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Abstract. We study an energy functional for computing optical flow thatcom-
bines three assumptions: a brightness constancy assumption, a gradient constancy
assumption, and a discontinuity-preserving spatio-temporal smoothness constraint.
In order to allow for large displacements, linearisations in the two data terms are
strictly avoided. We present a consistent numerical schemebased on two nested
fixed point iterations. By proving that this scheme implements a coarse-to-fine
warping strategy, we give a theoretical foundation for warping which has been
used on a mainly experimental basis so far. Our evaluation demonstrates that the
novel method gives significantly smaller angular errors than previous techniques
for optical flow estimation. We show that it is fairly insensitive to parameter vari-
ations, and we demonstrate its excellent robustness under noise.

1 Introduction

Optical flow estimation is still one of the key problems in computer vision. Estimating
the displacement field between two images, it is applied as soon as correspondences
between pixels are needed. Problems of this type are not onlyrestricted to motion esti-
mation, they are also present in a similar fashion in 3D reconstruction or image registra-
tion. In the last two decades the quality of optical flow estimation methods has increased
dramatically. Starting from the original approaches of Horn and Schunck [11] as well
as Lucas and Kanade [15], research developed many new concepts for dealing with
shortcomings of previous models. In order to handle discontinuities in the flow field,
the quadratic regulariser in the Horn and Schunck model was replaced by smoothness
constraints that permit piecewise smooth results [1, 9, 19,21, 25]. Some of these ideas
are close in spirit to methods for joint motion estimation and motion segmentation [10,
17], and to optical flow methods motivated from robust statistics where outliers are pe-
nalised less severely [6, 7]. Coarse-to-fine strategies [3,7, 16] as well as non-linearised
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models [19, 2] have been used to tackle large displacements.Finally, spatio-temporal
approaches have ameliorated the results simply by using theinformation of an addi-
tional dimension [18, 6, 26, 10].
However, not only new ideas have improved the quality of optical flow estimation tech-
niques. Also efforts to obtain a better understanding of what the methods do in detail,
and which effects are caused by changing their parameters, gave an insight into how
several models could work together. Furthermore, variational formulations of models
gave access to the long experience of numerical mathematicsin solving partly diffi-
cult optimisation problems. Finding the optimal solution to a certain model is often not
trivial, and often the full potential of a model is not used because concessions to imple-
mentation aspects have to be made.
In this paper we propose a novel variational approach that integrates several of the be-
fore mentioned concepts and which can be minimised with a solid numerical method. It
is further shown that a coarse-to-fine strategy using the so-called warping technique [7,
16], implements the non-linearised optical flow constraintused in [19, 2] and in image
registration. This has two important effects: Firstly, it becomes possible to integrate the
warping technique, which was so far only algorithmically motivated, into a variational
framework. Secondly, it shows a theoretically sound way of how image correspondence
problems can be solved with an efficient multi-resolution technique. It should be noted
that – apart from a very nice paper by Lefébure and Cohen [14]– not many theoretical
results on warping are available so far.
Finally, the grey value constancy assumption, which is the basic assumption in opti-
cal flow estimation, is extended by a gradient constancy assumption. This makes the
method robust against grey value changes. While gradient constancy assumptions have
also been proposed in [23, 22] in order to deal with the aperture problem in the scope
of a local approach, their use within variational methods isnovel.
The experimental evaluation shows that our method yields excellent results. Compared
to those in the literature, their accuracy is always significantly higher, sometimes even
twice as high as the best value known so far. Moreover, the method proved also to be
robust under a considerable amount of noise and computationtimes of only a few sec-
onds per frame on contemporary hardware are possible.

Paper organisation.In the next section, our variational model is introduced, first by
discussing all model assumptions, and then in form of an energy based formulation.
Section 3 derives a minimisation scheme for this energy. Thetheoretical foundation of
warping methods as a numerical approximation step is given in Section 4. An experi-
mental evaluation is presented in Section 5, followed by a brief summary in Section 6.

2 The Variational Model

Before deriving a variational formulation for our optical flow method, we give an intu-
itive idea of which constraints in our view should be included in such a model.

