
Designing 3-D Nonlinear Diffusion Filters
for High Performance Cluster Computing

Andrés Bruhn1, Tobias Jakob2, Markus Fischer2, Timo Kohlberger3,
Joachim Weickert1, Ulrich Brüning2, and Christoph Schnörr3

1 Mathematical Image Analysis Group,
Faculty of Mathematics and Computer Science,

Building 27.1, Saarland University, 66041 Saarbrücken, Germany,
{bruhn,weickert}@mia.uni-saarland.de

2 Computer Architecture Group,
Department of Mathematics and Computer Science,
University of Mannheim, 68131 Mannheim, Germany,

{ulrich,mfischer,tjakob}@mufasa.informatik.uni-mannheim.de
3 Computer Vision, Graphics, and Pattern Recognition Group,

Department of Mathematics and Computer Science,
University of Mannheim, 68131 Mannheim, Germany,

{schnoerr,tkohlber}@uni-mannheim.de

Abstract. This paper deals with parallelization and implementation
aspects of PDE based image processing models for large cluster environ-
ments with distributed memory. As an example we focus on nonlinear
isotropic diffusion filtering which we discretize by means of an addi-
tive operator splitting (AOS). We start by decomposing the algorithm
into small modules that shall be parallelized separately. For this pur-
pose image partitioning strategies are discussed and their impact on the
communication pattern and volume is analyzed. Based on the results we
develop an algorithmic implementation with excellent scaling properties
on massively connected low latency networks. Test runs on a high–end
Myrinet cluster yield almost linear speedup factors up to 209 for 256
processors. This results in typical denoising times of 0.5 seconds for five
iterations on a 256× 256× 128 data cube.

Keywords: diffusion filtering, additive operator splitting, cluster com-
puting.

1 Introduction

In the last decade PDE based models have become very popular in the fields of
image processing and computer vision. The efforts in this paper focus on non-
linear isotropic diffusion models that allow to denoise images while preserving
edges. This property makes them useful for restauration and segmentation pur-
poses. Nonlinear diffusion models were first introduced by a work of Perona and
Malik [5]. After some years their original model was improved by Catté et al.
[1] from both a theoretical and practical viewpoint, and anisotropic extensions

L. Van Gool (Ed.): DAGM 2002, LNCS 2449, pp. 290–297, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

3-D Nonlinear Diffusion Filters for High Performance Cluster Computing 291

with a diffusion tensor [7] followed. Efficient realizations include, among others,
adaptive finite volume schemes [3], linearizations using auxiliary variables [2]
or approximations in graphics hardware [6]. The use of fast additive operator
splitting schemes [8] has triggered first parallel implementations for diffusion fil-
tering [9]. These approaches have been generally restricted to systems based on
shared memory. In recent years a rapid progress in this sector changed this sit-
uation completely. High performance cluster systems with massively connected
low latency networks were built throughout the world. There are two reasons for
this development: First cluster systems are much more attractive to customers,
since they are less expensive. This increases their availability for research pur-
poses. Moreover the number of processors is not limited by such severe hardware
restrictions than in the case of shared memory systems, thus allowing larger
scaling possibilities. In order to exploit this potential, parallelization approaches
must fit the underlying network topology. This motivated us to show that a 3-D
isotropic nonlinear diffusion process can be parallelized in such way, that it owns
excellent scaling properties regarding both computation and communication on
a distributed memory system.

The paper is organized as follows. In Section 2 a review on diffusion filtering
and the AOS scheme is given. Furthermore a modular decomposition before
parallelization is shown. In Section 3 partitioning and communication models are
discussed. Relevant parallelization and implementation details of our approach
are explained in Section 4. In Section 5 obtained results on a high performance
cluster are presented. The summary in Section 6 concludes this paper.

2 Nonlinear Isotropic Diffusion Using AOS

In the following we give a very short review of the nonlinear diffusion model of
Catté et al. [1]. A grey value image f is considered as a function from a given
domain Ω1 ⊂ R

m into Ω2 ⊂ R. In our case we have m ∈ {2, 3}, what corresponds
to 2-D and 3-D images. The basic nonlinear diffusion problem then reads:

Find a function u(x, t): Ω1 × R
+
0 → Ω2 that solves the diffusion equation

∂tu = div
(
g(|∇uσ|2)∇u

)
on Ω1 × R

+
0 (1)

with f as initial value,
u(x, 0) = f(x) on Ω1 (2)

and reflecting boundary conditions:

∂nu = 0 on ∂Ω1 × R
+
0 . (3)

where σ is the standard deviation of the Gaussian kernel that is applied prior to
differentiation, n is a normal vector perpendicular to ∂Ω1, and the diffusivity g
is a nonnegative decreasing function with g ∈ C∞[0,∞). The solution u(x, t) is a
family of images over t, where the time t acts as a scale parameter. An example
illustrating the performance of this diffusion filter is given in Figure 2.

