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Abstract

Positive semide�nite matrix �elds are becoming increasingly im-
portant in digital imaging. One reasonfor this tendency consistsof
the introduction of di�usion tensor magnetic resonanceimaging (DT-
MRI). In order to perform shape analysis,enhancement or segmenta-
tion of such tensor �elds, appropriate image processingtools must be
developed. This paper extendsfundamental morphological operations
to the matrix-v alued setting. We start by presenting novel de�nitions
for the maximum and minimum of a set of matrices since these no-
tions lie at the heart of the morphological operations. In contrast to
naive approaches like the component-wise maximum or minimum of
the matrix channels, our approach is based on the Loewner order-
ing for symmetric matrices. The notions of maximum and minimum
deduced from this partial ordering satisfy desirable properties such
as rotation invariance, preservation of positive semide�niteness, and
continuous dependenceon the input data. We introduce erosion, di-
lation, opening, closing, top hats, morphological derivatives, shock
�lters, and mid-range �lters for positive semide�nite matrix-v alued
images. These morphological operations incorporate information si-
multaneously from all matrix channelsrather than treating them inde-
pendently. Experiments on DT-MRI imageswith ball- and rod-shaped
structuring elements illustrate the properties and performanceof our
morphological operators for matrix-v alued data.

Key W ords: mathematical morphology, Loewner ordering, dilation,
erosion, opening, closing, top hats, morphological derivatives, shock
�lter, mid-range �lter, matrix-v alued imaging, DT-MRI.

1 In tro duction

1.1 Motiv ation and State-of-the-Art

For four decades,mathematical morphology has been able to respond ad-
equately to the needsof the image processingcommunity: Starting with
Matheron's and Serra'spioneeringwork on binary morphology in the sixties
[39, 51], generalisationsto greyscalemorphologyhave beendeveloped in the
eighties [29, 55]. Further progresshas been achieved by proposalson how
to extend theseconceptsto vector-valued images[16, 37, 57] and imagese-
quences[22]. In the meantime morphologicaloperators and �lters are used
for noisesuppression,edgedetection,shapeanalysis,imageenhancement and
segmentation in a number of application �elds ranging from medical imaging
to geologicalsciences.The numerousaspects of mathematical morphology
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are well documented in a number of monographs[32, 40, 52, 53, 54] and
conferenceproceedings[23, 33, 56]. However, one aspect of current image

processingthat has not yet received su�cien t attention by the morphologi-
cal community is the processingof tensor-valued imageswith morphological
methods. This is the goal of the present paper. Tensor�elds gainedsigni�-
cant importance for at least three reasons:

� First, di�usion tensor magnetic resonance imaging (DT-MRI) [6] con-
stitutes a modern medicalimaging techniquethat measuresa 3� 3 pos-
itiv e semide�nite matrix-�eld: A so-calleddi�usion tensor is assigned
to each voxel. This di�usion tensor describes the di�usiv e property of
water moleculesand as such is intimately related to the geometryand
organisation of the tissue being examined. Water di�uses preferably
along ordered tissue. Hence the matrix �eld is a valuable sourceof
information for the diagnosisof multiple sclerosisand strokes[45].

� Second,tensor conceptshave turned out to be very fruitful in image
analysisitself [24]: The structure tensor [19], for instance,(also called
F•orstner interest operator, secondmoment matrix or scatter matrix) is
usedfor motion [8] and texture analysis[47], but alsofor cornerdetec-
tion [31]. Another exampleis tensor voting [41], which is an interesting
recent tool for segmentation and grouping.

� Third, in solid mechanics and civil engineeringinertia, di�usion and
permittivit y tensorsand stress-strainrelationshipsare important tools
to describe anisotropic behaviour in general.

