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Abstract

Positive semide nite matrix elds are becomingincreasingly im-
portant in digital imaging. One reasonfor this tendency consists of
the introduction of di usion tensor magnetic resonancemaging (DT-
MRI). In order to perform shape analysis, enhancemenh or segmema-
tion of such tensor elds, appropriate image processingtools must be
deweloped. This paper extendsfundamental morphological operations
to the matrix-v alued setting. We start by presering novel de nitions
for the maximum and minimum of a set of matrices since these no-
tions lie at the heart of the morphological operations. In contrast to
naive approadies like the componernt-wise maximum or minimum of
the matrix channels, our approad is basedon the Loewner order-
ing for symmetric matrices. The notions of maximum and minimum
deduced from this partial ordering satisfy desirable properties such
as rotation invariance, presenation of positive semide niteness, and
cortinuous dependenceon the input data. We introduce erosion, di-
lation, opening, closing, top hats, morphological derivatives, shock
Iters, and mid-range lters for positive semide nite matrix-valued
images. These morphological operations incorporate information si-
multaneously from all matrix channelsrather than treating them inde-
pendertly. Experiments on DT-MRI imageswith ball- and rod-shaped
structuring elemerts illustrate the properties and performanceof our
morphological operators for matrix-v alued data.

Key Words: mathematical morphology, Loewner ordering, dilation,

erosion, opening, closing, top hats, morphological derivatives, shock
Iter, mid-range lter, matrix-valued imaging, DT-MRI.

Intro duction

1.1 Motiv ation and State-of-the-Art

For four decades,mathematical morphology has been able to respond ad-
equately to the needsof the image processingcommunity: Starting with
Matheron's and Serra’'spioneeringwork on binary morphologyin the sixties
[39, 51], generalisationgo greyscalemorphology have beendewloped in the
eighties [29, 55]. Further progresshas beenacdieved by proposalson how
to extend theseconceptsto vector-valued images[16, 37, 57] and image se-
guenceg22]. In the meartime morphological operators and lters are used
for noisesuppressiongdgedetection, shape analysis,imageenhancemenand
segmetation in a number of application elds ranging from medicalimaging
to geologicalsciences.The numerousaspects of mathematical morphology
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are well documerted in a number of monographs[32, 40, 52, 53, 54] and
conferenceproceedings[23, 33, 56]. Howewer, one aspect of currernt image

processingthat hasnot yet received su cient attention by the morphologi-
cal comrrunity is the processingof tensor-value imageswith morphological
methods. This is the goal of the presen paper. Tensor elds gainedsigni -
cant importance for at least three reasons:

First, di usion tensor magneticresonane imaging (DT-MRI) [6] con-
stitutes a modern medicalimaging technique that measuresa3 3 pos-
itiv e semide nite matrix- eld: A so-calleddi usion tensoris assigned
to eat voxel. This di usion tensor descritesthe di usiv e property of
water moleculesand as sud is intimately related to the geometryand
organisation of the tissue being examined. Water di uses preferably
along ordered tissue. Hencethe matrix eld is a valuable source of
information for the diagnosisof multiple sclerosisand strokes[45].

Second,tensor conceptshave turned out to be very fruitful in image
analysisitself [24]: The structure tensor [19], for instance, (also called
Ferstner interest operator, secondmomern matrix or scatter matrix) is
usedfor motion [8] and texture analysis[47], but alsofor cornerdetec-
tion [31]. Another exampleis tensor voting [41], which is an interesting
recer tool for segmetation and grouping.

Third, in solid medanics and civil engineeringinertia, di usion and
permittivit y tensorsand stress-strainrelationshipsare important tools
to descrile anisotropic behaviour in general.

The variety of applicationsrequiresthe dewelopmer of appropriate tools for
the processingand analysisof matrix-valued data. Just asin the scalarcase
one hasto remove noise,enhancestructures and to detect edgesand shapes
by appropriate lters.

