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Abstract. Differential methods belong to the most widely used techniques for optic flow computation in image
sequences. They can be classified into local methods such as the Lucas–Kanade technique or Bigün’s structure
tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods
are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute
to a better understanding and the design of novel differential methods in four ways: (i) We juxtapose the role
of smoothing/regularisation processes that are required in local and global differential methods for optic flow
computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important
advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemporal
and nonlinear extensions as well as multiresolution frameworks are presented for this hybrid method. (iv) We propose
a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense
flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments
from the literature demonstrate the favourable performance of the proposed methods and the confidence measure.

Keywords: optic flow, differential techniques, variational methods, structure tensor, partial differential equations,
confidence measures, performance evaluation

1. Introduction

Ill-posedness is a problem that is present in many im-
age processing and computer vision techniques: Edge
detection, for example, requires the computation of im-
age derivatives. This problem is ill-posed in the sense
of Hadamard,1 as small perturbations in the signal
may create large fluctuations in its derivatives (Yuille

and Poggio, 1986). Another example consists of optic
flow computation, where the ill-posedness manifests
itself in the nonuniqueness due to the aperture prob-
lem (Bertero et al., 1988): The data allow to compute
only the optic flow component normal to image edges.
Both types of ill-posedness problems appear jointly
in so-called differential methods for optic flow recov-
ery, where optic flow estimation is based on computing
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spatial and temporal image derivatives. These tech-
niques can be classified into local methods that may
optimise some local energy-like expression, and global
strategies which attempt to minimise a global en-
ergy functional. Examples of the first category include
the Lucas–Kanade method (Lucas and Kanade, 1981;
Lucas, 1984) and the structure tensor approach of
Bigün and Granlund (1988) and Bigün et al. (1991),
while the second category is represented by the clas-
sic method of Horn and Schunck (Horn and Schunck,
1981) and its numerous discontinuity-preserving vari-
ants (Alvarez et al., 1999; Aubert et al., 1999; Black and
Anandan, 1991; Cohen, 1993; Heitz and Bouthemy,
1993; Kumar et al., 1996; Nagel, 1983; Nesi, 1993;
Proesmans et al., 1994; Schnörr, 1994; Shulman and
Hervé, 1989; Weickert and Schnörr, 2001). Differential
methods are rather popular: Together with phase-based
methods such as (Fleet and Jepson, 1990) they belong
to the techniques with the best performance (Barron et
al., 1994; Galvin et al., 1998). Local methods may offer
relatively high robustness under noise, but do not give
dense flow fields. Global methods, on the other hand,
yield flow fields with 100% density, but are experimen-
tally known to be more sensitive to noise (Barron et al.,
1994; Galvin et al., 1998).

A typical way to overcome the ill-posedness prob-
lems of differential optic flow methods consists of
the use of smoothing techniques and smoothness as-
sumptions: It is common to smooth the image se-
quence prior to differentiation in order to remove
noise and to stabilise the differentiation process. Lo-
cal techniques use spatial constancy assumptions on
the optic flow field in the case of the Lucas–Kanade
method, and spatiotemporal constancy for the Bigün
method. Global approaches, on the other hand, sup-
plement the optic flow constraint with a regularising
smoothness term. Surprisingly, the actual role and the
difference between these smoothing strategies, how-
ever, has hardly been addressed in the literature so far.
In a first step of this paper we juxtapose the role of
the different smoothing steps of these methods. We
shall see that each smoothing process offers certain
advantages that cannot be found in other cases. Conse-
quently, it would be desirable to combine the different
smoothing effects of local and global methods in or-
der to design novel approaches that combine the high
robustness of local methods with the full density of
global techniques. One of the goals of the present pa-
per is to propose and analyse such an embedding of
local methods into global approaches. This results in

a technique that is robust under noise and gives flow
fields with 100% density. Hence, there is no need for
a postprocessing step where sparse data have to be
interpolated.

On the other hand, it has sometimes been criticised
that there is no reliable confidence measure that al-
lows to sparsify the result of a dense flow field such
that the remaining flow is more reliable (Barron et al.,
1994). In this way it would be possible to compare
the real quality of dense methods with the character-
istics of local, nondense approaches. In our paper we
shall present such a measure. It is simple and applica-
ble to the entire class of energy minimising global op-
tic flow techniques. Our experimental evaluation will
show that this confidence measure can give excellent
results.

Our paper is organised as follows. In Section 2
we discuss the role of the different smoothing pro-
cesses that are involved in local and global optic flow
approaches. Based on these results we propose two
combined local-global (CLG) methods in Section 3,
one with spatial, the other one with spatiotemporal
smoothing. In Section 4 nonlinear variants of the CLG
method are presented, while a suitable multiresolu-
tion framework is discussed in Section 5. Our nu-
merical algorithm is described in Section 6. In Sec-
tion 7, we introduce a novel confidence measure for
all global optic flow methods that use energy func-
tionals. Section 8 is devoted to performance evalua-
tions of the CLG methods and the confidence mea-
sure. A summary and an outlook to future work is
given in Section 9. In the Appendix, we show how
the CLG principle has to be modified if one wants
to replace the Lucas–Kanade method by the struc-
ture tensor method of Bigün and Granlund (1988) and
Bigün et al. (1991).

1.1. Related Work

In spite of the fact that there exists a very large number
of publications on motion analysis (see e.g. (Mitiche
and Bouthemy, 1996; Stiller and Konrad, 1999) for
reviews), there has been remarkably little work de-
voted to the integration of local and global optic flow
methods. Schnörr (Schnörr, 1993) sketched a frame-
work for supplementing global energy functionals with
multiple equations that provide local data constraints.
He suggested to use the output of Gaussian filters
shifted in frequency space (Fleet and Jepson, 1990) or
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local methods incorporating second-order derivatives
(Tretiak and Pastor, 1984; Uras et al., 1988), but did
not consider methods of Lucas–Kanade or Bigün type.

Our proposed technique differs from the majority
of global regularisation methods by the fact that we
also use spatiotemporal regularisers instead of spa-
tial ones. Other work with spatiotemporal regularisers
includes publications by Murray and Buxton (1987),
Nagel (1990), Black and Anandan (1991), Elad and
Feuer (1998), and Weickert and Schnörr (2001).

While the noise sensitivity of local differential
methods has been studied intensively in recent years
(Bainbridge-Smith and Lane, 1997; Fermüller et al.,
2001; Jähne, 2001; Kearney et al., 1987; Ohta, 1996;
Simoncelli et al., 1991), the noise sensitivity of global
differential methods has been analysed to a signifi-
cantly smaller extent. In this context, Galvin et al.
(1998) have compared a number of classical methods
where small amounts of Gaussian noise had been
added. Their conclusion was similar to the findings
of Barron et al. (1994): the global approach of Horn
and Schunck is more sensitive to noise than the local
Lucas–Kanade method.

A preliminary shorter version of the present paper
has been presented at a conference (Bruhn et al., 2002).
Additional work in the current paper includes (i) the
use of nonquadratic penalising functions, (ii) the ap-
plication of a suitable multiresolution strategy, (iii) the
proposal of a confidence measure for the entire class
of global variational methods, (iv) the integration of
the structure tensor approach of Bigün and Granlund
(1988) and Bigün et al. (1991) and (v) a more extensive
experimental evaluation.

2. Role of the Smoothing Processes

In this section we discuss the role of smoothing tech-
niques in differential optic flow methods. For simplicity
we focus on spatial smoothing. All spatial smoothing
strategies can easily be extended into the temporal
domain. This will usually lead to improved results
(Weickert and Schnörr, 2001).

