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Methods and systems for capturing 3D geometry are becoming increasingly
commonplace–and with them a plethora of 3D data. Much of this data is unfor-
tunately corrupted by noise, missing data, occlusions or other outliers. However,
when we are interested in the shape of a particular class of objects, such as hu-
man faces or bodies, we can use machine learning techniques, applied to clean,
registered databases of these shapes, to make sense of raw 3D point clouds or
other data. This has applications ranging from virtual change rooms to motion
and gait analysis to surgical planning depending on the type of shape. In this
chapter, we give an overview of these techniques, a brief review of the literature,
and comparative evaluation of two such shape spaces for human faces.

1. Introduction

In recent years it has become evermore affordable and practical to acquire 3D data–

through structured light depth sensors, binocular and multi-view stereo systems,

and laser scanning systems. This has created an abundance of 3D data, including

databases of real examples of 3D shapes of particular classes.

Such databases allow the use of machine learning techniques to automatically

extract representations and statistical properties of the 3D shape of these object

classes. Having learned such a statistical shape model for an object, we can use it

to predict the shape of future instances of that object. Put another way, we can

learn a statistical shape space, in which we expect future observations of that object

to lie.

This in turn makes it more practical to find and extract clean, and even recognize

instances of the object in raw input data, which may be corrupted by noise, missing

data, and even occlusions.

Of particular interest in many applications are the shape of human faces, hu-

man bodies, and human organs and skeletal structures. Statistical shape models

for these classes of objects, along with algorithms to fit them to ambiguous in-

put data, are important for human computer interaction (e.g. face and expression

recognition, gesture recognition, virtual change rooms), surveillance (e.g. gait anal-

ysis, sex recognition, face recognition) and telepresence (e.g. virtual avatars), and

segmenting organ shapes for diagnosis and surgical planning.

This chapter is based on an article by the same authors,1 which contains more

details and an extensive comparative evaluation. This chapter is intended as a

tutorial-style review and explanation of statistical shape space. The learned statis-

tical models described in this chapter are available online.2

2. Statistical Shape Spaces

When analyzing 3D data, finding the right space to do it in can make life much

easier. For example, having a compact basis, which spans a large subset of possible

instances of a complex shape, such as a human, makes it possible to generate in-

stances of that shape from a small set of shape parameters. This allows the shape
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parameters to be optimized so that the generated object matches some ambigu-

ous input data, while subjecting the shape parameters to constraints derived from

training data.

In this vein, we formulate statistical shape analysis of a given object class as the

task of finding a statistical shape space that efficiently and informatively represents

the shape of objects of that class. We define a statistical shape space as a shape

space equipped with a probability distribution, or prior, measuring how likely it is

that an object of the given class would have a particular parametric representation

in the shape space. The shape space itself is defined by the set of coefficients

obtained by projecting the shapes onto the set of basis functions. (We use the

terms basis functions and basis vectors somewhat interchangeably in the following;

strictly speaking a basis function is only relevant for continous surfaces, and in

practice basis vectors are used for discrete data.)

Thus, we focus on statistical shape analysis as a generative technique. A surface

containing n vertices in R3 is represented by d shape parameters or coefficients,

which form a vector s ∈ Rd. A generator function

F(s) : Rd → R3n (1)

generates from these shape parameters a surface representation (either mesh or

point cloud) of n vertices. These shape parameters, and by extension the surface,

can be fit to input data of varying modalities (3D point clouds, 3D voxel images,

2.5D depth, 2D images, sparse measurements, etc.), so long as there is a way to

measure the distance between the surface and the data, or the quality of the fitting.

As we see in the following review, by far the most common form of statistical

analysis used for shapes is principle component analysis (PCA), which seeks a basis

in which variance of the training data is maximized. The resulting basis vectors

are the directions of greatest variation within the training data. Projecting the

training samples onto this basis results in a diagonal sample covariance matrix. If

the underlying distribution of the data is assumed to be multi-dimensional Gaussian,

then this corresponds to the maximum likelihood estimate of the parameters of the

density function. As a result, the resulting shape space is often equipped with a

Gaussian prior. If this assumption does not hold, then a Gaussian prior may be

arbitrarily far from the true prior, and choosing the correct prior may be challenging.

A mathematical description of how to learn a statistical shape space using PCA is

given in Section 3.2.

