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Abstract

Although variational methods are among the most ac-
curate techniques for estimating the optical flow, they have
not yet entered the field of real-time vision. Main reason is
the great popularity of standard numerical schemes that are
easy to implement, however, at the expense of being too slow
for real-time performance. In our paper we address this
problem in two ways: (i) We present an improved version of
the highly accurate technique of Brox et al. [9]. Thereby
we show that a separate robustification of the constancy
assumptions is very useful, in particular if the 1-norm is
used as penalizer. As a result, a method is obtained that
yields the lowest angular errors in the literature. (ii) We
develop an efficient numerical scheme for the proposed ap-
proach that allows real-time performance for sequences of
size 160 × 120. To this end, we combine two hierarchical
strategies: A coarse-to-fine warping strategy as implemen-
tation of a fixed point iteration for a non-convex optimisa-
tion problem and a nonlinear full multigrid method – a so
called full approximation scheme (FAS) – for solving the
highly nonlinear equation systems at each warping level. In
the experimental section the advantage of the proposed ap-
proach becomes obvious: Outperforming standard numeri-
cal schemes by two orders of magnitude frame rates of six
high quality flow fields per second are obtained on a 3.06
GHz Pentium4 PC.

1 Introduction

Allowing a mathematically sound integration of different
concepts into a single minimisation framework, variational
methods belong to the best performing and best understood
methods for computing the optical flow. In particular, their
ability to estimate optical flow at those locations where im-
age information is not available makes them very attractive.
They can be designed in such a way that they preserve mo-

tion boundaries [9, 22, 23, 25, 29], treat large displacements
correctly [1, 2, 4, 9, 22], are robust with respect to illumi-
nation changes [9] or perform favorably in the presence of
noise and occlusions [4, 5, 9]. But only if several of these
concepts are combined within a single energy functional,
methods are obtained that allow for a highly accurate and
dense estimation of the results and thus show the true po-
tential of variational techniques [5, 9, 22].

However, there is a also a prize to pay when using vari-
ational methods: The regularizer, that yields the desired
filling-in-effect at locations without image information, also
leads to a coupling of neighboring pixels in the optimiza-
tion problem. This in turn requires a joint optimization of
all pixels by solving one or more large systems of equa-
tions. Often standard iterative numerical schemes such as
the Gauß-Seidel method are applied for this purpose: While
they are easy to implement, they require thousands of iter-
ations to reach the desired numerical accuracy. Unfortu-
nately, people inferred from this fact that variational meth-
ods are too slow for real-time performance.

From a numerical viewpoint, however, such basic itera-
tive solvers are not the end of the road: Very promising, in
particular in the context of variational methods, are so called
bidirectional multigrid schemes [7, 8, 20, 27, 30]. They
overcome limitations of iterative solvers by creating a so-
phisticated hierarchy of equation system with excellent er-
ror reduction properties. During the last years such methods
became more and more popular and have been used for var-
ious tasks such as photometric stereo [21], variational de-
convolution [13] or image restoration [17]. Also in the field
of optical flow estimation such methods have been applied
more frequently [6, 19, 16, 18, 26]. Recently, even first real-
time implementations have been presented, that, however,
were limited to basic variational methods only [10, 11].

In our paper we combine both the excellent quality of re-
cent variational methods and the speed of numerical multi-
grid strategies. To this end, we present an improved version



of the approach of Brox et al. [9] and develop a highly
efficient numerical scheme for its optimization. While the
model allows the computation of the lowest angular errors
in the literature, the implementation allows the estimation
of more than six of these high quality flow field per second
on standard PCs if sequences of size 160 × 120 are used.

Our paper is organized as follows. In Section 2 we give
a short review on the method of Brox et al. and improve it
by a separate robustification of the data terms. A suitable
optimization strategy for the obtained energy functional is
presented in Section 3. Section 4 describes discretization
aspects, the choice of a basic iterative solver and the devel-
opment of a highly efficient multigrid method. Qualitative
experiments and performance benchmarks are presented in
Section 5 while a summary concludes this paper.

2 The Variation Model

In this section we derive our variational model for the
real-time approach. Since its formulation is essentially
based on the method of Brox et al. [9] let us start be giving
a short review on this technique.