Let us consider some image sequence g(x, y, t),
where (x, y) denotes the location within a rectangular
image domain �, and t ∈ [0, T ] denotes time. It is com-
mon to smooth the image sequence prior to differentia-
tion (Barron et al., 1994; Kearney et al., 1987), e.g. by
convolving each frame with some Gaussian Kσ (x, y)
of standard deviation σ :

f (x, y, t) := (Kσ ∗ g)(x, y, t), (1)

The low-pass effect of Gaussian convolution removes
noise and other destabilising high frequencies. In a sub-
sequent optic flow method, we may thus call σ the noise
scale.

Many differential methods for optic flow are based
on the assumption that the grey values of image objects
in subsequent frames do not change over time:

f (x+u, y+v, t+1) = f (x, y, t), (2)

where the displacement field (u, v)�(x, y, t) is called
optic flow. For small displacements, we may perform
a first order Taylor expansion yielding the optic flow
constraint

fx u + fyv + ft = 0, (3)

where subscripts denote partial derivatives. Evidently,
this single equation is not sufficient to uniquely com-
pute the two unknowns u and v (aperture problem):
For nonvanishing image gradients, it is only possible
to determine the flow component parallel to ∇ f :=
( fx , fy)�, i.e. normal to image edges. This so-called
normal flow is given by

wn = − ft

|∇ f |
∇ f

|∇ f | . (4)

Figure 1(a) depicts one frame from the famous
Hamburg taxi sequence.2 We have added Gaussian
noise, and in Fig. 1(b)–(d) we illustrate the impact
of presmoothing the image data on the normal flow.
While some moderate presmoothing improves the re-
sults, great care should be taken not to apply too much
presmoothing, since this would severely destroy im-
portant image structure.

In order to cope with the aperture problem, Lucas and
Kanade (1981) and Lucas (1984) proposed to assume
that the unknown optic flow vector is constant within
some neighbourhood of size ρ. In this case it is possible
to determine the two constants u and v at some location
(x, y, t) from a weighted least square fit by minimising
the function

EL K (u, v) := Kρ ∗ (
( fx u + fyv + ft )

2
)
. (5)

Here the standard deviation ρ of the Gaussian serves as
an integration scale over which the main contribution
of the least square fit is computed.

A minimum (u, v) of EL K satisfies ∂u EL K = 0 and
∂v EL K = 0. This gives the linear system(

Kρ ∗ (
f 2
x

)
Kρ ∗ ( fx fy)

Kρ ∗ ( fx fy) Kρ ∗ (
f 2

y

) )(
u

v

)
=

(−Kρ ∗ ( fx ft )

−Kρ ∗ ( fy ft )

)
(6)
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Figure 1. From left to right, and from top to bottom: (a) Frame 10 of the Hamburg taxi sequence, where Gaussian noise with standard deviation
σn = 10 has been added. The white taxi turns around the corner, the left car drives to the right, and the right van moves to the left. (b) Normal flow
magnitude without presmoothing. (c) Normal flow magnitude, presmoothing with σ = 1. (d) Ditto, presmoothing with σ = 5. (e) Lucas-Kanade
method with σ = 0, ρ = 7.5. (f) Ditto, σ = 0, ρ = 15. (g) Optic flow magnitude with the Horn-Schunck approach, σ = 0, α = 105. (h) Ditto,
σ = 0, α = 106.

which can be solved provided that its system matrix
is invertible. This is not the case in flat regions where
the image gradient vanishes. In some other regions, the
smaller eigenvalue of the system matrix may be close
to 0, such that the aperture problem remains present
and the data do not allow a reliable determination of
the full optic flow. All this results in nondense flow
fields. They constitute the most severe drawback of
local gradient methods: Since many computer vision

applications require dense flow estimates, subsequent
interpolation steps are needed. On the other hand, one
may use the smaller eigenvalue of the system matrix as
a confidence measure that characterises the reliability
of the estimate. Experiments by Barron et al. (1994)
indicated that this performs better than the trace-based
confidence measure in Simoncelli et al. (1991).

Figure 1(e) and (f) show the influence of the integra-
tion scale ρ on the final result. In these images we have
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displayed the entire flow field regardless of its local
reliability. We can see that in each case, the flow field
has typical structures of order ρ. In particular, a suffi-
ciently large value for ρ is very successful in rendering
the Lucas–Kanade method robust under noise.

In order to end up with dense flow estimates one may
embed the optic flow constraint into a regularisation
framework. Horn and Schunck (Horn and Schunck,
1981) have pioneered this class of global differen-
tial methods. They determine the unknown functions
u(x, y, t) and v(x, y, t) as the minimisers of the global
energy functional

EHS(u, v) =
∫

�

(( fx u + fyv + ft )
2

+ α(|∇u|2 + |∇v|2)) dx dy (7)

where the smoothness weight α > 0 serves as regu-
larisation parameter: Larger values for α result in a
stronger penalisation of large flow gradients and lead
to smoother flow fields.

Minimising this convex functional comes down to
solving its corresponding Euler–Lagrange equations
(Courant and Hilbert, 1953; Elsgolc, 1961). They are
given by

0 = �u − 1

α

(
f 2
x u + fx fyv + fx ft

)
, (8)

0 = �v − 1

α

(
fx fyu + f 2

y v + fy ft
)
. (9)

with reflecting boundary conditions. � denotes the spa-
tial Laplace operator:

� := ∂xx + ∂yy . (10)

The solution of these diffusion–reaction equations is
not only unique (Schnörr, 1991), it also benefits from
the filling-in effect: At locations with |∇ f | ≈ 0, no
reliable local flow estimate is possible, but the reg-
ulariser |∇u|2 + |∇v|2 fills in information from the
neighbourhood. This results in dense flow fields and
makes subsequent interpolation steps obsolete. This is
a clear advantage over local methods.

It has, however, been criticised that for such global
differential methods, no good confidence measures are
available that would help to determine locations where
the computations are more reliable than elsewhere
(Barron et al., 1994). It has also been observed that they
may be more sensitive to noise than local differential
methods (Barron et al., 1994; Galvin et al., 1998).

An explanation for this behaviour can be given as
follows. Noise results in high image gradients. They
serve as weights in the data term of the regularisation
functional (7). Since the smoothness term has a con-
stant weight α, smoothness is relatively less important
at locations with high image gradients than elsewhere.
As a consequence, flow fields are less regularised at
noisy image structures. This sensitivity under noise is
therefore nothing else but a side-effect of the desired
filling-in effect. Figure 1(g) and (h) illustrate this be-
haviour. Figure 1(g) shows that the flow field does not
reveal a uniform scale: It lives on a fine scale at high gra-
dient image structures, and the scale may become very
large when the image gradient tends to zero. Increasing
the regularisation parameter α will finally also smooth
the flow field at noisy structures, but at this stage, it
might already be too blurred in flatter image regions
(Fig. 1(h)).

3. A Combined Local–Global Method

We have seen that both local and global differential
methods have complementary advantages and short-
comings. Hence it would be interesting to construct
a hybrid technique that constitutes the best of two
worlds: It should combine the robustness of local
methods with the density of global approaches. This
shall be done next. We start with spatial formulations
before we extend the approach to the spatiotemporal
domain.

3.1. Spatial Approach

In order to design a combined local–global (CLG)
method, let us first reformulate the previous ap-
proaches. Using the notations

w := (u, v, 1)�, (11)

|∇w|2 := |∇u|2 + |∇v|2, (12)

∇3 f := ( fx , fy, ft )
�, (13)

Jρ(∇3 f ) := Kρ ∗ (∇3 f ∇3 f �) (14)

it becomes evident that the Lucas–Kanade method min-
imises the quadratic form

EL K (w) = w� Jρ(∇3 f ) w, (15)
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while the Horn–Schunck technique minimises the
functional

EHS(w) =
∫

�

(w� J0(∇3 f ) w + α|∇w|2) dx dy.