The processingof matrix-valued imagesis a recent area of researb. The
simplest strategy consistsof treating all channelsindependerly. For DT-

MRI, this has beendone both for shift-invariant linear Iters [63 as well

as for adaptive nonlinear lters [27]. Sud strategieshave the drawbad of
ignoring any relation betweenthe di erent matrix channels. More advanced
technigues have beenproposedwhere derived joint expressionssud as the

eigervalues and eigervectors of the tensor eld [17, 46, 5§ or its fractional

anisotropy [44] are smoothed. This comesdown to scalar-or vector-valued
ltering again.

Matrix-v alued image processingmethods that truly exploit the interaction

of the di erent matrix channelshave beenintroducedfor nonlinear regulari-
sation methods and related di usion lters [58, 61]. The resulting nonlinear
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structure tensor [61] has shown its usein motion estimation [11], texture
analysis[49] and unsupervisedsegmetation [1(. Level setideasin terms of
meancurvature motion, self-snalkesand gealesicactive cortour modelshave
beengeneralisedo the matrix-valued setting in [18],and it wasalsopossible
to designmedian lters [62] and homomorphic Iters [15]for tensor elds.

In the presen paper we will introduce a framework for tensor-valued mor-
phological operations sud as dilation, erosionand a number of lters that
are basedon them. Let us rst discusswhy this is a nontrivial task.

1.2 Diculties

The conceptsof scalar-\alued morphologycannot be transferreddirectly even
to the vector-valued casessud as colour images: Componert-wise perfor-
mance of standard morphological operations might result in the corruption

of information in the image, sincethe componerts in generalexhibit a strong
correlation [2, 22].

All of the numerousattempts to dewelop satisfactory morphologicaloperators
for colour images,as well as for other vector-valued data, have to struggle
with the di cult y that morphologyis basedon the notion of minimum and
maximum. Henceit seemdgo be essetial to establishan ordering of colours
or vectors, but a generally acceptedde nition of sud an ordering is not

available. Di erent typesof orderingssud as marginal or reducedordering
[3] are reported to result in an unacceptablealteration of colour balance
and object boundariesin the image [16], or in the existenceof more than

one maximum (minimum) creating ambiguities in the output image [37].
Relations between inf-sup operations, median Iters and geometric partial

di erential equations[25] were extendedfrom the scalarto the vectorial case
in [14], while morphological Iters relying on vector ranking concepts[3] have
beenproposedin [30, 16] for noisesuppression.Clearly, the dewelopmen of
morphological operators for vector-valued imagesis decisiwely hindered by

the lack of appropriate orderingson vector spaces.

Interestingly, the situation in the matrix-valued setting is more promising on
a secondglancesince matrices have a richer analytic-algebraicor geometric
structure in comparisonto vectors:

(&) One can multiply matrices, de ne polynomials and can ewen apply
functions to matrices by meansof their eigervalue decomyosition.

(b) Real symmetric, positive de nite matrices can be graphically repre-
sented by ellipses(2 2-matrices)or ellipsoids(3 3-matrices).

Howeer, the morphological operations to be de ned have to satisfy addi-
tional conditions sud as:



() Rotational invariance.

(i) Presenation of the positive semide nitenss of the matrix eld since
DT-MRI data sets,for instance, posseghis property.

(iii) Continuous dependenceof the basic morphological operations on the
matricesusedasinput. This is of utmost importance for the de nition
of morphologicalgradierts for matrix elds.

Remarlably, the requiremen of rotational invariance already rules out a
straightforward componertwise approad asit is shovn alreadyin [12].

1.3 Our Contributions

In this paper we will introduce a novel notion of the maximum/minim um
of a nite set of positive semide nite matrices. This notion will exhibit the
above mertioned properties of rotational invariance,presenation of positive
semide nitenessand cortinuity. In de ning it we will be guided by the al-
gebraic and geometric properties of the matrices under consideration. The
conceptsof minimum and maximum of matrices put us in the position to
generalisea number of fundamertal morphologicaloperationsto the tensor-
valued setting. Thesematrix-valued morphologicaloperations are then vali-
dated by applying them to DT-MRI images.

