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Abstract. There is an increasing demand to develop image process-
ing tools for the filtering and analysis of matrix-valued data, so-called
matrix fields. In the case of scalar-valued images parabolic partial differ-
ential equations (PDEs) are widely used to perform filtering and denois-
ing processes. Especially interesting from a theoretical as well as from
a practical point of view are PDEs with singular diffusivities describ-
ing processes like total variation (TV-)diffusion, mean curvature motion
and its generalisation, the so-called self-snakes. In this contribution we
propose a generic framework that allows us to find the matrix-valued
counterparts of the equations mentioned above. In order to solve these
novel matrix-valued PDEs successfully we develop truly matrix-valued
analogs to numerical solution schemes of the scalar setting. Numerical
experiments performed on both synthetic and real world data substan-
tiate the effectiveness of our matrix-valued, singular diffusion filters.

1 Introduction

Matrix-fields are used, for instance, in civil engineering to describe anistropic
behavior of physical quantities. Stress and diffusion tensors are prominent ex-
amples. The output of diffusion tensor magnetic resonance imaging (DT-MRI)
[14] are symmetric 3 x 3-matrix fields as well. In medical sciences this image ac-
quisition technique has become an indispensable diagnostic tool in recent years.
Evidently there is an increasing demand to develop image processing tools for
the filtering and analysis of such matrix-valued data.
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D-dimensional scalar images f : 2 C IR? — IR have been denoised, seg-
mented and/or enhanced successfully with various filters described by nonlinear
parabolic PDEs. In this article we focus on some prominent examples of PDEs
used in image processing and which can serve as a proof-of-concept:

— Total-Variation (TV)-Diffusion (p=1), [3, 10] and balanced-forward-backward
(BFB)-diffusion (p=2), [13],

Vu
Opu = di 1
= () W
— Mean curvature motion (MCM), [2],
Vu
Oru = ||Vu|| div <) , (2)
f vl

— Self-Snakes involving a Perona-Malik type diffusivity g, [15],
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where we impose the initial condition u(z,0) = f(z) for = € 2 in all cases.
TV-type diffusion filters require no tuning of parameters but have shape-
preserving qualities [6] and a finite extinction time [4]. Even arbitrary exponents
have been considered, [1,17]. Extensions of curvature-based PDEs to matrix
fields have been proposed in [11] and more recently in [16], based on generali-
sations of the so-called structure tensor for scalar images to matrix fields. The
research on these structure-tensor concepts has been initiated by [19,7]. The
approaches to matrix field regularisation suggested in [9] are based on differen-
tial geometric considerations. Comprehensive survey articles on the analysis of
matrix fields using various techniques can be found in [20].

In this article we will proceed along a different path. We will develop a generic
framework for deriving matrix-valued counterparts for scalar PDEs. This does
not just mean that we derive systems of PDEs which can be written in matrix
form. Instead we will exploit the operator-algebraic properties of (symmetric)
matrices to establish truly matrix-valued PDEs. For this work we concentrate
on the matrix-valued analogs of the singular PDEs (1)—(3) as particularly in-
teresting equations. It is also worth mentioning that in contrast to [11] and [16]
our framework does not rely on a notion of structure tensor. Nevertheless, the
proposed concept ensures an appropriate and desirable coupling of channels. The
methodology to be developed will also enable us to transfer numerical schemes
from the scalar to the matrix valued setting.

The article is structured as follows: The subsequent Section 2 contains the
basic definitions necessary for our framework, such as functions of a matrix, par-
tial derivatives, and generalised gradient of a matrix field. In Section 3 we turn
first to the simple linear diffusion for matrix fields for the sake of later compari-
son. After introducing a symmetrised multiplication for symmetric matrices we



then formulate the matrix-valued counterparts of the singular equations men-
tioned above. By considering the already rather complicated one-dimensional
case, first properties of the matrix-valued diffusion processes are inferred. The
transition from scalar numerical solution schemes to matrix-valued algorithms
for the solutions of the new diffusion equations is discussed in Section 4. Exam-
ple applications on synthetic and real DT-MRI data are presented in Section 5,
followed by the concluding remarks in the last Section 6.

