
The Bessel Scale-Space

Bernhard Burgeth, Stephan Didas, and Joachim Weickert

Mathematical Image Analysis Group,
Faculty of Mathematics and Computer Science, Bldg. 27,

Saarland University, 66041 Saarbrücken, Germany
{burgeth, didas, weickert}@mia.uni-saarland.de

http://www.mia.uni-saarland.de

Abstract. In this paper we propose a novel type of scales-spaces which
is emerging from the family of inhomogeneous pseudodifferential equa-
tions (I − τ∆)

t
2 u = f with τ ≥ 0 and scale parameter t ≥ 0. Since

they are connected to the convolution semi-group of Bessel potentials
we call the associated operators {Rn

t,τ | 0 ≤ τ, t} either Bessel scale-space
(τ = 1), Rn

t for short, or scaled Bessel scale-space (τ �= 1). This is the
first concrete example of a family of scale-spaces that is not originating
from a PDE of parabolic type and where the Fourier transforms F(Rn

t,τ )
do not have exponential form. These properties make them different
from other scale-spaces considered so far in the literature in this field.

In contrast to the α-scale-spaces the integral kernels for Rn
t,τ can be

given in explicit form for any t, τ ≥ 0 involving the modified Bessel
functions of third kind Kν . In theoretical investigations and numerical
experiments on 1D and 2D data we compare this new scale-space with
the classical Gaussian one.

Keywords: Bessel potential, Bessel-functions, α-scale-space, convolu-
tion, semi-group, pseudodifferential operator,co-histogram.

1 Introduction

In retrospect modern scale-space theory began with the pioneering work of Taizo
Iijima [17] in the late fifties. Although his work was not noticed by the western
scientific community for decades the vivid research on scale-space methodolo-
gies has resulted in a large amount of techniques valuable for image processing
and computer vision. This is documented in numerous articles and books, see
[12,31,21,29,33] and the literature cited therein.

The Gaussian scale-space is the archetype of a linear scale-space. Its rela-
tion to linear diffusion processes was first pointed out to the image processing
community by Iijima [18].

However, scale-space properties can also be spotted in non-linear diffusion
processes, a field inspired by the path-breaking work of Perona and Malik [26].
These non-linear theories embrace anisotropic diffusion processes [33,27], mor-
phological operations [32,6,19] as well as the evolution of level curves [2,24,28,20].
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Highly non-linear, sometimes even degenerated differential equations are the
mathematical language to describe these theories [31,33,15,3,13,8].

Be that as it may, the linear setting, meaning the assumed validity of the
superposition principle, and the exploration of underlying axiomatic theory was
and is an active field of research, [4,2,33,12,22,25,34] and [10].

In this linear setting the importance of the Gaussian scale-space cannot be
overestimated, although in recent years other concrete examples of linear scale-
space concepts have received considerable attention:

- First the Poisson scale-space arising from the Laplace equation in potential
theory has been introduced by Felsberg and Sommer [11] to image process-
ing. It allows an explicit analytical integral representation with the Poisson
kernel.

- After that the so-called α-scale-spaces with α ∈]0, 1] have been proposed as
the continuous link between the trivial (α = 0), the Poissonian (α = 1

2 ) and
the Gaussian (α = 1) scale-space. They are ruled by an pseudodifferential
equations, and unfortunately no exact integral representation formulas for
their solutions are known. See [10] for a very comprehensive exposition about
theory and history of this scale-space family.

- Very recently the relativistic scale-spaces [7] instigated by a Schroedinger
pseudodifferential equation from theoretical physics have been shown to
bridge the gap between Poisson (‘zero-mass-limit‘) and the trivial scale-
space (‘infinite-mass-limit‘). Explicit integral formulas involving kernels with
Bessel functions of the third kind have been given in [7].