The main difference between statistical shape spaces is the choice of space where

PCA is performed, or how the shapes are transformed before applying PCA. This

choice leads to different properties, both statistical and computational, of the re-

sulting model. For many models proposed in the literature, the transformation is

a change of basis, and the basis of the resulting shape space is composed of the

transformed basis and subspace PCA bases (directions of largest variation in each

subspace). For other models, a nonlinear transformation is applied followed by a

global PCA.
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Table 1. Organization of statistical shape fitting methods reviewed.

Type of
data

Influence
of basis

functions
Methods

Artic.
separate

Simul.
param.

Faces
global Morphable model (PCA)3–6 − −
global Morphable model (PCA)7

√
−

global Multilinear model8–11
√

−
part-based Part-based model12–14 − −
part-based Part-based model15

√
−

localized detail Hierarchical pyramids16 − −
local Local wavelet model17 − −
local Multilinear wavelets18

√
−

Bodies
global PCA model19–23 − −
global SCAPE model24–29

√
−

global SCAPE model30
√ √

global Rotation-invariant encoding31,32 √
−

global Multilinear model33
√

−
global Posture-invariant model34 − −
part-based Segmented PCA model35 − −
part-based Part-based multilinear model36,37

√
−

Medical
Data

global Active shape model (PCA)38,39 − −
global Active shape model (PCA)40 −

√

global PGA model41 − −
part-based Part-based model42 − −
part-based Part-based multilinear model43

√
−

local Local wavelet model44–49 − −

This section reviews work on performing statistical shape analysis of 3D data

for image processing applications. The categorization of the statistical models in

different application domains is summarized in Table 1, where models and methods

are grouped by the type of data they were applied to and by the extent of the basis

functions used. The table further contains information on whether the models were

designed to analyze articulation variations separately from shape variations (here,

articulation can refer to facial expression, body posture, or the pose of bones before

and after an operation).

In this study, we focus on shape variations over a sample from a population, and

hence in Sections 3.2, 3.3 and we analyze and compare statistical models for faces

without expression variations. In Section 5 we perform an extensive experimental

comparison of the models. This allows us to better examine the differences between

the statistical models themselves with respect to the model-fitting task.

The first step to performing shape analysis is to acquire and register a set of

training shapes that capture the shape variability that is of interest for a particular

application. Subsequently, statistical shape analysis is performed on the registered
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training shapes: the shapes are projected onto a basis of choice and a probability

distribution is fitted to the resulting coefficients to obtain a prior distribution for

the shapes of interest. Without correspondence information, this statistical analysis

is not possible. However, as indicated in the last column of Table 1, a few methods

simultaneously compute a parametrization of a population of shapes while building

a statistical model.

Computing correspondences between a population of shapes is a challenging

problem, and a detailed discussion about possible approaches is beyond the scope of

this work. We refer the reader to recent surveys50,51 for more information. However,

we emphasize that the quality of the registration greatly affects the quality of the

resulting statistical models, and by using a high-quality registration in this study,

computed as discussed in Section 5.1, we are able to better analyze the properties

of models themselves rather than the effects of gross mis-registration.

In computer vision, statistical 3D shape models are commonly used to infer the

three-dimensional shape of an object from images, mostly for the purpose of image

manipulation. While recently, different classes of shapes have been considered,52,53

shape models of human faces and human bodies are of special interest due to their

immense applicability in human–machine interaction. In medical image analysis,

statistical shape models are commonly used to segment medical images and to

find correspondences and abnormalities of anatomical shapes. In the following, we

review statistical shape spaces used to analyze human faces (Section 2.1), human

bodies (Section 2.2) and medical data (Section 2.3).

2.1. Human Face Shapes

Blanz and Vetter3 pioneered the use of statistical modeling for 3D human face shapes

with the morphable model, which performs a PCA of both shape and texture data

from registered 3D face scans and allows the fitting of a 3D face shape to a single

image by searching in the learned shape+texture space. While texture is an impor-

tant cue for human faces, we consider only shape models here. The success of this

model spurred many extensions and improvements including: part-based models,

both manually segmented3,12,13,15 and automatically;14 varying expression;7 use as

a strong prior for multi-view stereo;4 and distinctiveness preserving priors.5 Yang

et al.6 built per-expression PCA spaces and used them to exchange the expression

of a face in a single image based on a different input image of the same subject.

