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Abstract

This paper deals with parallelisation and implementation aspects
of PDE-based image processing models for large cluster environments
with distributed memory. As an example we focus on nonlinear dif-
fusion filtering which we discretise by means of an additive operator
splitting (AOS). We start by decomposing the algorithm into small
modules that shall be parallelised separately. For this purpose image
partitioning strategies are discussed and their impact on the commu-
nication pattern and volume is analysed. Based on the results we de-
velop an algorithmic implementation with excellent scaling properties
on massively connected low latency networks. Test runs on a high–end
Myrinet cluster yield almost linear speedup factors up to 209 for 256
processors. This results in typical denoising times of 0.5 seconds for
five iterations on a 256 × 256 × 128 data cube.

AMS 2000 Subject Classification: 68T45, 65Y05, 65N06
Key Words: diffusion filtering, additive operator splitting, cluster computing.
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1 Introduction

Partial differential equations (PDEs) form the basis of a number of recent
methods in the fields of image processing and computer vision. In this paper
we focus on nonlinear diffusion techniques that allow to denoise images while
preserving edges. This property makes them useful for various restoration
and segmentation purposes. Nonlinear diffusion models were first introduced
by a work of Perona and Malik [22]. After some years their original model was
improved by Catté et al. [4] from both a theoretical and practical viewpoint,
and anisotropic extensions with a diffusion tensor [31] followed.
Many nonlinear diffusion algorithms are based on the simplest numerical
scheme, an explicit finite difference discretisation. While such schemes are
easy to implement, they require small time steps for stability reasons. Hence,
many iterations are needed to reach some interesting diffusion time, and
the entire procedure is relatively inefficient. This has triggered a number
of researchers to look for alternative algorithmic realisations of nonlinear
diffusion filtering and related variational approaches.
These alternatives include three-level methods [8], semi-implicit approaches
[4, 11] and their multiplicative [36] or additive operator splitting variants [37],
multigrid methods [1], finite element techniques [2, 16, 23], finite and com-
plementary volume methods [11], numerical schemes with wavelets as trial
functions [7, 8], pseudospectral methods [8], lattice Boltzmann techniques
[15], and stochastic simulations [24]. Approximations in graphics hardware
have been considered in [26], and realisations on analog hardware are dis-
cussed in [9, 21]. Related variational approaches have been treated using
linearisations by means of auxiliary variables [5]. Also here it is possible to
use adaptive finite elements [27] and to consider analog hardware realisa-
tions [39]. Parallel implementations on shared memory systems are studied
in [12, 13].
In the present paper we shall focus on additive operator splitting (AOS)
schemes for nonlinear diffusion filters. These specific semi-implicit schemes
have been first introduced to image analysis in [37]. They have been used
for medical imaging problems [25], for regularisation methods [33], image
registration [6] and for optic flow computations [35]. Recently, they have
also been used successfully for a number of active contour approaches [10,
17, 19, 20, 32, 34]. The basic idea behind AOS schemes is to decompose
a multi-dimensional problem into one-dimensional ones that can be solved
very efficiently. Then the final multi-dimensional solution is approximated by
averaging the one-dimensional solutions. AOS schemes inherit a number of
favourable properties from the continuous diffusion processes and they reveal
linear complexity [37]. The usefulness of AOS ideas has also been shown in a
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number of other applications ranging from Navier–Stokes equations [18, 29]
to sandpile growth simulations [14]. It seems that Navier–Stokes equations
have constituted one of their historically first application domains.
The use of AOS schemes has triggered first parallel implementations for dif-
fusion filtering [38]. At that time, however, the development of network archi-
tectures did not allow the efficient use of distributed memory systems for such
communication-intensive problems. For this reason these approaches gener-
ally stayed confined to systems based on shared memory. In recent years a
rapid progress in this sector changed the situation completely. High perfor-
mance cluster systems with massively connected low latency networks were
built throughout the world. There are two reasons for this development: First
cluster systems are much more attractive to customers, since they are less
expensive than comparable shared memory systems. This has increased their
availability for research purposes. Moreover, the number of processors is not
limited by such severe hardware restrictions than in the case of shared mem-
ory systems, thus allowing larger scaling possibilities. In order to exploit this
potential, parallelisation approaches must fit the underlying network topol-
ogy.
The goal of the present paper is to show that a 3-D nonlinear diffusion process
can be parallelised in such way, that it reveals excellent scaling properties
regarding both computation and communication on a distributed memory
system.
The paper is organised as follows. In Section 2 a review on diffusion filtering
and the AOS scheme is given. Furthermore a modular decomposition before
parallelisation is shown. In Section 3 partitioning and communication mod-
els are discussed. Relevant parallelisation and implementation details of our
approach are explained in Section 4. In Section 5 obtained results on a high
performance cluster are presented. The summary in Section 6 concludes this
paper. A preliminary version of this paper has been presented at a symposium
[3].

