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Abstract. Variational methods for optic flow computation have the rep-
utation of producing good results at the expense of being too slow for
real-time applications. We show that real-time variational computation
of optic flow fields is possible when appropriate methods are combined
with modern numerical techniques. We consider the CLG method, a re-
cent variational technique that combines the quality of the dense flow
fields of the Horn and Schunck approach with the noise robustness of
the Lucas–Kanade method. For the linear system of equations result-
ing from the discretised Euler–Lagrange equations, we present a fast full
multigrid scheme in detail. We show that under realistic accuracy re-
quirements this method is 175 times more efficient than the widely used
Gauß-Seidel algorithm. On a 3.06 GHz PC, we have computed 27 dense
flow fields of size 200 × 200 pixels within a single second.

1 Introduction

Variational methods belong to the well-established techniques for estimating
the displacement field (optic flow) in an image sequence. They perform well in
terms of different error measures [1,6], they make all model assumptions explicit
in a transparent way, they yield dense flow fields, and it is straightforward to
derive continuous models that are rotationally invariant. These properties make
continuous variational models appealing for a number of applications. For a
survey of these techniques we refer to [12].

Variational methods, however, require the minimisation of a suitable energy
functional. Often this is achieved by discretising the associated Euler–Langrange
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equations and solving the resulting systems of equations in an iterative way. Clas-
sical iterative methods such as Jacobi or Gauß–Seidel iterations are frequently
applied [13]. In this case one observes that the convergence is reasonably fast in
the beginning, but after a while it deteriorates significantly such that often sev-
eral thousands of iterations are needed in order to obtain the required accuracy.
As a consequence, variational optic flow methods are usually considered to be
too slow when real-time performance is needed.

The goal of the present paper is to show that it is possible to make varia-
tional optic flow methods suitable for real-time applications by combining them
with state-of-the-art numerical techniques. We use the recently introduced CLG
method [4], a variational technique that combines the advantages of two classi-
cal optic flow algorithms: the variational Horn and Schunck approach [8], and
the local least-square technique of Lucas and Kanade [9]. For the CLG method
we derive a fast numerical scheme based on a so-called full multigrid strategy
[3]. Such techniques belong to the fastest numerical methods for solving linear
systems of equations. We present our algorithm in detail and show that it leads
to a speed-up of more than two orders of magnitude compared to widely used
iterative methods. As a consequence, it becomes possible to compute 27 optic
flow frames per second on a standard PC, when image sequences of size 200×200
pixels are used.

Our paper is organised as follows. In Section 2 we review the CLG model
as a representative for variational optic flow methods. Section 3 shows how this
problem can be discretised. A fast multigrid strategy for the CLG approach is
derived in Section 4. In Section 5 we compare this algorithm with the widely used
Gauß–Seidel and SOR schemes and show that it allows real-time computation
of optic flow. The paper is concluded with a summary in Section 6.

Related Work. It is quite common to use pyramid strategies for speeding
up variational optic flow methods. They use the solution at a coarse grid as
initialisation on the next finer grid. Such techniques may be regarded as the
simplest multigrid strategy, namely cascading multigrid. Their performance is
usually somewhat limited. More advanced multigrid techniques are used not
very frequently. First proposals go back to Terzopoulos [11] and Enkelmann [5].
More recently, Ghosal and Vaněk [7] developed an algebraic multigrid method
for an anisotropic variational approach that can be related to Nagel’s method
[10]. Zini et al. [14] proposed a conjugate gradient-based multigrid technique for
an extension of the Horn and Schunck functional. To the best of our knowledge,
our paper is the first work that reports real-time performance for variational
optic flow techniques on standard hardware.

