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Abstract. Variational methods are among the most accurate techniques for estimating the optic flow. They yield
dense flow fields and can be designed such that they preserve discontinuities, estimate large displacements correctly
and perform well under noise and varying illumination. However, such adaptations render the minimisation of the
underlying energy functional very expensive in terms of computational costs: Typically one or more large linear
or nonlinear equation systems have to be solved in order to obtain the desired solution. Consequently, variational
methods are considered to be too slow for real-time performance. In our paper we address this problem in two ways:
(i) We present a numerical framework based on bidirectional multigrid methods for accelerating a broad class of
variational optic flow methods with different constancy and smoothness assumptions. Thereby, our work focuses
particularly on regularisation strategies that preserve discontinuities. (ii) We show by the examples of five classical
and two recent variational techniques that real-time performance is possible in all cases—even for very complex
optic flow models that offer high accuracy. Experiments show that frame rates up to 63 dense flow fields per second
for image sequences of size 160 × 120 can be achieved on a standard PC. Compared to classical iterative methods
this constitutes a speedup of two to four orders of magnitude.
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1. Introduction

The estimation of motion information from image se-
quences is one of the key problems in computer vision.
Typically one is thereby interested in finding the dis-
placement field between two consecutive frames, the
so-called optic flow. In this context, variational meth-

ods play a very important role, since they allow for
both a precise and dense estimation of the results. Such
techniques are based on the minimisation of a suitable
energy functional that consists of two terms: a data term
that imposes temporal constancy on certain image fea-
tures, e.g. on the grey value of objects, and a smooth-
ness term that regularises the often non-unique (local)
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solution of the data term by an additional smoothness
assumption.

Although recent developments (Brox et al., 2004;
Bruhn et al., 2005c; Mémin and Pérez, 1998) have
shown that variational methods are among the best
techniques for computing the optic flow in terms of
error measures (Barron et al., 1994), they are often
considered to be too slow for real-time applications.
In particular, the computational costs for solving the
resulting linear and nonlinear systems of equations are
regarded as too high.

As a remedy for this problem but also in the con-
text of nonconvex optimisation problems, multigrid
methods have become a very popular tool during
the last years. In particular so-called unidirectional
multigrid schemes are frequently applied; see e.g.
Anandan (1989); Luettgen et al. (1994). These coarse-
to-fine strategies start with a coarse version of the orig-
inal problem and refine it during the solution process.
Thereby, coarse grid solutions serve as initialisations
on finer grids. Unidirectional multigrid schemes offer
two advantages: One one hand–in the case of convex
energy functionals—they allow to speed up the com-
putation significantly; see e.g. unidirectional schemes
in (Bruhn et al., 2005c). This is not surprising since,
coarse grid results are in general good approximations
to fine grid solutions. On the other hand–in the case of
nonconvex energy functionals–they allow to improve
the quality of the results significantly (Alvarez et al.,
2000; Black and Anandan, 1991; Bruhn et al., 2005c;
Mémin and Pérez, 1998; Papenberg et al., 2005). This
is a direct consequence of the fact that certain unde-
sired local minima disappear at sufficiently coarse res-
olutions and thus can be avoided by a coarse-to-fine
framework.

In the nonconvex case—in particular in the con-
text of large displacements—unidirectional multigrid
schemes are often combined with so-called warping
steps (Bergen et al., 1992; Black and Anandan, 1991;
Mémin and Pérez, 1998; Brox et al., 2004). Thereby the
original problem is compensated by the already com-
puted motion from all coarser levels before the reso-
lution is refined. What remains to be solved at each
resolution level is the motion increment for the differ-
ence problem (Alvarez et al., 2000; Black and Anan-
dan, 1991; Bruhn et al., 2005c; Mémin and Pérez, 1998;
Papenberg et al., 2005). Such an incremental computa-
tion offers one decisive advantage: It allows to approx-
imate the nonlinear constancy assumptions in the data
term by a series of linearised ones. As to be expected

the obtained results for large displacements are much
better than if the assumptions are only linearised once
in the model—such as in Alvarez et al. (1999a), Horn
and Schunck (1981), Nagel and Enkelmann (1986) and
Weickert and Schnörr (2001a, b).

However, from a numerical viewpoint, these unidi-
rectional multigrid schemes are not the end of the road.
Very promising—in particular in the context of varia-
tional methods—are so-called bidirectional multigrid
methods (Brandt, 1977; Briggs et al., 2000; Hackbusch,
1985; Trottenberg et al., 2001; Wesseling, 1992). These
techniques that create a sophisticated hierarchy of
equation systems with excellent error reduction prop-
erties belong to the fastest numerical schemes for solv-
ing linear or nonlinear systems of equations. In con-
trast to unidirectional schemes they Thus, they are able
to overcome the typical limitation of basic iterative
solvers that is also present in unidirectional multigrid
schemes: the weak attenuation of low error frequen-
cies (Brandt, 1977; Hackbusch, 1985). Moreover, they
can benefit from all advantages of unidirectional multi-
grid schemes, since they may use the same coarse-to-
fine initialisation strategy on top. Then, these bidirec-
tional multigrid schemes are referred to as full multigrid
methods (Briggs et al., 2000).

In Bruhn et al. (2005a) we have already demonstrated
for variational methods with homogeneous regularisa-
tion that bidirectional multigrid schemes do allow for
real-time performance. In this paper we show that by
introducing a suitable notation it is possible to set up
a much more general multigrid framework for real-
time optic flow computation with variational methods.
This allows us to develop such multigrid schemes also
for discontinuity-preserving techniques with image-
and flow-driven regularisation, both in their isotropic
and anisotropic setting. Moreover, it is possible to ex-
tend our work to more advanced optic flow methods
that are capable of a robust and accurate estimation
of the wanted displacement fields. To the best of our
knowledge our paper is the first one to report real-time
performance for variational optic flow methods of such
a quality on standard hardware.
Related Work. Due to the time-consuming adapta-
tion process and the complexity of the resulting ap-
proaches bidirectional multigrid schemes are not very
often used in the field of computer vision. However,
there are a few works that deal with the development
of such methods in the context of variational optic
flow computation. Unfortunately, these approaches are
generally restricted to linear techniques with homoge-
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neous and image-driven regularisation (Glazer, 1984;
Terzopoulos, 1986; Zini et al., 1997; El Kalmoun and
Rüde, 2003; Enkelmann, 1987; Ghosal and Vaněk,
1996). Only the work of (Borzi et al., 2002) is known
to the authors where a nonlinear optic flow prob-
lem with flow-driven regularisation was solved by
means of a suitable bidirectional multigrid scheme
(FAS). Also for other tasks in image processing and
computer vision, bidirectional multigrid methods have
been used successfully. In the context of photometric
stereo and image binarisation (Kimmel and Yavneh,
2003) developed an algebraic multigrid method, while
(Chan et al., 1997) researched geometric multigrid
schemes for variational deconvolution with total vari-
ation (TV) regularisation. For TV denoising (Vogel,
1995) proposed the use of a linear multigrid method
within a nonlinear fixed-point iteration, while, very re-
cently, Frohn-Schnauf et al. (2004) investigated a non-
linear multigrid scheme (FAS) for the same task.
Paper Organisation. Our paper is organised as follows.
In Section 2 we give a review on five different tech-
niques that serve as prototypes for variational optic flow
techniques with and without discontinuity-preserving
regularisation. In this context, we also introduce the
notation of motion and diffusion tensors that forms the
basis of our general multigrid framework. In Section
3 we extend this framework to two more advanced
optic flow techniques. Compared to the previously dis-
cussed prototypes these approaches offer an improved
accuracy and an enhanced robustness. Section 4 is
dedicated to discretisation aspects. It shows how to
discretise the resulting Euler–Lagrange equations and
which kind of linear or nonlinear systems of equations
have to be solved. Efficient multigrid schemes for
this purpose are developed in Section 5. To this end,
different kind of multigrid strategies are discussed.
In Section 6 we present an experimental evaluation
that includes experiments with different real-world
sequences, performance benchmarks for all prototypes
and comparisons to results from the literature. Finally,
a summary in Section 7 concludes this paper.