All these examples have in common that they emanate from (pseudo-) differential
equations of parabolic type, such as the α−scale-spaces:

∂tu = −(−∆)αu

with initial condition u(x, 0) = f(x) .
The goal of this paper is to investigate the scale-space that arise from the

following inhomogeneous elliptic PDE involving arbitrary positive powers t ≥ 0
of the Laplacian and the identity operator I:

(I − ∆)
t
2 :=

(
I −

n∑
i=1

∂2u

∂x2
i

) t
2

= f, (1)

with a suitable function f : IRn −→ IR .
The parameter t should be interpreted as a smoothing parameter: The appli-

cation of an partial differential operator to a function u roughens it. Intuitively,
if u is to fulfill (1) (even in the distributional sense) it must be smooth enough
to produce f , and the larger t is the smoother the function u has to be. Hence,
solving (1) for u means in effect calculating smoother versions of f .

However, equation (1) is not an evolution equation of parabolic type. Al-
though it is not done in this article, one has the opportunity to tackle this
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equation with the highly developed numerical methods for elliptic PDEs. Fur-
thermore, inhomogeneous PDEs might be the starting point for a fruitful nonlin-
ear and anisotropic theory, just as it was the case for the Gaussian scale-space.
We will examine the smoothing procedure ruled by (1), establish the associated
convolution semi-group properties by spectral methods. In contrast to the scale-
space examples mentioned above this semi-group is not of exponential type.

The associated integral representation kernels are explicitly known as Bessel
potentials, a generalisation of Riesz potentials. Hence, the properties of this
scale-space can be explored also with methods from real analysis.

The paper is structured as follows: In the following section we use the Fourier
transform a function f ∈ L2(IRn) given by

F(f)(k) =
∫

IRn

e−2πik·x f(x) dx .

to study (1). This will lead directly to the definition of the Bessel scale-space.
After a study of its properties we will also present scaled versions of the Bessel
scale-space. Experiments illustrating the potential and limitations of the novel
scale-spaces are described in Section 3. A summary and an outlook for ongoing
in Section 4 complete the paper.

2 Bessel Scale-Space

We recall that the action of the differential operator ∆ is multiplication by
− 4π|k|2, implying that (1) Fourier transforms into

(1 + 4π2|k|2) t
2 û = f̂ .

According to theory of spectral methods for PDEs this entails that formally the
solutions to (1) are computed via convolution with the integral kernel Gn(·, t)
which appears as the inverse Fourier transform of

F(Gn)(·, t) :=
1

(1 + 4π2|k|2) t
2

,

that is,

Gn(x, t) =
∫

IRn

1
(1 + 4π2|k|2) t

2
e2πik·(x−y) dk .

This integral can be evaluated in every dimension n yielding the known explicit
formula for the Bessel kernels [23,9]

Gn(x, t) =
1

√
π

n√
2

n+t−2
Γ ( t

2 )

K n−t
2

(|x|)

|x|n−t
2

,

Γ denotes the Gamma function and Kν stands for the modified Bessel function
of third kind with index ν.



The Bessel Scale-Space 87

exp

0K 1K 2K

0

1

2

3

4

0.5 1 1.5 2 2.5 3
x

t=6

t=3

t=1.5

0

0.2

0.4

0.6

0.8

–4 –2 2 4
x

Fig. 1. Left: Comparison of the exponential and Bessel functions K0, K1 and K2.
Right: Examples of the Bessel kernel for n = 1 with t = 1.5, 3, 6.

The Bessel functions Kν can be evaluated via fast converging series expan-
sions and three-term recursive formulas. For more details see [1]. Figure 1 com-
pares the exponential function e−x with some Bessel functions. The Bessel func-
tions are exponentially decaying for large x.

Using formulas in [1] for Kν one can derive explicit expressions of Bessel
kernels for special values of t:

Gn(x, n + 1) :=
1

π
n
2 2nΓ (n+1

2 )
e− |x|,

which is a continuous function, not differentiable at x = 0, and

Gn(x, n + 3) :=
1

π
n
2 2n+1Γ (n+3

2 )
(1 + |x|) e− |x|,

which is in fact twice continuous differentiable in IRn.
This has an interesting effect: a merely continuous function convolved with

Gn(x, n + k) produces only a Ck−1-smoothed version. This behaviour is dif-
ferent from Gaussian, Poissonian, or relativistic scale-spaces, where the filtered
functions are even analytical for every scale parameter t > 0.

Figure 2 displays the Bessel kernel for various values of t and also its com-
parison with a Poisson and a Gaussian kernel.