The success of part-based PCA models suggests that localizing the surface region

used for PCA results in improved detail and accuracy of the model. This led to

the construction of a hierarchical space using wavelet transforms and applying PCA

to the individual wavelet coefficients independently,17 a technique first developed

in medical imaging (see Section 2.3). A related pyramidal technique models high-

frequency details such as wrinkles.16

Vlasic et al.8 first used a multilinear model to represent 3D faces in multiple

identities and multiple expressions. This model, based on tensor algebra, can be
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thought of as a Cartesian product of PCA spaces–e.g. one for identity and one for

expression, although higher-order models are possible. Dale et al.9 used this model

to compute a 4D sequence (3D+time) from video. This subsequently allowed to

replace subjects in video performing the same expression. Yang et al.10 used it

to enhance or dampen expressions in videos. Bolkart and Wuhrer11 learned such

a model from a database of 3D scans of multiple subjects in different expression

levels, and used it to register, both spatially and temporally, a database of 3D video

sequences of subjects performing different expressions. The multilinear model was

recently combined with the wavelet decomposition of the surface18 to efficiently

model fine-scale detail.

2.2. Human Body Shapes

Allen et al.19 were the first to build a statistical model for 3D human body model-

ing. The shapes were acquired in a standard posture, and geometrically analyzed

using a global PCA model over the vertex coordinates. This model can be applied

to predict realistic 3D human body shapes in standard posture from sparse image

information20–22 or measurements.23 Extensions of this basic global PCA model

include part-based PCA models35 and PCA models built on local shape represen-

tations instead of vertex coordinates.34

To jointly model shape and posture variation, Anguelov et al.24 introduced

the SCAPE model. This model combines a PCA space capturing shape variations

learned from a database of subjects in standard posture with a mapping from pos-

ture parameters (based on joint angles) to changes in vertex coordinates learned

from a database of one subject in multiple postures. The main idea behind SCAPE

is to model body shape and posture as decorrelated. The SCAPE model has been

successfully applied to various applications including the estimation of 3D human

body shape and posture from (RGB or depth) images25,26,29 and image and video

modification.27,28 Hirshberg et al.30 jointly optimize a SCAPE model and point-

to-point correspondences of a set of training data.

A different avenue of work models the correlation between shape and posture

changes. This line of work is relevant, since the influence of the posture on the

body shape depends on the subject, e.g. on the muscularity of the subject. Hasler

et al.31 proposed to jointly capture shape and posture variations by using PCA on a

rotation-invariant encoding of a set of training shapes. A different way of analyzing

shape and posture variations in correlation is to use a multilinear model.33

The reviewed global models for posture and shape variations have the disadvan-

tage that areas near the joints may be distorted unless large databases for training

are available that cover many shape and posture variations. To remedy this, part-

based statistical models have been proposed. Chen et al.36 relate the parts using a

multilinear model, while Zuffi and Black37 relate them using a graphical model.
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2.3. Medical Data

In medical imaging, body parts, such as organs or parts thereof, are especially

interesting shapes. One interesting task is to localize the shape of interest in a 2D

or 3D medical image. This decomposition is typically called segmentation in this

context. As for human faces and bodies, a global PCA model can help to solve this

task. This was first explored by Cootes et al.,38 and is called active shape model.

This model has been applied successfully (e.g. Cootes and Taylor39 and references

therein). The registration of the shapes used for training has a strong influence

on the quality of the active shape model. Davies et al.40 jointly optimize the

active shape model and the underlying registration using an information-theoretic

approach based on description length. PCA uses a linear Euclidean subspace to

represent the data. However, many data sets lie on a curved manifold rather than

a Euclidean space. To find this manifold, Fletcher et al.41 extend PCA to consider

geodesic rather than Euclidean distances between shapes. This approach is called

principal geodesic analysis (PGA).

A problem of active shape models is their global support. In medical imaging,

it is especially important to detect localized shape anomalies, as these can indicate

disease, for instance. To this end, part-based models were proposed.42,43 These

models are applicable in problems where a meaningful segmentation into parts can

be pre-defined. However, natural segmentations are difficult to define for many

medical imaging tasks. To address this problem, statistical analysis using local

wavelet representations has been used to learn a localized prior shape models and

applied to segmentation problems in 2D and 3D images.45–49

3. Learning a Statistical Shape Space

To learn a statistical shape space, or to train a statistical shape model, we assume

we are given T training shapes in full correspondence. In Sections 3.2 and 3.3 we

describe the training process for two statistical shape spaces for human faces: global

PCA and localized wavelet PCA. The key difference between them is the basis in

which a prior probability distribution is fit to the training data.

We pre-align the data to remove rotation, translation, and uniform scale differ-

ences using generalized Procrustes analysis (GPA).54 Note that by removing uniform

scale differences, we only consider shape differences and not size differences of the

models. For data-fitting this is desirable due to different measurement units used by

different acquisition systems, but in general this is application dependent.54 GPA it-

eratively aligns each model to the mean shape and recomputes the mean. Removing

transformations that are not of interest using GPA is an important pre-processing

step that yields better statistical models.

