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Abstract. We introduce a technique for measuring local scale, based on a special
property of the so-called total variational (TV) flow. For TV flow, pixels change
their value with a speed that is inversely proportional to the size of the region
they belong to. Exploiting this property directly leads to a region based measure
for scale that is well-suited for texture discrimination. Together with the image
intensity and texture features computed from the second moment matrix, which
measures the orientation of a texture, a sparse feature space of dimension 5 is
obtained that covers the most important descriptors of a texture: magnitude, ori-
entation, and scale. A demonstration of the performance of these features is given
in the scope of texture segmentation.
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1 Introduction

Scale is an important aspect in computer vision, as features and objects are only observ-
able on a certain range of scale. This is a consensus in the computer vision community
for several years and has led to techniques that take into account multiple scales to
reach their goal (scale spaces and multi-resolution approaches), or that try to automati-
cally choose a good scale for their operators (scale selection).
As soon aslocal scale selection is considered, a measure for the local scale at each
position in the image becomes necessary. The simplest idea is to consider the variance
in a fixed local window to measure the scale. However, this has several drawbacks:
large scales with high gradients result in the same value as small scales with low gra-
dients. Moreover, the use of non-adaptive local windows always blurs the data. The
latter drawback also appears with the general idea of local Lyaponov functionals [19],
which includes the case of local variance. Other works on scale selection can be found
in [10–12, 5, 9]. All these methods have in common that they are gradient based, i.e.
their measure of local scale depends directly on the local gradient or its derivatives.
Consequently, the scale cannot be measured in regions without a significant gradient,
and derivative filters of larger scale have to be used in order to determine the scale there.
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As non-adaptive, linear filters are used to represent these larger scales, this comes down
to local windows and causes blurring effects. Although these effects are often hidden
behind succeeding nonlinear operators like the maximum operator, some accuracy is
lost here.
In this paper we embark on another strategy that is not edge based but region based.
Our local scale measure does not depend on the behavior of the gradient in scale space,
but directly on the size of regions. This poses the question of how to define regions. In
order to obtain an efficient technique, some special properties of total variation (TV)
denoising, discovered recently in [4], are exploited. TV denoising [18] tends to yield
piecewise constant, segmentation-like results, answering the question of how to define
regions. Furthermore, it holds that pixels change their value inversely proportional to
the size of the region they belong to. This directly results in a region based local scale
measure for each pixel that does not need the definition of any window, and therefore
yields the maximum localisation accuracy.
Note that there are applications for both edge based and region based methods. In the
case of scale selection for edge detection, for instance, an edge based measure makes
much more sense than a region based measure. For region based texture segmentation,
however, it is exactly vice-versa.
The main motivation of why a region based local scale measure is important, can be
found in the field of texture discrimination. There is a consistent opinion in the litera-
ture that Gabor filters [7] yield a good vocabulary for describing textures. Furthermore,
findings in neurobiology indicate that some mechanism similar to Gabor filters is used
in human vision [13]. A Gabor filter bank consists of a filter for each scale and each
orientation. Unfortunately, this results in a large number of features that have to be
integrated e.g. in a segmentation approach. As this may cause many problems, it has
been proposed to reduce this over-complete basis by the general idea of sparse coding
[14]. Another approach is to avoid the high dimensionality by using nearly orthogonal
measures which extract the same features from the image, namely magnitude, orien-
tation, and scale. An early approach to this strategy has been the use of the second
moment matrix for texture discrimination in [2] and [15]. More recently, a texture seg-
mentation technique based on the features of the second moment matrix coupled with
nonlinear diffusion, the so-called nonlinear structure tensor, has been presented [17].
This publication demonstrated the performance of such a reduced set of features in tex-
ture discrimination. However, the second moment matrix only holds the information of
the magnitude and orientation of a structure. The information of scale is missing. Con-
sequently, the method fails as soon as two textures can only be distinguished by means
of their scale. One can expect that a local scale measure would be very useful in this
respect. Deriving such a measure for texture segmentation is the topic of the present
paper.