Two suggestionshave beenmade on how to extend classicalmorphological
operations sud as dilation, erosion, opening and closingto matrix-valued
data setsin [12]. Howewer, lacking cortinuity properties of theseapproades
forestalledthe dewelopmen of morphologicalderivativesfor matrix elds. In
order to overcomethis inadequacya novel approad basedon the so-called
Loewnerorderingfor 2 2 matriceshasbeenproposedin [13]. Howeer, the
technigue usedin [13] cannot be extendeddirectly to higher-ordermatrices.
In the presem paper we use tools from corvex analysisto investigate the
Loewnerordering for symmetricn n-matriceswith n 3 and its usageto
determine morphological operators.

The article is structured as follows: The next sectionis dewted to a brief
review of the grey scalemorphological operations we aim to extend to the
matrix-valued setting: dilation, erosion, opening, closing, top hats, mor-
phological derivatives, shack Iter, and mid-range Iter. In Section 3 we
introduce the crucial max- and min-operations for matrix-valued data that
satisfy a number of useful properties. In Section4 thesenotions are usedfor
generalisingclassicalmorphological operations to the tensor-\alued setting.
We report on the results of our experimerts with various morphological op-



erators applied to real-world DT-MRI data in Section5. In Section 6 we
concludethe paper with a summary

2 Scalar-V alued Morphology

In this sectionwe brie y review the de nitions of somefundamenal scalar-
valued morphological operators that we will generaliseto the tensor-\alued
setting.

In grey scalemorphologyan imageis represeted by a scalarfunction f (x;y)
with (x;y) 2 IR% The so-calledstructuring elementis a setB  IR? that
determinesthe neighbourhood relation of pixelswith respectto a shape anal-
ysis task. Often corvex setssud as disks, ellipsesor squaresare used as
structuring elemets.

Grey scaledilation  replacesthe greywalue of the imagef (x; y) by its supre-
mum/maximum within a maskde ned by B:

(f B)(xy) = supff(x x%y ¥y9j(x%y)2Bg;

while erosion is determinedby taking the in m um/minim um:

(f B)(xy) = infff(x+x%y+y9j(x%y}2Bg:

The opening operation, denotedby , is de ned as erosionfollowed by dila-
tion:
f B=(f B) B:

Closing indicated by the symbol , consistsof a dilation followed by an
erosion:
f B=(f B) B:

These operations form the basis of many other processesn mathematical
morphology[52, 54 sud asthe white top-hatwhich is the di erence between
the original imageand its opening:

WTH(f):=f (f B):

Its dual, the blacktop-hat is the di erence betweenthe closingand the orig-
inal image,
BTH(f) = (f B) f;

while the self-dualtop-hat is the di erence betweenclosingand opening:

SDTH(f):=(f B) (f B):



In an imagethe boundariesor edgesof objects are the loci of high grey value
variations. Thesevariations can be detectedby derivative operators sud as
the gradiert or the Laplacian. Erosion and dilation are alsothe elemermary
building blocks of the basic morphologicalgradierts: The so-calledBeucher
gradient [7] is the di erence betweenthe dilation and the erosion:

%f:=(Ff B) (f B):

It is an analogto the Euclideannorm of the gradiert jr f | if animageis re-
gardedasa di erentiable function. More precisely for a di erentiable image
f and disk-shaped structuring elemen By, of radius h > 0 the expression

%, f _ (f Bn) (f Bn)

2h 2h

tendsto jr fj if h goesto zero. Obsene that jr fj equalsthe directional
derivative @f where :=r fSjr fj givesthe direction of the steepestascen

This can also be expressedas sup @f . Here S? denotesthe unit circle in
282

IR3,
We also considerthe internal gradient asthe di erence betweenthe original
imageand its erosion,

nf=f (f B);

and the external gradient asthe di erence betweenthe dilation and the orig-
inal image:
%wf=(f B) f:

In the di erentiable caseboth one-sidedgradierts alsoapproximate jr fj.
It is also possibleto de ne morphological analogsto the Laplacian f =
r >(r f). The morpholgical Laplacian [59] we consideris given by the dif-
ferencebetweenexternal and internal gradiert:

of = Off %f=(F B) 2f+(f B):

