipsoids (here the x-direction). By selecting the
x-direction with a proper choice of A we allow for a the enhancement of
coherent structures, that is, the closing of lines if there is a change in this

14



x-direction. In Fig. 3(b) we have such a change, hence the present lines
in y-direction are completed. We do not have a change in y-direction (the
balls and ellipsoids have the same y-extension), hence the selection of the

y-direction via A =
(

0 0
0 1

)

triggers no enhancement at all. Therefore this

directional CED-filtering has no effect, see Fig. 3(c).
The last experiment depicted in figure 4 demonstrates that even areas with
no information may constitute a coherent structure. A matrix field with
a visually diverging structure CED-filtered without directional preferences.
The (almost) empty lines in x-direction are getting filled while the two lines
in y-direction remain untouched by the filtering. The explanation is that in
x-direction we have changes in the shape and orientation of the ellipsoids in
the vicinity of the empty lines, hence, the gap-closing quality of CED-filtering
is coming into effect. However, proceeding in y direction no changes of the
surrounding ellipsoids is discernable, rendering the CED-filtering idle in this
direction.

7 Summary and Future Work

In this paper we have developed a novel structure tensor concept for matrix
fields. This approach is based on an operator-algebraic view on matrices and
their rich algebraic properties. We have shown how to infer directional infor-
mation from this high dimensional data by specifying directional preferences,
and clarified Weickert‘s structure tensor for matrix fields as a special case of
our extended concept. An application of the new tensor concept enabled
us to develop a directionally selective coherence-enhancing diffusion filtering
of matrix fields by employing a generic differential calculus framework for
matrices. The matrix-valued CED-filtering exhibits similar behaviour as its
scalar counterpart.
Current work encompasses the investigation of further opportunities to steer
the filtering process,e.g. in the extension step, and its relation to other cus-
tomisable tensor concepts for matrix fields. Future research will focus on
further applications of the extended structure tensor concepts in image pro-
cessing for matrix fields.
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Figure 1: (a) Top left: Artificial data set of ellipsoids indicating a crossing.
(b) Top right: Effect of coherence-enhancing filtering if preference is given
to the direction (1,−1) (c) Bottom left: Effect of coherence-enhancing
filtering if preference is given to the direction (1, 1). (d) Bottom right:
Effect of coherence-enhancing filtering if no directional priority is established.
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Figure 2: (a) Top left: Original matrix field with grid-like structure. (b)
Top right: (a) polluted with truncated Gaussian noise in the eigenvalues
while the orthogonal matrices result from three Euler matrices with uniformly
distributed angles.
(c) Bottom left: Result of CED-filtering with preference on the horizon-
tal x-direction. (d) Bottom right: The same but with preference on the
vertical y-direction.
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Figure 3: (a) Left: Original image with coherent structure in y-direction and
ellipsoids pointing in x-direction. (b) Middle: Result of CED-filtering with
preference on the horizontal x-direction. (c) Right: Result of CED-filtering
with preference on the horizontal y-direction.

Figure 4: (a) Left: Artificial incomplete coherent structure. (b) Middle:
After CED-filtering with stopping time t = 0.3. (c) Right: After CED-
filtering with stopping time t = 3
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Figure 5: (a) Top: Original DT-MRI data set of a human head, 128×128×
30 voxels. (b) Left column: 2-D tensor fields extracted from this data
set, 45× 53 × 1 voxels. (c) Right column: Effect of coherence-enhancing
diffusion filtering. 19



us with the DT-MRI data set and for discussing questions concerning data
conversion.
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