Our paper comprises and extends work previously
published at two conferences (Bruhn and Weickert,
2005; Bruhn et al., 2005b). Substantial differences
include, among other things, the considerations of
all frequently used types of regularisation strategies
(homogeneous, image- and flow-driven, isotropic and
anisotropic), the extension to two more advanced vari-
ational optic flow techniques (Bruhn et al., 2005c;
Papenberg et al., 2005)—the latter one replaces the

method in (Bruhn et al., 2005b) and a much more ex-
tensive experimental evaluation.

2. Basic Variational Optic Flow Techniques

2.1. The Data Term

Let us consider some image sequence f (x, y, t), where
(x, y) denotes the location within a rectangular image
domain �, and t ∈ [0, T ] denotes time. In order to
retrieve corresponding objects in subsequent frames,
one has to assume that certain image features do not to
change over time. Such features may include the grey
value, higher image derivatives such as the gradient
or the Hessian or scalar–valued expression such as the
norm of the gradient, the Laplacian or the determinant
of the Hessian (Papenberg et al., 2005). Since we focus
on basic optic flow techniques, we restrict ourselves
at this point to the widely used grey value constancy
assumption. It can be formulated as

f (x + u, y + v, t + 1) − f (x, y, t) = 0, (1)

where t and t +1 are two consecutive frames. Perform-
ing a Taylor expansion and dropping all higher order
terms one obtains its linearised form that is given by

fx u + fyv + ft = 0. (2)

Here, the function (u(x, y, t), v(x, y, t))� is the wanted
displacement field, and subscripts denote partial deriva-
tives.

2.1.1. The Motion Tensor Notation. In order to sim-
plify the notation and to allow for a better under-
standing of the proposed discretisation coarse grid
approximation approach (DCA) (Wesseling, 1992) in
Section 5, let us introduce the concept of motion ten-
sors (Farnebäck, 2001). To this end, we reformulate
Eq. (2) as an inner product between the spatiotempo-
ral flow vector (u, v, 1)� and the spatiotemporal image
gradient ∇3 f := ( fx , fy, fz)

�. This allows to rewrite
the standard data term that is based on a squared for-
mulation of this equation as a quadratic form given by

ED(u, v) = ( fx u + fyv + ft )
2

= (
(u, v, 1) ∇3 f ∇3 f � (u, v, 1)�

)
= (

(u, v, 1) J (u, v, 1)�
)

(3)

where the motion tensor J := ∇3 f ∇3 f � is a 3 × 3
matrix which is positive semi-definite by construction.
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One should note that such a reformulation by means
of a quadratic form and a positive semi-definite mo-
tion tensor is possible for all constancy assumptions
presented in (Papenberg et al., 2005). However, in the
case of the grey value constancy assumption, the ob-
tained quadratic form is very special: The associated
motion tensor coincides exactly with the well-known
structure tensor (Förstner and Gülch, 1987).

2.2. The Smoothness Term

Obviously, in case of a singular motion tensor, the so-
lution of equation 3 is non-unique. Variational meth-
ods overcome this so–called aperture problem by ad-
ditionally assuming (piecewise) smoothness of the re-
sult. As classified in (Weickert and Schnörr, 2001a),
there are basically five different types of strategies
to regularise this often non-unique solution of a data
term: homogeneous regularisation that assumes over-
all smoothness and does not adapt to semantically im-
portant image or flow structures (Horn and Schunck,
1981) image-driven regularisation that assumes piece-
wise smoothness and respects discontinuities in the
image (Alvarez et al., 1999a; Nagel and Enkelmann,
1986) flow-driven regularisation that assumes piece-
wise smoothness and respects discontinuities in the
flow field; see e.g. (Cohen, 1993; Schnörr, 1994; We-
ickert and Schnörr, 2001a). Moreover, when consider-
ing image and flow-driven regularisation, one can dis-
tinguish between isotropic and anisotropic smoothness
terms. While isotropic regularisers do not impose any
smoothness at discontinuities, anisotropic ones permit
smoothing along the discontinuity but not across it.

For each of the five strategies we have chosen one
prototype based on the motion tensor formulation for
the linearised grey value constancy assumption. In the
following these approaches are discussed in detail.

(a) Homogeneous Regularisation

Prototype for the class of methods with homogeneous
regularisation is the classical method of Horn and
Schunck (1981). Their method assumes global smooth-
ness by penalising deviations from smoothness in a
quadratic way (Tikhonov and Arsenin, 1977). The cor-
responding energy functional reads

EHOM(u, v) =
∫

�

(
(u, v, 1)J (u, v, 1)�

+α
( |∇u|2 + |∇v|2 ))

dxdy, (4)

where the regularisation parameter α is a positive num-
ber that steers the smoothness of the resulting flow field.

(b) Image-Driven Isotropic Regularisation

Instead of penalising deviations from smoothness in
a quadratic way, one may think of downweighting the
smoothness term at locations where the magnitude
of the spatial image gradient is large (Alvarez et
al., 1999a). This form of regularisation that respects
discontinuities in the image data is called image-
driven isotropic regularisation. The associated energy
functional is given by

EII(u, v)=
∫

�

(
(u, v, 1)J (u, v, 1)�

+ α w(|∇ f |2) (|∇u|2 + |∇v|2 )
)

dxdy,

(5)

where w(s2) is a positive decreasing function in R.
The method we have chosen to represent this class
of regularisation is based on a function proposed by
Charbonnier et al. (1994) which reads

w(s2) = 1√
1 + s2

ε2
S

(6)

where εS is a parameter to steer the smoothness.

(c) Image-Driven Anisotropic Regularisation

As prototype for the class of optic flow methods with
image-driven anisotropic regularisation we consider
the technique of Nagel and Enkelmann (1986). Their
method accounts for the problem of discontinuities by
smoothing only along a projection of the flow gradi-
ent, namely its component orthogonal to the local im-
age gradient. As a consequence, flow fields are ob-
tained that avoid smoothing across discontinuities in
the image data. The energy functional associated to
this anisotropic form of regularisation is given by

EIA(u, v) =
∫

�

(
(u, v, 1)J (u, v, 1)�

+ α(∇u�DNE(∇ f )∇u

+ ∇v�DNE(∇ f )∇v)
)

dxdy, (7)

where ∇ := (∂x , ∂y)� denotes the spatial gradient and
DNE(∇ f ) is a projection matrix perpendicular to ∇ f
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that is defined as

DNE(∇ f ) = 1

|∇ f |2 + 2ε2
S

(
f 2

y + ε2
S − fx fy

− fx fy f 2
x + ε2

S

)
=:

(
a b
b c

)
. (8)

In this context εS serves as regularisation parame-
ter that prevents the matrix DNE(∇ f ) from getting
singular.

(d) Flow-Driven Isotropic Regularisation

In contrast to image-driven regularisation methods,
flow-driven techniques reduce smoothing at those lo-
cations where edges in the flow field occur during
the computation. Flow-driven isotropic methods re-
alise this by penalising deviations from smoothness less
severely than in the quadratic setting (L2 norm). As a
consequence, large gradient features such as edges are
better preserved. Such a form of penalisation can be re-
lated to statistically robust error norms (Huber, 1981).
The corresponding energy functional reads

EFI(u, v) =
∫

�

(
(u, v, 1)J (u, v, 1)�

+ α �S

( |∇u|2 + |∇v|2 ) )
dxdy,

(9)

where �s(s2) is a positive increasing function in R with
the property to increase less severely than a quadratic
function. As prototype we have chosen a method that
penalises deviations from the smoothness with the L1

norm. This corresponds to total variation (TV) regular-
isation (Rudin et al., 1992) which we implemented by
means of a regularised variant given by

�S(s2) =
√

s2 + ε2
S. (10)

Here, εS serves as small regularisation parameter. A
similar functional that approximates TV regularisation
is proposed in Weickert and Schnörr (2001b), while
variational approaches for rotationally not invariant
versions of TV regularisation have been investigated in
Cohen (1993), Deriche et al. (1995) and Kumar et al.
(1996).