(16)

This terminology suggests a natural way to extend the
Horn–Schunck functional to the desired CLG func-
tional. We simply replace the matrix J0(∇3 f ) by the
structure tensor Jρ(∇3 f ) with some integration scale
ρ > 0. Thus, we propose to minimise the functional

ECLG(w) =
∫

�

(
w� Jρ(∇3 f ) w + α|∇w|2) dx dy.

(17)

Its minimising flow field (u, v) satisfies the Euler–
Lagrange equations

0 = �u − 1

α

(
Kρ ∗ (

f 2
x

)
u + Kρ ∗ ( fx fy) v

+ Kρ ∗ ( fx ft )
)
, (18)

0 = �v − 1

α

(
Kρ ∗ ( fx fy) u + Kρ ∗ (

f 2
y

)
v

+ Kρ ∗ ( fy ft )
)
. (19)

It should be noted that these equations are hardly more
complicated than the original Horn–Schunck Eqs. (8)
and (9). All one has to do is to evaluate the terms con-
taining image data at a nonvanishing integration scale.
The basic structure with respect to the unknown func-
tions u(x, y, t) and v(x, y, t) is identical. It is there-
fore not surprising that the well-posedness proof for the
Horn–Schunck method that was presented in (Schnörr,
1991) can also be extended to this case.

3.2. Spatiotemporal Approach

The previous approaches used only spatial smooth-
ness operators. Rapid advances in computer technol-
ogy, however, makes it now possible to consider also
spatiotemporal smoothness operators. Formal exten-
sions in this direction are straightforward. In general,
one may expect that spatiotemporal formulations give
better results than spatial ones because of the additional
denoising properties along the temporal direction. In
the presence of temporal flow discontinuities smooth-
ing along the time axis should only be used moderately.
However, even in this case one can observe the benefi-
cial effect of temporal information.

A spatiotemporal variant of the Lucas–Kanade ap-
proach simply replaces convolution with 2-D Gaus-

sians by spatiotemporal convolution with 3-D Gaus-
sians. This still leads to a 2 × 2 linear system of equa-
tions for the two unknowns u and v.

Spatiotemporal versions of the Horn-Schunck
method have been considered by Elad and Feuer
(1998), while discontinuity preserving global methods
with spatiotemporal regularisers have been proposed in
different formulations in Black and Anandan (1991),
Murray and Buxton (1987), Nagel (1990), Weickert
and Schnörr (2001).

Combining the temporal extended variant of both
the Lucas–Kanade and the Horn–Schunck method we
obtain a spatiotemporal version of our CLG functional
given by

EC LG3(w)

=
∫

�×[0,T ]
(w� Jρ(∇3 f ) w + α|∇3w|2) dx dy dt

(20)

where convolutions with Gaussians are now to be un-
derstood in a spatiotemporal way and

|∇3w|2 := |∇3u|2 + |∇3v|2. (21)

Due to the different role of space and time the spa-
tiotemporal Gaussians may have different standard de-
viations in both directions. Let us denote by Jnm the
component (n, m) of the structure tensor Jρ(∇3 f ).
Then the Euler–Lagrange equations for (20) are given
by

�3u − 1

α
(J11u + J12v + J13) = 0, (22)

�3v − 1

α
(J12u + J22v + J23) = 0. (23)

One should note that they have the same structure
as (18)–(19), apart from the fact that spatiotempo-
ral Gaussian convolution is used, and that the spa-
tial Laplacean � is replaced by the spatiotemporal
Laplacean

�3 := ∂xx + ∂yy + ∂t t . (24)

The spatiotemporal Lucas–Kanade method is similar
to the approach of Bigün and Granlund (1988) and
Bigün et al. (1991). In the Appendix we show how
the latter method can be embedded in a global energy
functional.
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4. Nonquadratic Approach

So far the underlying Lucas–Kanade and Horn–
Schunck approaches are linear methods that are based
on quadratic optimisation. It is possible to replace
them by nonquadratic optimisation problems that lead
to nonlinear methods. From a statistical viewpoint
this can be regarded as applying methods from ro-
bust statistics where outliers are penalised less severely
than in quadratic approaches (Hampel et al., 1986;
Huber, 1981). In general, nonlinear methods give bet-
ter results at locations with flow discontinuities. Ro-
bust variants of the Lucas–Kanade method have been
investigated by Black and Anandan (1996) and by
Yacoob and Davis (1999), respectively, while a survey
of the numerous convex discontinuity-preserving reg-
ularisers for global optic flow methods is presented in
Weickert and Schnörr (2001).

In order to render our approach more robust against
outliers in both the data and the smoothness term we
propose the minimisation of the following functional:

ECLG3−N(w) =
∫

�×[0,T ]
(ψ1(w� Jρ(∇3 f ) w)

+ α ψ2(|∇3w|2)) dx dy dt (25)

where ψ1(s2) and ψ2(s2) are nonquadratic penalisers.
Encouraging experiments with related continuous en-
ergy functionals have been performed by Hinterberger
et al. (2002). Suitable nonquadratic penalisers can be
derived from nonlinear diffusion filter design, where
preservation or enhancement of discontinuities is also
desired (Weickert, 1998). In order to guarantee well–
posedness for the remaining problem, we focus only
on penalisers that are convex in s. In particular, we use
a function that has been proposed by Charbonnier et al.
(1994):

ψi (s
2) = 2β2

i

√
1 + s2

β2
i

, i ∈ 1, 2 (26)

where β1 and β2 are scaling parameters. Under some
technical requirements, the choice of convex penalis-
ers ensures a unique solution of the minimisation prob-
lem and allows to construct simple globally convergent
algorithms.

The Euler–Lagrange equations of the energy func-
tional (25) are given by

0 = div (ψ ′
2(|∇3w|2) ∇3u)

− 1

α
ψ ′

1(w� Jρ(∇3 f ) w)(J11 u + J12 v + J13),
(27)

0 = div (ψ ′
2(|∇3w|2) ∇3v)

− 1

α
ψ ′

1(w� Jρ(∇3 f ) w)(J21 v + J22 u + J23).

(28)

with

ψ ′
i (s

2) = 1√
1 + s2

β2
i

, i ∈ 1, 2 (29)

One should note that for large values of βi the nonlinear
case comes down to the linear one since ψ ′

i (s
2) ≈ 1.

5. Multiresolution Approach

All variants of the CLG method considered so far
are based on a linearisation of the grey value con-
stancy assumption. As a consequence, u and v are re-
quired to be relatively small so that the linearisation
holds. Obviously, this cannot be guaranteed for arbi-
trary sequences. However, there are strategies that al-
low to overcome this limitation. These so called multi-
scale focusing or multiresolution techniques (Ananden,
1989; Black and Anandan, 1996; Mémin and Pérez,
1998; Mémin and Pérez, 2002) incrementally compute
the optic flow field based on a sophisticated coarse-to-
fine strategy:

Starting from a coarse scale the resolution is refined
step by step. However, the estimated flow field at a
coarser level is not used as initalisation at the next finer
scale. In particular for energy functionals with a global
minimum, such a proceeding would only lead to an ac-
celeration of the convergence, since the result would
not change. Instead, the coarse scale motion is used to
warp (correct) the original sequence before going to
the next finer level. This compensation for the already
computed motion results in a hierarchy of modified
problems that only require to compute small displace-
ment fields, the so called motion increments. Thus it is
not surprising that the final displacement field obtained
by a summation of all motion increments is much more
accurate regarding the linearisation of the grey value
constancy assumption.
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Let δwm denote the motion increment at resolution
level m, where m = 0 is the coarsest level with ini-
talisation w0 = (0, 0, 0)�. Then δwm is obtained by
optimisation of the following spatiotemporal energy
functional:

E m
CLG3−N(δwm)

=
∫

�×[0,T ]
(ψ1(δwm� Jρ(∇3 f (x + wm)) δwm)

+ α ψ2(|∇3(wm + δwm)|2)) dx

where wm+1 = wm+δwm and x = (x, y, t). One should
note that warping the original sequence does only af-
fect the data term. Since the smoothness assumption
applies to the complete flow field, wm + δwm is used
as argument of the penaliser.