– Grey value constancy assumption.
Since the beginning of optical flow estimation, it has been assumed that the grey
value of a pixel is not changed by the displacement.

I(x, y, t) = I(x+ u, y + v, t+ 1) (1)



HereI : Ω ⊂ R
3 → R denotes a rectangular image sequence, andw := (u, v, 1)⊤

is the searched displacement vector between an image at timet and another image
at timet+ 1. The linearised version of the grey value constancy assumption yields
the famous optical flow constraint [11]

Ixu+ Iyv + It = 0 (2)

where subscripts denote partial derivatives. However, this linearisation is only valid
under the assumption that the image changes linearly along the displacement, which
is in general not the case, especially for large displacements. Therefore, our model
will use the original, non-linearised grey value constancyassumption (1).

– Gradient constancy assumption.
The grey value constancy assumption has one decisive drawback: It is quite suscep-
tible to slight changes in brightness, which often appear innatural scenes. There-
fore, it is useful to allow some small variations in the grey value and help to de-
termine the displacement vector by a criterion that is invariant under grey value
changes. Such a criterion is the gradient of the image grey value, which can also be
assumed not to vary due to the displacement [23]. This gives

∇I(x, y, t) = ∇I(x+ u, y + v, t+ 1). (3)

Here∇ = (∂x, ∂y)
⊤ denotes the spatial gradient. Again it can be useful to refrain

from a linearisation. The constraint (3) is particularly helpful for translatory motion,
while constraint (2) can be better suited for more complicated motion patterns.

– Smoothness assumption.
So far, the model estimates the displacement of a pixel only locally without taking
any interaction between neighbouring pixels into account.Therefore, it runs into
problems as soon as the gradient vanishes somewhere, or if only the flow in normal
direction to the gradient can be estimated (aperture problem). Furthermore, one
would expect some outliers in the estimates. Hence, it is useful to introduce as a
further assumption the smoothness of the flow field. This smoothness constraint
can either be applied solely to the spatial domain, if there are only two frames
available, or to the spatio-temporal domain, if the displacements in a sequence of
images are wanted. As the optimal displacement field will have discontinuities at
the boundaries of objects in the scene, it is sensible to generalise the smoothness
assumption by demanding apiecewise smoothflow field.

– Multiscale approach.
In the case of displacements that are larger than one pixel per frame, the cost func-
tional in a variational formulation must be expected to be multi-modal, i.e. a min-
imisation algorithm could easily be trapped in a local minimum. In order to find the
global minimum, it can be useful to apply multiscale ideas: One starts with solv-
ing a coarse, smoothed version of the problem by working on the smoothed image
sequence. The new problem may have a unique minimum, hopefully close to the
global minimum of the original problem. The coarse solutionis used as initiali-
sation for solving a refined version of the problem until stepby step the original
problem is solved. Instead of smoothing the image sequence,it is more efficient to



downsample the images respecting the sampling theorem, so the model ends up in
a multiresolution strategy.

With this description, it is straightforward to derive an energy functional that penalises
deviations from these model assumptions. Letx := (x, y, t)⊤ andw := (u, v, 1)⊤.
Then the global deviations from the grey value constancy assumption and the gradient
constancy assumption are measured by the energy

EData(u, v) =

∫

Ω

(

|I(x+w)− I(x)|2 + γ|∇I(x+w)−∇I(x)|2
)

dx (4)

with γ being a weight between both assumptions. Since with quadratic penalisers, out-
liers get too much influence on the estimation, an increasingconcave functionΨ(s2) is
applied, leading to a robust energy [7, 16]:

EData(u, v) =

∫

Ω

Ψ
(

|I(x +w)− I(x)|2 + γ|∇I(x+w)−∇I(x)|2
)

dx (5)

The functionΨ can also be applied separately to each of these two terms. We use the
functionΨ(s2) =