2 Nonlinear Isotropic Diffusion and AOS

In the following we give a short review of the nonlinear diffusion model of
Catté et al. [4]. A grey value image f is considered as a function from a given
domain Ω ⊂ R

m into R. In our case we have m ∈ {2, 3}, which corresponds
to 2-D and 3-D images. The basic nonlinear diffusion problem then reads:
Find a function u(x, t): Ω × R

+
0 → R that solves the diffusion equation

∂tu = div
(

g(|∇uσ|2)∇u
)

on Ω × R
+
0 (1)
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with f as initial value,

u(x, 0) = f(x) on Ω (2)

and reflecting boundary conditions:

∂nu = 0 on ∂Ω × R
+
0 . (3)

where uσ = Kσ ∗ u denotes the convolution of u with a Gaussian of stan-
dard deviation sigma, n is a normal vector perpendicular to ∂Ω, and the
diffusivity g is a nonnegative decreasing function with g ∈ C∞[0,∞). The
solution u(x, t) is a family of images, where the diffusion time t acts as a scale
parameter. An example illustrating the performance of this diffusion filter is
given in Figure 1. For more information on theoretical aspects of nonlinear
diffusion filtering the interested reader may refer to [31].

Figure 1: From left to right: (a) Test image with grey scale range [0, 255]
degraded by Gaussian noise with standard deviation σn = 30. (b) Image
denoised by the nonlinear diffusion filter, 5 iterations with σ = 2.5 , λ = 0.01
and τ = 20.

Since such nonlinear diffusion equations cannot be solved analytically, nu-
merical approximations are required. In [37] a finite difference scheme based
on an additive operator splitting (AOS) technique is used for this purpose.
This AOS technique is the basis for our parallelisation efforts. It is an exten-
sion on the semi-implicit scheme for nonlinear diffusion filtering and can be
described as

uk+1 =
1

m

m
∑

l=1

(I − mτAl(u
k
σ))

−1uk (4)
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where uk is a vector with the grey values at all pixels as components. The
iteration index k refers to the diffusion time t = kτ where τ is the time step
size. The tridiagonal matrix Al is a discretisation of the divergence expression
along the l-th coordinate axis. Let Nl(i) denote the set of neighbours of pixel
i in direction of axis l, let hl be the corresponding grid size and let gk

i stand
for the evaluated diffusivity at pixel i of the presmoothed image uk

σ, then the
matrix Al(u

k
σ) is given by

(Al(u
k
σ))ij :=















− ∑

n∈Nl(i)

gk

i
+gk

n

2hl

if j = i

gk

i
+gk

l

2hl

if j ∈ Nl(i)

0 else

(5)

Therefore, in each iteration step, the AOS method requires the solution of m
tridiagonal linear systems of equations. Each system describes diffusion along
one coordinate direction and may even be decomposed into smaller tridiago-
nal systems. The final result at the next time level is obtained by averaging
these 1-D diffusion results. A splitting into 1-D diffusions offers significant
computational advantages: The corresponding tridiagonal systems can be
solved in linear complexity by means of the so-called Thomas algorithm [30],
a specific variant of the Gaussian algorithm; see [28, 37] for further details.
Typical AOS schemes are one order of magnitude more efficient than simple
diffusion algorithms. Although they are stable for all time step sizes τ one
usually limits the step size for accuracy reasons. Hence, the scheme is applied
in an iterative way in order to reach some interesting stopping time.

2.1 Algorithmic Decomposition

The following algorithmic steps can easily be derived from the iteration in-
struction for the AOS Scheme (4).

1. Perform a Gaussian presmoothing of u using uk
σ = Kσ ∗ uk

2. Compute the derivatives ‖∇uk
σ|2 and the diffusivities g(|∇uk

σ|2).