2 Matrix-Valued PDEs: A Generic Framework

This section contains the key definitions for the formulation of matrix-valued
PDEs. The underlying idea is that to a certain extend symmetric matrices can
be regarded as a generalisation of real numbers. In that spirit we would like
to generalise notions like functions of matrices and derivatives and gradients of
such functions to the matrix-valued setting as instigated in [8]. We juxtapose the
corresponding basic definitions in Table 1, and comment on them in the subse-
quent remarks. We start with clarifying notation. A matrix field is considered as
a mapping F : 2 ¢ R? — M, (IR), from a d-dimensional image domain into
the set of n x n-matrices with real entries, F(z) = (fp ¢(2))p,q=1,...n - Important
for us is the subset of symmetric matrices Sym,, (IR). The set of positive (semi-)
definite matrices, denoted by Sym; " (IR) (resp., Sym;’ (IR)), consists of all sym-
metric matrices A with (v, Av) := v Av >0 (resp., >0) for v €& IR™\{0}.
This set is of special interest since DT-MRI produces data with this property.
Note that at each point the matrix F'(z) of a field of symmetric matrices can
be diagonalised yielding F(z) = V()" D(z)V (x), where z — V(z) € O(n) is a
matrix field of orthogonal matrices, while  — D(x) is a matrix field of diagonal
matrices. In the sequel we will denote n x n - diagonal matrices with entries
Ay An € IR from left to right simply by diag()\;). O(n) stands for the ma-
trix group of orthogonal n x n-matrices. In the following we assume the matrix
field U(x) to be diagonalisable with U = (u; ;); ; = V "diag(A1, ..., \,)V, where
V e O(n) and Aq,..., A\, € R.

Remarks 1:

1. Functions of matrices. The definition of a function & on Sym,, (IR) is stan-
dard [12]. As an important example, |U| denotes the matrix-valued equiva-
lent of the absolute value of a real number, |U| = V Tdiag(|A1], ..., |\|)V €
Sym! (IR), not to be confused with the determinant det(U) of U.

2. Partial derivatives. The componentwise definition of the partial derivative
for matrix fields is a natural extension of the scalar case:

o b _ (v uig(wo + h) — uij(wo)
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Setting scalar valued matrix-valued
. JR—R [ Sym,,(R) — Sym, (R)
function h {m s h(z) h { U — VT diag(h(A1), . .., h(An))V
partial Owl, U := (8inj)ij,
derivatives we{t,z1,...,2q} we{t,z1,...,zq}
higher A, EEU = (Bf,uij)ij,
derivatives we {t,z1,...,zq} we{t,z1,...,zq}
d _ d _,
Laplacian Au= Y 02.u AU = 0,,U
i=1 i=1

Vu(z) := (0p, uw(x),...,0, w@))T,| VU (z) := (0, U(z),... , Oy Uz)) T,

gradient

Vu(z) € R? VU(z) € (Sym,, (IR))?
T d __ T d _
div (a(z)) = - Oa;a4(x), div (A(z)) = 32 0x, As(2),
divergence =1 =1
a(z) := (a1(x), ..., aa(z)) Az) == (A1(2), ..., Aa(z))
lwlp == "/wi[P + - + |wal?, Wy = */IWilP + -+ [Wal?,
length
lwlp € [0, +oo] [Wlp € Sym,, (IR)
multiplication a-b A%BA%

Table 1. Extensions of elements of scalar valued calculus (middle) to the matrix-
valued setting (right).

where 0,, stands for a spatial or temporal derivative. By iteration higher
order partial differential operators, such as the Laplacian, or other more
sophisticated operators, find their natural counterparts in the matrix-valued

framework. It is worth mentioning that for the operators 0, a product rule
holds:

9u(A() - B(2)) = (0.A(w)) - B(x)) + A() - (0. B(x)) -

Observe that positive definiteness in general is not preserved through deriva-
tion 0,,.