√
s2 + ǫ2 which results in (modified)L1 minimisation. Due to the

small positive constantǫ, Ψ(s) is still convex which offers advantages in the minimisa-
tion process. Moreover, this choice ofΨ does not introduce any additional parameters,
sinceǫ is only for numerical reasons and can be set to a fixed value, which we choose
to be0.001.
Finally, a smoothness term has to describe the model assumption of a piecewise smooth
flow field. This is achieved by penalising the total variationof the flow field [20, 8],
which can be expressed as

ESmooth(u, v) =

∫

Ω

Ψ
(

|∇3u|2 + |∇3v|2
)

dx. (6)

with the same function forΨ as above. The spatio-temporal gradient∇3 := (∂x, ∂y, ∂t)
⊤

indicates that a spatio-temporal smoothness assumption isinvolved. For applications
with only two images available it is replaced by the spatial gradient.
The total energy is the weighted sum between the data term andthe smoothness term

E(u, v) = EData + αESmooth (7)

with some regularisation parameterα > 0. Now the goal is to find the functionsu and
v that minimise this energy.

3 Minimisation

3.1 Euler–Lagrange Equations

SinceE(u, v) is highly nonlinear, the minimisation is not trivial. For better readabil-
ity we define the following abbreviations, where the use ofz instead oft emphasises



that the expression isnot a temporal derivative but a difference that is sought to be
minimised.

Ix := ∂xI(x+w),
Iy := ∂yI(x+w),
Iz := I(x+w)− I(x),
Ixx := ∂xxI(x+w),
Ixy := ∂xyI(x+w),
Iyy := ∂yyI(x+w),
Ixz := ∂xI(x+w)− ∂xI(x),
Iyz := ∂yI(x+w)− ∂yI(x).

(8)

According to the calculus of variations, a minimiser of (7) must fulfill the Euler-Lagrange
equations

Ψ ′(I2z + γ(I2xz + I2yz)) · (IxIz + γ(IxxIxz + IxyIyz))

−α div
(

Ψ ′(|∇3u|2 + |∇3v|2)∇3u
)

= 0,

Ψ ′(I2z + γ(I2xz + I2yz)) · (IyIz + γ(IyyIyz + IxyIxz))

−α div
(

Ψ ′(|∇3u|2 + |∇3v|2)∇3v
)

= 0

with reflecting boundary conditions.

3.2 Numerical Approximation

The preceding Euler-Lagrange equations are nonlinear in their argumentw = (u, v, 1)⊤.
A first step towards a linear system of equations, which can besolved with common
numerical methods, is the use of fixed point iterations onw. In order to implement a
multiscale approach, necessary to better approximate the global optimum of the energy,
these fixed point iterations are combined with a downsampling strategy. Instead of the
standard downsampling factor of0.5 on each level, it is proposed here to use anarbi-
trary factorη ∈ (0, 1), what allows smoother transitions from one scale to the next1.
Moreover, the full pyramid of images is used, starting with the smallest possible im-
age at the coarsest grid. Letwk = (uk, vk, 1)⊤, k = 0, 1, . . ., with the initialisation
w

0 = (0, 0, 1)⊤ at the coarsest grid. Further, letIk∗ be the abbreviations defined in (8)
but with the iteration variablewk instead ofw. Thenwk+1 will be the solution of

Ψ ′((Ik+1
z )2 + γ((Ik+1

xz )2 + (Ik+1
yz )2)) · (IkxIk+1

z + γ(IkxxI
k+1
xz + IkxyI

k+1
yz ))

−α div
(

Ψ ′(|∇3u
k+1|2 + |∇3v

k+1|2)∇3u
k+1

)

= 0

Ψ ′((Ik+1
z )2 + γ((Ik+1

xz )2 + (Ik+1
yz )2)) · (Iky Ik+1

z + γ(IkyyI
k+1
yz + IkxyI

k+1
xz ))

−α div
(

Ψ ′(|∇3u
k+1|2 + |∇3v

k+1|2)∇3v
k+1

)

= 0.

(9)

As soon as a fixed point inwk is reached, we change to the next finer scale and use this
solution as initialisation for the fixed point iteration on this scale.

1 Since the grid size in both x- and y-direction is reduced byη, the image size in fact shrinks
with a factorη2 at each scale.