292 A. Bruhn et al.

Nonlinear diffusion filters require numerical approximations. In [8] a finite
difference scheme based on an additive operator splitting (AOS) technique [4]
is used for this purpose. This AOS technique is the basis for our parallelization
efforts. It is an extension on the semi-implicit scheme for nonlinear diffusion
filtering and can be described as

uk+1 =
1
m

m∑
l=1

(I − mτAl(uk
σ))

−1uk (4)

where uk is a vector with the grey values at all pixels as components. The
iteration index k refers to the diffusion time t = kτ where τ is the time step
size. The tridiagonal matrix Al is a discretization of the divergence expression
along the l-th coordinate axis. Therefore, in each iteration step, the AOS method
requires the solution of m tridiagonal linear systems of equations. Each system
describes diffusion along one coordinate direction. It may even be decomposed
into smaller tridiagonal systems. The final result at the next time level is obtained
by averaging these 1-D diffusion results.

Typical AOS schemes are one order of magnitude more efficient than simple
diffusion algorithms. Although they are stable for all time step sizes τ one usually
limits the step size for accuracy reasons. Hence, the scheme is applied in an
iterative way in order to reach some interesting stopping time.

2.1 Algorithmic Decomposition

The following algorithmic steps can easily be derived from the iteration instruc-
tion for the AOS Scheme (4).

1. Presmoothing of the image uk
σ = Kσ ∗ uk

2. Computation of the derivatives |∇uk
σ|2 and the diffusivities g(|∇uk

σ|2).
3. Resolution of the tridiagonal systems (I − mτAl(uk

σ))uk+1
l = uk

Averaging the results : uk+1 = 1
m

m∑
l=1

uk+1
l

3 Parallelization Models

The following parallelization models are based on image partitioning. This allows
parallel execution of fast sequential algorithms instead of applying slower parallel
variants to the complete image domain.

3.1 Communication Models

A large part of image processing algorithms consist of neighborhood operations.
This raises problems at partition boundaries, since required information is miss-
ing. There are two communication models to handle this problem :

3-D Nonlinear Diffusion Filters for High Performance Cluster Computing 293

Repartitioning. The basic idea of the repartitioning strategy is to find an ap-
propriate partitioning for each operation, such that the problem of missing neigh-
borhood information does not occur. Therefore partitions have to be relocated
and reshaped by means of communication. In many cases this communication
involves data exchanges between all processes, the so called all-to-all communi-
cation. For large partition numbers such a connection–intensive communication
pattern makes high demands to the network topology. Whether the network can
satisfy these demands or not is reflected in a scaling of bandwith (pairwise dis-
junct communication) or a rise of communication time. For massively connected
low latency networks the first case does apply.

Taking a look at the total communication volume the importance of this scal-
ing property becomes obvious. Since non–overlapping partitions are used, each
pixel is sent and received by no more than one process. Thus, the communica-
tion behavior imposes a limit to the total communication volume that is given
by the image size. The number of processes and the required neighborhood can
only affect the communication volume within this scope. Hence, each scaling of
bandwith is passed on to the communication time.

Boundary Communication. Keeping existing partitions the second commu-
nication model simply exchanges the missing neighborhood information. One
should note, that this implies a dependency of the total communication volume
on two unknowns: The number of partitions as well as the boundary size.

For moderate values of both parameters, the communication is limited to
its adjacent segments. In this case the total communication volume may drop
significantly beyond that of a repartitioning strategy. Moreover such a simple
communication pattern has a second advantage. Since it makes lesser demands
to the network topology than the previously discussed all–to–all communication,
also weakly connected cluster system do benefit from a bandwith scaling effect.
Even for high latency networks this strategy is favorable due to its rather large
message size that results from the limited communication pattern.

However, larger boundary sizes and partition numbers do change the sit-
uation completely. Then boundary–volume ratios deteriorate, communication
patterns may require extensions to further partitions and finally an inefficient
parallelization remains. This is reflected in the worst case communication vol-
ume that is only limited by (n − 1) times the image size, where n is the number
of partitions.

Hence boundary exchange does only address operations that require infor-
mation from a small neighborhood.

3.2 Partition Models

In addition to the communication models appropriate image partitioning strate-
gies have to be chosen. In general cuboid partitions are preferred since they can
be realized with commonly used data structures and are easier to handle. There
are two partitioning models that result in such cuboid partitions.

