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Abstract

The notions of maximum and minimum are the key to the power-
ful tools of greyscalemorphology. Unfortunately thesenotions do not
carry over directly to tensor-valued data. Basedupon the Loewneror-
dering for symmetric matrices this paper extends the maximum and
minimum operation to the tensor-valued setting. This provides the
ground to establish matrix-v alued analoguesof the basic morpholog-
ical operations ranging from erosion/dilation to top hats. In con-
trast to former attempts to dewelop a morphological machinery for
matrices, the novel de nitions of maximal/minimal matrices depend
continuously on the input data, a property crucial for the construc-
tion of morphological derivatives such as the Beudher gradient or a
morphological Laplacian. Thesede nitions are rotationally invariant
and presene positive semide nitenessof matrix elds asthey are en-
courtered in DT-MRI data. The morphological operations resulting
from a componert-wise maximum/minim um of the matrix channels
disregarding their strong correlation fail to be rotational invariant.
Experiments on DT-MRI imagesas well ason inde nite matrix data
illustrate the properties and performanceof our morphological opera-
tors.

Keyw ords: mathematical morphology dilation, erosion,matrix-valuedim-
ages,positive de nite matrix, inde nite matrix, di usion tensor MRI

1 Intro duction

Sincethe late sixties mathematical morphologyhas provenitself a very valu-
able sourceof techniquesand methods to processmages: The path-breaking
work of Matheron and Serra[12, 13] started a fruitful and extensive dewelop-
mert of morphologicaloperators and Iters. Morphological tools have been
establishedto perform noisesuppressiongdgedetection, shape analysis,and
skeletonisation for applications ranging from medical imaging to geological
sciencesas it is documened in monographs[8, 14, 15, 16] and conference
proceedingg[6, 17]. It would be desireableto have the tools of morphology
at our disposal to processtensor-\alued imagessince nowadays the notion
of image encompasseshis data type as well. The variety of appearances
of tensor elds clearly calls for the dewelopmen of appropriate tools for the
analysisof sud data structures becausejust asin the scalarcase,one has
to remove noiseand to detect edgesand shapesby appropriate lters.
Median ltering [21], chapter 21 by Welk et al., active contour models and
mean curvature motion [4], chapter 25 by Weidkert et al., nonlinear reg-
ularisation methods and related di usion lters [18 20, 2], chapter 22 by



Suarez-Satana et al., chapter 23 by Westin et al., chapter 25 by Weidert et

al., alsochapter 19 by Weidert, exist for matrix-valued data that geruinely

exploit the interaction of the di erent matrix-channels.

First successfuktepsto extend morphological operations to matrix-valued
data sets have been made in [3] where the basic operations dilation and

erosionas well as opening and closing are transfered to the matrix-valued

setting. Howeer, the proposedapproadieslack the cortinuous dependence
on the input matrices. This makesthe meaningful construction of morpho-

logical derivativesimpossible.

The goal of this article is to presen an alternative approad to morphologi-
cal operators for tensor-valued imagesbasedon the Loewnerordering. This

0 ers agreaterpotential for extensionsand brings expediert notions of mor-

phological derivativeswithin our read. The morphologicaloperationsto be

de ned shouldwork on the set Sym(n) of real symmetricn n matricesand

have to satisfy conditions sud as:

i) Continuous dependenceof the basic morphological operations on the
matrices usedasinput for the aforemeinioned reasons.

i) Rotational invariance.

iii) Presenation of the positive semide nitenessof the matrix eld since
DT-MRI data sets,for instance, posseghis property, seee.g. chapter
5 by Alexander, chapter 7 by Vilanova et al., chapter 17 by Moakher
and Batchelor.

Remarlably, the requiremen of rotational invariancerules out the straight-
forward componert-wise approad, asis shovn in [3]. In this paper we will
introduce a novel notion of the minimum/maximum of a nite set of sym-
metric, not necessarilypositive de nite matrices. Thesenotions will exhibit
the above mertioned properties.

The article is structured as follows: The next sectionis dewted to a brief
review of the greyscalemorphological operations we aim to extend to the
matrix-valued setting, starting from the basic erosion/dilation and reading
to the morphological equivalerts of gradiert and Laplacian. In section 3
we presen the crucial maximum and minimum operations for matrix-valued
data and investigate someof their relevant properties. We report the results
of our experimerts with various morphologicaloperatorsappliedto real DT-
MRI imagesaswell asinde nite tensor elds from uid medanicsin section
4. Section5 o ers concludingremarks.