(e) Flow-Driven Anisotropic Regularisation

The fifth and last regularisation strategy are flow-driven
anisotropic smoothness terms (Weickert and Schnörr,

2001a). In contrast to the isotropic case where the non-
quadratic function �s penalises the magnitude of the
flow vector, it is now applied to the local flow ten-
sor ∇u∇u� + ∇v∇v� which additionally contains di-
rectional information. Thereby the application of the
function to the tensor can be realised by means of an
eigenvalue decomposition. This allows to access the
eigenvalues directly and thus yields an penalisation that
adapts to the local flow structure. The associated energy
functional is given by

EFA(u, v) =
∫

�

(
(u, v, 1)J (u, v, 1)�

+ α tr
(
�S( ∇u∇u� + ∇v∇v�)

))
dxdy,

(11)

where tr is the trace of the local flow tensor. As for
the isotropic case we have chosen a method as proto-
type that is based on a regularised variant of the total
variation.

2.3. The Euler–Lagrange Equations

Following the calculus of variations (Elsgolc, 1961),
the minimisation of the previously discussed en-
ergy functionals comes down to solving their Euler–
Lagrange equations. As for the motion tensor in the
data term, also a very compact and general formulation
for the smoothness term is possible: the diffusion tensor
notation (Weickert, 1998). Let us now explain this no-
tation by the example of the Euler-Lagrange equations
(a)–(e).

2.3.1. The Diffusion Tensor Notation

(a)–(c) The Linear Case
In the first three cases (a), (b) and (c) the Euler–
Lagrange equations have the coupled form

0 = J11 u + J12 v + J13 − αLLu, (12)

0 = J12 u + J22 v + J23 − αLLv (13)

with the linear differential operator

LLz(x, y) = div (D(∇ f ) ∇z(x, y)) (14)

and homogeneous Neumann boundary conditions. The
2 × 2 matrix D within the divergence expression is
thereby called diffusion tensor and is given by
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(a) Homogeneous Regularisation

D(∇ f ) = I

(b) Image-Driven Isotropic Regularisation

D(∇ f ) = w(|∇ f |2)I

(c) Image-Driven Anisotropic Regularisation

D(∇ f ) = DNE(∇ f )

(d)–(e) The Nonlinear Case I
In the cases (d) and (e) the associated Euler-Lagrange
equations have a structure that is very similar to the one
for (a), (b) and (c). They are given by the coupled form

0 = J11 u + J12 v + J13 − αLNL(u, v), (15)

0 = J12 u + J22 v + J23 − αLNL(v, u) (16)

with the nonlinear differential operator

LNL(z(x, y), z̃(x, y))

= div (D(∇z(x, y), ∇ z̃(x, y)) ∇z(x, y)) (17)

and homogeneous Neumann boundary conditions.
Here, LNL is a nonlinear differential operator, be-
cause it depends nonlinearly on its arguments z and
z̃ (which are in fact u and v). This can be directly seen
from the corresponding diffusion tensors that are given
by

(d) Flow-Driven Isotropic Regularisation

D(∇z, ∇ z̃) = � ′
S(|∇z|2 + |∇ z̃|2) I

(e) Flow-Driven Anisotropic Regularisation

D(∇z, ∇ z̃) = � ′
S(∇z∇z� + ∇ z̃∇ z̃�)

where the derivative of the regularised total variation
is obviously nonlinear since it reads

� ′
S(s2) = 1

2
√

s2 + ε2
S

. (18)

As we will see later, this nonlinearity of the differential
operator LNL has serious impact on the resulting dis-
crete system of equations and on the derived multigrid
strategy.

3. More Advanced Variational Optic
Flow Techniques

After having introduced our prototypes for the five
different types of regularisation strategies, let us now
discuss two advanced prototypes for more advanced
optic flow techniques: The noise robust combined-
local-global (CLG) approach of (Bruhn et al., 2005c)
and the highly accurate optic flow method of Papenberg
et al. (2005). In the following both techniques are ex-
plained in detail.

(f) Noise Robustness—The Method of Bruhn et al.

In motion estimation the sensitivity of approaches with
respect to noise is a very important aspect for the de-
sign of algorithms. In this context (Bruhn et al., 2005c)
presented a variational optic flow approach that tackles
this problem in two ways: (i) It combines the robust-
ness of local methods with the full density of global ap-
proaches. This is achieved by embedding a local least
square fit into the motion tensor formulation of the
data term. As a result the original tensor J is integrated
over a neighbourhood of fixed size, which is realised
by a channelwise convolution of J with a Gaussian
kernel Kρ of standard deviation ρ. Thus, a modified
motion tensor Jρ := Kρ ∗ J is obtained that renders
the method more robust against noise. (ii) Apart from
this substitution, a non-quadratic function �D is ap-
plied to the whole data term. As for the flow-driven
isotropic regularisation, such a proceeding is related
to statistically robust error norms (Huber, 1981) and
increases the performance of the approach with re-
spect to noise (Black et al., 1996). As prototype for
this class of combined-local-global methods we have
chosen a technique with regularised L1 norm as non-
quadratic penaliser in both the data and the smooth-
ness term. The associated energy functional is given
by

ECLG(u, v) =
∫

�

(
�D

(
(u, v, 1)Jρ (u, v, 1)�

)
+ α �S

( |∇u|2 + |∇v|2 ) )
dxdy,

(19)

where εD and εS serve as small regularisation parame-
ters for the L1 norm in the data and in the smoothness
term, respectively.
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(g) Large Displacements, Varying Illumination—
The Method of Papenberg et al.

Apart from noise there are two further problems that
have to be addressed in the context of motion es-
timation: the estimation of large displacements and
varying illumination. In (Brox et al., 2004; Papenberg
et al., 2005) proposed a sophisticated variational ap-
proach that tackles both problems at the same time
and allows for a very accurate estimation of the re-
sults. In their approach the standard grey value con-
stancy assumption is supplemented by an additional
term: The constancy of the spatial image gradient
∇ f = ( fx , fy)�. This assumption allows to deal
with global illumination changes of additive type.
Moreover, in order to overcome the limitation of lin-
earised constancy assumptions—they only hold for
small displacements—their linearisation is postponed
to the numerical scheme. The corresponding energy
functional to this method reads

EPAP(u, v)

=
∫

�

(
�D(

∣∣ f (x+u, y+v, t+1) −f (x, y, t)|2

+ γ |∇ f (x+u, y+v, t+1) −∇ f (x, y, t)|2)

+ α �S( |∇u|2 + |∇v|2 )
)

dxdy,

(20)

where once again the regularised variant of the L1 norm
is applied to both the data and the smoothness term.
Here, the scalar γ serves as weight between the gradient
and the grey value constancy assumption.

3.1. The Euler–Lagrange Equations

Let us now derive the Euler–Lagrange equations for the
prototypes of the more advanced optic flow methods.

(f) The Nonlinear Case II—The Method of Bruhn
et al.

In the case of the CLG method the Euler–Lagrange
equations are very similar to those of the flow-driven
isotropic regularisation in (d). The have the same non-
linear differential operator (and diffusion tensor) and
are given by the coupled form

0 = � ′
D

(
(u, v, 1)Jρ (u, v, 1)�

)
× (Jρ11 u + Jρ12 v + Jρ13) − αLNL(u, v),

(21)

0 = � ′
D

(
(u, v, 1)Jρ(u, v, 1)�

)
× (

Jρ12 u + Jρ22 v + Jρ23

) − αLNL(v, u).

(22)

Main differences to the flow-driven isotropic case in (d)
are the modified motion tensor Jρ and the additional
factor � ′

D

(
(u, v, 1)Jρ(u, v, 1)�

)
in front of the data

term that results from its non-quadratic penalisation in
the energy functional (via �D).

(g) The Nonlinear Case III (Warping)—The Method
of Papenberg et al.