If we denote the structure tensor of the corrected se-
quence by J m

ρ = Jρ(∇3 f (x + wm)), the corresponding
Euler–Lagrange equations are given by

0 = div (ψ ′
2(|∇3(wm + δwm)|2) ∇3δum)

− 1

α
ψ ′

1

(
δwm� J m

ρ δw
)(

J m
11 δu + J m

12 δv + J m
13

)
,

(30)

0 = div (ψ ′
2(|∇3(wm + δwm)|2) ∇3δv

m)

− 1

α
ψ ′

1

(
δwm� J m

ρ δw
)(

J m
21 δv + J m

22 δu + J m
23

)
.

(31)

6. Algorithmic Realisation

6.1. Spatial and Spatiotemporal Approach

Let us now discuss a suitable algorithm for the CLG
method (18) and (19) and its spatiotemporal variant. To
this end we consider the unknown functions u(x, y, t)
and v(x, y, t) on a rectangular pixel grid of size h, and
we denote by ui the approximation to u at some pixel
i with i = 1,. . . ,N . Gaussian convolution is realised
in the spatial/spatiotemporal domain by discrete con-
volution with a truncated and renormalised Gaussian,
where the truncation took place at 3 times the stan-
dard deviation. Symmetry and separability has been
exploited in order to speed up these discrete convolu-
tions. Spatial derivatives of the image data have been
approximated using a sixth-order approximation with
the stencil (−1, 9, −45, 0, 45, −9, 1)/(60h). Tempo-
ral derivatives are either approximated with a sim-

ple two-point stencil or the fifth-order approximation
(−9, 125, −2250, 2250, −125, 9)/(1920h).

Let us denote by Jnmi the component (n, m) of the
structure tensor Jρ(∇ f ) in some pixel i . Furthermore,
let N (i) denote the set of (4 in 2-D, 6 in 3-D) neigh-
bours of pixel i . Then a finite difference approxima-
tion to the Euler–Lagrange equations (18)–(19) is given
by

0 =
∑

j∈N (i)

u j − ui

h2
− 1

α
(J11i ui + J12i vi + J13i ) ,

(32)

0 =
∑

j∈N (i)

v j − vi

h2
− 1

α
(J21i ui + J22i vi + J23i )

(33)

for i = 1,. . . ,N . This sparse linear system of equations
may be solved iteratively. The successive overrelax-
ation (SOR) method (Young, 1971) is a good compro-
mise between simplicity and efficiency. If the upper
index denotes the iteration step, the SOR method can
be written as

uk+1
i = (1 − ω) uk

i + ω∑
j∈N−(i) uk+1

j + ∑
j∈N+(i) uk

j − h2

α

(
J12i vk

i + J13i
)

|N (i)| + h2

α
J11i

,

(34)

vk+1
i = (1 − ω) vk

i + ω∑
j∈N−(i) vk+1

j + ∑
j∈N+(i) vk

j − h2

α

(
J21i uk+1

i + J23i

)
|N (i)| + h2

α
J22i

(35)

where

N−(i) := { j ∈ N (i) | j < i}, (36)

N+(i) := { j ∈ N (i) | j > i} (37)

and |N (i)| denotes the number of neighbours of pixel
i that belong to the image domain.

The relaxation parameter ω ∈ (0, 2) has a strong
influence on the convergence speed. For ω = 1 one
obtains the well-known Gauß–Seidel method. We usu-
ally use values for ω between 1.9 and 1.99. This nu-
merically inexpensive overrelaxation step results in a
speed-up by one order of magnitude compared with the
Gauß–Seidel approach. We initialised the flow compo-
nents for the first iteration by 0. The specific choice
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of the initialisation is not critical since the method is
globally convergent.

It should be noted that the iteration scheme does not
require many computations per step, since one may
compute expressions of type h2

α
Jnmi before entering the

iteration loop. Moreover, any practical implementation
requires only a single vector of size N for storing each
of the two flow components u and v: Since the compo-
nents are updated sequentially, there is no need for two
vectors for the iteration levels k and k + 1.

Our CLG method has been implemented in ANSI
C. For computing the optic flow between two image
frames of size 316×252 on a 1533 GHz Athlon PC, one
iteration takes 4 CPU milliseconds. In the 3-D case us-
ing 15 frames of the same sequence, one iteration takes
70 CPU milliseconds. For our performance evaluations
in Section 8, we used 1000 iterations in the 2-D case
and 200 iterations in the 3-D case. Since the iterative
process converges fast in the beginning and slows down
afterwards, one may get perceptually similar solutions
already after significantly less iterations. The memory
requirement was 5.9 MB in the 2-D example, and 63
MB in the 3-D case.

uk+1
i = (1 − ω)uk

i + ω

∑
j∈N−(i)

ψ ′
2i +ψ ′

2 j

2 uk+1
j + ∑

j∈N+(i)
ψ ′

2i +ψ ′
2 j

2 uk
j − ψ ′

1i
h2

α

(
J12i vk

i + J13i
)

∑
j∈N (i)

ψ ′
2i +ψ ′

2 j

2 + ψ ′
1i

h2

α
J11i

, (40)

vk+1
i = (1 − ω)vk

i + ω

∑
j∈N−(i)

ψ ′
2i +ψ ′

2 j

2 vk+1
j + ∑

j∈N+(i)
ψ ′

2i +ψ ′
2 j

2 vk
j − ψ ′

1i
h2

α

(
J21i uk+1

i + J23i
)

∑
j∈N (i)

ψ ′
2i +ψ ′

2 j

2 + ψ ′
1i

h2

α
J22i

. (41)

By considering so called multigrid techniques in-
stead of the proposed SOR method even real-time
performance can be achieved with the CLG ap-
proach (Bruhn et al., 2003). However, since such ad-
vanced numerical schemes have to be developed ex-
plicitly for a given problem, their implementation
is far more difficult than in the case of the SOR
method.

6.2. Nonlinear and Multiresolution Approach

In the nonlinear case, the discretisation of the
Euler-Lagrange Eqs. (27) and (28) is straightfor-
ward. For the sake of clarity let us denote the
derivatives of the penalising functions ψ1 and ψ2 at

some pixel i by ψ ′
1i := ψ ′

1(w�
i Jρi wi ) respectively

ψ ′
2i := ψ ′

2(|∇3wi |2). Then the obtained nonlinear
system of equations reads

0 =
∑

j∈N (i)

ψ ′
2i + ψ ′

2 j

2

u j − ui

h2

− ψ ′
1i

α
(J11i ui + J12i vi + J13i ) , (38)

0 =
∑

j∈N (i)

ψ ′
2i + ψ ′

2 j

2

v j − vi

h2

− ψ ′
1i

α
(J21i ui + J22i vi + J23i ) (39)

for i = 1,. . . ,N . One should keep in mind that the
nonlinearity results from the dependency of ψ ′

1i and
ψ ′

2i on ui and vi . In order to remove this nonlinearity, an
outer fixed point iteration is applied. Keeping ψ ′

1i and
ψ ′

2i fixed allows to solve the resulting linear equation
system, e.g. by using the SOR method. In this case the
iteration step is given by

After solving the equation system ψ ′
1i and ψ ′

2i are
updated using the new values of ui and vi . This pro-
cedure is repeated until a fixed point in ψ ′

1i and ψ ′
2i is

reached.
In the case of the multiresolution framework the

proceeding is similar. In order to discretise the Euler-
Lagrange equations (30) and (31) at level m we define
ψ1 and ψ2 at some pixel i by ψ ′m