2 Brief Review of Scalar Morphology

In grey scalemorphologyan imageis represeted by a scalarfunction f (x;y)
with (x;y) 2 IR%. The so-calledstructuring elementis a set B in IR? de-
termining the neighbourhood relation of pixels. In this paper we restrict
ourselfesto at greyscalemorphology wherethis binary type of structering
elemen is used. Then greyscaledilation , resp., erosion replacesthe
greywvalue of the imagef (x;y) by its supremum, resp., in m um within the
maskB:

supff(x x%y y9j(x5y)2Bg;
inf ff (x+x%y+y9j(x®y)2Bag:

(f B)(XY)

(f B)(XY)
By concatenationother operators are constructed sud as opening and clos-
ing,

f B:=(f B) B; f B=(f B) B,;
the white top-hat and its dual, the blacktop-hat
WTH(f):=f (f B); BTH(f):=(f B) f;
nally , the self-dualtop-hat,
SDTH(f):=(f B) (f B):

In an imagethe boundariesor edgesof objects are the loci of high greywvalue
variations and those can be detected by gradiert operators. Erosion and
dilation are alsothe elememary building blocks of the basic morphological
gradierts, namely: The so-calledBeuchergradient

%(f)=(¢ B) (f B):

It is an analogto the norm of the gradiert kr f k if an imageis considered
as a di erentiable function. Other useful appraximations to kr f k are the
internal and external gradient,

w@E)=f (¢ B); %)= B) f:

We also presem a morphologicalequivalert for the Laplaceoperator f =
af + @,f suitable for matrix-valued data. The morpholaical Laplacian
has beenintroducedin [19]. We considera variant given by the di erence
betweenexternal and internal gradiert:

of =%@E) w@E)=(F B) 2f+( B):
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This form of a Laplacian represets the secondderivative @ f where
denotesthe direction of the steepest slope. mf Is matrix-valued, but
trace( nf) providesuswith usefulinformation: Regionswheretrace( nf)
0 can be viewed as the in uence zonesof maxima while those areaswith
trace( nf) O are inuence zonesof minima. It therefore allows us to
distinguish betweenin uence zonesof minima and maxima in the imagef .
This is crucial for the designof so-calledshak Iters .

The basicidea underlying shock Itering is applying either a dilation or an
erosionto an image, depending on whether the pixel is located within the
in uence zoneof a minimum or a maximum [10]:

.t B if trace( f) O;
s()= ¢ B else (1)
The shock Iter expandslocal minima and maxima at the costof regionswith
intermediate greywalues. When iterated experimertal results in greyscale
morphology suggestthat a non-trivial steady state exists characterisedby a
piecewiseconstart segmemation of the image.

In the scalar casethe zero-crossings f = 0 can be interpreted as edge
locations[11, 7, 9]. We will alsousethe trace of the morphologicalLaplacian
in this mannerto derive an edgemap.

3 Extremal Matrices in the Loewner Order-
ing

Thereis a natural partial orderingon Sym(n), the so-calledLoewnerordering
de ned via the coneof positive semide nite matrices Sym" (n) by

A;B2Symn): A B:; A B2Sym(n);

i.e. if andonly if A B is positive semide nite.
This partial orderingis not a lattic ordering, that is, the notion of a unique
supremum and in m um with respect to this ordering doesnot exist [1]. Nev-

will be ableto identify suitable maximal, resp., minimal matrices
A= maxA resp., A:= minA:

For presemational reasonswe restrict oursehes from now on to the caseof
2 2-matricesin Sym(2). The 3 3-casds treated similarly but is technically
more involved.



Figure 1: (a) Left: Imageof the LoewnerconeSym" (2). (b) Right: Cone
covering four perumbras of other matrices. The tip of ead conerepresets
asymmetric2 2 matrix in IR®. For eat conethe radius and the height are
equal.

To nd theseextremal matricesfor a set A we proceedas follows: The cone
Sym' (2) can be visualizedin 3D using the bijection
0 ) 1 0 1

1
| p=@
2

X

1 zZ y X
A . | .
,resp.,p—é X z4y ! @3Z/A.