The Euler Lagrange equations for the method of Papen-
berg et al. are also based on flow-driven isotropic reg-
ularisation, so the nonlinear differential operator (and
diffusion tensor) is once more the same than in the
case (d). However, as one can see from the following
equations

0 = � ′
D

(| f (x + u, y + v, t + 1) − f (x, y, t)|2
+ γ |∇ f (x + u, y + v, t + 1) − ∇ f (x, y, t)|2)
×

(
( f (x + u, y + v, t + 1) − f (x, y, t))

× fx (x + u, y + v, t + 1)

+ γ ( fx (x + u, y + v, t + 1) − fx (x, y, t))

× fxx (x + u, y + v, t + 1)

+ γ
(

fy(x + u, y + v, t + 1) − fy(x, y, t)
)

× fyx (x + u, y + v, t + 1)
)

− αLNL(u, v), (23)

0 = � ′
D

(| f (x + u, y + v, t + 1) − f (x, y, t)|2
+ γ |∇ f (x + u, y + v, t + 1) − ∇ f (x, y, t)|2)
×

(
( f (x + u, y + v, t + 1) − f (x, y, t))

× fx (x + u, y + v, t + 1)

+ γ ( fx (x + u, y + v, t + 1) − fx (x, y, t))

× fxy(x + u, y + v, t + 1)

+ γ
(

fy(x + u, y + v, t + 1) − fy(x, y, t)
)

× fyy(x + u, y + v, t + 1)
)

− αLNL(v, u) (24)

the part for the data term is rather complex without lin-
earisations. Moreover, in contrast to the previous cases
(a)–(e) where globally convergent algorithms can be
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used to find the unique solution of the Euler-Lagrange
equations, this time the solution process comes down
to solving an equation system that is related to a non-
convex optimisation problem. Therefore we follow the
idea of Brox et al. (2004) and embed the solution of
these equations in an incremental computation based
on a coarse-to-fine fixed point iteration. This is done in
three steps:

• Firstly, a fixed point iteration is applied to the Euler-
Lagrange equations in (23)–(24). In order to allow
for a faster convergence and a better stability than
explicit schemes, we use an approach that is semi im-
plicit in the data and fully implicit in the smoothness
term. This yields an iteration instruction that requires
to solve a coupled system of nonlinear equations in
each iteration step. For the iteration step k +1 this
system is given by

0 = � ′
D

(∣∣ f (x + uk+1, y + vk+1, t + 1)− f (x, y, t)
∣∣2

+ γ
∣∣∇ f (x+uk+1, y+vk+1, t+1)−∇ f (x, y, t)

∣∣2
)

×
(

( f (x + uk+1, y + vk+1, t + 1)− f (x, y, t)
)

× fx (x + uk, y + vk, t + 1)

+ γ
(

fx (x + uk+1, y + vk+1, t + 1) −fx (x, y, t)
)

× fxx (x + uk, y + vk, t + 1)

+ γ
(

fy(x+uk+1, y+vk+1, t+1)− fy(x, y, t)
)

× fyx (x+uk, y+vk, t+1)
)

− αLNL(uk+1, vk+1), (25)

0 = � ′
D

( ∣∣ f (x + uk+1, y + vk+1, t + 1)− f (x, y, t)
∣∣2

+ γ |∇ f (x + uk+1, y + vk+1, t + 1)−∇ f (x, y, t)
∣∣2

)
×

( (
f (x + uk+1, y + vk+1, t + 1)− f (x, y, t)

)
× fy(x + uk, y + vk, t + 1)

+ γ
(

fx (x + uk+1, y + vk+1, t + 1)− fx (x, y, t)
)

× fxy(x + uk, y + vk, t + 1)

+ γ
(

fy(x + uk+1, y + vk+1, t + 1)− fy(x, y, t)
)

× fyy(x + uk, y + vk, t + 1)
)

− αLNL(vk+1, uk+1). (26)

• Secondly, we split up the unknown flow field uk+1

and vk+1 at this iteration step into the already known
part uk and vk and the unknown motion increment
duk and dvk . This allows us to linearise all constancy
assumptions via a first order Taylor expansion of
type

f∗(x + uk+1, y + vk+1, t + 1) − f∗(x, y, t)

≈ f∗(x + uk, y + vk, t + 1)

+ f∗x (x + uk, y + vk, t + 1) du

+ f∗y(x + uk, y + vk, t + 1) dv

− f∗(x, y, t)

= f∗(x + uk, y + vk, t + 1) − f∗(x, y, t)︸ ︷︷ ︸
temporal difference !

+ f∗x (x + uk, y + vk, t + 1) du

+ f∗y(x + uk, y + vk, t + 1) dv, (27)

where f∗ denotes either f , fx or fy . Hereby one
should note that these linearisations have been in-
tentionally postponed from the modelling phase in
order to allow for an correct handling of large dis-
placements. Thus, we obtain the partially linearised
fixed point iteration step

0 = � ′
D

(
(duk, dvk, 1)Sk(duk, dvk, 1)�

)
× (

Sk
11 duk + Sk

12 dvk + Sk
13

)
− αLNL(uk + duk, vk + dvk), (28)

0 = � ′
D

(
(duk, dvk, 1)Sk(duk, dvk, 1)�

)
× (

Sk
12 duk + Sk

22 dvk + Sk
23

)
− αLNL(vk + dvk, uk + duk) (29)

that is still nonlinear due to the expressions of type
� ′

D and � ′
S. However, the strict usage of a convex

functions in both the smoothness and the data term
is rewarded by a unique solution of this step.

Here, once again the motion tensor notation has
been used. The tensor S is thereby given by S =
J̃ + γ G̃ which is the weighted sum of the mo-
tion tensor for the grey value constancy assumption
J̃ = ∇̃ f ∇̃ f � and the motion tensor for the gradient
constancy assumption G̃ = ∇̃ fx ∇̃ f �

x +∇̃ fy∇̃ f �
y . In

contrast to the cases (a)–(f) where these assumptions
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have already been linearised in the model, not the
original ∇ operator has to be considered, but a vari-
ant ∇̃, where the third component is not a tempo-
ral derivative but a temporal difference; see (27).
This shows that also in the case of variational
techniques with originally nonlinearised constancy
assumptions, we can keep to the simple and compact
notation with motion tensors and differential opera-
tors (based on diffusion tensors).

• Thirdly, we embed this partly linearised fixed point
iteration into a coarse-to-fine framework by connect-
ing the variable k not only to the iteration index but
also to a resolution level. While in the continuous
setting this can only be realised by a scale-space
focusing framework (Alvarez et al., 1999b), the dis-
crete world offers us also multiresolution techniques
for this purpose. Thereby, from one level to the next,
each dimension is resampled with a downsampling
factor ν. The actual resolution ratio between two
levels is then given by ν2. As shown in Brox et al.
(2004) the incorporation of the partly linearised fixed
point iteration into a coarse-to-fine strategy yields the
well-known warping technique (Bergen et al., 1992;
Black Anandan, 1991; Mémin and Pérez, 1998; Brox
et al., 2004). In fact, before the equations (28)–(29)
can be solved at a certain resolution level, all expres-
sions of f that depend on uk or vk have to be recalcu-
lated. This in turn requires to compensate the second
image given by f (., .t+1) for the already computed
flow field which is nothing else than a warping step.
In our case, such a warping step is realised by using
a backward registration approach that is based on
bilinear interpolation.

Let us once again point out the goals of the three
previous steps: While the coarse-to-fine strategy can
easily be identified with an unidirectional multigrid
scheme that helps to avoid local minima during the
optimisation, the incremental computation via a fixed
point iteration is nothing else than an approximation
of the nonlinearised constancy assumptions in the data
term by means of a series of linearised ones. Although
the coarse-to-fine technique works well in most of the
cases, one should note that there exists no convergence
proof for it. This results from the fact that motion incre-
ments on finer grids depend strongly on the computed
increments from coarser ones. As a consequence, errors
resulting from the bilinear interpolation or the handling
of out-of-bound displacements may propagate in such
a way, that they spoil the overall results completely.