Learning a statistical shape space requires determining the basis functions or

vectors, which define the shape space, and fitting a probability distribution to the

resulting shape space coefficients from the training set. PCA-based methods per-
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form these two steps simultaneously, selecting as a basis the directions of greatest

variations in the data and computing a diagonal sample covariance matrix for the

data projected onto this basis, which corresponds to a maximum likelihood esti-

mate of a multi-dimensional Gaussian distribution. Part-based and wavelet-domain

methods decompose the shapes into a localized basis before proceeding with PCA.

The result is a basis consisting of the localized basis functions composed with the

localized principal components. The learned prior is the product of the localized

multi-dimensional Gaussian distributions. Note that the assumption of a Gaussian

density function is only introduced when equipping the shape space with a Gaussian

prior.

With this framework, and by restricting ourselves to linear shape spaces for

the purposes of this study, the generator function Eq. (1), can be written as a

combination of the basis functions

F(s) = F + Φs = F +

d∑
i=1

Φisi (2)

where F is the mean shape computed over the training set, Φ ∈ R3n×d is a matrix,

Φi ∈ R3n are its columns, and as before s ∈ Rd is a vector of shape parameters. It

is precisely the choice of Φ that determines the properties of the shape space, and

determines the prior distribution learned from the training samples.

3.1. Evaluating a Statistical Model

So far, the number of basis functions d of the shape space is a free parameter. By

choosing a small d, we will tend to lose shape detail, because the basis only spans a

small portion of the variability of the training data. Choosing a large d, and keeping

many basis functions, tends to result in a model that is overfitted to the training

data. Overfitting is an issue when the model is underconstrained by the training

samples, which may occur when the model has too many degrees of freedom, or

when the model is learned from training samples with higher dimensionality than

d.

To pick a number of basis functions d that preserves a high amount of variability

yet does not overfit the training data, we use the following three error measures sim-

ilar to compactness, generalization, and specificity .55 We use a slight modification

of the original error measures to obtain results that are independent of the size of

the training data.

Compactness measures how much variability of the training data is explained by

the learned statistical model. That is, we want to measure what fraction of the total

variability of the training data is captured by d model parameters. This provides a

measure of how well a given number of parameters explains the training data.

Generalization measures the ability of the model to represent data, which are

not part of the training set. To calculate this measure, we learn a PCA model on

a subset of the training data, where one subject is excluded. The excluded subject
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is projected to the PCA space, reconstructed, and the distance between the source

and the reconstruction is measured. To measure the distance between two faces,

we use the average Euclidean vertex distance computed between all corresponding

vertices. We perform this measurement for all subjects. The mean and standard

deviation are then considered.

Specificity measures the similarity between reconstructions from the statistical

model and the training data. This estimates the plausibility of a random face

represented using the learned shape space. To calculate specificity we choose a set

of random points sampled from the probability distribution of the learned statistical

shape space. For each of these points we reconstruct the shape using Eq. (2) and

compute the distance to the closest face in the training data. The distance between

two faces is computed as above. The mean and standard deviation for the random

sample are then considered.

3.2. Global PCA

Principal component analysis aims to reduce the complexity of a set of data. Due

to its simplicity it is widely used for shape analysis. PCA is a linear transformation

of a set of vectors from R3n to Rd with d < 3n. A vector f ∈ R3n is expressed by the

scalar weights si in a d-dimensional subspace, spanned by the orthogonal vectors

Vi, by

F(s) = F +

d∑
i=1

siVi. (3)

For each parameterized shape of the training set we have one vector F
(train)
i ∈ R3n

that contains an ordered coordinate set of all points of the i-th training shape. The

vectors Vi are the eigenvectors of the data covariance matrix

ΣF =
1

T

n∑
i=1

(F
(train)
i − F)(F

(train)
i − F)T , (4)

where F is the mean of the training data. The eigenvectors Vi are ordered with

respect to the non-increasing corresponding eigenvalues λi. The eigenvalues λi
measure the variability captured by the i-th principal component. More specifically,

Vi captures 100 λi∑T−1
i=1 λi

% of the variability of the training data. The rank of the

data covariance matrix is at most min(3n − 1, T − 1) and therefore the number of

distinct non-zero eigenvalues and hence, the number or principal components, is at

most min(3n− 1, T − 1).

