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Abstract The operators of greyscale morphology rely on the notions of maximum and
minimum which regrettably are not directly available for tensor-valued data
since the straightforward component-wise approach fails.
This paper aims at the extension of the maximum and minimum operations to
the tensor-valued setting by employing the Loewner ordering for symmetric ma-
trices. This prepares the ground for matrix-valued analogs of the basic morpho-
logical operations. The novel definitions of maximal/minimal matrices are rota-
tionally invariant and preserve positive semidefiniteness of matrix fields as they
are encountered in DT-MRI data. Furthermore, they depend continuously on the
input data which makes them viable for the design of morphological derivatives
such as the Beucher gradient or a morphological Laplacian. Experiments on
DT-MRI images illustrate the properties and performance of our morphological
operators.
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Introduction
A fruitful and extensive development of morphological operators has been

started with the path-breaking work of Serra and Matheron [11, 12] almost four
decades ago. It is well documented in monographs [8, 13–15] and conference
proceedings [7, 16] that morphological techniques have been successfully used
to perform shape analysis, edge detection and noise suppression in numerous
applications. Nowadays the notion of image also encompasses tensor-valued
data, and as in the scalar case one has to detect shapes, edges and eliminate
noise. This creates a need for morphological tools for matrix-valued data.
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Matrix-valued concepts, that truly take advantage of the interaction of the
different matrix-channels have been developed for median filtering [20], for
active contour models and mean curvature motion [5], and for nonlinear reg-
ularisation methods and related diffusion filters [17, 19]. In [4] the basic op-
erations dilation and erosion as well as opening and closing are transfered to
the matrix-valued setting at least for 2 × 2 matrices. However, the proposed
approaches lack the continuous dependence on the input matrices which poses
an insurmountable obstacle for the design of morphological derivatives.

The goal of this article is to present an alternative and more general approach
to morphological operators for tensor-valued images based on the Loewner
ordering. The morphological operations to be defined should work on the set
Sym(n) of symmetric n× n matrices and have to satisfy conditions such as:

(i) Continuous dependence of the basic morphological operations on the
matrices used as input for the aforementioned reasons,

(iii) preservation of the positive semidefiniteness of the matrix field since
DT-MRI data sets posses this property,

(iii) rotational invariance.

It is shown in [4] that the requirement of rotational invariance already rules out
the straightforward component-wise approach. In this paper we will introduce
a novel notion of the minimum/maximum of a finite set of symmetric matrices
which will exhibit the above mentioned properties.

The article has the following structure: The subsequent section gives a brief
account of the morphological operations we aim to extend to the matrix-valued
setting. In section 3 we present the crucial maximum and minimum operations
for matrix-valued data based on the Loewner ordering. We report the results of
our experiments with various morphological operators applied to real DT-MRI
images in section 4. The last section 5 provides concluding remarks .

1. Morphological Operators
Standard morphological operations utilise the so-called structuring element

to work on images represented by scalar functions f(x, y) with (x, y) ∈ IR2.
Greyscale dilation ⊕, resp., erosion 	 w.r.t. B is defined by

(f ⊕B) (x, y) := sup {f(x−x′, y−y′) | (x′, y′)∈B},
(f 	B) (x, y) := inf {f(x−x′, y−y′) | (x′, y′)∈B}.

The combination of dilation and erosion gives rise to various other morpholog-
ical operators such as opening and closing,

f ◦B := (f 	B)⊕B , f •B := (f ⊕B)	B ,
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the white top-hat and its dual, the black top-hat

WTH(f) := f − (f ◦B) , BTH(f) := (f •B)− f ,

finally, the self-dual top-hat, SDTH(f) := (f • B)− (f ◦B) .
The boundaries of objects are the loci of high greyvalue variations in an image
which can be detected by gradient operators. The so-called Beucher gradient

%B(f) := (f ⊕B)− (f 	B) ,

as well as the internal and external gradient,

%−B(f) := f − (f 	B) , %+

B(f) := (f ⊕B)− f

are analogs to the norm of the gradient ‖∇f‖ if the image f is considered as a
differentiable function.