2.1 The Approach of Brox et al.

Let I(x) be a presmoothed image sequence with x :=
(x, y, t)� where (x, y) denotes the location within a rectan-
gular domain Ω and t ≥ 0 denotes time. Furthermore let
u = (u, v, 1)� be the wanted displacement field between
two frames of that sequence at time t and time t + 1. Then,
the 2-D variant of the algorithm of Brox et al. computes the
optical flow as minimizer of the energy functional

E(u) = ED(u) + β ES(u) (1)

where the data term is given by

ED(u) =
∫

Ω

ψD

(
|I(x + u) − I(x)|2 (2)

+α |∇I(x + u) −∇I(x)|2
)

dx

and the smoothness term reads

ES(u) =
∫

Ω

ψS

(|∇u|2 + |∇v|2)) dx. (3)

Here α and β are non-negative weights. While the first part
of the data term models the assumption that the grey value
of objects does not change over time, the second one ren-
ders the approach more robust against varying illumination.
This is achieved by assuming constancy of the spatial im-
age gradient ∇I = (Ix, Iy)�. In order to allow for a cor-
rect estimation of large displacements, the linearization of
both assumptions is postponed to the optimization and the

numerical scheme. Moreover, a non-quadratic penalizer ψ
is applied to both the data and the smoothness term. While
such a robust function in the data term increases the per-
formance with respect to outliers, a non-quadratic penalizer
in the smoothness term models the assumption of a piece-
wise smooth flow field. In both cases a regularized ver-
sion of the total variation (TV) [24, 15] is used that is given
by ψ(s2) =

√
s2 + ε2. The regularization parameter ε is

thereby set to 10−3.

2.2 Separate Robustification

Instead of applying a single robust function to the whole
data term we propose a splitting such that deviations from
the grey value and the gradient constancy assumption are
penalized separately. Thus, the original energy functional
in (1) becomes

E(u) = ED1 (u) + α ED2(u) + β ES(u) (4)

with the new data terms

ED1(u) =
∫

Ω

ψD

(
|I(x + u) − I(x)|2

)
dx, (5)

ED2(u) =
∫

Ω

ψD

(
|∇I(x + u) −∇I(x)|2

)
dx. (6)

This modification has the following advantage when us-
ing the total variation as robust function: Let s1 and s2

be two constraints. Then, instead of
√

s2
1 + αs2

2 we ob-
tain |s1| + α∗|s2| =

√
s2
1 + 2α∗|s1||s2| + α2∗ s2

2. Setting
α∗ =

√
α one can easily verify that the proposed variant

does only penalize such cases more severely where both as-
sumptions are not fulfilled, i.e. |s1| �= 0 and |s2| �= 0. As
a consequence, those solutions are favored by the new ap-
proach where at least one of the data terms holds.

2.3 The Euler-Lagrange Equations

Let us now derive the Euler-Lagrange equations that are
necessary conditions for the minimizer of the proposed en-
ergy functional. Following the calculus of variations and
using abbreviations of type I∗ := ∂∗I (x + u) for spatial
derivatives and I∗z := I∗ (x + u)−I∗ (x) for temporal dif-
ferences, we obtain

Ψ′
D1

(
I2
z

) · IzIx (7)

+ α Ψ′
D2

(
I2
xz + I2

yz

) · (IxzIxx + IyzIyx)

− β div
(
Ψ′

S

(‖∇u‖2 + ‖∇v‖2
)∇u

)
= 0,

Ψ′
D1

(
I2
z

) · IzIy (8)

+ α Ψ′
D2

(
I2
xz + I2

yz

) · (IxzIxy + IyzIyy)

− β div
(
Ψ′

S

(‖∇u‖2 + ‖∇v‖2
)∇v

)
= 0

with reflecting Neumann boundary conditions.



3 The Optimization

In this section, we discuss a suitable optimization proce-
dure for our energy functional. In accordance with [9] we
propose a fixed point iteration of the form

Ψ′
D1

((
I2
z

)k+1
)
· Ik+1

z Ik
x (9)

+ α Ψ′
D2

((
I2
xz

)k+1
+

(
I2
yz

)k+1
)
· (Ik+1

xz Ik
xx + Ik+1

yz Ik
yx

)
− β div

(
Ψ′

S

(‖∇uk+1‖2 + ‖∇vk+1‖2
)∇uk+1

)
= 0,

Ψ′
D1

((
I2
z

)k+1
)
· Ik+1

z Ik
y (10)

+ α Ψ′
D2

((
I2
xz

)k+1
+

(
I2
yz

)k+1
)
· (Ik+1

xz Ik
xy + Ik+1

yz Ik
yy

)
− β div

(
Ψ′

S

(‖∇uk+1‖2 + ‖∇vk+1‖2
)∇vk+1

)
= 0

which is semi-implicit in the data and fully implicit in the
smoothness term. Compared to an explicit scheme this of-
fers a faster convergence and a better stability.

