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Abstract
The notions of maximum and minimum are the key to the power-

ful tools of greyscalemorphology. Unfortunately thesenotions do not
carry over directly to tensor-valued data. Basedupon the Loewneror-
dering for symmetric matrices this paper extends the maximum and
minimum operation to the tensor-valued setting. This provides the
ground to establish matrix-v alued analoguesof the basic morpholog-
ical operations ranging from erosion/dilation to top hats. In con-
trast to former attempts to develop a morphological machinery for
matrices, the novel de�nitions of maximal/minimal matrices depend
continuously on the input data, a property crucial for the construc-
tion of morphological derivatives such as the Beucher gradient or a
morphological Laplacian. Thesede�nitions are rotationally invariant
and preserve positive semide�nitenessof matrix �elds as they are en-
countered in DT-MRI data. The morphological operations resulting
from a component-wise maximum/minim um of the matrix channels
disregarding their strong correlation fail to be rotational invariant.
Experiments on DT-MRI imagesas well as on inde�nite matrix data
illustrate the properties and performanceof our morphological opera-
tors.

Keyw ords: mathematical morphology, dilation, erosion,matrix-valued im-
ages,positive de�nite matrix, inde�nite matrix, di�usion tensor MRI

1 In tro duction

Sincethe late sixties mathematical morphologyhasproven itself a very valu-
ablesourceof techniquesand methods to processimages:The path-breaking
work of Matheron and Serra[12, 13] started a fruitful and extensive develop-
ment of morphologicaloperators and �lters. Morphological tools have been
establishedto perform noisesuppression,edgedetection,shape analysis,and
skeletonisation for applications ranging from medical imaging to geological
sciences,as it is documented in monographs[8, 14, 15, 16] and conference
proceedings[6, 17]. It would be desireableto have the tools of morphology
at our disposal to processtensor-valued imagessincenowadays the notion
of image encompassesthis data type as well. The variety of appearances
of tensor �elds clearly calls for the development of appropriate tools for the
analysisof such data structures because,just as in the scalar case,one has
to remove noiseand to detect edgesand shapesby appropriate �lters.
Median �ltering [21], chapter 21 by Welk et al., active contour models and
mean curvature motion [4], chapter 25 by Weickert et al., nonlinear reg-
ularisation methods and related di�usion �lters [18, 20, 2], chapter 22 by
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Suarez-Santana et al., chapter 23 by Westin et al., chapter 25 by Weickert et
al., alsochapter 19 by Weickert, exist for matrix-valued data that genuinely
exploit the interaction of the di�erent matrix-channels.
First successfulsteps to extend morphological operations to matrix-valued
data sets have been made in [3] where the basic operations dilation and
erosionas well as opening and closing are transfered to the matrix-valued
setting. However, the proposedapproaches lack the continuous dependence
on the input matrices. This makesthe meaningful construction of morpho-
logical derivativesimpossible.
The goal of this article is to present an alternative approach to morphologi-
cal operators for tensor-valued imagesbasedon the Loewnerordering. This
o�ers a greaterpotential for extensionsand brings expedient notions of mor-
phologicalderivativeswithin our reach. The morphologicaloperations to be
de�ned shouldwork on the set Sym(n) of real symmetric n � n matricesand
have to satisfy conditions such as:

i) Continuous dependenceof the basic morphological operations on the
matrices usedas input for the aforementioned reasons.

ii) Rotational invariance.

iii) Preservation of the positive semide�nitenessof the matrix �eld since
DT-MRI data sets,for instance,possesthis property, seee.g. chapter
5 by Alexander, chapter 7 by Vilanova et al., chapter 17 by Moakher
and Batchelor.

Remarkably, the requirement of rotational invariancerules out the straight-
forward component-wise approach, as is shown in [3]. In this paper we will
introduce a novel notion of the minimum/maximum of a �nite set of sym-
metric, not necessarilypositive de�nite matrices. Thesenotions will exhibit
the above mentioned properties.

The article is structured as follows: The next section is devoted to a brief
review of the greyscalemorphological operations we aim to extend to the
matrix-valued setting, starting from the basicerosion/dilation and reaching
to the morphological equivalents of gradient and Laplacian. In section 3
we present the crucial maximum and minimum operationsfor matrix-valued
data and investigatesomeof their relevant properties. We report the results
of our experiments with variousmorphologicaloperatorsapplied to real DT-
MRI imagesaswell as inde�nite tensor �elds from uid mechanicsin section
4. Section5 o�ers concludingremarks.
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2 Brief Review of Scalar Morphology