For notational convenience we define the operator Rn
t on L2(IRn) via the

convolution

Rn
t f(x) := (Gn(·, t) ∗ f) (x) =

∫
IRn

Gn(x − y, t)f(y) dy . (2)
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Fig. 2. Left: Comparison between different kernels including Bessel (τ = 1), Gaussian,
and Poisson kernel in 1D centered at the origin with t = 3. Right: Comparison of the
asymptotic behaviour of the same kernels for large values of x (logarithmic scale on
y-axis).

2.1 Behaviour of Gn(·, t) in the Limit t ↓ 0

According to a theorem of P. Levi [5] stating the continuity of the (inverse)
Fourier transform the relation

F(Rn
t )(k) =

1
(1 + 4π|k|2) t

2
−→ 1 if t ↓ 0

confirms that Rn
t approximates the identity operator I in the distributional sense

if t is small. This can also be shown by methods from real analysis based on the
explicit knowledge of the Bessel potentials.

2.2 Semigroup Properties

From the theory of contraction semi-groups [16] we infer that the operator Rn
t

determines a contraction semi-group on L2(IRn) . Indeed, in view of Plancherel’s
theorem, it is enough to verify that the Fourier transforms F(Rn

t ) of the family
{Rn

t } satisfy the conditions

1. F(Rn
s+t)F(f) = F(R)n

s F(Rn
t )F(f) = F(Rn

t )F(Rn
s )F(f) for all s, t ≥ 0 ,

2. ‖F(Rn
t )F(f) − F(Rn

s )F(f)‖2 −→ 0 for t −→ s ,

3. F(Rn
0 ) = 1, expressing the fact that Rn

0 = I, the identity ,

4. ‖F(Rn
t )F(f)‖2 ≤ ‖F(f)‖2, the contraction property .

Due to the properties of the elementary functions 1
(
√

1+c)t with c > 0 it is not
difficult to check that the operator Rn

t indeed fulfills these conditions.
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2.3 Regularity

We define the Sobolev spaces Hs(IRn) as in [30] (with 2πk instead of k) by

Hs(IRn) :=
{
u ∈ L2(IRn) |

(
1 + 4π2|k|2

) s
2 F(u) ∈ L2(IRn)

}
for all functions in L2(IRn) and s ∈ IR.
Then it follows without difficulty that Rn

t increases the regularity:

Rn
t : Hs(IRn) −→ Hs+t(IRn)

In this sense the operator indeed produces smoother versions ũt = Rn
t f of a

given f ∈ L2(IRn). Summarising the analysis above we state

Proposition 2.1. 1. The families of operators {Rn
t | t ≥ 0} form an additive

semi-group for any fixed n ≥ 0.
2. For every t ≥ 0 the average grey-value is preserved under the action of Rn

t .
3. The operators Rn

t are translational invariant.

However, it is not difficult to see that the Bessel scale-space is not scale invariant.
As already indicated before, the scale parameter t plays also the role of a smooth-
ing parameter; roughly speaking, the smoothness is increased by t. This is not
the case for the standard linear scale spaces, where the smoothness of the filtered
signal immediately jumps to its highest level, analyticity.

2.4 Scaled Bessel Scale-Spaces

The following generalisation of the Bessel kernel is close at hand: we introduce
a scaling parameter τ ≥ 0 via

Gn
t,τ (x) := τnGn

t (τx).

Then we have
F(Gn

t,τ )(k) =
1

(1 + 4π2τ2|k|2) t
2

,

furthermore, all the properties of Gn
t mentioned above carry over, essentially

verbatim, to Gn
t,τ , including semi-group, contraction and limit properties. Rn

t,τ

denotes the corresponding convolution operator. For τ = 0 the operator degen-
erates to the identity, Rn

t,0 = I, while for τ = 1 we obtain the Bessel scale-space,
Rn

t,1 = Rn
t .

Numerical examples for these scaled versions of the Bessel scale-space are
presented in the following experimental section.