This operator is not exactly a Laplacian: It appraximates the seconddirec-
tional derivative @ f where denotesagain the direction of the steepest
slope. It allows us to distinguish between in uence zonesof minima and
maxima: Regionswith gf < 0 areregardedasin uence zonesof maxima,
while regionswith gf > Oarein uence zonesof minima. The zero-crossings
gf = 0 canbe interpreted as edgelocations[38, 28, 35|.
Morphological Laplacians are useful for designingso-calledshak lters [36,
43, 26]. The idea behind this morphologicalimage enhancemen method is



to apply dilations around maxima and erosionsaround minima:

8

<f B ( sf <0);
SBf = f ( Bf=0)1

B ( af >0)

Many variants of shack Iters can be found in the literature [1, 21, 42, 48,
50, 60. When they are applied iteratively, experimerts shav that their
steady state is given by a piecewiseconstart segmetation with discorinu-
ities (\shocks") betweenadjacern segmets.

Although not always consideredas an morphological lter we include the
mid-range Iter in our selectionof operators:

mids f := % (f B)+(f B):

3 Supremum and Inm um of a Set of
Matrices

All morphological operations in the previous section result from suitable
combinations of dilations and erosionsj.e. they comedown to maximum and
minimum operations. Thus, a suitable notion of maximum and minimum of
a set of symmetric matrices is the key to the de nition of morphological
operations for tensor images. We start with a very brief accourt of some
notions from corvex analysisnecessaryfor the following.

3.1 Notions from Convex Analysis

A subsetC of a vector spaceV is namedcone, if it is stable under addition
and multiplication with a positive scalar. A subsetB of a coneC is called
baseif everyy 2 C;y 6 0 admits a unique represetation asy = r x with

x 2 B andr > 0. We will only considera conewith a corvex and compact
base.

The most important points of a closedcorvex set are its extreme points
characterisedas follows: A point x is an extreme point of a convex compact
subsetS V of a vector spaceV if and only if S nfxg is still convex.
The set of all extremepoints of S is denotedext(S). All extremepoints are
necessarilyboundary points, ext(S)  bd(S). Accordingto the theoremsof
Minkowski or Krein-Milman ead corvex compactset S in a spaceof nite

dimension can be reconstructedas the set of all corvex combinations of its
extreme points [4, 34]:

S = corvexhull (ext(S)):

7



We will explore thesenotions in connectionwith Sym(n), the vector space
of symmetricn n-matriceswith real enries.

3.2 The Cone of the Loewner Ordering

Sym(n) is endaved with the scalar product bA; Bi := g trace(A>B): The
correspnding norm is the Frobenius norm for matrices: kAk = a;.
There is also a natural partial ordering on Sym(n), the so-called I_Li);/vner
ordering de ned via the coneof positive semide nite matrices Sym* (n) by

A;B2Symn): A B: A B 2Sym(n)

i.e. if andonly if A B is positive semide nite.

Note that this partial ordering is not a lattice ordering, that is to say, the
notion of a unique suprenum and in m um with respect to this ordering does
not exist [9].

The (topological)interior of Sym" (n) is the coneof positive de nite matrices,
while its boundary bd(Sym(n)) consistsof all matrices in Sym(n) with a
rank strictly smaller than n. It is easyto seethat, for example, the set
fM 2 Sym'(n) : trace(M) = 1g is a corvex and compact baseof the cone
Sym' (n). Furthermore, it is known [4] that the matrices vv> with unit
vectorsv 2 IR", kvk = 1, are the extreme points of the setfM 2 Sym" (n) :
trace(M) = 19 [4]. They have by constructionrank 1 and for any unit vector
vwe nd vvv = v kvk? = v which implies that 1 is the only non-zero
eigervalue. Hencetrace(vv”)= 1. Becauseof this extremal property the set
of matricesvv”> with kvk = 1 carriesthe complete information about the
baseof Loewnerordering cone:

convexhull(fvv> : v 2 IR"; kvk = 1g) is a basefor the Loewner ordering
cone.