In grey scalemorphologyan imageis represented by a scalarfunction f (x; y)
with (x; y) 2 IR2. The so-calledstructuring element is a set B in IR2 de-
termining the neighbourhood relation of pixels. In this paper we restrict
ourselfesto at greyscalemorphology where this binary type of structering
element is used. Then greyscaledilation � , resp., erosion 	 replacesthe
greyvalue of the image f (x; y) by its supremum, resp., in�m um within the
mask B:

(f � B ) (x; y) := sup f f (x � x0; y� y0) j (x0; y0) 2 Bg;

(f 	 B ) (x; y) := inf f f (x+ x0; y+ y0) j (x0; y0) 2 Bg:

By concatenationother operators are constructedsuch as opening and clos-
ing,

f � B := (f 	 B ) � B ; f � B := (f � B ) 	 B ;

the white top-hat and its dual, the blacktop-hat

WTH (f ) := f � (f � B ) ; BTH( f ) := (f � B ) � f ;

�nally , the self-dualtop-hat,

SDTH(f ) := (f � B ) � (f � B ) :

In an imagethe boundariesor edgesof objects are the loci of high greyvalue
variations and those can be detected by gradient operators. Erosion and
dilation are also the elementary building blocks of the basic morphological
gradients, namely: The so-calledBeuchergradient

%B (f ) := (f � B ) � (f 	 B ) :

It is an analog to the norm of the gradient kr f k if an image is considered
as a di�erentiable function. Other useful approximations to kr f k are the
internal and external gradient,

%�
B (f ) := f � (f 	 B ) ; %+

B (f ) := (f � B ) � f :

We also present a morphologicalequivalent for the Laplaceoperator � f =
@xx f + @yy f suitable for matrix-valued data. The morphological Laplacian
has been introduced in [19]. We considera variant given by the di�erence
betweenexternal and internal gradient:

� m f := %+
B (f ) � %�

B (f ) = (f � B ) � 2 � f + (f 	 B ) :
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This form of a Laplacian represents the secondderivative @� � f where �
denotes the direction of the steepest slope. � m f is matrix-valued, but
trace(� m f ) providesuswith usefulinformation: Regionswheretrace(� m f ) �
0 can be viewed as the inuence zonesof maxima while those areaswith
trace(� m f ) � 0 are inuence zonesof minima. It therefore allows us to
distinguish betweeninuence zonesof minima and maxima in the imagef .
This is crucial for the designof so-calledshock �lters .
The basic idea underlying shock �ltering is applying either a dilation or an
erosionto an image, depending on whether the pixel is located within the
inuence zoneof a minimum or a maximum [10]:

� B (f ) :=
�

f � B if trace(� m f ) � 0 ;
f 	 B else.

(1)

The shock �lter expandslocal minima and maxima at the costof regionswith
intermediate greyvalues. When iterated experimental results in greyscale
morphologysuggestthat a non-trivial steadystate exists characterisedby a
piecewiseconstant segmentation of the image.
In the scalar casethe zero-crossings� f = 0 can be interpreted as edge
locations[11,7, 9]. We will alsousethe trace of the morphologicalLaplacian
in this manner to derive an edgemap.

3 Extremal Matrices in the Lo ewner Order-
ing

There is a natural partial orderingon Sym(n), the so-calledLoewnerordering
de�ned via the coneof positive semide�nite matricesSym+ (n) by

A; B 2 Sym(n) : A � B :, A � B 2 Sym+ (n);

i.e. if and only if A � B is positive semide�nite.
This partial ordering is not a lattic ordering, that is, the notion of a unique
supremum and in�m um with respect to this ordering doesnot exist [1]. Nev-
ertheless,given any �nite set of symmetric matrices A = f A1; : : : ; Ang, we
will be able to identify suitable maximal, resp.,minimal matrices

A := maxA resp., A := min A :

For presentational reasonswe restrict ourselves from now on to the caseof
2� 2-matricesin Sym(2). The 3� 3-caseis treated similarly but is technically
more involved.
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Figure 1: (a) Left: Imageof the LoewnerconeSym+ (2). (b) Righ t: Cone
covering four penumbras of other matrices. The tip of each conerepresents
a symmetric 2� 2 matrix in IR3. For each conethe radius and the height are
equal.