3.1 Incremental Computation

In a next step we perform those linearization that have
been intentionally postponed from the modeling phase to
the optimization. To this end, we split the unknown itera-
tion variable uk+1 into the known variable uk and an un-
known increment duk =

(
duk, dvk, 0

)�
. This allows us

to perform a Taylor expansion and linearize the temporal
differences Ik=1

∗z via

Ik+1
∗z = I∗

(
x + uk+1

) − I∗ (x)

≈ I∗
(
x + uk

)
+ Ik

∗xduk + Ik
∗ydvk − I∗ (x)

= Ik
∗xduk + Ik

∗ydvk + Ik
∗z .

Moreover, we simplify our notation by introducing the vec-
tor I∇ := (Ix, Iy, Iz)� and defining the symmetric tensors
S := I∇I∇� and T := I∇xI∇x

� + I∇yI∇y
� that are

positive semi-definite by construction. Then, the partly lin-
earized fixed point iteration can be rewritten as

Ψ′k
D1

· (Sk
11duk + Sk

12dvk + Sk
13

)
(11)

+ αΨ′k
D2

· (T k
11duk + T k

12dvk + T k
13

)
− β div

(
Ψ′k

S ∇ (
uk + dvk

))
= 0,

Ψ′k
D1

· (Sk
12duk + Sk

22dvk + Sk
23

)
(12)

αΨ′k
D2

· (T k
12duk + T k

22dvk + Sk
23

)
− β div

(
Ψ′k

S ∇ (
uk + dvk

))
= 0

with the nonlinear abbreviations

Ψ′k
D1

:= Ψ′
((

duk, dvk, 1
)�

Sk
(
duk, dvk, 1

))
,

Ψ′k
D2

:= Ψ′
((

duk, dvk, 1
)�

T k
(
duk, dvk, 1

))
,

Ψ′k
S := Ψ′ (‖∇ (

uk + duk
) ‖2 + ‖∇ (

vk + dvk
) ‖2

)
.

3.2 Coarse-to-Fine Warping

Since the underlying energy functional is non-convex,
this fixed point iteration should be embedded in a multires-
olution framework in order to avoid local minima. Such a
proceeding yields the well-known warping technique: Start-
ing from a coarse version, the original problem is succes-
sively refined while being compensated by the already com-
puted motion at the same time. The motion increment that
remains to be solved at each level is the solution of the non-
linear equation system (11)-(12) with respect to duk and
dvk. Note that this problem, however, is convex due to the
usage of a convex penalizer such as regularized TV in both
data and smoothness term.

4 The Numerical Scheme

In our numerical section, we derive a highly efficient
nonlinear solver for the aforementioned nonlinear system
of equations (11)-(12). This is done in three steps: First,
we propose a suitable discretization. Then, we select a non-
hierachical nonlinear method that serves as basic solver for
our multigrid approach. And finally, we develop such a
multigrid approach - a full approximation scheme (FAS)[7].

4.1 Discretization

Let us now discuss how the nonlinear equation system
for the motion increment at each resolution level k can be
discretized appropriately. To this end, we consider the un-
known functions duk(x) and dvk(x) on a rectangular pixel
grid with grid size hk

x × hk
y . Furthermore, we introduce

a consecutive numbering of all pixels from i = 1,...,Nk,
where Nk is the total number of pixels at level k. Then, the
approximation to duk at some pixel i is given by duk

i .
While spatial derivatives of the original and the warped

image data are computed with the fourth order approxima-
tion (1,−8, 0, 8,−1)/(12hk

l ), l ∈ {x, y}, temporal deriva-
tives are calculated with a simple two point stencil. Expres-
sions of type I

(
x + uk

)
that are required for the compu-

tation of the tensors S and T are obtained by a backward
registration approach based on linear interpolation. The
resulting tensor components (n, m) at pixel i are denoted
by Snmi and Tnmi. Finally, we define by Nl(i) the set
of neighbors of pixel i in direction of dimension l. Then,
a finite difference approximation of the nonlinear equation
system for the motion increment at level k is given by

0 = Ψ′k
D1i

(
Sk

11i duk
i + Sk

12i dvk
i + Sk

13i

)
(13)

+ αΨ′k
D2i

(
T k

11i duk
i + T k

12i dvk
i + T k

13i

)
− β

∑
l=x,y

∑
j∈Nl(i)