. Generalized gradient of a matrix field. The definition of a generalised
gradient is somewhat different from one that might be expected when view-
ing a matrix as a tensor (of second order). The rules of differential geometry
would tell us that derivatives are tensors of third order. Instead, we adopt a
more operator-algebraic point of view: the matrices are self-adjoint operators
that can be added, multiplied with a scalar, and concatenated. Thus, they
form an algebra, and we aim at consequently replacing the field IR by the
algebra Sym,, (IR) in the scalar, that is, IR-based formulation of PDEs used
in image processing. Hence, the generalised gradient VU (z) at a voxel z is



regarded as an element of the module (Sym,, (IR))? over Sym,, (IR) in close
analogy to the scalar setting where Vu(z) € RY.

In the sequel we will call a mapping from RR? into (Sym,,(IR))? a module
field rather than a vector field.

4. Generalised divergence of the module field. The generalization of the
divergence operator div acting on a vector field to an operator div acting
on a module field A is straightforward, and is in accordance with the formal
relation AU = divVU = V.VU known in its scalar form from standard
vector analysis.

5. Generalised Length in (Sym,, (IR))?. Considering the formal definition
in Table 1 the length of an element of a module field A is close at hand. It
results in a positive semidefinite matrix from Sym; (IR) the direct counter-
part of a nonnegative real number as the length of a vector in IR?.

6. Symmetrised Multiplication in Sym,, (IR). The scalar TV-diffusion equa-
tion (1) requires the multiplication of the components of a vector (namely
Vu) with a scalar (namely Hvilun) In the matrix-valued setting the compo-
nents of VU, that is, 9,,U, i = 1,...,d, and (the inverse of) its generalised
length |[VU|; =: [VU| are symmetric matrices. However, the product of two
symmetric matrices A, B € Sym,, (IR) is not symmetric unless the matri-
ces commute. Among the numerous options to define a symmetrised matrix
product we focus on one that is inspired from pre-conditioning of symmetric
linear equation systems [12]. We define

AeB:= AZBA?
as the symmetrised multiplication of symmetric matrices.

For the sake of future comparison we first consider the matrix-valued version of
the linear diffusion equation on IR% x [0, oo in the next section.

3 Diffusion Equations for Matrix-Fields
3.1 Matrix-Valued Linear Diffusion

d d _
The linear diffusion equation dyu = . 0,,0p,u = . Op,0,u = Auon R x [0, oo
i=1 i=1
is directly extended to the matrix valued setting:

d d

U = 0,,05,U = 042U =4AU (4)
i=1 i=1

with initial condition U(z,0) = F(x). The diffusion process described by this

equation acts on each of the components of the matrix independently. It is proven

in [11] that positive (semi-)definiteness of the initial matrix field F' is indeed

bequeathed to U for all times.



3.2 Matrix-Valued Singular Diffusion Equations

In Section 2 Remark 1 (6) we set AeB := Az BA? for a symmetric multiplication
of symmetric matrices. It is easily verified that this product is neither associative,
nor commutative, and distributive only in the second argument. However, if A is
non-singular, the so-called signature s = (s4,s—, sg) of B is preserved, where s,
s_, and sg, stand for the number of positive, negative, and vanishing eigenvalues
of B, respectively. This implies in particular that the positive definiteness of B
is preserved. Furthermore, for commuting matrices A, B we have Ae B = A- B.
Another even more prominent candidate for a symmetrised multiplication would
be the so-called Jordan product A e; B := £(AB + BA), which is neither
associative nor distributive, but commutative. The reason we disregard it in
this article lies in the fact that it does not preserve positive (semi-)definiteness
as the following simple example shows:

(o)or () =5 ((22)+ (20)) = (20) v ae (20) = .

Remark 2: It should be mentioned that the logarithmic multiplication intro-
duced in ([5]) and given by A ey B := exp(log(A) + log(B)) is defined only for
positive definite matrices. However, the matrix-valued PDE-based filtering pro-
posed here require the symmetric multiplication to be able to cope with at least
one factor matrix being indefinite. Furthermore matrix fields that are not nec-
essarily positive semidefinite should also be within the reach of our PDE-based
methods. Hence the logarithmic multiplication is not suitable for our purpose.