The application of shock filtering to matrix-valued data calls for an equiv-
alent of the Laplace operator ∆f = ∂xxf + ∂yyf appropriate for this type of
data. A morphological Laplacian has been introduced in [18]. However, we
use a variant given by

∆mf := %+

B(f)− %−B(f) = (f ⊕B)− 2 · f + (f 	B) .

This form of a Laplacian acts as the second derivative ∂ηηf where η stands
for the direction of the steepest slope. Therefore it allows us to distinguish
between influence zones of minima and maxima of the image f , a property
essential for the design of shock filters.

The idea underlying shock filtering is applying either a dilation or an erosion
to an image, depending on whether the pixel is located within the influence
zone of a minimum or a maximum [10]:

δB(f) :=

{

f ⊕B if trace(∆mf) ≤ 0 ,
f 	B otherwise.

2. Maximal and Minimal Matrices with Respect to
Loewner Ordering

In this section we describe how to obtain the suitable maximal (minimal)
matrix that majorises (minorises) a given finite set of symmetric matrices. We
start with a very brief account of some notions from convex analysis necessary
for the following.

A subset C of a vector space V is named cone, if it is stable under addition
and multiplication with a positive scalar. A subset B of a cone C is called base
if every y ∈ C, y 6= 0 admits a unique representation as y = r · x with x ∈ B
and r > 0. We will only consider a cone with a convex and compact base.
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The most important points of a closed convex set are its extreme points char-
acterised as follows: A point x is an extreme point of a convex subset S ⊂ V

of a vector space V if and only if S \ {x} is still convex. The set of all extreme
points of S is denoted ext(S). All extreme points are necessarily boundary
points, ext(S) ⊂ bd(S). Each convex compact set S in a space of finite dimen-
sion can be reconstructed as the set of all convex combinations of its extreme
points [1, 9]: S = convexhull(ext(S)).

The Cone of the Loewner Ordering
Let Sym(n) denote the vector space of symmetric n× n-matrices with real

entries. It is endowed with the scalar product 〈A,B〉 :=
√

trace(A>B). The

corresponding norm is the Frobenius norm for matrices: ‖A‖ =
n
∑

i,j=1

aij .

There is also a natural partial ordering on Sym(n), the so-called Loewner or-
dering defined via the cone of positive semidefinite matrices Sym+(n) by

A,B ∈ Sym(n) : A ≥ B :⇔ A−B ∈ Sym+(n),

i.e. if and only if A−B is positive semidefinite.
This partial ordering is not a lattice ordering, that is to say, the notion of a
unique supremum and infimum with respect to this ordering does not exist [3].
The (topological) interior of Sym+(n) is the cone of positive definite matri-
ces, while its boundary consists of all matrices in Sym(n) with a rank strictly
smaller than n. It is easy to see that, for example, the set {M ∈ Sym+(n) :
trace(M) = 1} is a convex and compact base of the cone Sym+(n). It is known
[1] that the matrices v v> with unit vectors v ∈ IRn, ‖v‖ = 1 are the extreme
points of the set {M ∈ Sym+(n) : trace(M) = 1} [1]. They have by con-
struction rank 1 and for any unit vector v we find v v>v = v · ‖v‖2 = v which
implies that 1 is the only non-zero eigenvalue. Hence trace(v v>)= 1 . Because
of this extremal property the matrices v v> with ‖v‖ = 1 carry the complete
information about the base of Loewner ordering cone: convexhull({v v> : v ∈
IRn, ‖v‖ = 1}) is a base for the Loewner ordering cone.

The penumbra P (M) of a matrix M ∈ Sym(n) is the set of matrices N that
are smaller than M w.r.t. the Loewner ordering:

P0(M) := {N ∈ Sym(n) : N ≤M} = M − Sym+(n) ,

where we used the customary notation a + r S := {a + r · s : s ∈ S} for a
point a ∈ V , a scalar r and a subset S ⊂ V .