The penumbia P(M) of a matrix M 2 Sym(n) is the set of matricesN that
are smallerthan M w.r.t. the Loewnerordering:

PM)=fN2Symnh):N Mg=M Sym'(n);

where we used the customary notation a+ rS = fa+r s:s 2 Sg
for a point a 2 V, a scalarr and a subset S V. Using this geo-
metric description the problem of nding the maximum of a set of matri-

imal matrix A that dominatesall A; w.r.t the Loewnerordering. Howeer,



the coneitself is too complicated a structure to be handled directly. In-

stead we assaiate with ead matrix M 2 Sym(n) a hall in the subspace
fA : trace(A) = Og of all matriceswith zerotrace asa completelydescriptive
set We will assumefor the sale of simplicity that trace(M) 0. This ball

is constructedin two steps: First, from the statemeris above we infer that

the set M trace(M) convexhullfvv® :v 2 IR;kvk = 1g is a basefor

P (M) cortained in the subspacef A : trace(A) = 0g. We obsene that the

identity r’r@trix E is perpendicular to the matrices A from this subspace,
hA;Ei =  trace(A) = 0, and hencethe orthogonal projection of M onto

fA :trace(A) = Og is given by

trace(M) E-
- .

m:= M (1)

Second,the extreme points of the baseof P(M) are lying on a spherewith
certer m and radius

r
r:= kM traceM)vv> mk= traceM) 1 %: (2)
Consequetly, if the certer m and radius r of a spherein fA 2 Sym(n) :

trace(A) = 0Og are given then the vertex M of the assaiated perumbra
P (M) is obtained by

r 1
M=m+—-¢g——E: (3)
n
With this information at our disposal, we can reformulate the task of nding
a suitable maximal matrix A dominating the matricesfA4;:::;AnQ: The
smallest sphereenclosingthe spheresassaiated with fA;:::; Ang deter-

minesthe matrix A that dominatesthe A;. It is minimal in the sensethat
there is no smalleronew.r.t. the Loewnerordering which hasthis \covering
property” of its perumbra.

This is a non trivial problem of computational geometryand we tackle it by
usinga sophisticatedalgorithm implemerted by B. Gaertner[20]. Givena set
of points in IRY it is capableof nding the smallestball enclosingthesepoints.
Hencefor eaty i = 1;:::;m we sample within the set of extreme points
fA; trace(Aj)vv” g of the baseof P(A;) by expressingv in 3d-spherical
coordinates,v = (sin cos ;sin sin ;cos )with 2[0;2 [; 20 [.

It is quite instructive to considerthe casen = 2 which can be visualisedby
embedding Sym(2) in IR via

1
A= (a)ij=12 ! P—é (2agp; @  agi;ann + aj)”
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as it is indicated in Figure 1(a). The transform is an isometry and maps
fA 2 Sym(2) : trace(A) = Og onto the x-y-plane. The extreme points are
the matrices vw> with v = (cos'; sin') where' 2 [0;2 [. Hencethe
aforemernioned descriptive sets are discsin the x-y-plane determining the
perumbras asseiated with the setof matrices. The perumbras of the matri-

represets the desiredmaximal matrix A. This minimal coneis found by cal-
culating the smallestcircle, its descriptive set, enclosingthe discsstemming

The geometricpoint of view allows us to justify the usageof the Loewner
ordering. To this end recall the formula

1 1. .
max(ay; a2) = > (a1 + &) + é]al a : (4)

Then an elemetary calculation in the casen = 2 (providing the smallest
enclosingcircle of two circles) revealsthat the maximal matrix dominating
A; and A, obtained through

1 1. .
maX(Al;Az) = é (A]_ + Az) + EJAl Azj

indeedcoincideswith the maximal matrix inducedby the Loewnerordering.
This demonstratesthat it is the Loewner ordering that stands behind the
natural generalisationof this \algebraic maximum” in (4) to symmetric ma-
trices. Note that an extensionof this algebraicapproad to setsof symmetric
matrices with more than two elemeits is not feasible.