1i := ψ ′
1(δwm�

i J m
ρi wm

i )
respectively ψ ′m

2i := ψ ′
2(|∇3wm+δwm

i |2). The obtained
nonlinear system of equations then reads

0 =
∑

j∈N (i)

ψ ′m
2i + ψ ′m

2 j

2

δum
j − δum

i

h2

− ψ ′m
1i

α

(
J m

11i δum
i + J m

12i δvi + J m
13i

)
, (42)
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0 =
∑

j∈N (i)

ψ ′m
2i + ψ ′m

2 j

2

δvm
j − δvm

i

h2

− ψ ′m
1i

α

(
J m

21i δum
i + J m

22i δvi + J m
23i

)
. (43)

for i = 1,. . . ,N . Again, a fixed point iteration is applied
to remove the nonlinearity of ψ ′m

1i and ψ ′m
2i in δum

i and
δvm

i . Although iteration steps for the SOR method are
not given explicitly, they can easily be derived from
Eqs. (42) and (43). When a fixed point in ψ ′m

1i and
ψ ′m

2i is reached the original sequence f (x) is warped
to f (x + wm+1) by means of a backward registration
based on bilinear interpolation. Structure tensor entries
have also to be recomputed before the multiresolution
strategy continues on the next finer level given by m+1.

7. A Confidence Measure for Energy-Based
Methods

While global optic flow methods typically yield dense
flow fields, it is clear that the flow estimates can-

Figure 2. (a) Top left: Frame 10 of the synthetic office sequence. (b) Top right: Degraded by Gaussian noise with σn = 20. (c) Bottom left:
Ground truth optic flow field. (d) Bottom right: Computed optic flow field using the 2-D CLG method for the noisy sequence.

not have the same reliability at all locations. Local
methods, on the other hand, have natural confidence
measures that help to avoid computing flow values at
locations where there is not enough information for
a reliable estimate. It would thus be interesting to
find a confidence measure that allows to assess the
reliability of a dense optic flow field. Barron et al.
(1994) have identified the absence of such good mea-
sure as one of the main drawbacks of energy-based
global optic flow techniques: Simple heuristics such
as using |∇ f | as a confidence measure did not work
well.

In order to address this problem, we propose a mea-
sure that may be applied to any energy-based global dif-
ferential method for computing the optic flow: Since the
energy functional E penalises deviations from model
assumptions by summing up the deviations Ei from all
pixels i in the image domain, it appears natural to use
Ei for assessing the local reliability of the computa-
tion. All we have to do is to consider the cumulative
histogram of the contributions Ei with i = 1,. . . ,N .
As an approximation to the p per cent locations with
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the highest reliability, we look for the p per cent lo-
cations where the contribution Ei is lowest. There are
very efficient algorithms available for

this purpose; see e.g. (Press, 1992, Section 8.5). In
the next section we shall observe that this simple crite-
rion may work well over a large range of densities.

8. Experiments

8.1. Evaluation of the CLG Method

Figure 2 shows our first experiment. It depicts a
zoom into a synthetic office scene where diver-
gent motion is dominating. This test sequence is

Figure 3. (a) Top left: Frame 8 of the Yosemite sequence severely degraded by Gaussian noise with σn = 40. (b) Top right: Ground truth flow
field. (c) Middle left: Computed flow field for σn = 0. (d) Middle right: Ditto for σn = 10. (e) Bottom left: σn = 20. (f) Bottom right: σn = 40.

available from the web site www.cs.otago.ac.nz/
research/vision/. It has been created by Galvin
et al. (1998). We have added Gaussian noise with zero
mean and standard deviation σn = 20 to this sequence,
and we used the 2-D CLG method (i.e. with spatial
regularisation) for computing the flow field. Figure 2(d)
shows that the recovered flow field is not very sensitive
to Gaussian noise and that it coincides well with the
ground truth flow field in Fig. 2(c).

These qualitative results are confirmed by the quan-
titative evaluations in Table 1, where we compare the
average angular errors of the Lucas–Kanade, Horn–
Schunck, and the CLG method for different noise lev-
els and optimised smoothing parameters σ , ρ, and α.
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Table 1. Average angular errors computed for the office se-
quence with varying standard deviationsσn of Gaussian noise.
2-D implementations of the methods of Lucas/Kanade (LK),
Horn/Schunck (HS) and the combined local-global approach
(CLG) are compared.

σn LK HS CLG

0 5.71◦ 4.36◦ 4.32◦

10 6.79◦ 6.17◦ 5.89◦

20 8.43◦ 8.30◦ 7.75◦

40 11.47◦ 11.76◦ 10.73◦

We computed the angular error via

arccos

(
ucue + vcve + 1√

(u2
c + v2

c + 1)(u2
e + v2

e + 1)

)
(44)

where (uc, vc) denotes the correct flow, and (ue, ve) is
the estimated flow (cf. also (Barron et al., 1994)).

Table 1 shows that for small noise levels, Horn–
Schunck performs better than Lucas–Kanade. This in-
dicates that the filling-in effect of the Horn–Schunck
algorithm is very useful here. For higher noise lev-
els, Lucas–Kanade becomes somewhat more robust
than Horn–Schunck, since the former does not reduce
smoothing at noisy structures. The CLG method ap-
pears to be able to pick up the best of two worlds: It may
benefit from filling-in effects in flat regions without re-
nouncing robustness against noise. Table 1 shows that
this combined effect leads to results that may be better
than both the Lucas–Kanade and the Horn–Schunck
method.

Another example demonstrating the robustness of
the 2-D CLG method under Gaussian noise is shown
in Fig. 3. It depicts the results for the synthetic Yosemite
sequence with cloudy sky. This sequence, which is
available from ftp://csd.uwo.ca under the direc-
tory pub/vision, combines divergent motion with the
translational motion of the sky. It has been used by Bar-
ron et al. (1994) for evaluating a number of optic flow
algorithms. Also in this example we can observe that
the flow computations using the CLG method do hardly
suffer from severe degradations by Gaussian noise.

Let us now investigate the sensitivity of the CLG
method with respect to parameter variations. This
is done in Tables 2 and 3 for the Yosemite se-
quence with and without clouds. The modified vari-
ant without cloudy sky is available from the web
site http://www.cs.brown.edu/people/black/
images.html. We observe that the average angular
error does hardly deteriorate when smoothness param-

Table 2. Stability of the 2-D CLG method under variations of the
smoothing parameters. Two of the three parameters have been set
to their optimal value, while the other one may deviate from its
optimum by a factor 2. The data refer to the Yosemite sequence with
and without clouds degraded by Gaussian noise with σn = 10. AAE
= average angular error.

Yosemite with clouds Yosemite without clouds

α ρ σ AAE α ρ σ AAE

475 4.550 1.770 9.31◦ 1000 4.550 1.950 4.57◦

633 ” ,, 9.23◦ 1666 ” ,, 4.44◦

950 ” ,, 9.18◦ 2000 ” ,, 4.43◦

1425 ” ,, 9.24◦ 3000 ” ,, 4.54◦

1900 ” ,, 9.37◦ 4000 ” ,, 4.79◦

950 2.275 1.770 9.25◦ 2000 2.275 1.950 4.46◦

” 3.033 ” 9.21◦ ” 3.033 ” 4.44◦

” 4.550 ” 9.18◦ ” 4.550 ” 4.43◦

” 6.825 ” 9.24◦ ” 6.825 ” 4.49◦

” 9.100 ” 9.39◦ ” 9.100 ” 4.62◦

950 4.550 0.885 13.65◦ 2000 4.550 0.975 7.48◦

” ” 1.180 10.58◦ ” ” 1.300 5.39◦

” ” 1.770 9.18◦ ” ” 1.950 4.43◦

” ” 2.655 10.24◦ ” ” 2.975 5.60◦

” ” 3.540 12.30◦ ” ” 3.800 7.09◦

Table 3. Stability of the 2-D CLG method under variations of
the smoothing parameters. All three parameters have been set to a
deviation of factor 2 from its optimum value. The data refer to the
Yosemite sequence with and without clouds degraded by Gaussian
noise with σn = 10. AAE = average angular error.