The variety of applications requiresthe development of appropriate tools for
the processingand analysisof matrix-valued data. Just as in the scalarcase
onehas to remove noise,enhancestructures and to detect edgesand shapes
by appropriate �lters.
The processingof matrix-valued imagesis a recent area of research. The
simplest strategy consistsof treating all channels independently. For DT-
MRI, this has been done both for shift-invariant linear �lters [63] as well
as for adaptive nonlinear �lters [27]. Such strategieshave the drawback of
ignoring any relation betweenthe di�erent matrix channels. More advanced
techniqueshave beenproposedwhere derived joint expressionssuch as the
eigenvaluesand eigenvectors of the tensor �eld [17, 46, 58] or its fractional
anisotropy [44] are smoothed. This comesdown to scalar- or vector-valued
�ltering again.
Matrix-v alued image processingmethods that truly exploit the interaction
of the di�erent matrix channelshave beenintroducedfor nonlinear regulari-
sation methods and related di�usion �lters [58, 61]. The resulting nonlinear
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structure tensor [61] has shown its use in motion estimation [11], texture
analysis[49] and unsupervisedsegmentation [10]. Level set ideasin terms of
meancurvature motion, self-snakesand geodesicactive contour modelshave
beengeneralisedto the matrix-valuedsetting in [18], and it wasalsopossible
to designmedian �lters [62] and homomorphic�lters [15] for tensor �elds.
In the present paper we will introduce a framework for tensor-valued mor-
phological operations such as dilation, erosionand a number of �lters that
are basedon them. Let us �rst discusswhy this is a nontrivial task.

1.2 Di�culties

The conceptsof scalar-valuedmorphologycannotbetransferreddirectly even
to the vector-valued casessuch as colour images: Component-wise perfor-
manceof standard morphologicaloperations might result in the corruption
of information in the image,sincethe components in generalexhibit a strong
correlation [2, 22].
All of the numerousattempts to developsatisfactorymorphologicaloperators
for colour images,as well as for other vector-valued data, have to struggle
with the di�cult y that morphology is basedon the notion of minimum and
maximum. Henceit seemsto be essential to establishan ordering of colours
or vectors, but a generally acceptedde�nition of such an ordering is not
available. Di�eren t typesof orderingssuch as marginal or reducedordering
[3] are reported to result in an unacceptablealteration of colour balance
and object boundariesin the image [16], or in the existenceof more than
one maximum (minimum) creating ambiguities in the output image [37].
Relations between inf-sup operations, median �lters and geometric partial
di�erential equations[25] wereextendedfrom the scalarto the vectorial case
in [14], while morphological�lters relying on vector ranking concepts[3] have
beenproposedin [30, 16] for noisesuppression.Clearly, the development of
morphological operators for vector-valued imagesis decisively hindered by
the lack of appropriate orderingson vector spaces.
Interestingly, the situation in the matrix-valuedsetting is morepromising on
a secondglancesincematrices have a richer analytic-algebraicor geometric
structure in comparisonto vectors:

(a) One can multiply matrices, de�ne polynomials and can even apply
functions to matrices by meansof their eigenvalue decomposition.

(b) Real symmetric, positive de�nite matrices can be graphically repre-
sented by ellipses(2 � 2-matrices)or ellipsoids(3 � 3-matrices).

However, the morphological operations to be de�ned have to satisfy addi-
tional conditions such as:
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(i) Rotational invariance.

(ii) Preservation of the positive semide�nitenss of the matrix �eld since
DT-MRI data sets,for instance,possesthis property.

(iii) Continuous dependenceof the basic morphological operations on the
matricesusedas input. This is of utmost importancefor the de�nition
of morphologicalgradients for matrix �elds.

Remarkably, the requirement of rotational invariance already rules out a
straightforward componentwise approach as it is shown already in [12].

1.3 Our Con tributions

In this paper we will introduce a novel notion of the maximum/minim um
of a �nite set of positive semide�nite matrices. This notion will exhibit the
above mentioned properties of rotational invariance,preservation of positive
semide�nitenessand continuity. In de�ning it we will be guided by the al-
gebraic and geometricproperties of the matrices under consideration. The
conceptsof minimum and maximum of matrices put us in the position to
generalisea number of fundamental morphologicaloperations to the tensor-
valued setting. Thesematrix-valued morphologicaloperationsare then vali-
dated by applying them to DT-MRI images.
Two suggestionshave beenmade on how to extend classicalmorphological
operations such as dilation, erosion, opening and closing to matrix-valued
data setsin [12]. However, lacking continuity properties of theseapproaches
forestalledthe development of morphologicalderivativesfor matrix �elds. In
order to overcomethis inadequacya novel approach basedon the so-called
Loewnerordering for 2� 2 matriceshasbeenproposedin [13]. However, the
technique usedin [13] cannot be extendeddirectly to higher-ordermatrices.
In the present paper we use tools from convex analysis to investigate the
Loewnerordering for symmetric n � n-matrices with n � 3 and its usageto
determinemorphologicaloperators.
The article is structured as follows: The next section is devoted to a brief
review of the grey scalemorphological operations we aim to extend to the
matrix-valued setting: dilation, erosion, opening, closing, top hats, mor-
phological derivatives, shock �lter, and mid-range �lter. In Section 3 we
introduce the crucial max- and min-operations for matrix-valued data that
satisfy a number of usefulproperties. In Section4 thesenotions are usedfor
generalisingclassicalmorphologicaloperations to the tensor-valued setting.
We report on the results of our experiments with various morphologicalop-
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erators applied to real-world DT-MRI data in Section 5. In Section 6 we
concludethe paper with a summary.