Notice that we have a fully implicit scheme for the smoothness term and a semi-implicit
scheme for the data term. Implicit schemes are used to yield higher stability and faster
convergence. However, this new system is still nonlinear because of the nonlinear func-
tion Ψ ′ and the symbolsIk+1

∗
. In order to remove the nonlinearity inIk+1

∗
, first order

Taylor expansions are used:

Ik+1
z ≈ Ikz + Ikxdu

k + Iky dv
k,

Ik+1
xz ≈ Ikxz + Ikxxdu

k + Ikxydv
k,

Ik+1
yz ≈ Ikyz + Ikxydu

k + Ikyydv
k,

whereuk+1 = uk + duk andvk+1 = vk + dvk. So we split the unknownsuk+1, vk+1

in the solutions of the previous iteration stepuk, vk and unknown incrementsduk, dvk.
For better readability let

(Ψ ′)kData := Ψ ′

(

(Ikz + Ikxdu
k + Iky dv

k)2

+ γ
(

(Ikxz + Ikxxdu
k + Ikxydv

k)2 + (Ikyz + Ikxydu
k + Ikyydv

k)2
)

)

,

(Ψ ′)kSmooth := Ψ ′(|∇3(u
k + duk)|2 + |∇3(v

k + dvk)|2),
(10)

where(Ψ ′)kData can be interpreted as a robustness factor in the data term, and (Ψ ′)kSmooth

as a diffusivity in the smoothness term. With this the first equation in system (9) can be
written as

0 = (Ψ ′)kData ·
(

Ikx
(

Ikz + Ikxdu
k + Iky dv

k
)

)

+ γ (Ψ ′)kData ·
(

Ikxx(I
k
xz + Ikxxdu

k + Ikxydv
k) + Ikxy(I

k
yz + Ikxydu

k + Ikyydv
k)
)

− α div
(

(Ψ ′)kSmooth∇3(u
k + duk)

)

, (11)

and the second equation can be expressed in a similar way. This is still a nonlinear
system of equations for a fixedk, but now in the unknown incrementsduk, dvk. As
the only remaining nonlinearity is due toΨ ′, andΨ has been chosen to be a convex
function, the remaining optimisation problem is a convex problem, i.e. there exists a
unique minimum solution.
In order to remove the remaining nonlinearity inΨ ′, a second, inner, fixed point iteration
loop is applied. Letduk,0 := 0, dvk,0 := 0 be our initialisation and letduk,l, dvk,l

denote the iteration variables at some stepl. Furthermore, let(Ψ ′)k,lData and(Ψ ′)k,lSmooth

denote the robustness factor and the diffusivity defined in (10) at iterationk, l. Then
finally the linear system of equations induk,l+1, dvk,l+1 reads

0 = (Ψ ′)k,lData ·
(

Ikx
(

Ikz + Ikxdu
k,l+1 + Iky dv

k,l+1
)

+ γIkxx(I
k
xz + Ikxxdu

k,l+1 + Ikxydv
k,l+1) + γIkxy(I

k
yz + Ikxydu

k,l+1 + Ikyydv
k,l+1)

)

− α div
(

(Ψ ′)k,lSmooth∇3(u
k + duk,l+1)

)

(12)

for the first equation. Using standard discretisations for the derivatives, the resulting
sparse linear system of equations can now be solved with common numerical methods,
such as Gauss-Seidel or SOR iterations. Expressions of typeI(x +w

k) are computed
by means of bilinear interpolation.



4 Relation to Warping Methods

Coarse-to-fine warping techniques are a frequently used tool for improving the perfor-
mance of optic flow methods [3, 7, 17]. While they are often introduced on a purely
experimental basis, we show in this section that they can be theoretically justified as a
numerical approximation.
In order to establish this relation, we restrict ourselves to the grey value constancy
model by settingγ = 0. Let us also simplify the model by assuming solely spatial
smoothness, as in [17]. Under these conditions, (11) can be written as

(Ψ ′)kData∇Ik(∇Ik)⊤
(

duk

dvk

)

− α

(

div
(

(Ψ ′)kSmooth∇(uk + duk)
)

div
(

(Ψ ′)kSmooth∇(vk + dvk)
)