3 Numerical Experiments

In this section we display some results of numerical experiments to visualise the
properties of the Bessel and the scaled Bessel scale-spaces. We contrast the novel
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Bessel with the Gaussian scale-space. First we take a look at the Bessel and
Gaussian scale-space in 1D. The results are captured in a 3D-plot in Fig. 3. We
have chosen a signal with discontinuities to visualise the regularising properties of
theBessel scale-space. Thedifferences are not dramatic, especially since theweaker
regularity of the Bessel-filtered signals is not discernable from the analyticity of the
Gaussianfiltered results. In order to compare the effect ofGauss andBessel filtering
of 2D-images we utilised so-called co-histograms [14]. Co-histograms
hf,g(m, n) are 2D-histograms encoding the frequency of ordered pairs of grey values
(m, n) of an image pair (f, g). They are constructed via the formula

hf,g(k, l) =
1

MN

M∑
i=1

N∑
j=1

δ(fi,j , k) · δ(gi,j , l) ,

where δ stands for the Kronecker symbol and M × N is the size of the images
f, g. Figure 4 depicts the co-histogram as a grey value image. Differences in the
images f and g result in asymmetry of the co-histogram and its departure from
being diagonal. At the very beginning Gauss and Bessel filtering of the office
image without noise do not yet have a strong effect (t = 0.1), hence the diagonal
dominant form of the co-histogram. The appearance changes with increasing
scale t, furthermore, in the limit t → ∞ the co-histogram will tend towards one
bright spot on the diagonal marking the average grey value common to both
filter processes. For larger times there is no visible difference in the ability of
removing (Gaussian) noise between the two scale-space concepts. Only for very
small times there is a discrepancy indicated by the spread of the corresponding
co-histogram (Fig. 4, middle column, second row).

The situation is different for a binary image (last column of Fig. 4); in this
case the co-histograms indicate a clearly discernable difference between the two
types of filtering throughout the evolution processes.

We remark that fixing the parameter t and using τ as parameter also leads
to a scale-space structure, referred to as the scaled Bessel scale-space in the
previous chapter. Fig. 5 contrasts a scaled version (right column) with the non-
scaled version of the Bessel scale-space. One may notice the convergence towards
the mean value for increasing values of t or τ , respectively.

4 Conclusion

The goal of this paper is to introduce the novel two-parameter family of Bessel
scale-spaces. In proposing this peculiar example we hope to convey our opinion
that not only parabolic (pseudo-)differential equations can serve as a birthplace
for scale-spaces. The underlying Bessel convolution semi-group turned out to
possess a non-exponential Fourier transform. The degree of smoothness of the
filtered data grows steadily (in terms of Sobolev exponents) for increasing scale
parameter t, in contrast to other common scale-spaces. Nevertheless, opposite
to the α-scale-spaces these new scale-spaces admit integral representations with
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Fig. 3. Bessel scale-space in 1D. Left column, top : Smoothing of a signal in Bessel
scale-space. Left column, middle : Smoothing of this signal in Gaussian scale-space.
Left column, bottom : Difference in signal evolution w.r.t. scale-spaces above. Note
that the scale on the z-axis has been stretched by the factor 7 in comparison with the
images above. Right column: The same with noisy signal (Gaussian noise added to the
original signal on the left).
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Fig. 4. Co-histograms: Comparison of Gaussian and Bessel scale-space in 2D. Top row:
Original images. Second row: Co-histograms comparing Gauss and Bessel filtering of
the corresponding images of the first row with t = 0.1. Third row: The same with
t = 10. Fourth row: The same with t = 100.



The Bessel Scale-Space 93

Fig. 5. Comparing non-scaled and scaled Bessel scale-spaces in 2D. Left column: Non-
scaled Bessel scale-space, τ = 1. Left column, from top to bottom: t = 0, 10, 100, 1000.
Right column: Scaled Bessel scale-space, with fixed t = 100. Right column, from top to
bottom: τ = 0, 0.1, 1, 10.
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explicitly known kernels. They involve modified Bessel functions Kν of the third
kind and hence bear some resemblance to the relativistic scale-spaces.

Ongoing research on Bessel scale-spaces encompasses studies of variational
formulations, special features as well as non-linear extensions and their numerical
treatment.

Acknowledgements. We gratefully acknowledge partly funding by the Deut-
sche Forschungsgemeinschaft (DFG), project WE 2602/2-2.
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