To �nd theseextremal matrices for a set A we proceedas follows: The cone
Sym+ (2) can be visualizedin 3D using the bijection
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This mappingcreatesan isometrically isomorphicimageof the coneSym+ (2)
in the Euclidean spaceIR3 given by f (x; y; z)> 2 IR3j

p
x2 + y2 � zg and

depicted in Figure 1(a). For A 2 Sym(2) the set P(A) = f Z 2 Sym(2)jA �
Zg denotesthe penumbra of the matrix A. It corresponds to a conewith
vertex in A and a circular basein the x-y-plane:

P(A) \ f z = 0g = circle with centre (
p

2� ;
 � �
p

2
) and radius

trace(A)
p

2
:

Considering the associated penumbras of the matrices in A the search for
the maximal matrix A amounts to determine the smallest conecovering all
the penumbras of A ; seeFigure 1(b). Note that the height of a penumbra
in the x-y-plane is equal to the radius of its base,namely trace(A )p

2
. Hence

a penumbra is already uniquely determined by the circle constituting its
base.This implies that the search for a maximal matrix comesdown to �nd
the smallest circle enclosingthe base-circlesof the matrices in A . This is
a non-trivial problem in computer graphics. An e�cien t numerical solution
for �nding the smallest ball enclosinga given number of points has been
implemented in C++ only recently by G•artner [5]
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By sampling the basiscircleswe usethis implementation for the calculation
of the smallestcircle enclosingthem. This givesus the smallestcovering cone
and hencethe maximal matrix A. A suitable minimal matrix A is obtained
via the formula

A =
�
max(A � 1

1 ; : : : ; A � 1
n )

� � 1

inspired by the well-known relation min(a1; : : : ; an) =
�
max(a� 1

1 ; : : : ; a� 1
n )

� � 1

valid for real numbers a1; : : : ; an . Furthermore, inversion preserves posi-
tive de�niteness as well as rotational invariance. For i = 1; : : : ; n we have
A � A i � A with respect to the Loewner ordering. We emphasisethat A
and A depend continuously on A1; : : : ; An by their construction. Also the
rotational invariance is preserved, sincethe Loewnerordering is already ro-
tational invariant: A � B ( ) UAU > � UBU> holds for any orthogonal
matrix U. Finally it is important to note that if all the A i are positive de�-
nite then so is A as well as A .
Nevertheless,the de�nitions of the matrices A and A are still meaningful
for matrices that are not positive de�nite as long as they have a nonnega-
tive trace (since it corresponds to a radius in the construction above). It
also becomesevident from their construction that in generalneither A nor
A coincidewith any of the A i : A; A 62A .
With these essential notions of suitable maximal and minimal matrices A
and A at our disposal the de�nitions of the higher morphologicaloperators
carry over essentially verbatim, with oneexception:
The morphological Laplacian � m as de�ned in section 2 is a matrix. In
equation (1) we usedthe trace of the morphologicalLaplacian to steer the
interwoven dilation-erosionprocess,and to createan edgemap.
A word of carehas to be stated, unlike in the scalar-valued setting the min-
imum/maximum are not associative, e.g. max(A1; A2; A3) generallycan not
be obtained by evaluating max(max(A1; A2); A3). This entails a lossof the
semi-groupproperty of the derived dilation and erosion. Clearly this hasno
e�ects as long as thesemorphologicaloperationsare not iterated.
In the next sectionwe will apply variousmorphologicaloperators to positive
de�nite DT-MRI imagesas well as to inde�nite matrix �elds representing a
o w �eld.

4 Exp erimen tal Results

In our numerical experiments we usetwo data sets:
1) Positiv e de�nite data. A 128� 128�eld of 2-D tensorswhich hasbeen
extracted from a 3-D DT-MRI data set of a human head. Those data are
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represented as ellipsesvia the level setsof the quadratic form f x> A � 2xjx 2
IR2g associated with a matrix A 2 Sym(n). The exponent � 2 takescare of
the fact that the small, resp.,big eigenvalue corresponds to the semi-minor,
resp.,semi-major axis of the ellipse. The color coding of the ellipsesreects
the direction of their principle axes.Another technical issueis that our DT-
MRI data set of a human headcontains not only positive de�nite matrices.
Becauseof the quantisation there are singular matrices (particularly, a lot
of zeromatrices outside the headsegment) and even matrices with negative
eigenvalues. The negative valuesare of very small absolutevalue, and they
result from measurement imprecision and quantisation errors. While such
valuesdo not constitute a problemin the dilation process,the erosion,relying
on inversesof positive de�nite matrices,hasto be regularised.Instead of the
exact inverseA � 1 of a given matrix A we use therefore (A + "I ) � 1 with a
small positive " .

2) Inde�nite data. An imageof size248� 202containing inde�nite matrices
and depicting a rate-of-deformation tensor �eld from a experiment in uid
dynamics. Heretensor-valueddata arerepresented in the �gures by greyvalue
imageswhich aresubdivided in four tiles. Each tile correspondsto onematrix
entry. A middle grey value represents the zerovalue; Magnitude information
of the matrix-valued signalsis essentially encoded in the trace of the matrix
and thus in the main diagonal. Instead, the o�-diagonal of a symmetric
matrix encode anisotropy.