2 Optic Flow Computation with the CLG Approach

In [4] we have introduced the so-called combined local-global (CLG) method for
optic flow computation. It combines the advantages of the global Horn and
Schunck approach [8] and the local Lucas–Kanade method [9]. Let f(x, y, t)
be an image sequence, where (x, y) denotes the location within a rectangular
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image domain Ω, and t is the time. The CLG method computes the optic flow
field (u(x, y), v(x, y))� at some time t as the minimiser of the energy functional

E(u, v) =
∫

Ω

(
w�Jρ(∇3f) w + α(|∇u|2 + |∇v|2)) dx dy, (1)

where the vector field w(x, y) = (u(x, y), v(x, y), 1)� describes the displace-
ment, ∇u is the spatial gradient (ux, uy)�, and ∇3f denotes the spatiotem-
poral gradient (fx, fy, ft)�. The matrix Jρ(∇3f) is the structure tensor given
by Kρ ∗ (∇3f ∇3f

�), where ∗ denotes convolution, and Kρ is a Gaussian with
standard deviation ρ. The weight α > 0 serves as regularisation parameter.

For ρ → 0 the CLG approach comes down to the Horn and Schunck method,
and for α → 0 it becomes the Lucas–Kanade algorithm. It combines the dense
flow fields of Horn–Schunck with the high noise robustness of Lucas–Kanade.
For a detailed performance evaluation we refer to [4].

In order to recover the optic flow field, the energy functional E(u, v) has to
be minimised. This is done by solving its Euler–Lagrange equations

∆u − 1
α

(
Kρ ∗ (f2

x) u + Kρ ∗ (fxfy) v + Kρ ∗ (fxft)
)

= 0, (2)

∆v − 1
α

(
Kρ ∗ (fxfy) u + Kρ ∗ (f2

y ) v + Kρ ∗ (fyft)
)

= 0, (3)

where ∆ denotes the Laplacean.

3 Discretisation

Let us now investigate a suitable discretisation for the CLG method (2)–(3). To
this end we consider the unknown functions u(x, y, t) and v(x, y, t) on a rectan-
gular pixel grid of size h, and we denote by ui the approximation to u at some
pixel i with i = 1,...,N . Gaussian convolution is realised by discrete convolution
with a truncated and renormalised Gaussian, where the truncation took place at
3 times the standard deviation. Symmetry and separability have been exploited
in order to speed up these discrete convolutions. Spatial derivatives of the image
data f have been approximated using a fourth-order approximation with the
convolution mask (−1, 8, 0, −8, 1)/(12h), while temporal derivatives are approx-
imated with a simple two-point stencil. Let us denote by Jnmi the component
(n, m) of the structure tensor Jρ(∇f) in some pixel i. Furthermore, let N (i)
denote the set of neighbours of pixel i. Then a finite difference approximation
to the Euler–Lagrange equations (2)–(3) is given by

0 =
∑

j∈N (i)

ui − uj

h2 − 1
α

(J11i ui + J12i vi + J13i) , (4)

0 =
∑

j∈N (i)

vi − vj

h2 − 1
α

(J21i ui + J22i vi + J23i) (5)

for i = 1,...,N . This sparse linear system of equations for the 2N unknowns (ui)
and (vi) may be solved iteratively, e.g. by applying the Gauß–Seidel method [13].
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Because of its simplicity it is frequently used in literature. If the upper index
denotes the iteration step, the Gauß-Seidel method can be written as

uk+1
i =

∑
j∈N −(i)

uk+1
j +

∑
j∈N+(i)

uk
j − h2

α

(
J12i vk

i + J13i

)

|N (i)| + h2

α J11i

, (6)

vk+1
i =

∑
j∈N −(i)

vk+1
j +

∑
j∈N+(i)

vk
j − h2

α

(
J21i uk+1

i + J23i

)

|N (i)| + h2

α J22i

(7)

where N −(i) := {j ∈ N (i) | j < i} and N+(i) := {j ∈ N (i) | j > i}. By |N (i)|
we denote the number of neighbours of pixel i that belong to the image domain.

Common iterative solvers like the Gauß–Seidel method usually perform very
well in removing the higher frequency parts of the error within the first iter-
ations. This behaviour is reflected in a good initial convergence rate. Because
of their smoothing properties regarding the error, these solvers are referred to
as smoothers. After some iterations only low frequency components of the error
remain and the convergence slows down significantly. At this point smoothers
suffer from their local design and cannot attenuate efficiently low frequencies
that have a sufficiently large wavelength in the spatial domain.