2 Scalar-V alued Morphology

In this sectionwe briey review the de�nitions of somefundamental scalar-
valued morphologicaloperators that we will generaliseto the tensor-valued
setting.
In grey scalemorphologyan imageis represented by a scalarfunction f (x; y)
with (x; y) 2 IR2. The so-calledstructuring element is a set B � IR2 that
determinesthe neighbourhood relation of pixelswith respect to a shapeanal-
ysis task. Often convex sets such as disks, ellipsesor squaresare used as
structuring elements.
Grey scaledilation � replacesthe greyvalueof the imagef (x; y) by its supre-
mum/maximum within a mask de�ned by B:

(f � B ) (x; y) := sup f f (x � x0; y� y0) j (x0; y0) 2 Bg;

while erosion 	 is determinedby taking the in�m um/minim um:

(f 	 B ) (x; y) := inf f f (x+ x0; y+ y0) j (x0; y0) 2 Bg:

The opening operation, denotedby � , is de�ned as erosionfollowed by dila-
tion:

f � B := (f 	 B ) � B :

Closing, indicated by the symbol � , consistsof a dilation followed by an
erosion:

f � B := (f � B ) 	 B :

These operations form the basis of many other processesin mathematical
morphology[52,54] such asthe white top-hat which is the di�erence between
the original imageand its opening:

WTH (f ) := f � (f � B ) :

Its dual, the blacktop-hat is the di�erence betweenthe closingand the orig-
inal image,

BTH( f ) := (f � B ) � f ;

while the self-dualtop-hat is the di�erence betweenclosingand opening:

SDTH(f ) := (f � B ) � (f � B ) :
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In an imagethe boundariesor edgesof objects are the loci of high grey value
variations. Thesevariations can be detectedby derivative operators such as
the gradient or the Laplacian. Erosion and dilation are also the elementary
building blocks of the basicmorphologicalgradients: The so-calledBeucher
gradient [7] is the di�erence betweenthe dilation and the erosion:

%B f := (f � B ) � (f 	 B ) :

It is an analogto the Euclideannorm of the gradient jr f j if an imageis re-
gardedasa di�erentiable function. More precisely, for a di�erentiable image
f and disk-shaped structuring element Bh of radius h > 0 the expression

%B h f
2h

=
(f � Bh) � (f 	 Bh)

2h

tends to jr f j if h goes to zero. Observe that jr f j equals the directional
derivative @� f where� := r f =jr f j givesthe direction of the steepest ascent.
This can also be expressedas sup

� 2 S2
@� f . Here S2 denotesthe unit circle in

IR3.
We alsoconsiderthe internal gradient as the di�erence betweenthe original
imageand its erosion,

%�
B f := f � (f 	 B ) ;

and the external gradient asthe di�erence betweenthe dilation and the orig-
inal image:

%+
B f := (f � B ) � f :

In the di�erentiable caseboth one-sidedgradients alsoapproximate jr f j.
It is also possibleto de�ne morphological analogsto the Laplacian � f =
r > (r f ). The morphological Laplacian [59] we consideris given by the dif-
ferencebetweenexternal and internal gradient:

� B f := %+
B f � %�

B f = (f � B ) � 2 � f + (f 	 B ) :

This operator is not exactly a Laplacian: It approximates the seconddirec-
tional derivative @� � f where � denotesagain the direction of the steepest
slope. It allows us to distinguish between inuence zonesof minima and
maxima: Regionswith � B f < 0 are regardedas inuence zonesof maxima,
while regionswith � B f > 0 areinuence zonesof minima. The zero-crossings
� B f = 0 can be interpreted as edgelocations [38, 28, 35].
Morphological Laplaciansare useful for designingso-calledshock �lters [36,
43, 26]. The idea behind this morphological image enhancement method is
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to apply dilations around maxima and erosionsaround minima:

SB f :=

8
<

:

f � B (� B f < 0);
f (� B f = 0);
f 	 B (� B f > 0):