Using this geometric description the problem of finding the maximum of
a set of matrices {A1, . . . , Am} amounts to determining the minimal penum-
bra covering their penumbras P0(A1), . . . , P0(Am). Its vertex represents the
wanted maximal matrix A that dominates all Ai w.r.t the Loewner ordering.
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However, the cone itself is too complicated a structure to be handled directly.
Instead we associate with each matrix M ∈ Sym(n) a ball in the subspace
{A : trace(A) = 0} of all matrices with zero trace as a completely descriptive
set. We will assume for the sake of simplicity that trace(M )≥ 0. This ball
is constructed in two steps: First, from the statements above we infer that
the set {M − trace(M) · convexhull{v v> : v ∈ IR, ‖v‖ = 1}} is a base
for P0(M) contained in the subspace {A : trace(A) = 0}. We observe that
the identity matrix E is perpendicular to the matrices A from this subspace,
〈A,E〉 =

√

trace(A) = 0, and hence the orthogonal projection of M onto
{A : trace(A) = 0} is given by

m := M − trace(M)

n
E .

Second, the extreme points of the base of P0(M) are lying on a sphere with
center m and radius

r := ‖M − trace(M)v v> −m‖ = trace(M)

√

1− 1

n
.

Consequently, if the center m and radius r of a sphere in {A ∈ Sym(n) :
trace(A) = 0} are given the vertex M of the associated penumbra P0(M) is
obtained by

M = m+
r

n

1
√

1− 1

n

E .

With this information at our disposal, we can reformulate the task of finding a
suitable maximal matrixA dominating the matrices {A1, . . . , Am}: The small-
est sphere enclosing the spheres associated with {A1, . . . , Am} determines the
matrix A that dominates the Ai. It is minimal in the sense, that there is no
smaller one w.r.t. the Loewner ordering which has this “covering property” of
its penumbra.

This is a non trivial problem of computational geometry and we tackle it by
using a sophisticated algorithm implemented by B. Gaertner [6]. Given a set
of points in IRd it is capable of finding the smallest ball enclosing these points.
Hence for each i = 1, . . . ,m we sample within the set of extreme points
{Ai − trace(Ai)v v

>} of the base of P0(Ai) by expressing v in 3d-spherical
coordinates, v = (sinφ cosψ, sinφ sinψ, cos φ) with φ ∈ [0, 2π[, ψ ∈ [0, π[.

The case n = 2 can be visualised by embedding Sym(2) in IR3 via A =
(aij)i,j=1,2 ←→ (a11, a22, a12) as it is indicated in Figure 1. The penumbras
of the matrices {A1, . . . , Am} are covered with the minimal penumbral cone
whose vertex is the desired maximal matrix A. For presentational purposes an
additional orthogonal transformation has been applied such that the x-y-plane
coincides with {A ∈ Sym(2) : trace(A) = 0}. The minimal element A is
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Figure 1. (a) Left: Image of the Loewner cone Sym+(2). (b) Right: Cone covering four
penumbras of other matrices. The tip of each cone represents a symmetric 2 × 2 matrix in IR

3.
Each of the cones (and hence its generating matrix) is uniquely determined by its circular base.
The minimal disc covering the smaller discs belongs to the selected maximal matrix A

obtained through the formula

A =
(

max(A−1
1 , . . . , A−1

m )
)−1

inspired by its well-known counterpart for real numbers. The construction of
maximal and minimal elements ensures their rotational invariance, their pos-
itive semidefiniteness and continuity. These properties are passed on to the
above mentioned morphological operations.