Ψ′k
Si+Ψ′k

Sj

2
uk

j +duk
j −uk

i −duk
i

(hk
l )2

,



0 = Ψ′k
D1i

(
Sk

12i duk
i + Sk

22i dvk
i + Sk

23i

)
(14)

+ αΨ′k
D2i

(
T k

12i duk
i + T k

22i dvk
i + T k

23i

)
− β

∑
l=x,y

∑
j∈Nl(i)

Ψ′k
Si+Ψ′k

Sj

2
vk

j +dvk
j −vk

i −dvk
i

(hk
l )2

for i = 1, ..., Nk. One should note that all nonlinearities
within this sparse system of equations are hidden in the ex-
pressions Ψ′k

D1
, Ψ′k

D2
and Ψ′k

S which depend on duk
i and

dvk
i .

4.2 The Point Coupled Gauß–Seidel Method

Since the pixels duk
i and dvk

i are point coupled explicitly
in the data term and implicitly in both the smoothness and
the data term – as argument of the nonlinear expressions Ψ′k

– a solver is desirable that reflects this property. Therefore
we propose the usage of a Gauß-Seidel solver with coupled
point relaxation (CPR) and frozen coefficients [17]. This
amounts to setting the nonlinear expressions fixed and per-
forming one Gauß-Seidel relaxation step where duk

i and
dvk

i are computed simultaneously. It requires the solution
of a linear 2 × 2 equation system for each pixel i given by

(
duk,n+1

dvk,n+1

)
=

(
Mk,n

11 Mk,n
12

Mk,n
12 Mk,n

22

)−1 (
ruk,n

rvk,n

)
(15)

with matrix entries

Mk,n
11 = Ψ′k,n

D1iS
k,n
11i + αΨ′k,n

D2iT
k,n
11i (16)

+ β
∑

l=x,y

∑
j∈Nl(i)

Ψ′k,n
Si +Ψ′k,n

Sj

2(hk
l )2

Mk,n
22 = Ψ′k,n

D1iS
k,n
22i + αΨ′k,n

D2iT
k,n
22i (17)

+ β
∑

l=x,y

∑
j∈Nl(i)

Ψ′k,n
Si +Ψ′k,n

Sj

2(hk
l )2

Mk,n
12 = Ψ′k,n

D1iS
k,n
12i + αΨ′k,n

D2iT
k,n
12i (18)

and right hand side

ruk,n = −Ψ′k,n
D1iS

k,n
13i − αΨ′k,n

D2iT
k,n
13i (19)

+ β
∑

l=x,y

∑
j∈N−

l (i)

Ψ′k,n
Si +Ψ′k,n

Sj

2
uk

j +duk,n+1
j −uk

i

(hk
l )2

+ β
∑

l=x,y

∑
j∈N+

l (i)

Ψ′k,n
Si +Ψ′k,n

Sj

2
uk

j +duk,n
j −uk

i

(hk
l )2

rvk,n = −Ψ′k,n
D1iS

k,n
23i − αΨ′k,n

D2iT
k,n
23i (20)

+ β
∑

l=x,y

∑
j∈N−

l (i)

Ψ′k,n
Si +Ψ′k,n

Sj

2
vk

j +dvk,n+1
j −vk

i

(hk
l )2

+ β
∑

l=x,y

∑
j∈N+

l (i)

Ψ′k,n
Si +Ψ′k,n

Sj

2
vk

j +dvk,n
j −vk

i

(hk
l )2

where n is the iteration index of the point coupled Gauß-
Seidel solver. Moreover, N−

l (i) := {j ∈ Nl(i) | j < i}
denotes the set of already processed pixels, while N+

l (i) :=
{j ∈ Nl(i) | j > i} stands for the set of pixels that have
yet to be processed.

Instead of using a linear solver with frozen coefficients
one may also think of solving the nonlinear 2 ×2 system by
means of a point coupled Newton-Gauß-Seidel method [8].
However, experiments have shown that such a proceeding is
much more expensive in terms of computational costs and
thus not efficient enough for our purpose.

4.3 An Efficient Multigrid Algorithm

Common iterative solvers such as the presented point
coupled Gauß-Seidel solver have one decisive drawback:
Since only locally neighboring pixels are coupled in the re-
laxation scheme, it may take several thousand iterations to
spread information over large distances. As a consequence,
only high frequencies (local wavelength) of the error are re-
duced, while low frequencies (global wavelength) remain
almost undamped. This leads to a convergence rate that is
typically very fast at the beginning, but slows down signifi-
cantly already after a few iterations.