4 An Efficient Multigrid Algorithm

Multigrid methods [2,3] overcome the before mentioned problem by creating a
sophisticated fine-to-coarse hierarchy of equation systems with excellent error
reduction properties. Low frequencies on the finest grid reappear as higher fre-
quencies on coarser grids, where they can be removed successfully. This strategy
allows multigrid methods to compute accurate results much faster than non–
hierarchical iterative solvers. Since we focus on the real-time computation of
optic flow, we developed such a multigrid algorithm for the CLG approach.

Let us now explain our strategy in detail. We reformulate the linear system
of equations given by (4)–(5) as

Ahxh = fh (8)

where h is the grid spacing, xh is the concatenated vector (uh, vh)�, fh is the
right hand side given by 1

α (J13, J23)� and Ah is the matrix with the correspond-
ing entries. Let x̃h be the result computed by the chosen Gauß–Seidel smoother
after n1 iterations. Then the error of the solution is given by

eh = xh − x̃h. (9)

Evidently, one is interested in finding eh in order to correct the approximative
solution x̃h. Since the error cannot be computed directly, we determine the
residual error given by

rh = fh − Ahx̃h (10)

instead. Since A is a linear operator, we have
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Aheh = rh. (11)

Solving this system of equations would give us the desired correction eh. Since
high frequencies of the error have already been removed by our smoother, we
can solve this system at a coarser level. For the sake of clarity the notation for
the coarser grid is chosen correspondingly to the original equation on the fine
grid (8). Thus, the linear equation system (11) becomes

Ah̄xh̄ = f h̄ (12)

at the coarser level, where h̄ is the new grid spacing with h̄ > h, and f h̄ is a
downsampled version of rh.

At this point we have to make four decisions:

(I) The new grid spacing h̄ has to be chosen. In our implementation h is
doubled at each level, so h̄ := 2h.

(II) A restriction operator Rh→2h has to be defined that allows the transfer of
vectors from the fine to the coarse grid. By its application to the residual
rh we obtain the right hand side of the equation system on the coarser grid

f2h = Rh→2hrh. (13)

For simplicity, averaging over 2 × 2 pixels is used for Rh→2h.
(III) A coarser version of the matrix Ah has to be created. All entries of Ah

belonging to the discretised Laplacean depend on the grid spacing of the
solution xh. Therefore these entries have to be adapted to the coarser grid
scaling. Having their origin in the structure tensor Jh, all other entries of
Ah are independent of xh and are therefore obtained by a componentwise
restriction of Jh:

J2h
nm = Rh→2hJh

nm. (14)

This allows the formulation of the coarse grid equation system

0 =
∑

j∈N (i)

u2h
i − u2h

j

(2h)2
− 1

α

(
J2h

11i u2h
i + J2h

12i v2h
i + f2h

1i

)
, (15)

0 =
∑

j∈N (i)

v2h
i − v2h

j

(2h)2
− 1

α

(
J2h

21i u2h
i + J2h

22i v2h
i + f2h

2i

)
(16)

for i = 1,...,N
4 , where again (u2h, v2h)� = x2h and (f2h

1 , f2h
2 )� = f2h. The

corresponding Gauß-Seidel iteration step is given by

u2h,k+1
i =

∑
j∈N −(i)

u2h,k+1
j +

∑
j∈N+(i)

u2h,k
j − (2h)2

α

(
J2h

12i v2h,k
i + f2h

i

)

|N (i)| + (2h)2
α J2h

11i

, (17)

v2h,k+1
i =

∑
j∈N −(i)

v2h,k+1
j +

∑
j∈N+(i)

v2h,k
j − (2h)2

α

(
J2h

21i u2h,k+1
i + f2h

i

)

|N (i)| + (2h)2
α J2h

22i

. (18)
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(IV) After solving A2hx2h = f2h on the coarse grid, a prolongation operator
P 2h→h has to be defined in order to transfer the solution x2h back to the
fine grid:

eh = P 2h→hx2h. (19)

We choose constant interpolation as prolongation operator P 2h→h.