Many variants of shock �lters can be found in the literature [1, 21, 42, 48,
50, 60]. When they are applied iterativ ely, experiments show that their
steady state is given by a piecewiseconstant segmentation with discontinu-
ities (\shocks") betweenadjacent segments.
Although not always consideredas an morphological �lter we include the
mid-range �lter in our selectionof operators:

midB f :=
1
2

�
(f � B ) + (f 	 B )

�
:

3 Suprem um and In�m um of a Set of
Matrices

All morphological operations in the previous section result from suitable
combinations of dilations and erosions,i.e. they comedown to maximum and
minimum operations. Thus, a suitable notion of maximum and minimum of
a set of symmetric matrices is the key to the de�nition of morphological
operations for tensor images. We start with a very brief account of some
notions from convex analysisnecessaryfor the following.

3.1 Notions from Convex Analysis

A subsetC of a vector spaceV is namedcone, if it is stable under addition
and multiplication with a positive scalar. A subsetB of a coneC is called
base if every y 2 C; y 6= 0 admits a unique representation as y = r � x with
x 2 B and r > 0. We will only considera conewith a convex and compact
base.
The most important points of a closedconvex set are its extreme points
characterisedas follows: A point x is an extremepoint of a convex compact
subset S � V of a vector spaceV if and only if S n f xg is still convex.
The set of all extremepoints of S is denotedext(S). All extremepoints are
necessarilyboundary points, ext(S) � bd(S). According to the theoremsof
Minkowski or Krein-Milman each convex compact set S in a spaceof �nite
dimensioncan be reconstructedas the set of all convex combinations of its
extremepoints [4, 34]:

S = convexhull (ext(S)):
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We will explore thesenotions in connectionwith Sym(n), the vector space
of symmetric n � n-matrices with real entries.

3.2 The Cone of the Lo ewner Ordering

Sym(n) is endowed with the scalar product hA; B i :=
p

trace(A> B): The

corresponding norm is the Frobenius norm for matrices: kAk =
nP

i;j =1
aij .

There is also a natural partial ordering on Sym(n), the so-calledLoewner
ordering de�ned via the coneof positive semide�nite matrices Sym+ (n) by

A; B 2 Sym(n) : A � B :, A � B 2 Sym+ (n);

i.e. if and only if A � B is positive semide�nite.
Note that this partial ordering is not a lattice ordering, that is to say, the
notion of a uniquesupremum and in�m um with respect to this ordering does
not exist [9].
The (topological) interior of Sym+ (n) is the coneof positivede�nite matrices,
while its boundary bd(Sym(n)) consistsof all matrices in Sym(n) with a
rank strictly smaller than n. It is easy to seethat, for example, the set
f M 2 Sym+ (n) : trace(M ) = 1g is a convex and compact baseof the cone
Sym+ (n). Furthermore, it is known [4] that the matrices v v> with unit
vectorsv 2 IRn , kvk = 1, are the extremepoints of the set f M 2 Sym+ (n) :
trace(M ) = 1g [4]. They have by construction rank 1 and for any unit vector
v we �nd v v> v = v � kvk2 = v which implies that 1 is the only non-zero
eigenvalue. Hencetrace(v v> )= 1. Becauseof this extremal property the set
of matrices v v> with kvk = 1 carries the complete information about the
baseof Loewnerordering cone:
convexhull( f v v> : v 2 IRn ; kvk = 1g) is a basefor the Loewner ordering
cone.
The penumbra P(M ) of a matrix M 2 Sym(n) is the set of matricesN that
are smaller than M w.r.t. the Loewnerordering:

P(M ) := f N 2 Sym(n) : N � M g = M � Sym+ (n) ;

where we used the customary notation a + r S := f a + r � s : s 2 Sg
for a point a 2 V, a scalar r and a subset S � V. Using this geo-
metric description the problem of �nding the maximum of a set of matri-
ces f A1; : : : ; Amg amounts to determining the minimal penumbra covering
their penumbras P(A1); : : : ; P(Am). Its vertex represents the wanted max-
imal matrix A that dominatesall A i w.r.t the Loewnerordering. However,
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the cone itself is too complicated a structure to be handled directly. In-
stead we associate with each matrix M 2 Sym(n) a ball in the subspace
f A : trace(A) = 0g of all matriceswith zerotrace asa completelydescriptive
set. We will assumefor the sake of simplicity that trace(M )� 0. This ball
is constructed in two steps: First, from the statements above we infer that
the set