+

This mapping createsan isometrically isomorphicimagelgf the coneSym" (2)
in the Euclidean spacelR® given by f(x;y;2)> 2 IR} x2+y2 zg and
depictedin Figure 1(a). For A 2 Sym(2) the setP(A) = fZ 2 Sym(2)jA

Z g denotesthe perumbra of the matrix A. It correspndsto a conewith
vertex in A and a circular basein the x-y-plane:

P(A)\ fz= 0g= circlewith certre (pé ;—pz—) and radius ”—6‘8?:

Consideringthe assaiated perumbras of the matrices in A the seart for
the maximal matrix A amourts to determine the smallestcone covering all
the perumbras of A; seeFigure 1(b). Note that the height of a perumbra

in the x-y-plane is equal to the radius of its base,namely tr_ag%_ Hence
a perumbra is already uniquely determined by the circle constituting its
base. This implies that the seart for a maximal matrix comesdown to nd

the smallest circle enclosingthe base-circlesof the matricesin A. This is
a non-trivial problem in computer graphics. An e cient numerical solution
for nding the smallestball enclosinga given number of points has been
implemerted in C++ only recerly by Gartner [5]
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By samplingthe basiscircleswe usethis implementation for the calculation
of the smallestcircle enclosingthem. This givesusthe smallestcovering cone
and hencethe maximal matrix A. A suitable minimal matrix A is obtained
via the formula

1o.... 1

rotational invarianceis presened, sincethe Loewnerordering is already ro-
tational invariant: A° B () UAU~” UBU” holds for any orthogonal
matrix U. Finally it is important to note that if all the A; are positive de -

nite then sois A aswell asA .

Newertheless,the de nitions of the matrices A and A are still meaningful
for matrices that are not positive de nite aslong asthey have a nonnega-
tive trace (sinceit correspndsto a radius in the construction above). It

also becomesevidert from their construction that in generalneither A nor
A coincidewith any of the A;: A; A 62A .

With these essetial notions of suitable maximal and minimal matrices A
and A at our disposal the de nitions of the higher morphological operators
carry over essehally verbatim, with one exception:

The morphological Laplacian ,, as de ned in section 2 is a matrix. In

equation (1) we usedthe trace of the morphological Laplacian to steerthe
interwoven dilation-erosion process,and to createan edgemap.

A word of carehasto be stated, unlike in the scalar-\alued setting the min-

imum/maximum are not assaiative, e.g. max(A1; A,; A3) generallycan not
be obtained by evaluating max(max(A1; Az); Az). This entails a lossof the
semi-groupproperty of the derived dilation and erosion. Clearly this hasno
e ects aslong asthesemorphologicaloperations are not iterated.

In the next sectionwe will apply various morphologicaloperatorsto positive
de nite DT-MRI imagesaswell asto inde nite matrix elds represeting a
ow eld.

4 Exp erimen tal Results

In our numerical experimerts we usetwo data sets:
1) Positiv e de nite data. A 128 128 eld of 2-D tensorswhich hasbeen
extracted from a 3-D DT-MRI data set of a human head. Those data are



represeted as ellipsesvia the level setsof the quadratic form fx> A 2xjx 2
IR?g ass@iated with a matrix A 2 Sym(n). The exponert 2 takescare of
the fact that the small, resp., big eigervalue correspndsto the semi-minor,
resp., semi-mgor axis of the ellipse. The color coding of the ellipsesre ects
the direction of their principle axes. Another technical issueis that our DT-
MRI data set of a human head cortains not only positive de nite matrices.
Becauseof the quartisation there are singular matrices (particularly, a lot
of zero matrices outside the headsegmet) and even matriceswith negative
eigervalues. The negative valuesare of very small absolute value, and they
result from measuremen imprecision and quartisation errors. While sud
valuesdo not constitute a problemin the dilation processthe erosion,relying
on inversesof positive de nite matrices, hasto be regularised. Instead of the
exact inverseA ! of a given matrix A we usetherefore (A + ") ! with a
small positive ".

2) Inde nite data. An imageofsize248 202cortaining inde nite matrices
and depicting a rate-of-deformationtensor eld from a experimert in uid

dynamics. Heretensor-walueddata arerepreseted in the gures by greyvalue
imageswhich aresubdivided in four tiles. Eacd tile correspndsto onematrix
ertry. A middle grey value represets the zerovalue; Magnitude information
of the matrix-valued signalsis essetially encaled in the trace of the matrix
and thus in the main diagonal. Instead, the o -diagonal of a symmetric
matrix encale anisotropy.