Paper organisation.In the next section the new local scale measure based on TV flow
is introduced. In Section 3 this measure will be coupled with the image intensity and the
second moment matrix to form a new set of texture features. For demonstrating its per-
formance in discrimination of textures, it will be used with the segmentation approach
of [17]. We show experimental results and conclude the paper with a summary.



2 Local scale measure

In order to obtain a region based scale measure, an aggregation method is needed that
determines regions. For this purpose, we focus on a nonlinear diffusion technique, the
so-calledTV flow [1], which is the parabolic counterpart toTV regularisation[18].
This diffusion method tends to yield piecewise constant, segmentation-like results, so
it implicitly provides the regions needed for measuring the local scale. Starting with
an initial imageI, the denoised and simplified versionu of the image evolves under
progress of artificial timet according to the partial differential equation (PDE)

∂tu = div

(
∇u

|∇u|

)
u(t = 0) = I. (1)

The evolution ofu bit by bit leads to larger regions in the image, inside which all pixels
have the same value. The goal is to measure the size of these regions.
Another useful property of TV flow, besides its tendency to yield segmentation-like
results, is its linear contrast reduction [4]. This allows an efficient computation of the
region sizes, without explicit computation of regions. Due to the linear contrast reduc-
tion, the size of a region can be estimated by means of the evolution speed of its pixels.
In 1D, space-discrete TV flow (and TV regularisation) have been proven to comply with
the following rules [4]:

(i) A region ofm neighbouring pixels with the same value can be considered as one
superpixel with massm.

(ii) The evolution splits into merging events where pixels melt together to larger pixels.

(iii) Extremum pixels adapt their value to that of their neighbours with speed2
m .

(iv) The two boundary pixels adapt their value with half that speed.

(v) All other pixels do not change their value.

These rules lead to a very useful consequence: by simply sitting upon a pixel and mea-
suring the speed with which it changes its value, it is possible to determine its local
scale. As pixels belonging to small regions move faster than pixels belonging to large
regions (iii), the rate of change of a pixel determines the size of the region it currently
belongs to. Integrating this rate of change over the evolution time and normalising it
with the evolution timeT yields the average speed of the pixel, i.e. its average inverse
scale in scale space.

1
m

=
1
2

∫ T

0
|∂tu| dt

T
(2)

The integration has to be stopped after some timeT , otherwise the interesting scale
information will be spoiled by scale estimates stemming from heavily oversimplified
versions of the image. The choice ofT will be discussed later in this section.
Since only extremum regions change their value, periods of image evolution in which
a pixel is not part of such an extremum region have to be taken into account. This can



be done by reducing the normalisation factorT by the time at which the pixel does not
move (v), leading to the following formula:

1
m

=
1
2

∫ T

0
|∂tu| dt∫ T

0
(1− δ∂tu,0) dt

(3)

whereδa,b = 1 if a = b, and 0 otherwise. Besides the estimation error for the boundary
regions, where the scale is overestimated by a factor 2 (iv), this formula yields exact
estimates of the region sizes without any explicit representation of the regions in the 1D
case.
In 2D the topology of regions can become more complicated. A region can be an ex-
tremum in one direction and a saddle point in another direction. Therefore, it is no
longer possible to obtain anexactestimate of the region sizes without an explicit repre-
sentation of the regions. However, the extraction of regions is time consuming, and the
formula in Eq. (3) still yields good approximations for the local scale in 2D, as can be
seen in Fig. 1. Moreover, for texture discrimination, only arelativemeasure of the local
scale is needed, and this measure will be combined with other texture features. When
comparing two textured regions, the estimation error appears in both regions. For the
case that the error is different in the two regions, they can be distinguished necessarily
by the other texture features, since the topology of the two textures must be different. So
the estimation error of the scale may not frustrate the correct distinction of two textured
regions.

Fig. 1. TOP LEFT: (a) Zebra test image. TOP RIGHT: (b) Local scale measure withT = 20.
BOTTOM LEFT: (c) T = 50. BOTTOM RIGHT: (d) T = 100. The scale measure yields the
inverse scale, i.e. dark regions correspond to large scales, bright regions to fine scales.