Figure 2 displays the original headimageand a enlargedsectionof it aswell
as the e�ect of dilation and erosionwith a disk-shaped structuring element
of radius

p
5. For the sake of brevity we denote in the sequelthis element

by DSE(
p

5). We encounter the expected enhancement or suppressionof
featuresin the image. As known from scalar-valuedmorphology, the shape of
details in the dilated and eroded imagesmirrors the shape of the structuring
element.

In Figures3 and 7, the results of opening and closingoperationsare shown.
In good analogyto their scalar-valuedcounterparts, both operationsrestitute
the coarseshape and sizeof structures. Smallerdetails are eliminated by the
openingoperation, while the closingoperation magni�es them. It alsoseems
that the isotropy of the matrices is increasedunder both operations.

The top hat �lters can be seenin Figure 4. As in the scalar-valued case,
the white top hat is sensitive for small-scaledetails formed by matriceswith
largeeigenvalues,while the black top hat respondswith high valuesto small-
scaledetails stemming from matrices with small eigenvalues. The self-dual
top hat asthe sum of white and black top hat results in homogeneouslyhigh
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matrices rather evenly distributed in the image.

Figures5 and 8 depict the internal and external morphologicalgradients and
their sum, the Beucher gradient for positive and negative de�nite matrix-
�elds. It is no surprisethat theseoperatorsrespond to the presenceof edges,
the one-sidedgradients more so than the Beucher gradient whoseinertance
is known. The imagesdepicting the o w �eld show clearly that changesin
the valuesof the matrices are well detected.

The e�ect of the Laplacian � m and its usefor controlling a shock �lter can
be seenin Figure 6: while applying dilation in pixels wherethe trace of the
Laplacian is negative, it useserosionwherever the trace of the Laplacian is
positive. The result is an image in which regions with larger and smaller
eigenvaluesare sharper separatedthan in the original image. We also may
concedesomeedgedetection capabilities to the morphologicalLaplacian for
tensordata. Image(c) in �gure 6 displays an edgemap derivedby setting the
pixel value to 255if in that pixel the condition � 100� trace(� m f ) � 100is
satis�ed, and 0 if the absolutevalue of trace(� m f ) exceeds100.

5 Conclusions

In this paper we have extendedfundamental conceptsof mathematical mor-
phology to the caseof matrix-valued data. This has been achieved by de-
termining maximal and minimal elements A, A in the spaceof symmetric
matrices Sym(n) with respect to the Loewnerordering. Theseextremal ele-
ments serve as an suitable analoguefor the continuous notion of maximum
and minimum, which lie at the heart of mathematical morphology. As a con-
sequencewe were able not only to design the matrix-valued equivalents of
basicmorphologicaloperationslikedilation or erosionbut alsomorphological
derivativesand shock �lters for tensor �elds. In the experimental sectionthe
performanceof the various morphologicaloperations on positive de�nite as
well as inde�nite matrix-�elds is documented.
Future work comprisesthe extensionof the methodology to the demanding
caseof 3 � 3-matrix-�elds as well a the development of more sophisticated
morphologicaloperators for matrix-valued data.
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Figure 2: (a) Top left: 2-D tensor �eld extracted from a DT-MRI data
set of a human head. (b) Top righ t: enlargedsection of left image. (c)
Bottom left: dilation with DSE(

p
5). (d) Bottom righ t: erosionwith

DSE(
p

5).
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Figure 3: (a) Left: closing with DSE(
p

5). (b) Righ t: opening with
DSE(

p
5).

Figure 4: (a) Left: white top hat with DSE(
p

5). (b) Middle: black top
hat with DSE(

p
5). (c) Righ t: self-dual top hat with DSE(

p
5).
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Figure 5: (a) Left: external gradient with DSE(
p

5). (b) Middle: internal
gradient with DSE(

p
5). (c) Righ t: Beucher gradient with DSE(

p
5).

Figure 6: (a) Left: morphologicalLaplacian with DSE(
p

5). (b) Middle:
result of shock �ltering with DSE(

p
5). (c) Righ t: edgemap derived from

zerocrossingsof the morphologicalLaplacian with DSE(
p

5).

Figure 7: (a) Left: original imageof a o w �eld. (b) Middle: closingwith
DSE(

p
5). (c) Righ t: opening with DSE(

p
5).
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Figure 8: (a) Left: external gradient with DSE(
p

5). (b) Middle: internal
gradient with DSE(

p
5). (c) Righ t: Beucher gradient with DSE(

p
5).
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like to thank Andr�esBruhn (Mathematical ImageAnalysis Group, Saarland
University) for his valuable support in implementational issues.
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