In order to overcome this problem bidirectional multi-
grid methods [7, 8, 20, 27, 30] make use of coarser levels
where they obtain useful correction steps. How this works
exactly is now described in detail by the example of a non-
linear 2-grid cycle which forms the basic entity of our im-
plementation.

4.3.1 The Basic Nonlinear 2-Grid Cylce (FAS)

Let us start by reformulating the nonlinear system (13)–(14)
as

Ah(xh) = fh, (21)

where h = (hk
x, hk

y)� is the grid size, Ah(xh) is a
nonlinear operator, xh denotes the concatenated vector
((duh)�, (dvh)�)� and fh := ((fh

1 )�, (fh
2 )�)� stands for

the right hand side. Then, the FAS [7] strategy works as
follows:

I. We perform a presmoothing relaxation step. By applying
our basic solver (point coupled Gauß-Seidel) several times
we reduce all high frequency components in the error.



II. Since this only gives us an approximation x̃h of the solu-
tion xh, it would be helpful to know the error eh = xh−x̃h

in order to correct our approximation. Unfortunately, only
the residual fh − Ah(x̃h) = rh can be computed directly.
However, the following (implicit) relation holds:

Ah(x̃h + eh) − Ah(x̃h) = fh − Ah(x̃h) = rh. (22)

The basic idea of multigrid methods is now to transfer
this residual equation system to a coarser grid (restriction),
where it becomes

AH( x̃H + eH︸ ︷︷ ︸
xH

) = rH + AH(x̃H)︸ ︷︷ ︸
fH

. (23)

with coarse grid size Hk
x × Hk

y , xH := ((xH
1 )�, (xH

2 )�)�

and fH := ((fH
1 )�, (fH

2 )�)�. Such a proceeding has three
advantages: Since high frequencies of the error have already
been removed during the presmoothing relaxation step a
transfer of the residual equation system is less problem-
atic. Moreover, high frequencies reappear as higher ones
on coarser grid, so that they can efficiently be attenuated by
our basic solver. And finally, solving a system of equations
on a coarser grid reduces the computational costs.

III. After we have solved the nonlinear residual equation
system on the coarse grid, we subtract x̃H from the solu-
tion xH in order to obtain eH. Its transfer to the fine grid
(prolongation) allows us to perform the desired correction
step.

IV. Finally we perform a postsmoothing relaxation step with
our basic iterative solver. Thus high error frequencies are
removed that have been introduced by the interpolation of
the coarse grid result.

4.3.2 Advanced Multigrid Strategies

Instead of solving the coarse grid equation system directly
one may think of using a third, even coarser grid that pro-
vides a correction step for the second one. Such a hierarchi-
cal application of the basic 2-grid cycle is called V–cycle.
Visiting each coarse grid twice per level yields the so called
W–cycle, which offers better convergence rates at the ex-
pense of slightly increased computational costs. In Figure 1
examples of such V– and W–cycles are shown.
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Figure 1. Grid transfers during V– and W–
Cycles for two, three and four levels.

4.3.3 Implementation Details

In our implementation we have used one W-cycle as solver
at each warping level. Thereby, the number of pre- and
prostmoothing iterations was set to 5 each. The transfer
between the different grids was realized by non-dyadic ver-
sions of averaging and constant interpolation as proposed in
[10] while for the construction of the nonlinear coarse grid
operators a discretization coarse grid approximation (DCA)
[8] approach was used. In this context, one should note that
it is important to restrict the tensors S and T in such a way
that their positive semi-definiteness is preserved. Then, the
point coupled Gauß-Seidel method can still be applied (the
data term provides uniqueness of the solution at each level).

5 Results

Let us start by evaluating the qualitative performance of
the proposed approach. To this end, we used the Yosemite
sequence with clouds by Lynn Quam and computed the
average angular error [3] for our model with α = 16.5,
β = 160, εD = 10−1 and εS = 10−3. This synthetic
benchmark is one of the most popular benchmarks, since
it combines divergent and translational motion, has a large
motion discontinuity and non-constant illumination in the
sky region. In Table 1 our results are compared to the best
results from the literature. As one can see, our approach per-
forms favourably: With an average angular error of 1.72◦

and 2.42◦, it outperforms all other techniques including the
original method of Brox et al. [9]. In this context one

Figure 2. Top Row: Frame 8 and 9 of the
Yosemite sequence with clouds (312 x 256).
Bottom Row: Ground truth and our result.
Average angular error: 2.42 degrees. Com-
puting time: 1089 milliseconds.