Yosemite with clouds Yosemite without clouds

α ρ σ AAE α ρ σ AAE

475 2.275 0.885 14.72◦ 1000 2.275 0.975 8.37◦

1900 2.275 0.885 13.48◦ 4000 2.275 0.975 7.27◦

475 9.100 0.885 13.94◦ 1000 2.275 0.975 7.58◦

1900 9.100 0.885 13.49◦ 4000 2.275 0.975 7.16◦

475 2.275 3.540 11.92◦ 1000 9.100 3.800 6.48◦

1900 2.275 3.540 13.71◦ 4000 9.100 3.800 8.57◦

475 9.100 3.540 11.96◦ 1000 9.100 3.800 6.59◦

1900 9.100 3.540 13.65◦ 4000 9.100 3.800 8.64◦

eters are used that differ from their optimal setting by
as much as a factor 2. Only the noise scale σ , that is
responsible for the presmoothing of the original se-
quence, is slightly more sensitive. This observation is
in accordance with the results presented in Table 3
where in addition to the noise scale also the remaining
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Table 4. Results for the 2-D and 3-D CLG method using the Yosemite sequence with and without
cloudy sky. Gaussian noise with varying standard deviations σn was added, and the average angular
errors and their standard deviations were computed.

Yosemite with clouds Yosemite without clouds

σn 2-D CLG 3-D CLG σn 2-D CLG 3-D CLG

0 7.14◦ ± 9.28◦ 6.18◦ ± 9.19◦ 0 2.64◦ ± 2.27◦ 1.79◦ ± 2.34◦

10 9.19◦ ± 9.62◦ 7.25◦ ± 9.39◦ 10 4.45◦ ± 2.94◦ 2.53◦ ± 2.75◦

20 10.17◦ ± 10.50◦ 8.62◦ ± 9.97◦ 20 6.93◦ ± 4.31◦ 3.47◦ ± 3.37◦

40 15.82◦ ± 11.53◦ 11.21◦ ± 11.19◦ 40 11.30◦ ± 7.41◦ 5.34◦ ± 3.81◦

two smoothness parameters differ from their optimal
setting. The stability under parameter variations may
be regarded as another experimental confirmation of
the well-posedness of the CLG approach. Moreover,
this also indicates that the method performs sufficiently
robust in practice even if non-optimised default para-
meter settings are used.

In Table 4 we have studied the effect of replacing
spatial smoothing steps by spatiotemporal ones for both
Yosemite sequences. As one may expect, both the qual-
ity of the optic flow estimates and their robustness un-
der Gaussian noise improve when temporal coherence
is taken into account.

In Section 4 we have presented nonlinear variants of
our spatial and spatiotemporal CLG approaches. Our
next experiment compares these nonlinear versions to
their linear counterparts for a variety of sequences.
Generally, flow discontinuities do not cover more than
a few percent of the estimated flow field, so only mod-
erate improvements should be expected. These con-
siderations are confirmed by Table 5 where the com-
puted average angular errors are listed. A qualitative
example of such a nonlinear variant is given in Fig. 4.
The Marble sequence that was used for this purpose
can be downloaded at the following internet address:
http://i21www.ira.uk.de/image sequences. It

Table 5. Average angular error for linear and nonlinear variants of
our CLG method using various sequences.

2-D 3-D

Sequence Linear Nonlin. Linear Nonlin.

Yosemite (clouds) 7.14◦ 6.03◦ 6.18◦ 5.18◦

Yosemite (no clouds) 2.64◦ 2.31◦ 1.79◦ 1.46◦

Office 4.33◦ 4.13◦ 3.60◦ 3.24◦

Marble 5.30◦ 5.14◦ 2.06◦ 1.70◦

is easy to see that the flow discontinuities are much
better preserved using the nonlinear variant. Values for
the scaling parameters βi within the nonlinear penal-
ising functions have been optimised and are between
5 · 10−2 and 5 · 10−3 for all sequences.

Comparisons with other methods from the literature
that yield dense flow fields are shown in Tables 6 and
7. We observe that for the Yosemite variant with clouds
both the linear 2-D and the 3-D version of our method
already perform favourably compared to other tech-
niques that do not use multiscale focusing strategies.
In the case of the Yosemite sequence without clouds
nonlinear extensions are required to achieve competi-
tive results with respect to recent techniques. Since the
Yosemite sequence contains large displacements up to
5 pixels per frame, one should expect further improve-
ments if the proposed multiresolution framework is ap-
plied. This is confirmed by average angular errors of
1.04◦ and 4.17◦ for the sequence without respectively
with cloudy sky, thus outperforming all results from
the literature reported so far. A qualitative evaluation
of these numbers is given in Fig. 5, where the com-
puted flow fields by the spatial and the spatiotemporal
variant of our nonlinear multiresolution approach are
presented for both Yosemite sequences. As one can see,
the obtained flow estimates coincide very well with the
corresponding ground truths.

So far we have considered only synthetic image
sequences for our experimental evaluation. In order
to show that the proposed approach yields also
realistic optic flow estimates for real-world data,
the Ettlinger Tor traffic sequence by Nagel is used
for our last experiment. The sequence consists of
50 frames of size 512 × 512 and is available from
http://i21www.ira.uka.de/image sequences/.
In contrast to our previous experiments, where al-
ways the complete set of frames was used for our
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Figure 4. (a) Top left: Frame 10 of the Marble sequence. (b) Top right: Ground truth magnitude. (c) Bottom left: Computed flow field magnitude
using linear 2-D CLG method. (d) Bottom right: Ditto for the nonlinear 3-D CLG variant.

spatiotemporal version, this time only four frames are
considered. Thus the dislocation of motion boundaries
remains within a reasonable scope, while the algorithm
is able to benefit from the spatiotemporal denoising
property at the same time.

The computed flow fields as well as its magnitude
are shown in Fig. 6. Although interlacing artifacts are
present in all frames, the estimated flow field is very
realistic and the motion boundaries are rather sharp.
In particular, this allows its use for the purpose of im-
age segmentation. Obviously, only a simple tresholding
step would be required.

8.2. Evaluation of the Confidence Measure

Let us now evaluate the quality of our energy-based
confidence measure. To this end we have depicted in
Fig. 7(a) the 20% quantile of locations where the 3-D
CLG method has lowest contributions to the energy.

A comparison with Fig. 7(b)—which displays the re-
sult of a theoretical confidence measure that would be
optimal with respect to the average angular error—
demonstrates that the energy-based confidence method
leads to a fairly realistic thinning of flow fields. In
particular, we observe that this confidence criterion is
very successful in removing the cloudy sky regions.
These locations are well-known to create large angu-
lar errors in many optic flow methods (Barron et al.,
1994). A number of authors have thus only used the
modified Yosemite sequence without cloudy sky, or
they have neglected the flow values from the sky re-
gion for their evaluations (Bab-Hadiashar and Suter,
1998; Black and Anandan, 1996; Black and Jepson,
1996; Farnebäck, 2000, 2001; Ju et al., 1996; Karlholm,
1998; Lai and Vemuri, 1998; Szeliski and Coughlan,
1994). As we have seen one may get significantly lower
angular errors than for the full sequence with cloudy
sky.
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Table 6. Comparison between the results from the literature with 100% density and our results. All data refer to
the Yosemite sequence without cloudy sky. Multiscale means that some focusing strategy using linear scale-space or
pyramids has been applied. Spatiotemporal Information indicates the use of several frames for presmoothing and/or
derivative computation. AAE = average angular.