4. Discretisation

4.1. General Discretisation Aspects

Let us now discuss a suitable discretisation for the
Euler-Lagrange equations (a)–(g). To this end we con-
sider the unknown functions u(x, y, t) and v(x, y, t) on
a rectangular pixel grid with cell size h = (hx , hy)�,
and we denote by uh

i, j the approximation to u at some
pixel i, j with i = 1,. . . ,Nx and j = 1, . . . ,Ny . Spa-
tial derivatives of the image data are approximated
using a fourth-order approximation with the stencil
(1, −8, 0, 8, −1)/(12h), while temporal derivatives are
computed with a simple two-point stencil. If we denote
the entries of the different diffusion tensors by

D =:

(
a b
b c

)
(30)

we can discretise the divergence expressions in the dif-
ferential operators LL and LNL by means of the follow-
ing finite difference approximations:

∂x ( a(x, y) ∂x z(x, y)) ≈ D−,h
x

(
M+,h

x (ai, j ) D+,h
x (zi, j )

)
, (31)

∂x
(

b(x, y) ∂y z(x, y)
) ≈ Dh

x

(
bi, j Dh

y (zi, j )
)
, (32)

∂y ( b(x, y) ∂x z(x, y)) ≈ Dh
y

(
bi, j Dh

x (zi, j )
)
, (33)

∂y
(

c(x, y) ∂y z(x, y)
) ≈ D−,h

y

(
M+,h

y (ci, j ) D+,h
y (zi, j )

)
. (34)

Details on the required averaging and differential op-
erators within the approximations are given in Table 1.
One should note, that these discretisations can also be
derived from discrete versions of the original energy
functionals.

4.2. The Discrete Euler–Lagrange Equations

As we have seen before there are basically four types of
Euler–Lagrange equations. Their discretisation is now
discussed in detail.

(a)–(c) The Linear Case

We are now in the position to write down the discrete
Euler-Lagrange equations for the linear case. They are
given by

0 = J h
11,i, j uh

i, j + J h
12,i, j vh

i, j + J h
13,i, j − α Lh

L i,j uh
i, j ,

(44)

0 = J h
12,i, j uh

i, j + J h
22,i, j vh

i, j + J h
23,i, j − α Lh

L i,j vh
i, j ,

(45)
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Table 1. Discretisations of averaging and differential operators.

One-sided averaging M±,h
x (zi, j ) := zi±1, j +zi, j

2 (35)

M±,h
y (zi, j ) := zi, j±1+zi, j

2 (36)

One-sided differences D±,h
x (zi, j ) := ± zi±1, j −zi, j

hx
(37)

D±,h
y (zi, j ) := ± zi, j±1−zi, j

hy
(38)

Central differences Dh
x (zi, j ) := zi+1, j −zi−1, j

2hx
(39)

Dh
y (zi, j ) := zi, j+1−zi, j−1

2hy
(40)

Squared differences D2,h
x (zi, j ) := 1

2

(
D+,h

x (zi, j )
)2 + 1

2

(
D−,h

x (zi, j )
)2

(41)

D2,h
y (zi, j ) := 1

2

(
D+,h

y (zi, j )
)2 + 1

2

(
D−,h

y (zi, j )
)2

(42)

Gradient magnitude
∣∣D2,h (zi, j )

∣∣ :=
√

D2,h
x (zi, j ) + D2,h

y (zi, j ) (43)

for i = 1 , . . , Nx and j = 1 , . . , Ny , where Lh
L i,j de-

notes the discrete version of the corresponding linear
operator LL at some pixel i, j . These 2Nx Ny equations
constitute a linear system for the unknowns uh

i, j and

vh
i, j . One should note that there are two different types

of coupling in the equations. The pointwise coupling
between uh

i, j and vh
i, j in the data term and the neighbour-

hood coupling via the operator Lh
L i,j in the smoothness

term (within both equations separately).

(d)–(e) The Nonlinear Case I

Analogously, we discretise the Euler Lagrange equa-
tions for the nonlinear case I. The obtained nonlinear
system of equations then reads

0 = J h
11,i, j uh

i, j + J h
12,i, j vh

i, j + J h
13,i, j (46)

− α Lh
NL i,j

(
uh

i, j , v
h
i, j

)
uh

i, j , (47)

0 = J h
12,i, j uh

i, j + J h
22,i, j vh

i, j + J h
23,i, j (48)

− α Lh
NL i,j

(
uh

i, j , v
h
i, j

)
vh

i, j , (49)

for i = 1 , . . , Nx and j = 1 , . . , Ny . Here, the finite
difference approximation of LNL(u, v) and LNL(v, u)
results in the product of a common nonlinear operator
Lh

NL i,j(u
h
i, j , v

h
i, j ) and the pixel uh

i, j and vh
i, j , respectively.

Evidently, this constitutes a third way of coupling.

(f) The Nonlinear Case II—The Method of
Bruhn et al.

As in the previous case the discretisation of the Euler-
Lagrange equations for the nonlinear case II yields a

nonlinear system of equations. It is given by

0 = � ′
D

((
uh

i, j , v
h
i, j , 1

)
J h
ρ (uh

i, j , v
h
i, j , 1

)�)
(50)

×(
J h

11,i, j uh
i, j + J h

12,i, j vh
i, j + J h

13,i, j

)
− α Lh

NL i,j

(
uh

i, j , v
h
i, j

)
uh

i, j , (51)

0 = � ′
D

((
uh

i, j , v
h
i, j , 1

)
J h
ρ

(
uh

i, j , v
h
i, j , 1

)�)
(52)

×(
J h

12,i, j uh
i, j + J h

22,i, j vh
i, j + J h

23,i, j

)
− α Lh

NL i,j

(
uh

i, j , v
h
i, j

)
vh

i, j , (53)

for i = 1 , . . , Nx and j = 1 , . . , Ny . One should
note that the linear point coupling in the data term
that appears in the cases (a)–(f) may become strongly
nonlinear, since it it is now reweighted by the factor
� ′

D

(
(uh

i, j , v
h
i, j , 1)J h

ρ (uh
i, j , v

h
i, j , 1)�

)
that depends non-

linearly on both uh
i, j and vh

i, j .

(g) The Nonlinear Case III (Warping)—The Method
of Papenberg et al.

Due to the hierarchical optimisation in the nonlinear
case III one obtains not a single nonlinear equation sys-
tem but a hierarchy of nonlinear equations system. For
the warping level k the corresponding equation system
is thereby given by

0 = � ′
D

((
duk,h

i, j , dv
k,h
i, j , 1

)
Sk,h

i, j

(
duk,h

i, j , dv
k,h
i, j , 1

)�)
×

(
Sk,h

11,i, j duk,h
i, j + Sk,h

12,i, j dv
k,h
i, j + Sk,h

13,i, j

)
− α Lk,h

NL i,j

(
uk,h

i, j + duk,h
i, j , v

k,h
i, j + dv

k,h
i, j

) (
uk,h

i, j + duk,h
i, j

)
,

(54)
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0 = � ′
D

((
duk,h

i, j , dv
k,h
i, j , 1

)
Sk,h

i, j

(
duk,h

i, j , dv
k,h
i, j , 1

)�)
×

(
Sk,h

12,i, j duk,h
i, j + Sk,h

22,i, j dv
k,h
i, j + Sk,h

23,i, j

)
− α Lk,h

NL i,j

(
uk,h

i, j + duk,h
i, j , v

k,h
i, j + dv

k,h
i, j

)(
v

k,h
i, j + dv

k,h
i, j

)
,

(55)

where i = 1, . . , Nx and j = 1, . . , Ny . However, in
contrast to all other cases, the 2Nx Ny unknowns are

this time given by the the variables duk,h
i, j and dv

k,h
i, j

for the motion increment. Moreover, one should note
that due to the use of the warping strategy the proper-
ties of the resulting nonlinear equation systems may be
significantly different from level to level.