Table 1. Comparison to results from the liter-
ature with 100 % density. AAE = average an-
gular error. STD = standard deviation. 2D/3D
= spatial/spatio-temporal smoothness.

Yosemite with clouds

Technique AAE STD
Horn–Schunck, mod. [3] 9.78◦ 16.19◦

Uras et al. [3] 8.94◦ 15.61◦

Alvarez et al. [1] 5.53◦ 7.40◦

Mémin–Pérez [22] 4.69◦ 6.89◦

Bruhn et al. [12] 4.17◦ 7.72◦

Brox et al. (2D) 2.46◦ 7.31◦

Our method (2D) 2.42◦ 6.70◦

Brox et al. (3D) 1.94◦ 6.02◦

Our method (3D) 1.72◦ 6.88◦

should note that the 3-D version of our approach is not real-
time capable due to its blockwise computation of the flow
fields. However, the corresponding result is still listed in
order to show the full potential of the improved model.

In order to get a visual impression of the quality of the es-
timation we have compared the magnitude of the computed
flow field and the ground truth in Figure 2. Evidently, the
computed result matches the ground truth very well. The
discontinuity at the horizon is preserved and the sky region
is estimated correctly, as well. This confirms our observa-
tions of a small angular error.

After we have evaluated the quality of our method, let us
investigate the efficiency of the proposed numerical scheme.
To this end we have run our implementation (with the same
parameters as before) on a standard desktop PC with 3.06
GHz Pentium4 CPU and compared it to its basic solver
as well an optimized variant of a Quasi-Newton scheme
[9, 14, 28]. As test sequence served a downsampled variant
of the Rheinhafen sequence by Nagel of size 160 × 120.
This and other challenging traffic sequence are available at
http://i21www.ira.uka.de/image sequences

Figure 3. Frame 1130 of the Rheinhafen se-
quence (resized to 160 x 120) and our result.
Computing time: 150 milliseconds.

Table 2. Performance benchmark on a stan-
dard desktop PC with 3.06 GHz Pentium 4
CPU. Run times refer to the computation of
a single flow field of size 160 x 120.

Solver Iter. FPS [s−1] Speedup
Gauß–Seidel (CPR) 4320 0.037 1
Quasi-Newton + SOR 19 / 5 2.375 64
FAS-W(5,5) 1 6.651 180

All solvers were stopped at exactly that relative error
erel := ‖e‖2/‖x‖2 that was achieved by our multigrid
implementation. In this context one should note that this
error refers to the final result which is the outcome of
sequence of nonlinear equation systems: Thus, errors
on coarser warping levels influence the result on a finer
warping level such that errors propagate.

The obtained speedups are presented in Table 2. As on
can see, the proposed approach outperforms the other meth-
ods by far. With a speedup factor of 180 it is even more than
two orders of magnitude faster than its basic solver. More-
over, it achieves real-time performance of an unseen quality
with more than 6 dense flow fields per second.

The corresponding flow field is shown in Figure 3. One
can see that the result looks very realistic. While the van
in the foreground moves faster, the cars in the background
move slower. Moreover, the boundaries of the objects are
rather sharp. One should keep in mind that the computation
of such a high quality flow field took only 150 milliseconds.

6 Summary and Conclusions

In this paper we have shown that state-of-the-art accu-
racy and real-time performance in optical flow computation
are not contradictive. Our contributions are twofold: Firstly,
we have demonstrated that a modification of the approach
of Brox et al. [9] which uses a separate instead of a joint ro-
bustification yields a model that computes the currently best
angular errors in the literature. Secondly, and more impor-
tantly, we have focused on deriving a highly efficient multi-
grid algorithm for this method. It is based on a coarse-to-
fine warping strategy combined with a full approximation
scheme (FAS) as numerical solver for the resulting nonlin-
ear systems of equations. Benchmarks have shown that this
multigrid algorithm is more than two orders of magnitude
more efficient than a basic iterative solver of Gauß-Seidel
type. As a consequnce, the computation of six dense high
quality flow fields per second became possible on standard
PCs for sequences of size 160 × 120.

We hope that our work contributes to render variational
optical flow techniques more attractive for time-critical ap-
plications such as robot navigation or driver assistance sys-



tems. Then, these methods can show their true potential in
a new and challenging environment.
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