With these definitions we are now in the position to state the matrix-valued
counterparts for the PDEs (1)-(3) mentioned above. For the sake of brevity we
concentrate on the most general one, the self-snakes:

By = [VU| » div (sz(gU)) . VU (5)

30 (4500 - [AE0))]

where we used the notation

g([VUP?) .
[VU|

=4/IVU|- VU,

= = -1 = -1 = = -1 =
=g(IVU)-[VU| = VU - g([VU*) = [VU| " e g([VUJ?)

Specifying g = 1 we regain the matrix-valued PDE for mean curvature motion of
matrix fields, while neglecting the factor [VU| and setting g(s?) = ﬁ in equation

(5) produces the equation for BFB-diffusion, for instance.

3.3 Matrix-Valued Signals

In this section we investigate the matrix-valued TV-related diffusion processes,
the mean curvature motion and the self-snakes in the case of one space dimension.



We restrict ourselves to the one-dimensional case (d = 1): U : R — Sym,,(IR)
since then simplifications occur. Only one spatial derivative appears and the
expressions containing the matrix 0, commute. Hence, in those expressions the
symmetric multiplication “e“ collapses to ”-”, facilitating the analysis. The equa-
tion for the matrix-valued self-snakes in one space dimension simplifies to

9 2
DU = 0,03, (MU” ~81.U> .
2,0

However, even in this simplified setting this type of data exhibit directional
(through eigenvectors) as well as shape information (through eigenvalues) which
allows for the appearance of new phenomena. The partial derivative 9, of a
signal U of symmetric matrices results again in symmetric matrices, 9,U(x) €
Sym,, (IR). Hence we have 8,U(z) = VT (z)diag(\;(z))V (z) with V(z) € O(n)

for all x € 2. We observe that % is also diagonalised by V,

@ =V 'diag (g()if)) v,

and introducing the abbreviation h(s?) := % it follows that h((0,U)?)-0,.U =
V Tdiag (h():f) . /\~Z> V. We introduce a flux function @ by &(s) := s - h(s?)
which gives 42(s) = &/(s) = 2s?h/(s%) + h(s?) at least for s # 0. In order to

treat the sing(;itilarity at s = 0 it is customary to regularise h in one way or the
other to make h differentiable in [0, +oo[. Keeping numerical issues in mind we
also adopt this point of view, rather than interpreting the derivatives in the
following calculations in the distributional sense. The product rule for matrix-
valued functions and incorporating @ then yields, if we suppress the explicit
dependence of V and A; on x notationally, the following matrix-valued version

of the self-snakes equation

+ Vdiag(qs/():i) ) 89;):1‘]) VT) 1)

We infer that the matrix-valued data allow for a new phenomenon: unlike in
the scalar setting, a matrix carries directional information conveyed through
the eigenvectors as well as shape information mediated via eigenvalues. The
evolution process described in (6) and (7) displays a coupling between shape
and directional information by virtue of the simultaneous occurrence of terms
containing 9,V (z) in (6) and d,A(x) in (7). Clearly there is no equivalent for
this in the scalar setting.

4 Matrix-Valued Numerical Schemes

In the previous sections the guideline to infer matrix-valued PDEs from scalar
ones was, roughly speaking, analogy by making a transition from the real field



IR to the vector space Sym,,(IR) endowed with some ‘symmetric‘ product ”e”.
We follow this guideline also in the issue of numerical schemes for matrix-valued
PDEs. For the sake of brevity we restrict ourselves to the TV-type diffusion,
which means h(s?) = \/% (or in its regularised form h(s?) = \/Ezlﬁ with 0 <
e < 1) and two space dimensions (d = 2). The necessary extensions to self-
snakes in dimensions d > 3 are immediate. A possible space-discrete scheme for

the scalar TV-diffusion can be cast into the form

dugt,j) :%1<h(i+%’j).U(i+17j7-)1_u(i7j) 3 h(iiéhj)_u(i,j) —Tzi(yz—Lj))
N %2 <h(i7j N %) (i, j+ 17—)2— u(i,j) Wi, j %) (i, j) —Z(i,j - 1)) 7

where h(i,7) and (i, j) are samples of the (regularised) diffusivity h and of u
at pixel (7,7) and, for example, h(i + %,j) = w According to our
preparations in Section 2 its matrix-valued extension to solve the TV-diffusion

equation in the matrix setting reads

dU((ii»j) _ ]i (H( L Ui+ uh)f UGS _ gy L U(i.j) fhzu - u))
+ i (H(L,J + %) . U('ij + 1}][)27 U(Zv.]) _ H(L,J _ %) . U('ij) 7}5(%] — 1)) .