On the first glance, it is surprising that there appears a scale parameterT in the scale
measure. On the other hand, it is easy to imagine that a pixel lives on several different
scales during the evolution of an imageI from t = 0 to t = Tmax, where the image
is simplified to its average value.1 At the beginning, the pixel might be a single noise
pixel that moves very fast until it is merged with other pixels to a small scale region.
This small scale region will further move until it is merged with other regions to form a
region of larger scale, and so on. Due to the integration, the average scale of the pixel’s
region during this evolution is measured, i.e. the complete history of the pixel up to a
time T is included. For texture discrimination one is mainly interested in the scale of
the small scale texture elements, so it is reasonable to emphasise the smaller scales by
stopping the diffusion process beforeTmax. 2. Fig. 1 shows the local scale measure for
different parametersT . In Fig. 1d the pixels of the grass texture have been part of the
large background region for such a long time, that their small scale history has hardly
any influence anymore. Here, mainly the stripes of the zebras stand out from the back-
ground. On the other hand, both results shown in Fig. 1b and Fig. 1c are good scale
measures for small scale texture discrimination. Note that the diffusion speed of the
pixels, i.e. theinversescale, is computed, so dark regions correspond to large scales.
For better visibility, the values have been normalised to a range between 0 and 255.

Implementation. TV flow causes stability problems as soon as the gradient tends to
zero. Therefore the PDE has to be stabilised artificially by adding a small positive con-
stantε to the gradient (e.g.ε = 0.01).

∂tu = div

 ∇u√
u2

x + u2
y + ε2

 (4)

The stability condition for the time step sizeτ of an explicit Euler scheme isτ ≤ 0.25ε,
so for smallε, many iterations are necessary. A much more efficient approach is to
use a semi-implicit scheme such as AOS [20], which is unconditionally stable, so it is
possible to chooseτ = 1. The discrete version of the scale measure for arbitraryτ is

u0 = I

uk+1 =
1
2

( (
(1)− 2τAx(uk)

)−1
+
(
(1)− 2τAy(uk)

)−1
)
uk

1
m

=
1
4τ

∑T
k=1 |uk+1 − uk|∑T

k=1

(
1− δ(uk+1−uk),0

)
where(1) denotes the unit matrix.Ax andAy are the diffusion matrices inx andy
direction (cf. [20]). The pre-factor14 instead of12 from Eq. (3) is due to the 2D case,
where a pixel has 4 neighbours instead of 2.

1 This finite extinction timeTmax is a special property of TV flow. An upper bound can be
computed from the worst case scenario of an image with two regions of half the image size,
maximum contrastcmax, and minimum boundary:Tmax ≤ 1

4
size(I) · cmax.

2 It would certainly be possible to automatically select an optimal scaleT where only large scale
object regions remain in the image [12]. However, due to the integration, the parameterT is
very robust and for simplicity can be fixed at a reasonable value. For all experiments we used
T = 20.



3 A set of texture features

The local scale measure can be combined with the texture features proposed in [17].
Together, the four texture features and the image intensity can distinguish even very
similar textures, as it will be shown in the next section.
Texture discrimination is a fairly difficult topic, since there is no clear definition, what
texture is. Texture models can be distinguished into generative models and discrimina-
tive models. Generative models describe textures as a linear superposition of bases and
allow to reconstruct the texture from its parameters. On the other side, discriminative
models only try to find a set of features that allows to robustly distinguish different
textures. A sound generative model has been introduced recently in [21]. A review of
discriminative models can be found in [16]. While generative models are much more
powerful in accurately describing textures, they are difficult to use for discrimination
purposes so far.
The set of texture features we propose here, uses a discriminative texture model. It de-
scribes a texture by some of its most important properties: the intensity of the image,
the magnitude of the texture, as well as its orientation and scale. These features benefit
from the fact that they can be extracted alsolocally. Moreover, they can be used without
further learning in any segmentation approach.
Orientation and magnitude of a texture are covered by the second moment matrix [6,
15, 2]