�
M � trace(M ) � convexhull f v v> : v 2 IR; kvk = 1g

	
is a basefor

P(M ) contained in the subspacef A : trace(A) = 0g. We observe that the
identit y matrix E is perpendicular to the matrices A from this subspace,
hA; Ei =

p
trace(A) = 0, and hencethe orthogonal projection of M onto

f A : trace(A) = 0g is given by

m := M �
trace(M )

n
E : (1)

Second,the extremepoints of the baseof P(M ) are lying on a spherewith
center m and radius

r := kM � trace(M )v v> � mk = trace(M )

r

1 �
1
n

: (2)

Consequently, if the center m and radius r of a spherein f A 2 Sym(n) :
trace(A) = 0g are given then the vertex M of the associated penumbra
P(M ) is obtained by

M = m +
r
n

1
q

1 � 1
n

E : (3)

With this information at our disposal,we can reformulate the task of �nding
a suitable maximal matrix A dominating the matrices f A1; : : : ; Amg: The
smallest sphereenclosingthe spheresassociated with f A1; : : : ; Amg deter-
mines the matrix A that dominatesthe A i . It is minimal in the sense,that
there is no smalleronew.r.t. the Loewnerordering which hasthis \covering
property" of its penumbra.
This is a non trivial problem of computational geometryand we tackle it by
usinga sophisticatedalgorithm implemented by B. Gaertner [20]. Givena set
of points in IRd it is capableof �nding the smallestball enclosingthesepoints.
Hence for each i = 1; : : : ; m we sample within the set of extreme points
f A i � trace(A i )v v> g of the baseof P(A i ) by expressingv in 3d-spherical
coordinates,v = (sin � cos ; sin� sin ; cos� ) with � 2 [0; 2� [;  2 [0; � [.
It is quite instructive to considerthe casen = 2 which can be visualisedby
embedding Sym(2) in IR3 via

A = (aij ) i;j =1 ;2  !
1

p
2

(2a12; a22 � a11; a22 + a11)>
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as it is indicated in Figure 1(a). The transform is an isometry and maps
f A 2 Sym(2) : trace(A) = 0g onto the x-y-plane. The extreme points are
the matrices vv> with v> = (cos'; sin' ) where ' 2 [0; 2� [. Hence the
aforementioned descriptive sets are discs in the x-y-plane determining the
penumbras associated with the set of matrices. The penumbras of the matri-
cesf A1; : : : ; Amg arecoveredwith the minimal penumbral conewhosevertex
represents the desiredmaximal matrix A. This minimal coneis found by cal-
culating the smallestcircle, its descriptive set, enclosingthe discsstemming
from the matrices f A1; : : : ; Amg.
The geometricpoint of view allows us to justify the usageof the Loewner
ordering. To this end recall the formula

max(a1; a2) =
1
2

(a1 + a2) +
1
2

ja1 � a2j : (4)

valid for any real numbersa1 and a2. Let diag(� 1; : : : ; � n ) denotea diagonal
matrix with entries � 1; : : : ; � n . Wede�ne for a symmetricmatrix A 2Sym(n)
with eigenvalue decomposition A = V diag(� 1; : : : ; � n) V > the matrix jAj by

jAj := V diag(j� 1j; : : : ; j� n j) V > :

Then an elementary calculation in the casen = 2 (providing the smallest
enclosingcircle of two circles) reveals that the maximal matrix dominating
A1 and A2 obtained through

max(A1; A2) =
1
2

(A1 + A2) +
1
2

jA1 � A2j

indeedcoincideswith the maximal matrix inducedby the Loewnerordering.
This demonstratesthat it is the Loewner ordering that stands behind the
natural generalisationof this \algebraic maximum" in (4) to symmetric ma-
trices. Note that an extensionof this algebraicapproach to setsof symmetric
matrices with more than two elements is not feasible.
We summarisethe above construction in four steps: In order to determine
the maximal matrix A to a given set of matrices f A1; : : : ; Amg

1. calculate their projections ai , i = 1; : : : ; m accordingto (1),

2. determine the radii r i , i = 1; : : : ; m, of the basesof their penumbras
through (2),