3. Solve the tridiagonal systems (I − mτAl(u
k
σ)) uk+1

l = uk and average

the results: uk+1 = 1
m

m
∑

l=1

uk+1
l
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3 Parallelisation Models

The following parallelisation models are based on image partitioning. This
allows parallel execution of fast sequential algorithms instead of applying
slower parallel variants to the complete image domain.

3.1 Communication Models

A large part of image processing algorithms consist of neighbourhood oper-
ations. This raises problems at partition boundaries, since required informa-
tion is missing. Let us now discuss two communication models to handle this
problem: repartitioning and boundary communication.

Repartitioning. The basic idea of the repartitioning strategy is to find an
appropriate partitioning for each operation, such that the problem of miss-
ing neighbourhood information does not occur. Therefore partitions have to
be relocated and reshaped by means of communication. In many cases this
communication involves data exchanges between all processes, the so called
all-to-all communication. For large partition numbers such a connection–
intensive communication pattern makes high demands to the network topol-
ogy. Whether the network can satisfy these demands or not is reflected in a
scaling of bandwith (pairwise disjunct communication) or a rise of communi-
cation time. For massively connected low latency networks the first case does
apply. Counterexamples are Gigabit Ethernet due to its high latency as well
as connection limited network topologies like e.g. token rings or computing
grids.
Taking a look at the total communication volume the importance of this scal-
ing property becomes obvious. Since non–overlapping partitions are used,
each pixel is sent and received by no more than one process. Thus, the
communication behavior imposes a limit to the total communication volume
that is given by the image size. The number of processes and the required
neighbourhood can only affect the communication volume within this scope.
Hence, each scaling of bandwith is passed on to the communication time.

Boundary Communication. Keeping existing partitions the second com-
munication model simply exchanges the missing neighbourhood information.
One should note that this implies a dependency of the total communication
volume on two unknowns: The number of partitions as well as the boundary
size.
For moderate values of both parameters, the communication is limited to
its adjacent segments. In this case the total communication volume may
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drop significantly beyond that of a repartitioning strategy. Moreover such
a simple communication pattern has a second advantage. Since it makes
less demands to the network topology than the previously discussed all–to–
all communication, also weakly connected cluster systems do benefit from
a bandwidth scaling effect. Even for high latency networks this strategy is
favourable due to its rather large message size that results from the limited
communication pattern.
However, larger boundary sizes and partition numbers do change the situa-
tion completely. Then boundary–volume ratios deteriorate, communication
patterns may require extensions to further partitions and finally an inefficient
parallelisation remains. This is reflected in the worst case communication vol-
ume that is only limited by (n−1) times the image size, where n is the number
of partitions. Hence boundary exchange does only address operations that
require information from a small neighbourhood.
In parallelised software for scientific simulations, boundary exchange is a
frequently used communication model. Since the underlying theory allows a
free scaling of the problem size, the loss of efficiency can be circumvented
by a finer sampling of the continuous model. Thus, along with an increased
accuracy, larger partition sizes and thefore better scaling properties for larger
cluster systems are obtained. In the area of image processing such possibilities
are not given. Accuracy and problem size are determined at the moment of
image acquisition.

3.2 Partition Models

In addition to the communication models appropriate image partitioning
strategies have to be chosen. In general, cuboid partitions are preferred since
they can be realised with commonly used data structures and are easier to
handle. There are two partitioning models that result in such cuboid parti-
tions.

Slice Partitioning. As the name anticipates the main idea of this strategy
is to partition an image along one single direction. Thus no further bound-
aries arise. Operations that are separable or do not require neighbourhood
information from all directions can exploit this property.
However, there are two minor disadvantages of this strategy. First, the maxi-
mum number of partitions is limited by the number of pixels in the direction
of partitioning, and secondly, slices have an evidently bad boundary–volume
ratio. While the first drawback is only relevant for small image sizes, the
second one has no relevance if repartitioning is applied.
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Mesh Partitioning. This strategy focuses on partitioning an image along
all directions. Thus the largest theoretical scalability is achieved, since the
maximum number of partitions is only limited by the total number of pixels.
Its main disadvantage is the occurrence of boundaries in all directions. In our
case this drawback is quite severe, since the performance of certain operations
lives on their separability property.
A special case of mesh partitioning is cube-like partitioning. Thereby an
image is partitioned in such a way, that the sum of all partition boundaries
is minimised. Obviously this partition strategy should be used when it comes
to the exchange of boundary information.
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Figure 2: Partition Models. From left to right: (a) Slice Partitioning. (b) Mesh
Partitioning.