J =
(

I2
x IxIy

IxIy I2
y

)
(5)

yielding three different feature channels. Furthermore, the scale is captured by our lo-
cal scale measure, while the image intensity is directly available. It should be noted that
in contrast to many other features used for texture discrimination, all our features are
completely rotationally invariant.
As proposed in [17], a coupled edge preserving smoothing process is applied to the
feature vector. This coupled smoothing deals with outliers in the data, closes structures,
and synchronises all channels, which eases further processing, e.g. in a segmentation
framework. For a fair coupling it is necessary that all feature channels have approx-
imately the same dynamic range. Furthermore, the normalisation procedure must not
amplify the noise in the case that one channel shows only a low contrast. Therefore,
only normalisation procedures that are independent of the contrast in the input data are
applicable.
As a consequence, the second moment matrix is replaced by its square root. Given the
eigenvalue decompositionJ = T (λi)T> of this positive semidefinite and symmetric
matrix, the square root can be computed by

J̃ :=
√

J = T (
√

λi)T>. (6)

SinceJ has eigenvalues|∇I|2 and 0 with corresponding eigenvectors∇I
|∇I| and ∇I⊥

|∇I| ,
this comes down to

J̃ =

(
Ix

|∇I| −
Iy

|∇I|
Iy

|∇I|
Ix

|∇I|

)(
|∇I| 0

0 0

)( Ix

|∇I|
Iy

|∇I|
− Iy

|∇I|
Ix

|∇I|

)
=

 I2
x

|∇I|
IxIy

|∇I|
IxIy

|∇I|
I2

y

|∇I|

 =
J

|∇I|
. (7)



Using one-sided differences for the gradient approximation, the components ofJ̃ have
the same dynamic range as the imageI. With central differences, they have to be mul-
tiplied with a factor 2.
The range of the inverse scale1m is between 0 and 1, so after a multiplication with 255
(the maximum value of standard grey level images) all features have values that are
bounded between 0 and 255.
In [17], TV flow was proposed for the coupled smoothing of the feature vector. Here,
we use TV regularisation instead. In 1D, TV flow and TV regularisation yield exactly
the same output [4]. In 2D, this equivalence could not be proven so far, however, both
processes at least approximate each other very well. Hence, we consider the energy
functional

E(u) =
∫

Ω

(
(u1−I)2+(u2−J̃11)2+(u3−J̃22)2+(u4−2J̃12)2+(s·u5−r)2+2α

√√√√ 5∑
k=1

|∇uk|2 + ε2
)

dx

which consists of 5 data terms, one for each channel, and a coupled smoothness con-
straint that minimises the total variation of the output vectoru. The valuesr ands are
the numerator and denominator of the scale measure.

r :=
255
4T

∫ T

0

|∂tu| dt

s :=
1
T

∫ T

0

(1− δ∂tu,0) dt

The advantage of formulating the coupled smoothing as a regularisation approach is the
so-calledfilling-in effectin cases wherer ands are small, i.e. the confidence in the scale
measure at this pixel is small. In such a case the term(s · u5 − r)2 holding the scale
measure gets small, so the smoothness term with the information of the other feature
channels acquires more influence. Moreover, a division by 0 is avoided, ifr = s = 0,
what can happen when a pixel has never been part of an extremum region.
The Euler-Lagrange equations of this energy are given by

u1 − I − α div (g · ∇u1) = 0
u2 − J̃11 − α div (g · ∇u2) = 0
u3 − J̃22 − α div (g · ∇u3) = 0
u4 − J̃12 − α div (g · ∇u4) = 0

(s · u5 − r) · s− α div (g · ∇u5) = 0

with g := 1/
√∑5

k=1 |∇uk|2 + ε2. They lead to a nonlinear system of equations, which
can be solved by means of fixed point iterations and SOR in the inner loop. This has
a similar efficiency as the AOS scheme used in [17] for TV flow. The texture features
after the coupled smoothing are depicted in Fig. 2 and Fig. 3.



Fig. 2. FROM LEFT TO RIGHT, TOP TO BOTTOM: (a) Original imageI (120 × 122).
(b) SmoothedI (α = 46.24). (c) SmoothedJ̃11. (d) SmoothedJ̃22. (e) SmoothedJ̃12.
(f) Smoothed scale measure (inverse scale).