3. Experimental Results
In our numerical experiments we use positive definite data. A 128 × 128

layer of 3-D tensors which has been extracted from a 3-D DT-MRI data set of
a human head. For detailed information about the acquisition of this data type
the reader is referred to [2] and the literature cited there. The data are repre-
sented as ellipsoids via the level sets of the quadratic form {x>Ax : x ∈ IR3}
associated with a matrix A ∈ Sym+(3). The color coding of the ellipses re-
flects the direction of their principle axes.
Due to quantisation effects and measurement imprecisions our DT-MRI data
set of a human head contains not only positive definite matrices but also singu-
lar matrices and even matrices with negative eigenvalues, though the negative
values are of very small absolute value. While such values do not constitute
a problem in the dilation process, the erosion, relying on inverses of positive
definite matrices, has to be regularised. Instead of the exact inverse A−1 of a
given matrix A we use (A+ εI)−1 with a small positive ε.

Due to the complexity of the not yet fully optimised procedures the running
time to obtain dilation and erosion is about two orders of magnitude longer
than in the case of comparable calculations with grey value data.

Figure 2 displays the original head image and the effect of dilation and ero-
sion with a ball-shaped structuring element of radius

√
5. For the sake of

brevity we will denote in the sequel this element by BSE(
√

5). As it is ex-
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Figure 2. (a) Top left: 2-D tensor field extracted from a DT-MRI data set of a human head.
(b) Top right: enlarged section of left image. (c) Bottom left: dilation with BSE(

√
5). (d)

Bottom right: erosion with BSE(
√

5).

Figure 3. (a) Left: closing with BSE(
√

5). (b) Right: opening with BSE(
√

5).

pected from scalar-valued morphology, the shape of details in the dilated and
eroded images mirrors the shape of the structuring element. In Figure 3 the
results of opening and closing operations are shown. In good analogy to their
scalar-valued counterparts, both operations restitute the coarse shape and size
of structures. The output of top hat filters can be seen in Figure 4. As in the
scalar-valued case, the white top hat is sensitive for small-scale details formed
by matrices with large eigenvalues, while the black top hat responds with high
values to small-scale details stemming from matrices with small eigenvalues.
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Figure 4. (a) Left: white top hat with BSE(
√

5). (b) Middle: black top hat with BSE(
√

5).
(c) Right: self-dual top hat with BSE(

√
5).

Figure 5. (a) Left: external gradient with BSE(
√

5). (b) Middle: internal gradient with
BSE(

√
5). (c) Right: Beucher gradient with BSE(

√
5).

Very long ellipses also seen in the yellow spot in Figure 3, are partially arte-
facts caused by the tool for graphical representation. The self-dual top hat as
the sum of white and black top hat results in homogeneously extreme matrices
rather evenly distributed in the image.

Figure 5 depicts the effects of internal and external morphological gradients
and their sum, the Beucher gradient for our sample matrix field. The action of
the Laplacian ∆m and its use for steering a shock filter can be seen in Figure 6:
While applying dilation in pixels where the trace of the Laplacian is negative,
the shock filter acts as an erosion wherever the trace of the Laplacian is posi-
tive. The output is an image where regions with larger and smaller eigenvalues
are separated more clearly than in the original image.
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Figure 6. (a) Left: morphological Laplacian with BSE(
√

5). (b) Right: result of shock
filtering with BSE(

√
5).

4. Conclusion
In this paper we determined suitable maximal and minimal elements A, A

in the space of symmetric matrices Sym(3) with respect to the Loewner order-
ing. Thus we have been able to transfer fundamental concepts of mathematical
morphology to matrix-valued data. The technique developed for this purpose is
considerably more general and sustainable than former approaches for the case
of 2×2-matrices. The present approach has potential to cope successfully even
with 5× 5-matrix fields. We obtained appropriate analogs with desirable con-
tinuity properties for the notion of maximum and minimum, the corner stones
of mathematical morphology. Therefore we succeeded in designing morpho-
logical derivatives and shock filters for tensor fields, aside from the standard
morphological operations. The practicability of various morphological oper-
ations on positive definite matrix-fields is confirmed by several experiments.
Future work will focus on faster performance and the development of more
sophisticated morphological operators for matrix-valued data.
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