4 Parallelisation Details

In this section all parallelised modules are discussed in detail. A global
overview of all computation and communication steps is given in Figure 4.
It illustrates one iteration step of the implemented algorithm.

Module 1 : Gaussian Convolution. The Gaussian convolution is im-
plemented exploiting separability and symmetry as well as optimising the
computational sequence for optimal cache use. The convolution masks are
obtained by sampling the continuous Gaussian

G(x) =
1

σ
√

2π
e−

x
2

2σ2 (6)

and truncating it at 3 times the standard deviation. Then the mask is renor-
malised such that its weight sum up to 1. In our approach the repartition-
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ing strategy is used in combination with slice partitioning. Thus, Gaussian
convolution in two out of three directions can be performed without com-
munication effort (Fig. 3a). Only smoothing in the third direction requires a
previous repartitioning step (Fig. 3b). Moreover, this implementation allows
large values for the standard deviation σ, since no boundary exchange takes
place.
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Figure 3: Partitioning scheme for module 1. From left to right: (a) Data cube
before repartitioning step 1. (b) Data cube after repartitioning step 1. Arrows
show the directions in which Gaussian convolutions are performed. Solid lines
are boundaries of current partitions while dashed lines refer to boundaries of
previously used partitions.

Module 2 : Derivatives and Diffusivity. Derivatives within the diffusiv-
ity are computed using central differences. Since this uses stencils of type
1
2h

(−1, 0, 1), where h denotes the grid size, the boundary size is limited to 1.
Besides, the computation of the diffusivity values demands matching parti-
tions for all derivatives. Both aspects favour a boundary exchange strategy.
Although cube-like partitioning would be desirable, a change of the parti-
tion model at the cost of two repartitioning steps is obviously not profitable.
Hence, slice partitioning combined with boundary communication is imple-
mented. Since parallelism is achieved via image partitioning, derivatives are
computed sequentially for all directions. Again, the exchange of neighbour-
hood information takes place after the computation for two out of three di-
rections is completed (Fig. 3a-b). Finally the diffusivity values are computed
in place based on

g(|∇uσ|2) :=
1

1 + |∇uσ|2/λ2
(7)

where λ is a contrast parameter.

9



Partitioning YZ

GAUSSIAN CONVOLUTION
IN Y DIRECTION

?

DERIVATIVES & DIFFUSIVITIES
(BOUNDARY EXCHANGE)

?

REPARTITIONING STEP 3 -

DIFFUSION PROCESS
IN Y DIRECTION

?

REPARTITIONING STEP 4 -

Partitioning XZ

ITERATION START
?

REPARTITIONING STEP 2�

GAUSSIAN CONVOLUTION
IN X DIRECTION

?

GAUSSIAN CONVOLUTION
IN Z DIRECTION

?

REPARTITIONING STEP 1�

DIFFUSION PROCESS
IN X AND Z DIRECTION

? ?

AOS AVERAGING STEP
?

ITERATION END?

Figure 4: Flow diagram illustrating one iteration step of the implemented
algorithm. Column headings give information on the direction of data par-
titioning and the cut direction of presented slices for intermediate results.
Computation and communication steps are symbolised by arrows.
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Figure 5: Partitioning scheme for Module 2. From left to right: (a) Data
cube before boundary exchange. (b) Data cube after boundary exchange.
Arrows show the directions in which derivatives are computed. Solid lines
are boundaries of current partitions while dashed lines refer to boundaries
that have been exchanged.