3. determine the centre and radius of the smallest ball enclosingthese
bases,

4. recover the vertex of the associated penumbral conevia formula (3).
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This de�nition is in fact rotationally invariant , that means,it satis�es

max(VA1V > ; : : : ; VAm V > ) = V max(A1; : : : ; Am ) V >

for any orthogonal matrix V .
To seethis we �rst recall that

trace(VM V > ) = trace(M )

for any orthogonal matrix V. Hencethe radii of the basesare unaltered by
the V according to (2). In view of (1) the orthogonal projection mi , the
centres of the spheres,undergo the sametransformation. Therefore their
smallestenclosingball evolves from the original one by the samerotational
transformation. Finally, the vertex of the associated penumbral coneis just a
rotated versionof the original vertex as (3) indicates. Also positive semidef-
initeness is preserved by construction:

max(A1; : : : ; Am ) � A i � 0 for i = 1; : : : ; m :

Finally, the above maximum of symmetric matricesdependscontinuously on
the input matrices since the associated projections and radii do so as the
formulas (1) and (2) show. By its very de�nition the smallestenclosingball,
that is its centre and radius, as well as the associated penumbra with its
vertex (3) depend continuously on its input points.

We do not rely on the relation min(a1; a2) = 1
2 (a1 + a2) � 1

2 ja1 � a2j
with real numbers a1; a2 for the de�nition of an minimum, becauseit would
lead to a notion which doesnot preserve positive semide�niteness. Instead
we take advantage of the relation

min(A1; : : : ; Am ) =
�
max

�
A1

� 1; : : : ; Am
� 1

� � � 1

which is the matrix-valued counterpart of a readily establishedconnection
betweenmaximum and minimum for positive real numbers a1; : : : ; am .

The rotational invarianceof this notion of an maximum carriesover from the
maximum sinceinversionof a matrix is a rotationally invariant operation:

(V > M V)� 1 = V � 1M � 1(V > )� 1 = V > M � 1V ;

due to the orthogonality of the rotation matrix V .
Inversionalsopreservesthe positivenessof matrices: If the eigenvalues� 1,...,� n

of a matrix M are positive, then so are the eigenvalues� � 1
1 ,...,� � 1

n of M � 1.
At last, the continuity of the matrix inversion ensuresthe continuity of the
minimum of matricesde�ned above.
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4 Tensor-V alued Morphology

With thesenotions of minimum and maximum at our disposalthe de�nitions
of the morphologicaloperationsfrom Section2 carry over essentially verbatim
with one exception: The morphologicalLaplacian � B as de�ned in Section
2 gives a matrix in the tensor-valued setting. We make useof the trace of
the morphologicalLaplacian to steer the tensor-valued shock �lter

SB f i;j :=

8
><

>:

f � B (trace(� B f ) < 0);

f (trace(� B f ) = 0);

f 	 B (trace(� B f ) > 0);

where subscripts i; j = 1; 2 indicate the components of the corresponding
matrices. It should be noted that unlike in the scalar-valued setting the
minimum/maximum de�nitions arenot associative in the tensorcase.Thusa
semi-groupproperty of the deriveddilation anderosioncannotbeguaranteed.
However, this has no e�ects as long as these morphological operations are
not iterated. It is also worth noting that the matrix-valued morphological
gradient approximates Sup� 2 S2 (@� f ) although it is no longer a particular
directional derivative.

Positive de�nite matrices A 2 IR3� 3 can be visualisedas ellipsoids

f x 2 IR3 : x> A � 2x = 1g;

that is asa level set of the quadratic form x> A � 2x. In this geometriccontext
the minimum is represented by an ellipse that is contained in each of the
ellipsesof the given set of matrices. The ellipse representing the maximum
surroundsall ellipseof the matrix set.
There is a natural interpretation of this ellipsoid in the context of di�usion
tensors: Assuming that a particle is initially located in the origin and is
subject to the di�usivit y A, then the ellipsoid enclosesthe smallest volume
within which this particle will be found with somerequired probability after
a short time interval. The minimum and maximum of two positive de�nite
2 � 2 matrices are displayed in Figure 1.