Figure 2 displays the original headimageand a enlargedsectionof it aswell
asthe e ect of dilation and erosionwith a disk-shaped structuring elemern
of radius,, 5. For the sake of brevity we denotein the sequelthis elemer
by DSE( 5). We encourer the expected enhancemen or suppressionof
featuresin the image. As known from scalar-\alued morphology the shape of
details in the dilated and eroded imagesmirrors the shape of the structuring
elemenn.

In Figures 3 and 7, the results of opening and closing operations are shown.
In good analogyto their scalar-alued courterparts, both operationsrestitute
the coarseshape and sizeof structures. Smallerdetails are eliminated by the
opening operation, while the closingoperation magni es them. It alsoseems
that the isotropy of the matricesis increasedunder both operations.

The top hat Iters can be seenin Figure 4. As in the scalar-\alued case,
the white top hat is sensitive for small-scaledetails formed by matriceswith

large eigervalues,while the black top hat respondswith high valuesto small-
scaledetails stemming from matrices with small eigervalues. The self-dual
top hat asthe sum of white and black top hat resultsin homogeneoushhigh



matrices rather evenly distributed in the image.

Figures5 and 8 depict the internal and external morphologicalgradierts and
their sum, the Beuder gradiert for positive and negative de nite matrix-

elds. It is no surprisethat theseoperatorsrespond to the presenceof edges,
the one-sidedgradierts more so than the Beuder gradiert whoseinertance
is known. The imagesdepicting the ow eld shaw clearly that changesin

the valuesof the matrices are well detected.

The e ect of the Laplacian , and its usefor cortrolling a shock lter can
be seenin Figure 6: while applying dilation in pixels wherethe trace of the
Laplacian is negative, it useserosionwhere\er the trace of the Laplacian is
positive. The result is an image in which regionswith larger and smaller
eigervalues are sharper separatedthan in the original image. We also may
concedesomeedgedetection capabilities to the morphologicalLaplacian for
tensordata. Image(c) in gure 6 displays an edgemap derived by setting the
pixel value to 255if in that pixel the condition 100 trace( ,f) 100is
satis ed, and O if the absolutevalue of trace( ,f) exceedsl00.

5 Conclusions

In this paper we have extendedfundamertial conceptsof mathematical mor-
phology to the caseof matrix-valued data. This has beenadieved by de-
termining maximal and minimal elemens A, A in the spaceof symmetric
matrices Sym(n) with respect to the Loewnerordering. Theseextremal ele-
merts sere as an suitable analoguefor the cortinuous notion of maximum
and minimum, which lie at the heart of mathematical morphology As a con-
sequencene were able not only to designthe matrix-valued equivalents of
basicmorphologicaloperationslike dilation or erosionbut alsomorphological
derivativesand shack lters for tensor elds. In the experimertal sectionthe
performanceof the various morphological operations on positive de nite as
well asinde nite matrix- elds is documerted.

Future work comprisesthe extensionof the methodology to the demanding
caseof 3 3-matrix- elds aswell a the development of more sophisticated
morphological operators for matrix-valued data.
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Figursg: (a) Left: closing with DSE(pB). (b) Right: opening with
DSE( 5).

Figure 4: (a) be_ft: white top hat with DSE(p 5). (b) Mid le:  black top
hat with DSE(" 5). (c) Right: self-dualtop hat with DSE(" 5).
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Figure 5: (a) Left: F%ternalgradiert with DSE(p 5). (b) Middle: internal
gradiert with DSE( 5). (c) Right: Beuder gradiert with DSE(" 5).

Figure 6: (a) Letft: morphologicaH.gpIacian with DSE(p 5). (b) Middle:
result of shock Itering with DSE( 5). (c) Right: engrDap derived from
zero crossingsof the morphological Laplacian with DSE(" 5).

Figursz: (a) Left: original imageof a ovbgld. (b) Middle: closingwith
DSE( 5). (c) Right: openingwith DSE( 5).
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Figure 8: (a) Left: F%ternalgradiert with DSE(p 5). (b) Middle: internal
gradiert with DSE( 5). (¢) Right: Beuder gradiert with DSE( 5).
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