294 A. Bruhn et al.

Slice Partitioning. As the name anticipates the main idea of this strategy is to
partition an image along one single direction. Thus no further boundaries arise.
Operations that are separable or do not require neighborhood information from
all directions can exploit this property.

However, there are two minor disadvantages of this strategy. First, the max-
imum number of partitions is limited by the number of pixels in the direction of
partitioning, and secondly, slices have an evidently bad boundary–volume ratio.
While the first drawback is only relevant for small image sizes, the second one
has no relevance if repartitioning is applied.

Mesh Partitioning. This strategy focuses on partitioning an image along all
directions. Thus the largest theoretical scalability is achieved, since the maximum
number of partitions is only limited by the total number of pixels. Its main
disadvantage is the occurrence of boundaries in all directions. In our case this
drawback is quite severe, since the performance of certain operations lives on
their separability property.

A special case of mesh partitioning is cube-like partitioning. Thereby an
image is partitioned in such a way, that the sum of all partition boundaries is
minimized. Obviously this partition strategy should be used when it comes to
the exchange of boundary information.

4 Parallelization Details

Module 1: Gaussian Convolution. The Gaussian convolution is implemented
exploiting separability and symmetry as well as optimizing the computational
sequence for optimal cache use. The convolution masks are obtained by sampling
the continuous function and truncate it at 3 times the standard deviation. Then
the masks are renormalized such that its weight sum up to 1. In our approach
the repartitioning strategy is used in combination with slice partitioning. Thus,
Gaussian convolution in two out of three directions can be performed without
communication effort. Only smoothing in the third direction requires a previous
repartitioning step. Moreover, this implementation allows large values for the
standard deviation σ, since no boundary exchange takes place.

Module 2: Derivatives and Diffusivity. Derivatives within the diffusivity are
computed using central differences. Since this uses stencils of type 1

2h (−1,0,1),
where h denotes the grid size, the boundary size is limited to 1. Besides, the com-
putation diffusivity values demands matching partitions for all derivatives. Both
aspects put a boundary exchange strategy in an advantageous position here.
Although cube-like partitioning would be desirable, a change of the partition
model at the cost of two repartitioning steps is obviously not profitable. Hence,
slice partitioning combined with boundary communication is implemented. After
the exchange of neighborhood information, the derivatives are computed sequen-
tially for each direction. This can be done since parallelism is achieved via image

3-D Nonlinear Diffusion Filters for High Performance Cluster Computing 295

partitioning. Finally the diffusivity values are computed based on

g(|∇u2
σ|) := 1

1 + |∇u2
σ|/λ2 (5)

where λ is a contrast parameter.

Module 3: Diffusion and AOS. As discussed before, AOS offers parallelism
on two different levels. First, it allows to decouple the diffusion processes for
each direction (coarse grain parallelism). For the same reason as in the case of
the derivative computation, this property will not be exploited for paralleliza-
tion purposes. Of major importance is the fact, that the huge linear tridiagonal
equation systems for each diffusion direction can be decomposed into many small
independent equation systems of same style (mid grain parallelism). Since each of
these systems corresponds to the diffusion process along a complete image line in
the diffusion direction, the use of a common boundary exchange approach makes
no sense. Instead slice partitioning in combination with the repartitioning strat-
egy seems desirable. Moreover, this implementation allows the application of fast
sequential solvers such as the Thomas algorithm. It uses an LR decomposition, a
forward substitution as well as a backward substitution step. Thus, special vari-
ants for a boundary exchange strategy could not have been developed without
loss of parallelism and performance. However, even in the case of repartitioning
the parallelization effort is large: In order to compute the diffusion process for
one direction matching partitions for the original image and the diffusivity val-
ues are required. Therefore, not only the original image has to be repartitioned,
but also the corresponding diffusivity data prior to computing the third diffu-
sion direction. Finally combining the results of all three diffusion processes – the
averaging step in the AOS scheme – requires a third repartitioning.

5 Results

Our test runs have been performed on the Score III cluster of the RWCP (Real
World Computing Partnership) at the Tsukuba Research Center, Japan. Run-
ning a modified Linux 2.4 SMP Kernel it consists of 524 nodes with two PIII
933 MHz processors each. Focusing on distributed memory systems only one
processor per node has been used at a time. The cluster is fully connected to a
CLOS network using a Myrinet2000 network interface. Due to its performance
it is ranked 40th in the last TOP 500 list of supercomputers.