5. Multigrid

5.1. Basic Concept

In general, the preceding linear and nonlinear systems
of equations are solved by using non-hierarchical
iterative schemes; e.g. variants of the Jacobi or the
Gauß-Seidel method (Ortega and Rheinboldt, 2000;
Young, 1971). However, such techniques are not
well–suited for equation systems that are only coupled
via a small local neighbourhood: It may take thousands
of iterations to transport local information between
unknowns that are not coupled directly. A Fourier
analysis of the error confirms this observation: While
high frequency components (small wavelength, local
impact) are attenuated efficiently, lower frequency
components (large wavelength, global impact) remain
almost un-dampened. In order to overcome this
problem multigrid methods (Brandt, 1977; Briggs
et al., 2000; Hackbusch, 1985; Trottenberg et al.,
2001; Wesseling 1992) are based on a sophisticated
strategy. They make use of correction steps that
compute the error (not a coarser version of the fine
grid solution) on a coarser grid. Thus, lower frequency
components of the error reappear as higher ones
and allow for an efficient attenuation with standard
iterative methods. In the following we explain this
strategy in detail for both the linear and the nonlinear
case by the example of a basic bidirectional two-grid
cycle.

5.2. The Linear Two-Grid Cycle

For the sake of clarity, let us reformulate the linear
equation systems of the methods (a)–(c) as

Ahxh = f h. (56)

Here xh denotes the concatenated vector ((uh)�,

(vh)�)�, Ah is a symmetric positive definite matrix and
f h stands for the right hand side.

I) Multigrid methods starts by performing several it-
erations with a basic iterative solver. This is the so-
called presmoothing relaxation step, where high
frequency components of the error are removed.
If we denote the result after these iterations by x̃h,
the error is given by

eh = xh − x̃h. (57)

II) Evidently, one is interested in finding eh in order
to correct the approximated solution x̃h. Although
eh cannot be computed directly, the linearity of Ah

allows its computation via

Aheh = Ah(xh − x̃h) = Ahxh − Ah x̃h

= f h − Ah x̃h = rh, (58)

where rh is called residual. Since high frequencies
of the error have already been removed, we can
speed up the computation by solving this equation
system at a coarser resolution with grid cell size
H = (Hx , Hy)�:

Aheh = rh → AHeH = rH. (59)

One should note that at this point, a transfer of
the original equation system to a coarser grid
makes no sense: Unlike the error, the solution
very probably contains (desired) high frequency
components. A restriction of these components
would severely deteriorate the approximative so-
lution (aliasing).

III) After we have solved the residual equation system
on the coarse grid with a method of our choice,
we transfer the solution back to the fine grid and
correct our approximation by the computed error

x̃h
new = x̃h + ẽh. (60)
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One should note that the interpolated coarse grid
solution is denoted by ẽh, since it is only an ap-
proximation to the desired correction eh.

IV) In general, the transfer of the computed correc-
tion from a coarse grid by means of interpola-
tion introduces some new high frequency com-
ponents. To this end, a so-called postsmoothing
relaxation step is performed, where once again
some iteration of the basic iterative solver are
applied.

5.3. The Nonlinear (FAS) Two-Grid Cycle

Also in this case, let us start with a reformulation of the
nonlinear equation system resulting from the methods
(d)–(g) as

Ah(xh) = f h (61)

where Ah(xh) is a nonlinear operator. The FAS strategy
(Brandt, 1977) works as follows:

I) We perform a presmoothing relaxation step with
a nonlinear basic solver.

II) However, since Ah(xh) is a nonlinear operator,
the way of deriving a suitable coarse grid cor-
rection is significantly different from the linear
case. The (implicit) relation between the error
and the residual is given by

Ah(x̃h + eh) − Ah(x̃h) = f h − Ah(x̃h) = rh.

(62)

In order to compute the desired correction we
transfer the following nonlinear equation system

Figure 1. Left: Example for V-cycles with two, three and four levels. Center: Ditto for W-cycles. Right: Full multigrid implementation with

2 W-cycles per resolution level. Refinement steps are marked with ‘c’. Each W-cycle is marked with a ‘w’. Adapted from Bruhn et al. (2005a)

and Bruhn et al. (2003).

to the coarse grid

Ah(x̃h + eh) = rh + Ah(x̃h) (63)

→ AH( x̃H + eH) = rH + AH(x̃H) . (64)

Here, frames visualise the additional terms com-
pared to the linear case.

III) After we have solved the nonlinear residual equa-
tion system on the coarse grid, we subtract x̃H

from the solution in order to obtain eH. Its trans-
fer to the fine grid then allows to perform the
correction step.

IV) We perform a postsmoothing relaxation step with
a nonlinear basic solver.

5.4. Advanced Multigrid Strategies

In order to increase the computational efficiency, the
presented two-grid cycles are generally applied in a
hierarchical way. While V–cycles make one recursive
call of a two-grid cycle per level, faster converging
W–cycles perform two. Nevertheless, multiple of such
advanced cycles are required to reach the desired accu-
racy. As already discussed in the introduction it makes
sense to combine these bidirectional schemes with the
hierarchical initialisation properties of unidirectional
multigrid methods. Refining the original problem step
by step (unidirectional approach) and solving the re-
sulting linear or nonlinear equation system at each
level by using some V– or W–cycles (bidirectional ap-
proach), the multigrid strategy with the best perfor-
mance is obtained: full multigrid (Briggs et al., 2000).
An overview of all three types of multigrid strategies
is given in Fig. 1. One should note than in the non-
linear case III (warping) such a full multigrid scheme
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Table 2. Implemented multigrid schemes the different variational models.

Case Model MG Solver Cyc Basic Solver Pre/Post

L (a) Homogeneous FMG-W 1 GS-CPR 1–1

(b) Image-Driven Isotropic FMG-W 2 GS-CPR 2–2

(c) Image-Driven Anisotropic FMG-W 4 GS-ALR 1–1

NL I (d) Flow-Driven Isotropic FAS-FMG-W 2 GS-CPR 2–2

(e) Flow-Driven Anisotropic FAS-FMG-W 4 GS-ALR 1–1

NL II (f) Bruhn et al. FAS-FMG-W 2 GS-CPR 2–2

NL III (g) Papenberg et al. WARP-FAS-FMG-W 2 GS-CPR 6–6

MG = multigrid. FMG = full multigrid. WARP = warping. Cyc = multigrid cycles per level. GS = Gauß–Seidel. CPR = coupled point

relaxation. Pre/Post = pre- and postsmoothing relaxation iterations. L = linear. NL = nonlinear.

has to be applied at each resolution level. This means
we combine two strategies in this case: On one hand,
we approximate the nonlinearised constancy assump-
tions in the data term by a series of linearised con-
stancy assumptions; see Subsection 3.1(f). This scheme
is embedded in a unidirectional multigrid framework
to avoid local minima. On the other hand we use a full
multigrid method to solve the resulting nonlinear equa-
tion system at each level of this unidirectional frame-
work.

5.5. Implementation Details

Let us now discuss some implementation details. As
one can see from Table 2 we have developed full
multigrid schemes for all linear and nonlinear cases.
Thereby we used two different types of basic solvers:
While in the cases of homogeneous and isotropic reg-
ularisation, a Gauß–Seidel solver with coupled point
relaxation (CPR) (Bruhn et al., 2005a) was suffi-
cient, the anisotropy of the neighbourhood coupling
in the remaining methods required the use of a Gauß–
Seidel solver with alternating line relaxation (ALR)
(Wesseling, 1992). Instead of updating the two un-
knowns u and v at each pixel at the same time (CPR),
the ALR method computes whole lines of unknowns
simultaneously. Thereby three directions were con-
sidered: Lines in x– and y–direction as well as the
direction of the different unknowns at each pixel,
namely (u, v) itself. For the nonlinear variants of the
Gauß–Seidel solver we used the strategy of frozen
coefficients (Frohn-Schnauff et al., 2004). In the lit-
erature this technique is also known as lagged dif-
fusivity method (Chan and Mulet, 1999) or Quasi-
Newton scheme (Vogel, 2002). Direct nonlinear Gauß–
Seidel Newton methods (Briggs et al., 2000) have

not been considered as basic solver. Experiments us-
ing this kind of methods have shown a similar per-
formance in terms of error reduction, however, at
the the expense of significantly increased computa-
tional costs. One can also see from Table 2 that an
increasing anisotropy of the diffusion tensor (homo-
geneous → isotropic → anisotropic) required more
multigrid cycles at each level of the full multigrid im-
plementation. In the case of the method of Papenberg
et al. one can also observe an increased number of
pre- and postsmoothing relaxations. This can be ex-
plained by the combination of the warping technique
and the strongly nonlinear flow-driven regulariser
(TV).