5 Exp erimen tal Results

For our numerical experiments we usea 128� 128� 30 �eld of 3-D tensors
originating from a positive de�nite 3-D DT-MRI data set of a human head.
For detailed information about the acquisition of this data type the reader
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Figure 1: (a) Left: The conecorresponding to the Loewnerconedepictedin
IR3. (b) Middle: Penumbras of variousmatricestogether with the smallest
covering penumbra. The tip of this penumbra marks the maximum of the
matrices under consideration. (c) Righ t: The maximum (largest ellipse)
and minimum (smallest ellipse) of two 2 � 2-matrices.

is referred to [5] and the literature cited there.
Figure 2 (a) exhibits a 128� 128 layer of thesedata while (b) displays an
enlargedsection near the upper right corner of (a). We will visualise the
e�ect of the various morphologicaloperations mentioned above by having a
closerlook at this very section.
The data are represented asellipsoidsvia the level setsof the quadratic form
f x> A � 2x : x 2 IR3g associated with a matrix A 2 Sym+ (3). In using A � 2

the length of the semi-axesof the ellipsoid correspond directly with the three
eigenvaluesof the positive de�nite matrix. A technical issueis that our data
set contains not only positive de�nite matrices. Becauseof the quantisation
there are singular matrices (particularly, a lot of zero matrices outside the
head segment) and even matrices with negative eigenvalues. The negative
valuesare of very small absolute value, and they result from measurement
imprecisionandquantisation errors. While such valuesdo not posea problem
in the dilation process,the erosion, relying on inversesof positive de�nite
matrices, has to be regularised. Instead of the exact inverseA � 1 of a given
matrix A we use(A + "I ) � 1

Figure 3 shows dilations while Figure 4 displays erosionswith three di�erent
structuring elements, a stencil approximating a disk of radius 2, indicated
by BSE(2), a rod-shaped stencil in y-direction of length 3 and \thic kness"
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1, and a similar stencil in z-direction, denotedby y-RSE(3) and z-RSE(3),
respectively. The z-direction is perpendicular to the imageplane. Hencethe
morphological operations utilizing z-RSE(3) and BSE(2) involve layers not
displayed here.
As known from scalar-valued morphology, the shape of details in the di-
lated and eroded imagesmirrors the shape of the structuring element. In
agreement with the scalar valued casewe observe dilation to result in an
extensionof areaswith matrices having relatively large eigenvalues,that is,
largesemi-achsesof the representing ellipsoids. Clearly this extensionis more
prominent for the structuring element BSE(2) in comparisonwith y-RSE(3)
and z-RSE(3).
Wewill observethis e�ect in general:the impact of a morphologicaloperation
is more pronouncedwhen BSE(2) is usedthan in the caseof y-RSE(3) and
z-RSE(3) sincethe �rst structuring element contains more voxels.
As expectedmid-range �ltering results in blurring of the original image,see
Figures 5. Generally speaking, the larger the structuring element, the more
pronouncedthe blurring e�ect.
Figures6 and 7 display the resultsof openingand closingoperationswith the
three structuring elements. In good analogy to their scalar-valued counter-
parts, both operationsrestitute the coarseshape and sizeof structures while
eliminating small-scaledetails formed by small (closing) or large (erosion)
values,respectively.
The top hat �lters can be seenin Figures 8, 9, and 10. As in the scalar-
valued case,the white top hat (Figure 8) is sensitive for small-scaledetails
formed by valuesof high magnitude, i.e. matriceswith generallylarge eigen-
values. At locationswheresuch details are present, the matricesin the white
top-hat image are quite large. The black top hat (�gure 9) exhibits con-
trary behaviour, responding with high valuesto small-scaledetails involving
matrices with relatively high anisotropy.
That they correspond indeedto two complementary classesof detailsbecomes
clear from the third top-hat �lter, the self-dual top-hat. It is the sum of
the white and black top hats which is also apparent from Figure 10. Note
that each of the three top hats eliminatesthe matrices in the prominent and
homegenousareain the northern central part of the original image2(b). This
relatively large area violates the condition of being a \small-scale detail\,
hencethe top hats output matrices that are too small to be displayed.
Figures13,12,and 11show morphologicalderivative operators. Just astheir
scalaranalogs,internal and external morphologicalgradients behave similar,
both reveal a sensitivity for edge-like structures. The Beucher gradient is the
sum of the external and internal gradient. This washesout the information
provided by the \one-sided\ gradients. A similar e�ect is observed in scalar
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Figure 2: (a) Left: A slice of a 3-D tensor �eld extracted from a DT-MRI
data setof a human head. (b) Righ t: Enlargement of a sectionin the upper
right corner of (a).

morphology.
The Laplacian � m which is computed as the di�erence of the external and
internal gradient, producespositive de�nite matrices as well as inde�nite
and negative de�nite ones. This is the explanation for the void areasin the
images14: non-positive de�nite matrices cannot be displayed as ellipsoids
and henceare omitted. Figure 15 demonstrateshow the Laplacian can be
used to control a shock �lter. While applying dilation in pixels where the
trace of the Laplacian is negative, it useserosionwherever the trace of the
Laplacian is positive. The result is an ampli�cation of the structures present
in the original image2(b) leading to a segmentation-lik e output.
All the examplesof morphological operators feature strong dependenceon
the type and shape of the employed structuring element. This is typical for
morphologyboth in the scalar-and in the matrix-valued case.And it is this
feature that constitutes the versatility of morphologicaltechniques.