Thus, we get our basis directly from the data via the principal components: in

matrix form ΦG has columns ΦGi = Vi, for i = 1, . . . , d, where d ≤ min(3n−1, T −
1). Note that every basis vector ΦGi has global support in general: all 3n elements

are in general non-zero, and every vertex is influenced.
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Mean Face F

F− σ3V3 F + σ3V3

F− σ1V1 F + σ1V1

Fig. 1. Variations of two principal components.

Properties Global PCA represents high-dimensional faces in a low-dimensional

space, which is spanned by the eigenvectors corresponding to the largest d eigenval-

ues of the data covariance matrix. Figure 1 shows the variations along two principal

components in the range of −3σi to +3σi, where σi is the standard deviation of the

i-th principal component.

Computing the statistical measures compactness, generalization and specificity

for a global PCA model is straightforward. For example, compactness for d principal

components is defined as

C (d) =

d∑
i=1

λi/

T−1∑
i=1

λi, (5)

where λi is the i-th eigenvalue of the data covariance matrix.

3.3. Wavelet PCA

Wavelet transforms project sampled data onto basis functions, which are localized

in space and frequency. For statistical shape analysis, we can use a wavelet basis

as a prefix, and extract a data driven basis for each individual wavelet coefficients

using PCA.

In particular, we use second-generation or lifting wavelets56 as they are highly

efficient to compute. The input samples, the vertices of a face shape in our case,
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are partitioned into maximally correlated subsets, and one subset is used to predict

the other. The residual difference of an input sample from this prediction is called

a detail, or wavelet, coefficient. The detail coefficients are then used to compute ap-

proximation, or scaling, coefficients from the other subset. The process is repeated

hierarchically on the scaling coefficients.

Wavelets were originally defined on regularly sampled Euclidean domains,57 but

were extended to surfaces with regular subdivision sampling, known as spherical

wavelets.58 A popular such wavelet basis is a biorthogonal generalized B-spline

basis,59 which has been used in multiple statistical shape analysis applications.17,47

For more details about the forward and inverse transforms of the wavelet basis

used here, we refer the reader to Bertram et al.59 For more details on how they are

used for statistical shape analysis, we refer the reader to Li et al.47 and Brunton et

al.1,17

Wavelet bases have an important property for statistical shape analysis as com-

pared to other local bases: they decorrelate the data, which means we can compute

statistics on each coefficient separately. Since the individual coefficients are of much

lower dimension than the full surface, there is a much lower risk of overfitting for

the same number of training samples T .

Performing PCA over the whole set of wavelet coefficients would result in the

same principal components as the global model, because the wavelet transform is a

linear transform, and PCA essentially just rotates the data so that the coordinate

axes align with the directions of greatest variations. Instead, this method performs

PCA locally on each coefficient, which is a 3D vector quantity, over the database.

First, let us denote the mean of each wavelet coefficient over the database by

s̄k =
1

T

T∑
i=1

ski , (6)

where k indexes the coefficients.

While we can perform statistical analysis on each sk independently of other

values of k, we must consider their three components together. Each sk is a 3D

vector representing either the scale (absolute value) or the detail (relative value) of

the shape at a particular frequency and spatial location. However, the coordinate

axes in general do not correspond to the directions of greatest variation in the

database. Therefore, we perform PCA on each set of coefficient vectors, to obtain 3D

vectors rki that represent the position along the directions of greatest variation, and

3×3 matrices Uk that transform these coordinates to our original world coordinate

system, as in

ski = s̄k + Ukrki (7)

where we write sk = [xks , y
k
s , z

k
s ]T and rk = [xkr , y

k
r , z

k
r ]T to denote the components of

these vectors. Applying the transform (Uk)T to the data diagonalizes the covariance

matrix, thus making each component independent.
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The reconstruction of a face shape from the wavelet coefficients is performed via

the inverse wavelet transform, which is a linear operator on the vector of concate-

nated wavelet coefficients s, and can be written as a 3n × 3n matrix D−1. Thus,

we can construct the combined basis ΦW as

F(s) = D−1s (8)

and from Eq. (7) we have

F(s) = D−1s̄ +D−1Us (9)

where s̄ is the concatenation of the coefficient means s̄k, and U is a block-diagonal

3n×3n matrix with the matrices Uk on the diagonal. Therefore, because D−1s̄ = F,

we have

ΦW = D−1U (10)

as our combined basis, and the dimensionality of our shape space is d = 3n. Note

that ΦW has full rank.