In order to allow for a complete multigrid hierar-
chy we considered the use of non-dyadic intergrid
transfer operators in all approaches. As proposed in
(Bruhn et al., 2005a) they were realised by constant
interpolation and simple averaging. Coarser versions
of the linear and nonlinear operators were created by
a coarse grid approximation approach (DCA) (Wessel-
ing, 1992). To this end, we restricted all linear expres-
sion such as the motions tensors and the linear diffu-
sion tensors and adapted the grid size for the nonlinear
ones. At this point one should note that the positive
semi-definiteness of both tensors is essential to ensure
convergence of the basic solvers. Therefore, all tensor
entries were restricted channelwise:

J h
nm −→ J H

nm n, m = 1 , . . , 3. (65)

In combination with the use of a linear restriction op-
erator such as simple averaging this ensures that the
the resulting coarse grid tensors remain positive semi-
definite.
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6. Experiments

Let us now evaluate the different multigrid implemen-
tations. To this end, all computations are carried out on
a standard desktop PC with a 3.06 GHz Intel Pentium
4 CPU executing C / C++ code.

In our first experiment we compare the efficiency
of different numerical schemes for the five prototypes
of regularisation strategies that have been discussed
in Section 2. Apart from the developed full multi-
grid schemes we also implemented stand-alone ver-
sions of their basic iterative solvers, namely the Gauß-
Seidel methods with alternating line relaxation (ALR)
and the Gauß-Seidel method with coupled point relax-
ation (CPR). Moreover, we considered unidirectional
multigrid variants of the basics solvers—so-called
cascadic multigrid methods (Bornemann and Deufl-
hard, 1996)—as well as modified explicit schemes
(Weickert and Schnörr, 2001). Compared to ordinary
explicit schemes (e.g. gradient descent methods) such
modified schemes allow for larger time step sizes
τ . For our evaluation we used a 160 × 120 real-
world sequence in which a person dances in front of
the camera. Before we applied the different numer-
ical schemes we preprocessed the sequence by con-
volution with a Gaussian kernel of standard devia-
tion σ = 1. The iterations were stopped when the
relative error erel := ‖x − x̃n‖2/‖x‖2 dropped be-
low 10−2, where x denotes the correct solution and
x̃n stands for the computed result after n iterations/
cycles. In all cases a zero flow field was used as
initialisation.

Table 3 shows the excellent performance of the pro-
posed numerical schemes for all five types of regu-
larisers. In the linear cases (a), (b) and (c) the modified
explicit schemes and the basic iterative solvers are out-
performed by two to three and one to two orders of
magnitude, respectively. Apart from the linear case (a)
where the result is rather smooth, also the unidirec-
tional variants are clearly outperformed by one order
of magnitude. This is reflected in high frame rates of
up to 63 dense flow fields per second. In the nonlinear
cases (d) and (e), our comparison shows a very simi-
lar tendency. Here, speedup factors are in the range of
two to three orders of magnitude for the modified ex-
plicit schemes and the basic solvers and again one order
of magnitude compared to the unidirectional multigrid
schemes. Frame rates of twelve and two dense flow
fields per second clearly demonstrate that also in this
case real-time performance is well within our compu-

tational reach. One should note that for all five methods
only a single full multigrid cycle was sufficient, while
in particular the non-hierarchical iterative methods re-
quired thousands of iterations.

In our second experiment we juxtapose the esti-
mation quality of the proposed multigrid implemen-
tations for the different regularisation strategies. In
particular, the comparison of the four discontinuity-
preserving real-time approaches (b)–(f) to the multi-
grid implementation in (a) with homogeneous
regularisation (Bruhn et al., 2005a) is thereby of in-
terest. To this end, we have computed flow fields for
three different real-world sequences: for the previously
used Dancing Sequence (complex motion), the Waving
Sequence (translations and discontinuities) and the Ro-
tating Thumb Sequence (rotation). The depicted colour
plots in Figs. 2 and 3 make the qualitative progress
in the field of real-time variational optic flow com-
putation explicit: One can easily see, that image- and
flow-driven methods yield results that are much more
accurate, since the underlying regularisation strate-
gies allow for a preservation of motion boundaries
and discontinuities. Moreover, one can observe that
the anisotropic techniques give slightly better results
than the isotropic ones and that the nonlinear methods
are able to overcome the problem of oversegmentation
that lies in the nature of image-driven techniques in the
presence of textured scenes.

In our third experiment we investigate the effi-
ciency of our multigrid implementations for the more
advanced variational optic flow methods discussed
in Section 3: The noise robust CLG approach of
Bruhn et al. (2005c) and the highly accurate optic
flow technique of Papenberg et al. (2005). As test
sequence in this experiment served a downsampled
variant (160 × 120) of the Rheinhafen sequence by
Nagel which is available at http://i21www.ira.uka.de/
image sequences. As before, a relative error of erel :=
10−2 was used as stopping criterion. One should note
that in the case of the method of Papenberg et al. this rel-
ative error does not only refer to a single nonlinear sys-
tem of equations. Here, the coarse-to-fine optimisation
by means of the warping strategy requires the solution
of whole hierarchy of equation systems. This consti-
tutes a significant difference all methods that have been
previously discussed in this paper including the recent
technique of Bruhn et al. In particular, one should note
that warping errors on coarser levels influence the re-
sults on finer levels such that errors can propagate in
this case.



A Multigrid Platform for Real-Time Motion Computation 271

Table 3. Performance benchmark for all types of regularisers on a standard desktop computer

with 3.06 GHz Pentium 4 CPU. Run times refer to the computation of a single flow field from

the 160 × 120 dancing sequence. FPS = frames per second.

Solver Iterations Time [s] FPS [s−1] Speedup

(a) Linear: Homogeneous regularisation (Horn and Schunck)

σ = 1.0, α = 1000

Mod. Explicit Scheme (τ = 0.25) 4425 3.509 0.285 1

Gauß-Seidel (CPR) 2193 1.152 0.868 3

Cascadic Gauß-Seidel (CPR) 16 0.018 56.189 197

Full Multigrid 1 0.016 62.790 220

(b) Linear: Image-driven isotropic regularisation (Charbonnier)

σ = 1.0, α = 1000, εS = 1.0

Mod. Explicit Scheme (τ = 0.25) 8896 12.048 0.083 1

Gauß-Seidel (CPR) 2856 2.793 0.358 4

Cascadic Gauß-Seidel (CPR) 215 0.085 3.508 42

Full Multigrid 1 0.048 20.850 251

(c) Linear: Image-driven anisotropic regularisation (Nagel-Enkelmann)

σ = 1.0, α = 1000, εS = 10−2

Mod. Explicit Scheme (τ = 0.1666) 36433 47.087 0.021 1

Gauß-Seidel (ALR) 607 3.608 0.277 13

Cascadic Gauß-Seidel (ALR) 473 3.218 0.311 15

Full Multigrid 1 0.171 5.882 275

(d) Nonlinear: Flow-driven isotropic regularisation (TV)

σ = 1.0, α = 10, εS = 10−2

Mod. Explicit Scheme (τ = 0.0025) 10633 30.492 0.033 1

Gauß-Seidel (CPR) 2679 6.911 0.145 4

Cascadic Gauß-Seidel (CPR) 371 0.853 1.173 36

FAS - Full Multigrid 1 0.082 12.172 372

(e) Nonlinear: Flow-driven anisotropic regularisation (TV)

σ = 1.0, α = 10, εS = 10−2

Mod. Explicit Scheme (τ = 0.0025) 9224 58.837 0.017 1

Gauß-Seidel (ALR) 591 12.508 0.080 5

Cascadic Gauß-Seidel (ALR) 138 3.816 0.262 15

FAS - Full Multigrid 1 0.491 2.038 120

Let us now take a look at the obtained results in
Table 4. As one can see, the speedups for the more
advanced optic flow methods are even better than for
the basic techniques with different types of regularisa-
tion. With three to four orders of magnitude the mod-
ified explicit scheme (that needs almost one hundred
thousand iterations) is outperformed more than signif-
icantly. The same applies to the basic basic iterative
solvers, although the speed up is here two orders of
magnitude. Even in the case of unidirectional multi-
grid methods one can observe a significant speed up.
It is in the range of one order of magnitude. The cor-
responding frame rates show clearly that in the case

of such highly advanced optic flow methods, real-time
performance is still possible.