Module 3 : Diffusion and AOS. As discussed before, AOS offers par-
allelism on two different levels. First, it allows to decouple the diffusion
processes for each direction (coarse grain parallelism). For the same rea-
son as in the case of the derivative computation, this property will not be
exploited directly for parallelisation purposes. Of major importance is the
fact, that the huge linear tridiagonal equation systems for each diffusion di-
rection can be decomposed into many small independent equation systems of
same style (mid grain parallelism). Since each of these systems corresponds
to the diffusion process along a complete image line in the diffusion direction,
the use of a common boundary exchange approach makes no sense. Instead
slice partitioning in combination with the repartitioning strategy seems desir-
able. Moreover, this implementation allows the application of fast sequential
solvers such as the Thomas algorithm [30, 37]. It uses an LR decomposi-
tion, a forward substitution as well as a backward substitution step. Thus,
special variants for a boundary exchange strategy could not have been de-
veloped without loss of parallelism and performance. However, even in the
case of repartitioning the parallelisation effort is large: In order to compute
the diffusion process for one direction, matching partitions for the original
image and the diffusivity values are required. Moreover, at least two of these
partitions pairs are needed to cover all three diffusion directions. Therefore
not only the original image has to be repartitioned (Fig. 6a), but also the
corresponding diffusivity data (Fig. 6b). Finally combining the results of all
three diffusion processes – the averaging step in the AOS scheme – requires
a third repartitioning.
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Figure 6: Partitioning scheme in Module 3. From left to right: (a) Data cube
with repartitioned original image data (repartitioning step 2) now matching
diffusivity partition shown in Fig. 5b. (b) Data cube with repartitioned diffu-
sivities (repartitioning step 3) now matching original image partition shown
in Fig. 3a. Arrows show the directions in which diffusion is computed. Solid
lines are boundaries of current partitions. Dashed lines refer to previously
used partitions.

5 Results

Our test runs have been performed on the Score III cluster of the RWCP (Real
World Computing Partnership) at the Tsukuba Research Center, Japan.
Running a modified Linux 2.4 SMP Kernel it consists of 524 nodes with
two PIII 933 MHz processors each. Focusing on distributed memory systems
only one processor per node has been used at a time. The cluster is fully
connected to a CLOS network using a Myrinet2000 network interface. Due
to its performance it is ranked 90th in the November 2002 TOP 500 list of
supercomputers.
As one can see from Figure 7 considerations regarding the parallelisation for a
specific network architecture do pay off. The obtained results demonstrate an
excellent, almost linear scaling behavior up to 256 nodes with a top speedup
of 209. This equals 82% of the theoretical maximum. The corresponding
runtimes divided in computation and communication effort can be found in
Table 1. For all test runs a 32-bit float data cube of size 256 × 256 × 128 has
been used resulting in communication volumes up to 1.83 Gbyte per second.
These numbers show the importance of a sophisticated algorithm design that
allows bandwith scaling up to a large number of processors.
This scaling property is reflected in the percental distribution, that shows
only a moderate increase of the communication part. Even in the case of 256
processors this ratio does hardly exceed one quarter of the runtime.
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Figure 7: Speedup Chart

Figure 8 gives a qualitative example for nonlinear diffusion filtering on med-
ical data sets. Although the image was severely degraded by Gaussian noise
of standard deviation σn = 30, the algorithm is still able to recover basic
structures. With a runtime of 0.5 seconds, this results in typical processing
rates of two data cubes per second.

Table 1: Runtimes for AOS 3-D , 10 iterations

CPUs Runtime [s] Comp. [s] Comm. [s] Comp. [%] Comm. [%]

1 212.741 212.741 0.000 100.000 0.000
2 114.625 106.205 8.420 92.654 7.346
4 57.534 52.221 5.513 90.766 9.234
8 29.401 26.123 3.278 88.851 11.149

16 15.065 13.471 1.594 89.420 10.580
32 7.731 6.753 0.978 87.350 12.650
64 4.029 3.333 0.696 82.725 17.275

128 1.894 1.550 0.344 81.837 18.163
256 1.017 0.745 0.272 73.255 26.745
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Figure 8: CT scan of a human foot area with grey scale range [0, 255]. The
data size is 256 × 256 × 128. From top to bottom: Slices in XY, XZ and YZ
direction. Left: Data set degraded by Gaussian noise with standard deviation
σn = 30. Right: Data set denoised by the implemented algorithm, 5 iterations
with σ = 2.5 , λ = 0.01 and τ = 20.
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6 Summary and Conclusions

The goal of this paper was to show how to design algorithms for high perfor-
mance cluster systems. This was done by the example of nonlinear diffusion.
Based on an AOS scheme we first performed a decomposition into modules.
Then parallelisation strategies suitable for a high performance low latency
network were discussed. We saw that in this case a repartitioning approach is
favorable for the majority of operations. Moreover, we noticed that this strat-
egy should be combined with slice partitioning for optimal performance. Test
runs with our implementation on a high end cluster system yielded speedup
factors of up to 209 for 256 nodes, proving its excellent scalability.
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