Properties The local model has the benefit that it avoids overfitting, and as a

consequence we can keep all variability present in the training set. Intuitively, the

local surface properties of any given surface point are not likely to be specific to

one set of faces or another. Whereas for the global model a bias in the training

set, over-representation of one sex or a particular ethnicity or age range, can cause

the lesser principal components to be highly specialized to that set, the geometry

of a local surface patch is likely to be less dependent on the training data. The

consequence is a somewhat unexpected behavior: by training and combining many

low-dimensional models, which due to the limited flexibility of the training space

(R3) have reduced sensitivity to bias in the training set, we get a final model with

much greater flexibility, because truncation becomes unnecessary.

Figure 2 visualizes the mean shape color-coded with the magnitude of the shape

variability for four levels of the wavelet subdivision, which corresponds to the lo-

calized shape variations at different scales. At finer scales, the variation quickly

localizes around major facial features and reduces in magnitude.

≥ 8.0

3.18

≥ 3.0

2.20 · 10−3

≥ 1.5

1.70 · 10−3

≥ 1.0

0

level 0 level 1 level 2 level 3

Fig. 2. Mean shape color-coded with the magnitude of shape variability for different levels. All
units are in millimeters.

The dimensionality of the local model is statistically more favorable. If, as

is usually the case, the number of vertices is much greater than the number of
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training examples, n � T , then the global model has problems of fitting to the

particularities of the training set. In the local model, many independent statistical

priors are learned, each with dimension 3. We have many more training examples

than that. The independence of the local priors further allows an exhaustive search

of the parameter space. Thus, we have no danger of getting trapped in local minima.

We can also consider the statistical measures from Section 3.1 for the wavelet

PCA model. There is no simple formula for the compactness of this model, but since

we retain all 3n shape parameters, and all variation, the compactness measure is

100%. Generalization and specificity can be computed the same way as for the

global PCA model. Retaining all 3n parameters results in a generalization measure

of 0.

4. Fitting a Statistical Shape Model

Once we have learned a statistical shape model, we can fit it to ambiguous data,

such as noisy point clouds. The goal is to obtain a clean, registered shape, such as

a face, from data that may be corrupted by noise, outliers, holes or occlusions. In

this section, we present a generic model fitting approach framed as a constrained

energy minimization over the learned model parameters.

(a) (b)

Fig. 3. Bosphorus scan with landmarks. (a) Red landmarks are used for initial alignment, blue

landmarks are used for error evaluation. (b) Landmarks for two scans of the same identity. The

position of the red landmark differs slightly for the two scans.

4.1. Initial Alignment

To fit a statistical shape model to an input data set, we first need to align the input

data and the statistical shape model to be in the same global coordinate system.

Since we consider only shape differences in the training data, the initial alignment

aims to find the rotation, translation, and uniform scaling that best aligns the

statistical shape model with the input data.

To compute such an initial alignment, corresponding landmarks are commonly

used. These landmarks can be manually located on the mean shape of the aligned

training database once. On the input data, the landmarks can be predicted in a
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fully automatic way.60,61 However, since we use a test database that contains a set

of landmarks, we choose to use a subset of these landmarks (the ones shown in red

in Figure 3a) to compute an initial alignment. This approach removes a potential

source of fitting error due to landmark prediction inaccuracies.

Another commonly used way to rigidly align two shapes is to use automatically

detected features. We test a method of this flavor in our experiments. The method

we use proceeds by finding corresponding features on the mean face and the input

scan using spin images62 and by performing random sample consensus.63 This fully

automatic method is expected to lead to less accurate alignments than the use of

the given landmarks.

4.2. Energy Minimization in Shape Space

Our goal is to fit the statistical shape model to the input data as closely as possible

while staying in the learned shape space. To fit our model to data, we minimize an

energy function that amounts to the sum of squared distances between each model

vertex and its nearest neighbor in the input point cloud. For our experiments, we

use the following commonly used basic energy to pull the model towards the data

Edata(s) =

n∑
i=1

min

(∥∥∥fi − pNN(i)

∥∥∥2
2
, τ

)
(11)

where fi is vertex i of F(s) (see Eq. (1) and (2)), p ∈ P is a point in the input

point cloud, NN(i) returns the index of the nearest neighbor in P of fi, and τ

is a truncation threshold to add robustness against outliers. We compute nearest

neighbors with a k-d tree using the implementation in ANN.64

When fitting a statistical shape model to data, the space of possible solutions

should only contain likely shapes, thus ensuring that only plausible results are

possible. A common and intuitive approach is to use the (negative logarithm of

the) learned prior distribution as an energy term. In the case of PCA, it is common

to assume a multi-dimensional Gaussian centered on the mean shape. In terms of

energy minimization, this amounts to placing a soft constraint that the solution

should be close to the mean. By design, however, this introduces a bias into the

optimization, and results using this technique tend to lose distinctiveness and look

similar to the mean.