In Fig. 4 the computed flow fields are depicted. Ev-
idently they look fairly realistic: The motion of the
van in the foreground as well as the motion of all
other vehicles in the background is computed with
good precision. Moreover, object boundaries within
the flow field are rather sharp and allow for a simple
separation of the different motions layers via thresh-
olding. This segmentation-like behaviour, that is de-
sired in many optic flow applications, is a direct
consequence of using TV as discontinuity-preserving
regulariser.
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Figure 2. Left to right: dancing sequence, waving sequence, rotating thumb sequence. Top to bottom: first frame, second frame, no reg-

ularisation (normal flow), homogeneous regularisation (Horn and Schunck). Brightness code: The magnitude of a flow vector is encoded

by its brightness. Brighter pixels stand for larger displacements. Color versions of the flow fields are available at http://www.mia.uni-

saarland.de/bruhn/ijcv05/flowfields/.

In our final experiment we evaluate the accuracy
of our real-time implementations for the two previ-
ously discussed optic flow methods. To this end, we
have considered the famous Yosemite test sequence
with clouds. This sequence that was created by Lynn
Quam is very popular due to the fact that it combines
translative and divergent motion under varying illu-
mination. In Table 5 the computed average angular
errors (Barron et al., 1994) for both approaches are
presented where they are compared to the best results
from the literature. The raw numbers show that the de-
veloped multigrid schemes do not have any negative
effect on the quality of the results. However, there are

small differences in terms of the average angular er-
ror: While in the case of the method of Bruhn et al.
we obtained a slightly lower average angular error by
using the total variation (TV) instead of the Charbon-
nier function as flow-driven isotropic regulariser, the
relatively small coarsening factor of ν = 0.65 limited
the average angular error to 2.52◦ in the case of the
method of Papenberg et al. A larger coarsening factor
ν close to 1 would of course allow to obtain the orig-
inal average angular error, however, at the expense of
much higher computational costs (since the number of
nonlinear system of equations would increase signifi-
cantly).
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Figure 3. Left to right: dancing sequence, waving sequence, rotating thumb sequence. Top to bottom: data-driven isotropic regularisation

(Charbonnier), data-driven anisotropic regularisation (Nagel-Enkelmann), flow-driven isotropic regularisation (TV), flow-driven anisotropic

regularisation (TV). Brightness code: The magnitude of a flow vector is encoded by its brightness. Brighter pixels stand for larger displacements.

Color versions of the flow fields are available at http://www.mia.uni-saarland.de/bruhn/ijcv05/flowfields/.

The flow fields computed by both approaches are
shown in Fig. 5. Apart from these flow fields also the
ground truth solution is depicted that allows to access
the quality of the real-time capable methods. As one can
see, already the method of Bruhn et al. gives relatively
good results. The method of Papenberg et al., however,
does match the ground truth almost perfectly.

7. Summary and Conclusions

In this paper we presented a unifying multigrid ap-
proach to variational optic flow computation in real-

time. This was accomplished by introducing the sys-
tematic notation of motion and diffusion tensors
and deriving highly efficient bidirectional multigrid
approaches to solve the resulting linear and nonlin-
ear systems of equations. We showed that by care-
fully designing such multigrid methods a variety of
discontinuity-preserving optic flow techniques can be
implemented in real-time. Moreover, we extended our
approach to two recent and more advanced variational
optic flow methods. Experiments demonstrated that
compared to classical iterative solvers speedups of
two to four orders magnitude can be achieved. Even
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Table 4. Performance benchmark for the more advanced optic flow methods: The nonlinear

variant of the CLG method by Bruhn et al. (2005) and the method of Papenberg et al. (2005)

(see also (Brox et al. 2004)). Benchmark was performed on a standard desktop computer with

3.06 GHz Pentium 4 CPU. Run times refer to the computation of a single flow field from the

downsampled Rheinhafen sequence (size 160 × 120). FPS = frames per second.

Solver Iterations Time [s] FPS [s−1] Speedup

(f) Bruhn et al.: Robust data term with local integration

+ flow-driven isotropic regularisation (TV)

σ = 0.0, ρ = 1.0, α = 15, εD = 10−1, εS = 10−3

Mod. Explicit Scheme (τ = 0.00025) 81064 246.812 0.004 1

Gauß-Seidel (CPR) 3720 9.524 0.105 26

Cascadic Gauß-Seidel (CPR) 138 0.409 2.448 603

FAS - Full Multigrid 1 0.087 11.473 2836

(g) Papenberg et al.: Robust nonlinearised data term with additional

gradient constancy + flow-driven isotropic regularisation (TV)

σ = 1.0, α = 121, γ = 230, ν = 0.65, εD = 10−1, εS = 10−3

Mod. Explicit Scheme (τ = 0.00025) 79112 445.831 0.002 1

Gauß-Seidel (CPR) 6549 34.483 0.029 13

Cascadic Gauß-Seidel (CPR) 427 2.670 0.375 167

FAS - Full Multigrid 1 0.396 2.527 1127

Figure 4. (a) Top Left: Frame 1130 of the Rheinhafen sequence by Nagel (resized to 160 × 120). (b) Top Right: Frame 1131. (c) Bottom Left:
Computed flow field by the multigrid implementation of the 2-D method of Bruhn et al. Computing time: 87 milliseconds. (d) Bottom Right:
Computed flow field by the multigrid implementation of the 2-D method of Papenberg et al. Computing time: 396 milliseconds.
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Figure 5. (a) Top Left: Frame 8 of the Yosemite sequence with clouds by Lynn Quam (size 312 × 256). (b) Top Right: Ground truth flow field.

(c) Bottom Left: Computed flow field by our CLG 2-D multigrid implementation without warping. Average angular error: 5.77◦. Computing

time: 384 milliseconds. (d) Bottom Right: Computed flow field by our Papenberg et al. 2-D multigrid implementation. Average angular error:

2.51◦. Computing time: 1814 milliseconds.

Table 5. Qualitative comparison between results from the liter-

ature with 100 % density and the results for our multigrid im-

plementations. AAE = average angular error. STD = standard

deviation. 2D = spatial smoothness assumption. 3D = spatio-

temporal smoothness assumption.

Yosemite with clouds

Technique AAE STD

Anandan (Baron et al., 1994) 13.36◦ 15.64◦
Nagel (Baron et al., 1994) 10.22◦ 16.51◦
Horn–Schunck, mod. (Baron et al., 1994) 9.78◦ 16.19◦
Uras et al. (Barron et al., 1994) 8.94◦ 15.61◦
Bruhn et al. nonlinear (2D) (Bruhn et al., 2005c) 6.03◦ 8.61◦
Bruhn et al. nonlinear – Multigrid (2D) 5.77◦ 8.47◦
Alvarez et al. (2000) 5.53◦ 7.40◦
Mémin–Pérez (1998) 4.69◦ 6.89◦
Papenberg et al. – Multigrid (2D) 2.52◦ 6.58◦
Papenberg et al. (2005) (2D) 2.44◦ 6.90◦
Papenberg et al. (2005) (3D) 1.78◦ 7.00◦
Bruhn and Weickert (2005) (3D) 1.72◦ 6.88◦

unidirectional multigrid methods that are a frequent
tool in the motion estimation community are clearly

outperformed by one order of magnitude. This shows
that high quality optic flow computation and real-time
performance are not opposing worlds. They can
be combined if recent optic flow methods are im-
plemented by means of highly efficient numerical
schemes.

The investigation of suitable paralleliaation strate-
gies is ongoing work (Kohlberger et al. 2004, 2005).
Their usage would allow to process even high-
resolution video sequences in real-time.
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