We summarisethe above construction in four steps: In order to determine

the maximal matrix A to a given setof matricesfAq;:::;Ang
1. calculatetheir projectionsa;, i = 1;:::;m accordingto (1),
2. determine the radii ri, i = 1;:::;m, of the basesof their perumbras

through (2),

3. determine the certre and radius of the smallest ball enclosingthese
bases,

4. recover the vertex of the assaiated perumbral conevia formula (3).
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This de nition is in fact rotationally invariant, that means,it satis es

for any orthogonal matrix V.
To seethis we rst recall that

trace(VMV~) = trace(M)

for any orthogonal matrix V. Hencethe radii of the basesare unaltered by
the V accordingto (2). In view of (1) the orthogonal projection m;, the
certres of the spheres,undergo the sametransformation. Therefore their
smallestenclosingball ewlvesfrom the original one by the samerotational
transformation. Finally, the vertex of the assaiated perumbral coneis just a
rotated versionof the original vertex as (3) indicates. Also positive semidef-
initenessis preserve by construction:

max(A1;::;Am) Aj 0 for i=1::;m:

Finally, the above maximum of symmetric matrices degendscontinuously on
the input matrices since the assaiated projections and radii do so as the
formulas (1) and (2) shav. By its very de nition the smallestenclosingball,
that is its certre and radius, as well as the assaiated perumbra with its
vertex (3) depend cortinuously on its input points.

We do not rely on the relation min(a;;a,) = %(a1 + ap) %jal ayj
with real numbersa;; a, for the de nition of an minimum, becauseét would
lead to a notion which doesnot presene positive semide niteness. Instead
we take advantage of the relation

min(A;;:::Am) = max Ap L An t

The rotational invarianceof this notion of an maximum carriesover from the
maximum sinceinversionof a matrix is a rotationally invariant operation:

(V>MV) = v IM vt =vVv'M v,

due to the orthogonality of the rotation matrix V.
Inversionalsopresenesthe positivenesof matrices: If the eigervalues 4,..., ,
of a matrix M are positive, then so are the eigervalues ,*,..., ;1 ofM 1.
At last, the continuity of the matrix inversion ensuresthe cortinuity of the
minimum of matrices de ned above.
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4 Tensor-V alued Morphology

With thesenotions of minimum and maximum at our disposalthe de nitions
of the morphologicaloperationsfrom Section2 carry over essetially verbatim
with one exception: The morphologicalLaplacian g asde ned in Section
2 gives a matrix in the tensor-valued setting. We make use of the trace of
the morphologicalLaplacian to steerthe tensor-valued shock lter

g f B (trace( gf) < 0);

(trace( gf) = 0);
B (trace( gf) > 0);

SBfi;j = S f
- f

where subscriptsi;j = 1;2 indicate the componenrs of the correspnding
matrices. It should be noted that unlike in the scalar-alued setting the
minimum/maximum de nitions arenot assiative in the tensorcase.Thusa
semi-groupproperty of the deriveddilation and erosioncannotbe guararteed.
Howe\er, this has no e ects as long as these morphological operations are
not iterated. It is alsoworth noting that the matrix-valued morphological
gradiert approximates Sup ,.(@f ) although it is no longer a particular
directional derivative.

Positive de nite matricesA 2 IR® 3 can be visualisedas ellipsoids
fx2 IR®:x”A % = 1g;

that is asa level set of the quadratic form x” A 2x. In this geometriccortext
the minimum is represeted by an ellipse that is cortained in ead of the
ellipsesof the given set of matrices. The ellipserepreseting the maximum
surroundsall ellipse of the matrix set.

There is a natural interpretation of this ellipsoid in the cortext of di usion
tensors: Assuming that a particle is initially located in the origin and is
subject to the di usivit y A, then the ellipsoid encloseghe smallestvolume
within which this particle will be found with somerequired probability after
a short time interval. The minimum and maximum of two positive de nite
2 2 matricesare displayedin Figure 1.

5 Exp erimen tal Results

For our numerical experimerts we usea 128 128 30 eld of 3-D tensors
originating from a positive de nite 3-D DT-MRI data set of a human head.
For detailed information about the acquisition of this data type the reader
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Figure 1: (a) Left: The conecorrespndingto the Loewnerconedepictedin
IR®. (b) Middle: Perumbras of various matricestogether with the smallest
covering perumbra. The tip of this perumbra marks the maximum of the
matrices under consideration. (¢) Right: The maximum (largest ellipse)
and minimum (smallestellipse) of two 2  2-matrices.

is referredto [5] and the literature cited there.