Patel and Smith65 proposed an alternative prior that is aimed at maintaining the

distinctiveness of the models. They model the shape space as a manifold that is at a

constant Mahalanobis distance from the mean. This is based on the observation that

the squared Mahalanobis distances from the mean of a set of d-dimensional normally

distributed vectors form a χ2
d distribution with expected value equal to d. Hence,

Patel and Smith restrict the shapes to be on the hyper-ellipsoid at Mahalanobis

distance
√
d from the mean in order to preserve shape distinctiveness. While this

approach models distinctiveness using the expected Mahalanobis distance from the

mean, it does not consider the normal distributions along each dimension of the
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shape space. That is, the modeled shape space may contain highly unlikely shapes

along the directions of the principal components, as can be seen for the shape at

the intersection of the hyper-ellipsoid shown in red and the x-axis in Figure 4.

0 σ1
√
50σ1

√
50σ2

σ2

Fig. 4. Unrealistic shapes may occur for large numbers of dimensions d along the directions of
the principal components when maintaining a fixed Mahalanobis distance from the mean shape.

Here, a global statistical shape space with d = 50 and c = 1 is shown.

To avoid a bias towards the mean shape, while avoiding highly unlikely shapes,

we simply place constraints on the shape parameters. That is, as a prior we use

an indicator function on a region of the shape space. For PCA models, the ideal

region would be an ellipsoid corresponding to an isosurface of a chosen minimum

probability value. However, it is much easier and more efficient to impose linear

constraints on an optimization. Therefore, we force the shape parameters to remain

within the hyper-box of ±cσi about the mean, where σi is the standard deviation

along axis i of the shape space, and c is a parameter specifying the amount shapes are

allowed to deviate. Figure 4 shows a two-dimensional example. These constraints

are equivalent to a prior probability of the form

P (s) =

d∏
i=1

Pi(si) (12)

where

Pi(si) =

{
1 |si| ≤ cσi
0 otherwise

(13)

if we assume the shape parameters si are centered (mean subtracted). We call this

a hyper-box prior. Combined with the data term in Eq. (11) it allows recovery of

distinctive face shapes, while avoiding unrealistic ones.
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A common post-process to fitting the parameters of the statistical models, is

to then leave the statistical shape space and perform a fine-fitting of the vertex

positions directly, similar to a template fitting method. We deliberately do not do

this for two reasons. First, such a step is most often necessary when the learned

shape space is not sufficiently generalizable to express novel shapes. This can occur

due to insufficient or poor training data. However, as detailed in Section 5, we train

from clean data containing a good sampling of both sexes and different ethnicities

with a high-quality registration. Thus, our learned models are of high-quality.

Second, we wish to study the properties of the statistical shape spaces them-

selves, and leaving the space in a post-process would inevitably introduce additional

uncertainty in analyzing the fitting results in Section 5. This is particularly true

when we evaluate the fitting in the presence of occlusions.

5. Experiments

In this section, we evaluate the statistical models according to several criteria. For

a more detailed evaluation, the reader is referred to Brunton et al.1

5.1. Experimental Setup

Training Data For training, we use the neutral expressions of T = 100 subjects

from the BU-3DFE database.66 This database contains relatively clean surfaces

without occlusions, and a typical cropped face contains about 7500 vertices. Fur-

thermore, each cropped face is equipped with 83 landmark points.

Parameterization We parametrize the database using the method of Salazar et

al.61 that deforms a template to each input face. This method is capable of pre-

dicting landmark points to aid in the template fitting. However, since we are given

manually placed landmarks, our algorithm uses these instead of predicted ones.

This removes a potential source of error during registration. The template we use

contains 5996 vertices. We choose this low-resolution template for parametrization

since the database has low resolution and does not contain small shape details.

While the BU-3DFE database contains six additional expressions in four different

levels, we consider only neutral expressions for our comparison. The resulting reg-

istration is of high-quality, which has been verified by manually inspecting each

registered face.

Test Data We use a subset of 20 subjects (10 female and 10 male) of the Bosphorus

database67 to test the two models. Each subject is present in five occlusion levels:

without occlusion, with glasses, with an occlusion of one eye by a hand, with an

occlusion of the mouth by a hand, and with an occlusion of parts of the face by hair.