Spatiotemporal Spatiotemporal
Technique Multiscale information constraint AAE

Black and Anandan (1996) √ – – 4.56◦

Black (1994) √ – √ 3.52◦

Lauze et al. (2004) – – – 2.82◦

2-D CLG linear – – – 2.64◦

Szeliski and Coughlan (1994) – – √ 2.45◦

3-D CLG linear – √ √ 2.31◦

Black and Jepson (1996) √ – – 2.29◦

Ju et al. (1996) – – – 2.16◦

Bab-Hadiashar and Suter (1998) – √ – 2.05◦

2-D CLG nonlinear – – – 1.79◦

2-D CLG nonlinear multires. √ – – 1.62◦

Mémin and Pérez (2002) √ – – 1.58◦

3-D CLG nonlinear – √ √ 1.46◦

Farnebäck (2000) – √ – 1.40◦

Farnebäck (2001) – √ – 1.14◦

3-D CLG nonlinear multires. √ √ √ 1.02◦

Table 7. Comparison between the results from the literature with 100% density and our results. All data refer
to the Yosemite sequence with cloudy sky. Multiscale means that some focusing strategy using linear scale-space
or pyramids has been applied. Spatiotemporal Information indicates the use of several frames for presmoothing
and/or derivatives computation. AAE = average angular.

Spatiotemporal Spatiotemporal
Technique Multiscale information constraint AAE

Horn/Schunck, original (Barron et al., 1994) – √ – 31.69◦

Singh, step 1 (Barron et al., 1994) – – – 15.28◦

Anandan (Barron et al., 1994) – – – 13.36◦

Singh, step 2 (Barron et al., 1994) – – – 10.44◦

Nagel (Barron et al., 1994) – √ – 10.22◦

Horn/Schunck, modified (Barron et al., 1994) – √ – 9.78◦

Uras et al., unthresholded (Barron et al., 1994) – √ – 8.94◦

2-D CLG linear – – – 7.09◦

3-D CLG linear – √ √ 6.24◦

2-D CLG nonlinear – – – 6.03◦

Alvarez et al. (2000) √ – – 5.53◦

Mémin and Pérez (1998) √ – – 5.38◦

3-D CLG nonlinear – √ √ 5.18◦

2-D CLG nonlinear multires √ – – 4.86◦

Mémin and Pérez (1998) √ – – 4.69◦

3-D CLG nonlinear multires √ √ √ 4.17◦
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Figure 5. From left to right, and from top to bottom: (a) Frame 8 of the Yosemite sequence without clouds. (b) Corresponding frame of
the sequence with clouds. (c) Ground truth between frame 8 and 9 for the sequence without clouds. (d) Ditto for the sequence with clouds.
(e) Computed flow field by our 2-D CLG multiresolution approach for the sequence without clouds. (f) Ditto for the sequence with clouds.
(g) Computed flow field by our 3-D CLG multiresolution approach for the sequence without clouds. (h) Ditto for the sequence with clouds.

A quantitative evaluation of our confidence measure
is given in Table 8. Here we have used the energy-
based confidence measure to sparsify the dense flow
field such that the reduced density coincides with den-
sities of well-known optic flow methods. Most of them
have been evaluated by Barron et al. (1994). We ob-
serve that the sparsified 3-D CLG method performs
very favourably: It has a far lower angular error than
all corresponding methods with the same density. In

several cases there is an order of magnitude between
these approaches. At a flow density of 2.4%, an aver-
age angular error of 0.76◦ is reached. To our knowl-
edge, these are the best values that have been obtained
for this sequence in the entire literature. It should be
noted that these results have been computed from an
image sequence that suffers from quantisation errors
since its grey values have been stored in 8-bit precision
only.
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Figure 6. (a) Left: Computed flow field between frame 5 and 6 of the interlaced Ettlinger Tor traffic sequence by Nagel. (b) Right: Flow field
magnitude.

Figure 7. Confidence criterion for the Yosemite sequence. (a) Left: Locations with the lowest contributions to the energy (20% quantile). The
non-black grey values depict the optic flow magnitude. (b) Right: Locations where the angular error is lowest (20% quantile).

In Table 8 we also observe that the angular error
decreases monotonically under sparsification over the
entire range from 100% down to 2.4%. This in turn
indicates an interesting finding that may seem counter-
intuitive at first glance: Regions in which the filling-in
effect dominates give particularly small angular errors.
In such flat regions, the data term vanishes such that a
smoothly extended flow field may yield only a small lo-
cal contribution to the energy functional. If there were
large angular errors in regions with such low energy
contributions, our confidence measure would not work
well for low densities. This also confirms the obser-
vation that |∇ f | is not necessarily a good confidence
measure (Barron et al., 1994): Areas with large gradi-
ents may represent noise or occlusions, where reliable
flow information is difficult to obtain. The filling-in ef-
fect, however, may create more reliable information in

flat regions by averaging less reliable information that
comes from all the surrounding high-gradient regions.
The success of our confidence measure also confirms
our previous findings that it is beneficial to supple-
ment local methods with a global regulariser. A more
extensive experimental evaluation of the energy based
confidence measure is presented in Bruhn (2001).

9. Summary and Conclusions

In this paper we have analysed the smoothing effects
in local and global differential methods for optic flow
computation. As a prototype of local methods we used
the least-square fit of Lucas and Kanade (1981) and
Lucas (1984), while the Horn and Schunck approach
(Horn and Schunck, 1981) was our representative for
a global method.
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Table 8. Comparison between the “nondense” results from Barron
et al. (1994), Weber and Malik (1995), Ong and Spann (1999) and
our results for the Yosemite sequence with cloudy sky. AAE = av-
erage angular error. CLG = average angular error of the 3-D CLG
method with the same density. The sparse flow field has been created
using our energy-based confidence criterion. The table shows that us-
ing this criterion clearly outperforms all results in the evaluation of
Barron et al.

Technique Density (%) AAE (◦) CLG (◦)

Singh, step 2, λ1 ≤ 0.1 97.7 10.03 6.04

Ong/Spann 89.9 5.76 5.26

Heeger, level 0 64.2 22.82 3.00

Weber/Malik 64.2 4.31 3.00

Horn/Schunck, original, |∇ f | ≥ 5 59.6 25.33 2.72

Ong/Spann, tresholded 58.4 4.16 2.66

Heeger, combined 44.8 15.93 2.07

Lucas/Kanade, λ2 ≥ 1.0 35.1 4.28 1.71

Fleet/Jepson, τ = 2.5 34.1 4.63 1.67

Horn/Schunck, modified, |∇ f | ≥ 5 32.9 5.59 1.63

Nagel, |∇ f | ≥ 5 32.9 6.06 1.63

Fleet/Jepson, τ = 1.25 30.6 5.28 1.55

Heeger, level 1 15.2 9.87 1.15

Uras et al., det(H ) ≥ 1 14.7 7.55 1.14

Singh, step 1, λ1 ≤ 6.5 11.3 12.01 1.07

Waxman et al., σ f = 2.0 7.4 20.05 0.95

Heeger, level 2 2.4 12.93 0.76

We saw that the smoothing steps in each of these
methods serve different purposes and have different
advantages and shortcomings. As a consequence, we
proposed a combined local-global (CLG) approach
that incorporates the advantages of both paradigms:
It is highly robust under Gaussian noise while giving
dense flow fields. In order to improve the performance
of our method further we considered spatiotemporal
variants, nonlinear penalising functions that are well-
known from robust statistics and multiscale focusing
strategies that allow for an correct handling of large
image displacements. Experiments have shown that the
CLG method is not very sensitive under parameter vari-
ations. This method may serve as an example of how
one can supplement local methods with a regulariser
such that dense flow fields are obtained. As is shown in
the Appendix, it can also be extended to the embedding
of Bigün’s structure tensor method into a global energy
functional.