The obtained correction eh can be used now for updating the approximated
solution of the original equation on the fine grid:

x̃h
new = x̃h + eh. (20)

Finally n2 iterations of the smoother are performed in order to remove high error
frequencies introduced by the prolongation of x2h.

The hierarchical application of the explained 2-grid cycle is called V–cycle.
Repeating two 2-grid cycles at each level yields the so called W–cycle, that has
better convergence properties at the expense of slightly increased computational
costs (regarding 2D). Instead of transferring the residual equations between the
levels one may think of starting with a coarse version of the original equation
system. In this case coarse solutions serve as initial guesses for finer levels. This
strategy is referred to as cascading multigrid. In combination with V or W–cycles
the multigrid strategy with the best performance is obtained: full multigrid. Our
implementation is based on such a full multigrid approach with two W–cycles
per level (Fig. 1). At each W-cycle two presmoothing and two postsmoothing
iterations are performed (n1 = n2 = 2).
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coarse

fine8h→4h 4h→2h 2h→ h

c w w c w w c w w

Fig. 1. Example of our full multigrid implementation for 4 levels. Dashed lines sepa-
rate alternating blocks of the two basic strategies. Blocks belonging to the cascading
multigrid strategy are marked with c. Starting from a coarse scale the original problem
is refined step by step. This is visualised by the → symbol. Thereby the coarser solu-
tion serves as an initial approximation for the refined problem. At each refinement level
two W–cycles ( blocks marked with two w ) are used as solvers. Performing iterations
on the original equation is marked with large black dots, while iterations on residual
equations are marked with smaller ones.

5 Results

Our computations are performed with a C implementation on a standard PC
with a 3.06 GHz Intel Pentium 4 CPU, and the 200 × 200 pixels office sequence



228 Andrés Bruhn et al.

Table 1. Comparison of the Gauß-Seidel and the SOR method to our full multigrid
implementation. Run times refer to the computation of all 19 flow fields for the office
sequence.

iterations per frame run time [s] frames per second [s−1]
Gauß–Seidel 6839 120.808 0.157
SOR 252 5.760 3.299
full multigrid 1 0.692 27.440

Fig. 2. (a) Left: Frame 10 of the office sequence. (b) Center: Ground truth flow field
between frame 10 and 11. (c) Right: Computed flow field by our full multigrid CLG
method (σ = 0.72, ρ = 1.8, and α = 2700).

by Galvin et al. [6] is used. We compared the performance of our full multi-
grid implementation on four levels with the widely used Gauß–Seidel method
and its popular Successive Overrelaxation (SOR) variant [13]. Accelerating the
Gauß–Seidel method by a weighted extrapolation of its results, the SOR method
represents the class of advanced non-hierarchical solvers in this comparison. The
iterations are stopped when the relative error erel := |xc − xe|/|xc| was below
10−3, where the subscripts c and e denote the correct resp. estimated solution.

Table 1 shows the performance of our algorithm. With more than 27 frames
per second we are able to compute the optic flow of sequences with 200 × 200
pixels in real-time. We see that full multigrid is 175 times faster than the Gauß–
Seidel method and still one order of magnitude more efficient than SOR. In
terms of iterations, the difference is even more drastical: While 6839 Gauß–Seidel
iterations were required to reach the desired accuracy, a single full multigrid cycle
was sufficient. Qualitative results for this test run are presented in Figure 2 where
one of the computed flow fields is shown. We observe that the CLG method
matches the ground truth very well. Thereby one should keep in mind that the
full multigrid computation of such a single flow field took only 36 milliseconds.

6 Summary and Conclusions

Using the CLG method as a prototype for a noise robust variational technique,
we have shown that it is possible to achieve real-time computation of dense optic
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flow fields of size 200 × 200 on a standard PC. This has been accomplished by
using a full multigrid method for solving the linear systems of equations that
result from a discretisation of the Euler–Lagrange equations. We have shown
that this gives us a speed-up by more than two orders of magnitude compared
to commonly used algorithms for variational optic flow computation. In our
future work we plan to investigate further acceleration possibilities by means
of suitable parallelisations. Moreover, we will investigate the use of multigrid
strategies for nonlinear variational optic flow methods.
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