Examples for each occlusion class can be seen in the left column of Figure 7. We

chose this database as it allows the evaluation of different methods in the presence

of severe occlusion. The resolution of this database is fairly high, and a typical face

contains about 35000 vertices.
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5.2. Error Measures

We evaluate the two statistical models using the error measures discussed in Sec-

tion 3.1, by measuring the error when fitting to a surface via surface distance, and

by visual evaluation.
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Fig. 5. Compactness, generalization and specificity for the global PCA model.

Statistical Measures Ideally, we want a shape space that is compact, general and

specific. However, generalization and specificity are often at odds with one another,

and therefore we must find a balance by choosing the number of shape parameters d

we retain. Figure 5 shows how the statistical error measures change as the number

of principal components increases. We see that 30 principal components explain

over 98% of the data variability in the training set. Further, for > 30 components,

the decrease in generalization error is very slight, which suggests a limited benefit

to select more components. Finally, for > 30 components, the specificity error still

increases, which means the model represents plausible faces. We therefore choose

dimensionality d = 30 for the global model. For the specificity error, we generate

10000 random samples and show the mean and standard deviation over all samples.

As mentioned in Section 3.3, the compactness and generalization of the wavelet

model are fixed by the fact that we retain all variability in the model. We measured

specificity in the same way as for the global model and obtained a mean point

distance of 3.87mm with a standard deviation of 1.12mm. As the local model is less

specific than the global model, this value is slightly higher than that of the global

model.

Surface Distance To evaluate the fitting quality, we use the distance between each

point in the fitted model and its closest point on the input scan. While this gives

a lower bound on the fitting error of semantic correspondences between the model

and the scan, it can be readily computed without a prior registration of the input.

Table 2 shows the surface distance statistics for the two models, and the influ-

ence of using different landmarks for evaluation–manually clicked landmarks avail-

able from the database, and automatically predicted landmarks using Spin image

alignment. We see that the two sets of landmarks perform comparably.

We also see that the distributions of surface distances are different for the two

models (Table 2 and Figure 6). The local model has lower mean and median errors,

but higher standard deviations and maximum distances, as compared to the global
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Table 2. Surface distance statistics (in mm) for different initialization

strategies.

Initialization Mean Median Std. Dev. Max

Global Model

manual landmarks 1.06 0.81 0.91 14.00
Spin image alignment 0.91 0.74 0.64 9.18

Local Model

manual landmarks 0.80 0.47 1.06 15.63
Spin image alignment 0.63 0.43 0.72 16.51
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Fig. 6. False color visualizations of the median nearest neighbor distances for different types of

occlusion and cumulative error per vertex.

model. The reflects the fact that the local model can fit very closely in some places,

but if the initialization is too far away, the nearest neighbor threshold may prevent

it from fitting closely to the surface in that location. Thus, we can conclude that

while the local model allows recovery of more fine-scale detail, it is more sensitive

to initialization.

Visual Qualitative Evaluation Finally, we evaluate the results visually. Figure

7 shows some examples of model fitting results – the top row without occlusion and

the bottom row with an occlusion over the mouth. In each row, we see the input

scan, the fitting result of the global model both smoothly shaded and color-coded

with distance to the input data, and the fitting result of the local model in the same

format. On the right is the color-coding legend. We see clearly the difference in

behavior of the two models: the global model gets the overall shape, but omits fine

details, while the local model gets a very good fit in most areas of the face, but in

some locations is too far away after initialization to snap to the surface. For the

occlusion case, we see how the occlusion of the mouth affects the shape of the whole

face for the global model. In contrast, the local model localizes the influence of the

occlusion.

6. Conclusion

In this chapter, we have given an overview of statistical shape spaces for 3D data,

including a review of existing shape spaces, and a description of how they are

learned and fit to raw 3D data. This is an important topic as more and more 3D
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Fig. 7. Some fitting results. Each row shows from left to right: input data, result of global fitting,

color coding of distances between global fitting result and input data, result of local fitting, color
coding of distances between local fitting result and input data, and the legend for the color coding.

data becomes available, and scanning modalities become more affordable and widely

used.

The main difference between statistical shape spaces is the basis in which shapes

are represented. Almost universally, some form of PCA is used to obtain the main

variations in the data. The difference comes in what transformation is applied to

the shapes before PCA is applied. For object classes with multiple types, or modes,

of shape variations, multilinear models are commonly used. While these models

have already been studied in the literature, their exploration will no doubt increase

in the future as dynamic 3D data becomes more widely available.

Correspondence or registration of a set of training shapes is a prerequisite for

statistical shape analysis. A few methods jointly estimate shape and optimize a

statistical model, thereby improving both. This is an increasingly popular research

topic.
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