)

= −(Ψ ′)kDataI
k
z∇Ik (13)

For a fixedk, this system is equivalent to the Euler–Lagrange equationsdescribed in
[17]. Also there, only the incrementsdu anddv between the first image and the warped
second image are estimated. The same increments appear in the outer fixed point iter-
ations of our approach in order to resolve the nonlinearity of the grey value constancy
assumption.This shows that the warping technique implements the minimisation of a
non-linearised constancy assumption by means of fixed pointiterations onw.
In earlier approaches, the main motivation for warping has been the coarse-to-fine strat-
egy. Due to solutionsu andv computed on coarser grids, only an incrementdu anddv
had to be computed on the fine grid. Thus, the estimates used tohave a magnitude of
less than one pixel per frame, independent of the magnitude of the total displacement.
This ability to deal with larger displacements proved to be avery important aspect in
differential optical flow estimation.
A second strategy to deal with large displacements has been the usage of the non-
linearised grey value constancy assumption [19, 2]. Here, large displacements are al-
lowed from the beginning. However, the nonlinearity results in a multi-modal func-
tional. In such a setting, the coarse-to-fine strategy is notonly wanted, but even nec-
essary to better approximate the global minimum. At the end,both strategies not only
lead to similar results. In fact, as we have seen above, they are completely equivalent.
As a consequence, the coarse-to-fine warping technique can be formulated as a sin-
gle minimisation problem, and image registration techniques relying on non-linearised
constancy assumptions get access to an efficient multiresolution method for minimising
their energy functionals.

5 Evaluation

For evaluation purposes experiments with both synthetic and real-world image data
were performed. The presented angular errors were computedaccording to [5].
Let us start our evaluation with the two variants of a famous sequence: theYosemitese-
quence with and without cloudy sky. The original version with cloudy sky was created
by Lynn Quam and is available atftp://ftp.csd.uwo.ca/pub/vision. It com-
bines both divergent and translational motion. The versionwithout clouds is available



Yosemite with clouds Yosemite without clouds
Technique AAE STD Technique AAE STD
Nagel [5] 10.22◦ 16.51◦ Juet al. [12] 2.16◦ 2.00◦

Horn–Schunck, mod. [5] 9.78◦ 16.19◦ Bab-Hadiashar–Suter [4] 2.05◦ 2.92◦

Uraset al. [5] 8.94◦ 15.61◦ Lai–Vemuri [13] 1.99◦ 1.41◦

Alvarezet al. [2] 5.53◦ 7.40◦ Our method (2D) 1.59◦ 1.39◦

Weickertet al. [24] 5.18◦ 8.68◦ Mémin–Pérez [16] 1.58◦ 1.21◦

Mémin–Pérez [16] 4.69◦ 6.89◦ Weickertet al. [24] 1.46◦ 1.50◦

Our method (2D) 2.46◦ 7.31◦ Farnebäck [10] 1.14◦ 2.14◦

Our method (3D) 1.94◦ 6.02◦ Our method (3D) 0.98◦ 1.17◦

Table 1.Comparison between the results from the literature with 100% density and our results for
theYosemitesequence with and without cloudy sky. AAE = average angular error. STD = standard
deviation. 2D = spatial smoothness assumption. 3D = spatio-temporal smoothness assumption.

athttp://www.cs.brown.edu/people/black/images.html.
Tab.1 shows a comparison of our results for both sequences tothe best results from
the literature. As one can see, our variational approach outperforms all other methods.
Regarding the sequence with clouds, we achieve results thatare more than twice as ac-
curate as all results from the literature. For the sequence without clouds, angular errors
below 1 degree are reached for the first time with a method thatoffers full density. The
corresponding flow fields presented in Fig.1 give a qualitative impression of these raw
numbers: They match the ground truth very well. Not only the discontinuity between
the two types of motion is preserved, also the translationalmotion of the clouds is esti-
mated accurately. The reason for this behaviour lies in our assumptions, that are clearly
stated in the energy functional: While the choice of the smoothness term allows discon-
tinuities, the gradient constancy assumption is able to handle brightness changes – like
in the area of the clouds.