The arithmetic mean H(i + 1,j) = w € Sym,, (IR) approximates
the diffusivity H(|VU|?) between the pixels (i+1,5) and (i, j). However, for the
numerical treatment of MCM and self-snakes the usage of the properly defined
harmonic mean instead of the arithmetic mean is advised. In the scalar setting
this was already observed and put to work in [18].

5 Experiments

In our experiments we used a 3-D DT-MRI data set of a human head consisting
of a 128 x 128 x 38-field of positive definite matrices. The data are represented as
ellipsoids via the level sets of the quadratic form {z" A=2z = const. : x € IR?}
associated with a matrix A € Sym™(3). By using A=2 the length of the semi-
axes of the ellipsoid correspond directly with the three eigenvalues of the matrix.
However, for a better judgement of the denoising qualities of the smoothing pro-
cesses we utilise also artificial data sets.

In Figure 1 below we compare the results of matrix-valued TV- and BFB-
diffusion. The noise is removed while the edge is preserved, in very good agree-
ment with the well-known denoising properties of their scalar predecessors.
Another set of artificial data, depicted in Figure 2, is used to demonstrate ex-
emplarily the denoising capabilities of matrix-valued Self-Snakes, see Figure 3.
Figure 4 juxtaposes matrix-valued linear diffusion, and smoothing with MCM
and Self-Snakes. The smoothing as well as the convexifying and shrinking of
image objects to circular structures known as features of scalar mean curva-
ture motion and Self-Snakes are clearly discernable in our matrix-valued setting.



Finally, in Figure 5 the smoothing and enhancing properties of matrix-valued
self-snakes and TV-diffusion are juxtaposed while acting on a 2-D slice of a real
3-D DT-MRI data set. The matrix-valued extensions inherit the filtering capa-
bilities of their scalar counterparts.

It is worth mentioning that the results are in good agreement with the results in
[11] and [16]. However, the framework presented here is generic, hence more gen-
eral, and does not rely on any notion of a potentially parameter-steered structure
tensor.

!

IR
[N
I
IR
(N
()
"
L]

P |
e ————)

-——————— = |

P - - - ;

@
-G —————
crcemeee |
——ecaea= |
———m————
S ——
S

Fig.1. (a) Top row, from left to right: Original matrix field. TV-diffusion on the
noisy image after t = 5, and ¢ = 100. (b) Bottom row, from left to right: Original
polluted additively with a random matrix field R. The eigenvalues of R stem from a
Gaussian distribution with vanishing mean and standard deviation 100, its normalised
eigenvectors have uniform spatial distribution. Then BFB-diffusion on the noisy image
after t = 0.5, and ¢t = 10.

6 Conclusion

In this article we have presented a novel and generic framework for the exten-
sion of singular PDEs to symmetric matrix fields in any spatial dimension. We
focused on the extension of scalar TV /BFB-diffusion, mean curvature motion,
and self-snakes as leading examples. The approach takes an operator-algebraic
point of view and ensures appropriate channel interaction without the use of
a structure tensor. Experiments on positive semidefinite DT-MRI and artificial
data illustrate that the matrix-valued methods inherit desirable characteristic



Fig. 2. Left: Original matrix field. Right: Original polluted additively with a random
matrix field R as in Figure 1.

9000 ¢
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Fig. 3. From left to right: Filtering results for the polluted image of Figure 2 with
Self-Snakes (A = 2000) after ¢ = 5, t = 10, and ¢ = 100.

properties of their scalar valued predecessors, e.g. very good denoising capa-
bilities combined with feature preserving qualities, and the absence of tuning
parameters. In future work we will investigate how this framework can help to
extend other scalar PDEs and more sophisticated numerical solution concepts
in image processing to the matrix-valued setting.
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