Figure 2 (a) exhibits a 128 128 layer of thesedata while (b) displays an
enlarged section near the upper right corner of (a). We will visualise the
e ect of the various morphological operations mertioned above by having a
closerlook at this very section.

The data arerepreseted asellipsoidsvia the level setsof the quadratic form
fx>A 2x : x 2 IR%g asswiated with a matrix A 2 Sym* (3). In using A 2
the length of the semi-axef the ellipsoid correspnd directly with the three
eigervaluesof the positive de nite matrix. A technical issueis that our data
set cortains not only positive de nite matrices. Becauseof the quartisation

there are singular matrices (particularly, a lot of zero matrices outside the
head segmet) and even matrices with negative eigervalues. The negative
values are of very small absolute value, and they result from measuremen
imprecisionand quartisation errors. While sud valuesdo not posea problem
in the dilation process,the erosion, relying on inversesof positive de nite

matrices, hasto be regularised. Instead of the exact inverseA ! of a given
matrix A we use(A+ ") !

Figure 3 shows dilations while Figure 4 displays erosionswith three di erent

structuring elemetts, a stencil appraximating a disk of radius 2, indicated
by BSE(2), a rod-shaped stencil in y-direction of length 3 and \thic kness"
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1, and a similar stencil in z-direction, denoted by y-RSE(3) and z-RSE(3),
respectively. The z-direction is perpendicularto the imageplane. Hencethe
morphological operations utilizing z-RSE(3) and BSE(2) involve layers not
displayed here.

As known from scalar-alued morphology the shape of details in the di-
lated and eroded imagesmirrors the shape of the structuring elemen. In
agreemeh with the scalar valued casewe obsene dilation to result in an
extensionof areaswith matrices having relatively large eigervalues,that is,
large semi-atisesof the represeting ellipsoids. Clearly this extensionis more
prominert for the structuring elemen BSE(2) in comparisonwith y-RSE(3)
and z-RSE(3).

We will obsenethis e ect in general:the impact of a morphologicaloperation
is more pronouncedwhen BSE(2) is usedthan in the caseof y-RSE(3) and
z-RSE(3) sincethe rst structuring elemen cortains more voxels.

As expected mid-range ltering resultsin blurring of the original image, see
Figures 5. Generally speaking, the larger the structuring elemen, the more
pronouncedthe blurring e ect.

Figures6 and 7 display the results of openingand closingoperationswith the
three structuring elemens. In good analogyto their scalar-\alued courter-
parts, both operationsrestitute the coarseshape and sizeof structures while
eliminating small-scaledetails formed by small (closing) or large (erosion)
values,respectively.

The top hat Iters can be seenin Figures 8, 9, and 10. As in the scalar-
valued case,the white top hat (Figure 8) is sensitive for small-scaledetails
formed by valuesof high magnitude, i.e. matriceswith generallylarge eigen-
values. At locationswheresud details are presen, the matricesin the white
top-hat image are quite large. The black top hat (gure 9) exhibits con-
trary behaviour, responding with high valuesto small-scaledetails involving
matrices with relatively high anisotropy.

That they correspndindeedto two complemerary classe®f detailsbecomes
clear from the third top-hat Iter, the self-dual top-hat. It is the sum of
the white and black top hats which is also apparert from Figure 10. Note
that ead of the three top hats eliminatesthe matricesin the prominernt and
homegenousreain the northern certral part of the original image2(b). This
relatively large area violates the condition of being a \small-scale detail\,
hencethe top hats output matricesthat aretoo small to be displayed.
Figures13,12,and 11 shov morphologicalderivative operators. Just astheir
scalaranalogs,internal and external morphologicalgradierts behave similar,
both reveal a sensitivity for edge-lile structures. The Beuder gradiert is the
sum of the external and internal gradiert. This washesout the information
provided by the \one-sided\ gradierts. A similar e ect is obsened in scalar
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Figure 2: (a) Left: A sliceof a 3-D tensor eld extracted from a DT-MRI
data setof a humanhead. (b) Right: Enlargemen of a sectionin the upper
right cornerof (a).