Fig. 3. FROM LEFT TO RIGHT, TOP TO BOTTOM: (a) Original imageI (329 × 220).
(b) SmoothedI (α = 189.46). (c) SmoothedJ̃11. (d) SmoothedJ̃22. (e) SmoothedJ̃12.
(f) Smoothed scale measure (inverse scale).

4 Results

Before testing the performance of the texture features in a segmentation environment,
we computed the dissimilarity between several textures from the Brodatz texture database
[3]. As measure of dissimilarity for each texture channel we have chosen a simple dis-
tance measure taking into account the meansµk(T ) and the standard deviationsσk(T )
of each feature channelk of two texturesT1 andT2:

∆k =
(

µk(T1)− µk(T2)
σk(T1) + σk(T2)

)2

. (8)

For the total dissimilarity the average of all 5 texture channels is computed:

∆ =
1
5

5∑
k=1

∆k. (9)



The resulting dissimilarities are shown in Fig. 4. The first value in each cell is the
dissimilarity ∆5 according to the local scale measure only. The second value is the
dissimilarity∆ taking all texture features into account. The computed values are in ac-
cordance with what one would expect from a measure of texture dissimilarity. Note that
there are cases where∆5 is significantly larger than∆. In such cases the local scale
measure is very important to reliably distinguish the two textures.
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Fig. 4. Dissimilarities measured between some Brodatz textures. FIRST VALUE : Dissimilarity
according to scale measure. SECOND VALUE : Dissimilarity according to all texture features.

It should be noted that in this simple experiment there have been no boundaries between
textures, as the statistics have been computed separately for each texture. Therefore,
this experiment shows only the global texture discrimination capabilities of the fea-
tures, when the texture regions are already known. In order to test the performance of
the features when being applied to the much harder problem of discriminating textures
with the region boundaries not known in advance, the features were incorporated into
the segmentation technique described in [17]. Here, the good localisation accuracy of
the features becomes crucial.



First the segmentation was applied to images which were chosen such that they mainly
differ in scale. The results are depicted in Fig. 6 and Fig. 7. Note that the inner region
of Fig. 7 is the downsampled version of the outer region so the regions solely differ in
scale. Therefore, the segmentation fails, if the feature channel representing our scale
measure is left out. It also fails, if this channel is replaced by three channels with re-
sponses of circular Gabor filters of different scale (see Fig. 5).

Fig. 5. Filter masks of the three
circular Gabors used in the ex-
periments.

This shows, at least for texture segmentation, that the
use of a direct scale measure outperforms the repre-
sentation of scale by responses of a filter bank. Note
that our scale measure is also more efficient, as the
segmentation has to deal with less channels. The to-
tal computation time for the220 × 140 zebra image
on an Athlon XP 1800+ was 8 seconds, around 0.5
seconds to extract the local scale, 1.5 seconds to reg-
ularise the feature space, and 6 seconds for the seg-
mentation.
Finally, the method was tested with two very challenging real world images. The re-
sults are depicted in Fig. 8 and Fig. 9. The fact that the method can handle the difficult
frog image, demonstrates the performance of the extracted features used for the seg-
mentation. Also the very difficult squirrel image, which was recently used in [8], could
be segmented correctly, besides a small perturbation near the tail of the squirrel. Here
again, it turned out that our scale representation compares favourably to circular Gabor
filters.

5 Summary

In this paper, we presented a region based local scale measure. A diffusion based ag-
gregation method (TV flow) is used to compute a scale space representing regions at
different levels of aggregation. By exploiting the linear contrast reduction property of
TV flow, the size of regions can be approximated efficiently without an explicit repre-
sentation of regions. For each pixel and each level of aggregation the scale is determined
by the size of the region the pixel belongs to. This scale is integrated over the diffusion
time in order to yield the average scale for each pixel in scale space.
The local scale measure has been combined with other texture features obtained from
the second moment matrix and the image intensity. Together, these features cover the
most important discriminative properties of a texture, namely intensity, magnitude, ori-
entation, and scale with only 5 feature channels. Consequently, a supervised learning
stage to reduce the number of features is not necessary, and the features can be used
directly with any segmentation technique that can handle vector-valued data. The per-
formance in texture discrimination has successfully been demonstrated by the segmen-
tation of some very difficult texture images.
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