6 Conclusions

In this paper we have extendedfundamental conceptsof mathematical mor-
phology to the caseof 3-dimensional matrix-valued data. Based on the
Loewner ordering for symmetric matrices novel notions of maximum and
minimum of a set of symmetric 3 � 3-matriceshave beenproposed. These
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Figure 3: (a) Left: Dilation with BSE(2) stencil. (a) Middle: Samewith
y-RSE(3) stencil. (b) Righ t: Samewith z-RSE(3) stencil.

Figure 4: (a) Left: Erosion with BSE(2) stencil. (a) Middle: Samewith
y-RSE(3) stencil. (b) Righ t: Samewith z-RSE(3) stencil.

Figure 5: (a) Left: Mid-range �lter with BSE(2) stencil. (a) Middle: same
with y-RSE(3) stencil. (b) Righ t: samewith z-RSE(3) stencil.
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Figure 6: (a) Left: Opening with BSE(2) stencil. (a) Middle: Samewith
y-RSE(3) stencil. (b) Righ t: Samewith z-RSE(3) stencil.

Figure 7: (a) Left: Closing with BSE(2) stencil. (a) Middle: Samewith
y-RSE(3) stencil. (b) Righ t: Samewith z-RSE(3) stencil.

Figure 8: (a) Left: White top hat with BSE(2) stencil. (a) Middle: Same
with y-RSE(3) stencil. (b) Righ t: Samewith z-RSE(3) stencil.
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Figure 9: (a) Left: Black top hat with BSE(2) stencil. (a) Middle: Same
with y-RSE(3) stencil. (b) Righ t: Samewith z-RSE(3) stencil.

Figure 10: (a) Left: Self-dual top hat with BSE(2) stencil. (a) Middle:
Samewith y-RSE(3) stencil. (b) Righ t: Samewith z-RSE(3) stencil.

Figure 11: (a) Left: Beucher-gradient with BSE(2) stencil. (a) Middle:
Samewith y-RSE(3) stencil. (b) Righ t: Samewith z-RSE(3) stencil.
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Figure 12: (a) Left: Internal-gradient with BSE(2) stencil. (a) Middle:
Samewith y-RSE(3) stencil. (b) Righ t: Samewith z-RSE(3) stencil.

Figure 13: (a) Left: External-gradient with BSE(2) stencil. (a) Middle:
Samewith y-RSE(3) stencil. (b) Righ t: Samewith z-RSE(3) stencil.

Figure 14: (a) Left: Morphological Laplacian with BSE(2) stencil. (a)
Middle: Samewith y-RSE(3) stencil. (b) Righ t: Samewith z-RSE(3)
stencil.
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Figure 15: (a) Left: Shock �ltering with BSE(2) stencil. (a) Middle: Same
with y-RSE(3) stencil. (b) Righ t: Samewith z-RSE(3) stencil.

notions extendthe corresponding scalar-valuedconcept. They exhibit invari-
ance,positivit y, and continuity propertiesessential for their usein the design
of morphologicaloperations for matrix-valued data. For this reasonwe have
succeededto generalisenot only standard morphologicaloperationsbut also
morphologicalderivativesand shock �lters to the matrix-valuedsetting. The
technique developed for this purposeis considerablymore generaland sus-
tainable than former approachesfor the caseof 2 � 2-matricesintroducedin
[12]. The extendedapproach holds the potential to cope with 4� 4-matrices
or larger.
In the experimental part we have contrasted three types of structuring el-
ements with respect to their e�ect on actual 3D-DT-MRI data. Very sat-
isfyingly they feature the samecharacteristics as their scalar-valued coun-
terparts. In future investigationswe will explore the �ltering capabilities of
various operators within the wide framework of morphology. In doing so we
will apply morphologicaloperatorsnot only to positive de�nite matrix �elds
but also to inde�nite/negativ e de�nite matrix data sets.
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