morphology

The Laplacian , which is computed as the di erence of the external and
internal gradiert, producespositive de nite matrices as well as inde nite

and negative de nite ones. This is the explanation for the void areasin the
images14: non-positive de nite matrices cannot be displayed as ellipsoids
and henceare omitted. Figure 15 demonstrateshow the Laplacian can be
usedto cortrol a shock lter. While applying dilation in pixels where the
trace of the Laplacian is negative, it useserosionwhere\er the trace of the
Laplacianis positive. The result is an ampli cation of the structures presen
in the original image 2(b) leadingto a segmetation-lik e output.

All the examplesof morphological operators feature strong dependenceon
the type and shape of the employed structuring elemen. This is typical for
morphologyboth in the scalar-and in the matrix-valued case.And it is this
feature that constitutes the versatility of morphologicaltechniques.

6 Conclusions

In this paper we have extendedfundamerial conceptsof mathematical mor-
phology to the caseof 3-dimensional matrix-valued data. Based on the
Loewner ordering for symmetric matrices novel notions of maximum and
minimum of a set of symmetric 3 3-matrices have been proposed. These
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Figure 6: (a) Left: Openingwith BSE(2) stencil. (a) Middle: Samewith
y-RSE(3) stencil. (b) Right: Samewith z-RSE(3) stencil.

Figure 7: (a) Left: Closingwith BSE(2) stencil. (a) Middle: Samewith
y-RSE(3) stencil. (b) Right: Samewith z-RSE(3) stencil.

Figure 8: (a) Left: White top hat with BSE(2) stencil. (a) Middle: Same
with y-RSE(3) stencil. (b) Right: Samewith z-RSE(3) stencil.
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Figure 9: (a) Left: Black top hat with BSE(2) stencil. (a) Middle: Same
with y-RSE(3) stencil. (b) Right: Samewith z-RSE(3) stencil.

Figure 10: (a) Left: Self-dualtop hat with BSE(2) stencil. (a) Middle:
Samewith y-RSE(3) stencil. (b) Right: Samewith z-RSE(3) stencil.

Figure 11: (a) Left: Beuder-gradien with BSE(2) stencil. (a) Middle:
Samewith y-RSE(3) stencil. (b) Right: Samewith z-RSE(3) stencil.
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Figure 12: (a) Left: Internal-gradiert with BSE(2) stencil. (a) Middle:
Samewith y-RSE(3) stencil. (b) Right: Samewith z-RSE(3) stencil.

Figure 13: (a) Left: External-gradiert with BSE(2) stencil. (a) Middle:
Samewith y-RSE(3) stencil. (b) Right: Samewith z-RSE(3) stencil.

Figure 14: (a) Left: Morphological Laplacian with BSE(2) stencil. (a)
Middle: Samewith y-RSE(3) stencil. (b) Right: Samewith z-RSE(3)
stencil.
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Figure 15: (a) Left: Shack Itering with BSE(2) stencil. (a) Middle: Same
with y-RSE(3) stencil. (b) Right: Samewith z-RSE(3) stencil.

notions extendthe correspnding scalar-\alued concept. They exhibit invari-
ance,positivity, and cortinuity propertiesessetial for their usein the design
of morphologicaloperationsfor matrix-valued data. For this reasonwe have
succeededo generalisenot only standard morphologicaloperationsbut also
morphologicalderivativesand shack lters to the matrix-valuedsetting. The
technique deweloped for this purposeis considerablymore generaland sus-
tainable than former approathesfor the caseof 2 2-matricesintroducedin
[12]. The extendedapproad holdsthe potential to cope with 4 4-matrices
or larger.

In the experimertal part we have cortrasted three types of structuring el-
emeris with respect to their e ect on actual 3D-DT-MRI data. Very sat-
isfyingly they feature the same characteristics as their scalar-\alued coun-
terparts. In future investigationswe will explorethe lItering capabilities of
various operators within the wide framework of morphology In doing sowe
will apply morphologicaloperators not only to positive de nite matrix elds
but alsoto inde nite/negativ e de nite matrix data sets.
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