As one can see from Figure 1 considerations regarding the parallelization for
a specific network architecture do pay off. The obtained results demonstrate an
excellent, almost linear scaling behavior up to 256 nodes with a top speedup of
209. This equals 82% of the theoretical maximum. The corresponding runtimes
divided in computation and communication effort can be found in Table 1. For all
test runs a 32-bit float data cube of size 256 × 256 × 128 has been used resulting
in communication volumes up to 1.83 Gbyte per second. These numbers show

296 A. Bruhn et al.

Fig. 1. Speedup Chart

Table 1. Runtimes for AOS 3-D , 10 iterations

Processors 1 2 4 8 16 32 64 128 256

Runtime [s] 212.741 114.625 57.534 29.401 15.065 7.731 4.029 1.894 1.017
Computation [s] 212.741 106.205 52.221 26.123 13.471 6.753 3.333 1.550 0.745
Communication [s] 0.000 8.420 5.313 3.278 1.594 0.978 0.696 0.344 0.272

Computation [%] 100.000 92.654 90.766 88.851 89.420 87.350 82.725 81.837 73.255
Communication [%] 0.000 7.346 9.234 11.149 10.580 12.650 17.275 18.163 26.745

the importance of a sophisticated algorithm design that allows bandwith scaling
up to a large number of processors.

This scaling property is reflected in the percental distribution below, that
shows only a moderate increase of the communication part. Even in the case of
256 processors this ratio does hardly exceed one quarter of the runtime.

6 Summary and Conclusions

The goal of this paper was to show how to design algorithms for high performance
cluster systems. This was done by the example of nonlinear isotropic diffusion.
Based on an AOS scheme we first performed a decomposition into modules. Then
parallelization strategies suitable for a high performance low latency network
were discussed. We saw that in this case a repartitioning approach is favorable
for the majority of operations. Moreover, we noticed that this strategy should
be combined with slice partitioning for optimal performance. Test runs with our
implementation on a high end cluster system yielded speedup factors of up to
209 for 256 nodes, proving its excellent scalability.

3-D Nonlinear Diffusion Filters for High Performance Cluster Computing 297

Fig. 2. From left to right: (a) Test image with grey scale range [0, 255] degraded by
Gaussian noise with standard deviation σn = 30. (b) Image denoised by nonlinear
isotropic diffusion filter, 5 iterations with σ = 2.5 , λ = 0.01 and τ = 20.

Acknowledgement

Our research has been partly funded by the Deutsche Forschungsgemeinschaft
(DFG) under the project SCHN 457/4-1.

References

1. F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll. Image selective smoothing and edge
detection by nonlinear diffusion. SIAM Journal on Numerical Analysis, 32:1895–
1909, 1992.

2. J. Heers, C. Schnörr, and H.-S. Stiehl. Investigation of parallel and globally conver-
gent iterative schemes for nonlinear variational image smoothing and segmentation.
In Proc. 1998 IEEE International Conference on Image Processing, volume 3, pages
279–283, Chicago, IL, Oct. 1998.

3. Z. Krivá and K. Mikula. An adaptive finite volume scheme for solving nonlinear
diffusion equations in image processing. Journal of Visual Communication and
Image Representation, 13(1/2):22–35, 2002.

4. T. Lu, P. Neittaanmäki, and X.-C. Tai. A parallel splitting up method and its
application to Navier–Stokes equations. Applied Mathematics Letters, 4(2):25–29,
1991.

5. P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12:629–639, 1990.

6. M. Rumpf and R. Strzodka. Nonlinear diffusion in graphics hardware. In Proc. Joint
Eurographics – IEEE TCVG Symposium on Visualization, Ascona, Switzerland,
May 2001.

7. J. Weickert. Anisotropic Diffusion in Image Processing. Teubner, Stuttgart, 1998.
8. J. Weickert, B. M. ter Haar Romeny, and M. A. Viergever. Efficient and reliable
schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing,
7(3):398–410, Mar. 1998.

9. J. Weickert, K. J. Zuiderveld, B. M. ter Haar Romeny, and W. J. Niessen. Parallel
implementations of AOS schemes: A fast way of nonlinear diffusion filtering. In
Proc. 1997 IEEE International Conference on Image Processing, volume 3, pages
396–399, Santa Barbara, CA, Oct. 1997.

	1 Introduction
	2 Nonlinear Isotropic Diffusion Using AOS
	2.1 Algorithmic Decomposition

	3 Parallelization Models
	3.1 Communication Models
	3.2 Partition Models

	4 Parallelization Details
	5 Results
	6 Summary and Conclusions
	Acknowledgement
	References