We have also proposed a simple confidence measure
that allows to sparsify the dense flow fields of energy-

based global methods, such that the most reliable local
estimates can easily be found. This enables fair com-
parisons of the quality of local and global approaches.
Our evaluations have shown that the proposed confi-
dence measure may give excellent results over a large
range of densities. Last but not least, its success has
triggered a surprising finding: For global energy-based
optic flow methods, flat regions in which the filling-in
effect dominates may offer particularly reliable flow
estimates. This explains the common observation that
the image gradient magnitude is not a good confidence
measure for global variational methods.

While we have already taken efforts to use efficient
numerical methods, we have certainly not reached the
end of the road yet. Therefore, we are currently investi-
gating multigrid implementations of our technique and
we are studying parallelisation possibilities on low la-
tency networks.

Appendix: Extension to the Structure
Tensor Method

The CLG approach can be extended in a straightfor-
ward way to the embedding of basically any local dif-
ferential method into a global energy functional. Let us
illustrate this general principle by focusing on another
popular local method: the structure tensor approach of
Bigün and Granlund (1988) and Bigün et al. (1991).

In Section 3.2 we have used a spatiotemporal variant
of the Lucas–Kanade technique for the temporal ex-
tension of our CLG functional. This method is closely
related to the approach of Bigün and Granlund (1988)
and Bigün et al. (1991). While Lucas and Kanade make
use of a least square fit to overcome the aperture prob-
lem, Bigün et al. follow a slightly different strategy:
They minimise the quadratic form

EBG(w̃) = w̃� Jρ(∇3 f ) w̃ (45)

where w̃ := (ũ, ṽ, r )�, and the normalisation con-
straint

w̃�w̃ = 1. (46)

has to be fulfilled. This is achieved by searching for the
eigenvector w̃ that corresponds to the smallest eigen-
value of the structure tensor Jρ(∇3 f ). Normalising its
third component to 1 yields u = ũ

r and v = ṽ
r as the

first two components.
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In order to combine the local approach of Bigün et
al. with some global differential optic flow technique,
the method can be reformulated as an unconstraint min-
imisation of the local energy

EBG(w) = w� Jρ(∇3 f ) w

|w|2 . (47)

This reformulation allows a comparison of (15) and
(47), which shows that both types of least square fits dif-
fer only by the normalisation factor 1

|w|2 . The CLG func-
tional obtained by the embedding of Bigün’s method
in the spatiotemporal variant of Horn and Schunck has
the following structure:

EC LG3−B(w)

=
∫

�×[0,T ]

(
w� Jρ(∇3 f ) w

|w|2 + α|∇3w|2
)

dx dy dt.

(48)

Its corresponding Euler–Lagrange equations are given
by

0 = �3u − 1

α(u2 + v2 + 1)2
(J11(uv2 + u)

+ J12(v3 − u2v + v) + J13(v2 − u2 + 1)

− J22uv2 − 2J23uv − J33u), (49)

0 = �3v − 1

α(u2 + v2 + 1)2
(−J11u2v

+ J12(u3 − uv2 + u) − 2J13uv + J22(u2v + v)

+ J23(u2 − v2 + 1) − J33v). (50)

These nonlinear equations are somewhat more com-
plicated than their linear Lucas–Kanade counterpart
(22)–(23).

In order to encourage discontinuity-preserving optic
flow fields, one can also introduce nonquadratic pe-
nalisers into the functional (48). This yields

EC LG3−B N (w) =
∫

�×[0,T ]

(
ψ1

(
w� Jρ(∇3 f ) w

|w|2
)

+ αψ2(|∇3w|2)

)
dx dy dt. (51)

Such a strategy may be regarded as an alternative to
the discontinuity-preserving structure tensor methods
in Brox and Weickert (2002) and Nagel and Gehrke
(1998). It gives dense flow fields without additional
postprocessing steps.
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Notes

1. A problem is called well-posed in the sense of Hadamard, if it has
a unique solution that depends continuously on the data. If one of
these conditions is violated, it is called ill-posed.

2. The taxi sequence is available from ftp://csd.uwo.ca under the
directory pub/vision
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2003. Real-time optic flow computation with variational methods.
In Computer Analysis of Images and Patterns, N. Petkov and M.A.
Westberg (Eds.), vol. 2756 of Lecture Notes in Computer Science,
Springer: Berlin, pp. 222–229.

Bruhn, A., Weickert, J., and Schnörr, C. 2002. Combining the advan-
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du tenseur de structure: Synthèse et contribution. In Proc. 14th
French Conference on Pattern Recognition and Artificial Intelli-
gence, Toulouse, France.

Lucas, B. and Kanade, T. 1981. An iterative image registration tech-
nique with an application to stereo vision. In Proc. Seventh Inter-
national Joint Conference on Artificial Intelligence, Vancouver,
Canada, pp. 674–679.

Lucas, B.D. 1984. Generalized image matching by the method of
differences. PhD thesis, School of Computer Science, Carnegie–
Mellon University, Pittsburgh, PA.
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Errata for the paper
Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods

On page 217, last column:The Euler–Lagrange equations of the energy functional (25) are given by

0 = div
(
ψ′2

(
|∇3w|2

)
∇3u

)
− 1

α ψ
′
1

(
w>Jρ(∇3f)w

)
(J11 u+ J12 v + J13) , (27)

0 = div
(
ψ′2

(
|∇3w|2

)
∇3v

)
− 1

α ψ
′
1

(
w>Jρ(∇3f)w

) (
J21 u + J22 v + J23

)
. (28)

with

ψ′i(s
2) =

1√
1 + s2

β2
i

, i ∈ 1, 2 (29)

One should note that for large values ofβi the nonlinear case comes down to the linear one since
ψ′i(s

2) ≈ 1.

On page 218, first column: If we denote the structure tensor of the corrected sequence byJm
ρ =

Jρ(∇3f(x + wm)), the corresponding Euler–Lagrange equations are given by

0 = div
(
ψ′2

(
|∇3(wm + δwm)|2

)
∇3δu

m
)

− 1
α ψ

′
1

(
δwm>Jm

ρ δw
)

(Jm
11 δu+ Jm

12 δv + Jm
13) , (30)

0 = div
(
ψ′2

(
|∇3(wm + δwm)|2

)
∇3δv

m
)

− 1
α ψ

′
1

(
δwm>Jm

ρ δw
) (
Jm

21 δu + Jm
22 δv + Jm

23

)
. (31)

On page 219, last column:In the case of the multiresolution framework the proceeding is similar. In
order to discretise the Euler-Lagrange equations (30)-(31) at levelm we defineψ1 andψ2 at some pixel

i by ψ′m1i := ψ′1

(
δwm>

i J
m
ρi δwm

i

)
respectivelyψ′m2i := ψ′2

(
|∇3 ( wm

i + δwm
i ) |2

)
. The obtained

nonlinear system of equations then reads

0 =
∑

j∈N (i)

ψ′m2i + ψ′m2j

2

um
j + δum

j − um
i − δum

i

h2
− ψ′m1i

α
(Jm

11i δu
m
i + Jm

12i δvi + Jm
13i) , (42)

0 =
∑

j∈N (i)

ψ′m2i + ψ′m2j

2

vm
j + δvm

j − vm
i − δvm

i

h2
− ψ′m1i

α
(Jm

21i δu
m
i + Jm

22i δvi + Jm
23i) . (43)

for i = 1,...,N . Again, a fixed point iteration is applied to remove the nonlinearity ofψ′m1i andψ′m2i in δum
i

andδvm
i . Although iteration steps for the SOR method are not given explicitly, they can easily be derived

from equations (42) and (43). When a fixed point inψ′m1i andψ′m2i is reached the original sequencef(x)
is warped tof(x+wm+1) by means of a backward registration based on bilinear interpolation. Structure
tensor entries have also to be recomputed before the multiresolution strategy continues on the next finer
level given bym+ 1.