Because of the presence of second order image derivatives inour energy functional, we
tested the influence of noise on the performance of our methodin the next experiment.
We added Gaussian noise of mean zero and different standard deviations to both se-
quences. The obtained results are presented in Tab.2. They show that our approach even
yields excellent flow estimates when severe noise is present: For the cloudy Yosemite
sequence, our average angular error for noise with standarddeviation 40 is better than
all results from the literature for the sequencewithoutnoise.

In a third experiment we evaluated the robustness of the freeparameters in our ap-
proach: the weightγ between the grey value and the gradient constancy assumption,
and the smoothness parameterα. Often an image sequence is preprocessed by Gaus-
sian convolution with standard deviationσ [5]. In this case,σ can be regarded as a third
parameter. We computed results with parameter settings that deviated by a factor 2 in
both directions from the optimum setting. The outcome listed in Tab. 3 shows that the
method is also very robust under parameter variations.



Yosemite with clouds Yosemite without clouds
σn AAE STD σn AAE STD
0 1.94◦ 6.02◦ 0 0.98◦ 1.17◦

10 2.50◦ 5.96◦ 10 1.26◦ 1.29◦

20 3.12◦ 6.24◦ 20 1.63◦ 1.39◦

30 3.77◦ 6.54◦ 30 2.03◦ 1.53◦

40 4.37◦ 7.12◦ 40 2.40◦ 1.71◦

Table 2. Results for theYosemitesequence with and without cloudy sky. Gaussian noise with
varying standard deviationsσn was added, and the average angular errors and their standard
deviations were computed. AAE = average angular error. STD =standard deviation.

Yosemite with clouds
σ α γ AAE

0.8 80 100 1.94
◦

0.4 80 100 2.10
◦

1.6 80 100 2.04
◦

0.8 40 100 2.67
◦

0.8 160 100 2.21
◦

0.8 80 50 2.07
◦

0.8 80 200 2.03
◦

Table 3.Parameter variation for our method with spatio-temporal smoothness assumption.

Although our paper does not focus on fast computation but on high accuracy, the im-
plicit minimisation scheme presented here is also reasonably fast, especially if the re-
duction factorη is lowered or if the iterations are stopped before full convergence. The
convergence behaviour and computation times can be found inTab. 4. Computations
have been performed on a 3.06 GHz Intel Pentium 4 processor executing C/C++ code.

For evaluating the performance of our method for real-worldimage data, theEttlinger
Tor traffic sequence by Nagel was used. This sequence consists of50 frames of size
512× 512. It is available athttp://i21www.ira.uka.de/image sequences/. In
Fig. 2 the computed flow field and its magnitude are shown. Our estimation gives
very realistic results, and the algorithm hardly suffers from interlacing artifacts that
are present in all frames. Moreover, the flow boundaries are rather sharp and can be
used directly for segmentation purposes by applying a simple thresholding step.

3D - spatio-temporal method
reduction outer fixed inner fixed SOR computation AAE
factorη point iter. point iter. iter. time/frame

0.95 77 5 10 23.4s 1.94
◦

0.90 38 2 10 5.1s 2.09
◦

0.80 18 2 10 2.7s 2.56
◦

0.75 14 1 10 1.2s 3.44
◦

Table 4.Computation times and convergence for Yosemite sequence with clouds.



Fig. 1. (a) Top left:Frame 8 of theYosemitesequence without clouds.(b) Top right:Correspond-
ing frame of the sequencewith clouds.(c) Middle left:Ground truth without clouds.(d) Middle
right: Ground truthwith clouds.(e) Bottom left:Computed flow field by our 3D method for the
sequence without clouds.(f) Bottom right:Ditto for the sequencewith clouds.

6 Conclusion

In this paper we have investigated a continuous, rotationally invariant energy functional
for optical flow computations based on two terms: a robust data term with a bright-
ness constancy and a gradient constancy assumption, combined with a discontinuity-
preserving spatio-temporal TV regulariser. While each of these concepts has proved



Fig. 2. (a) Left:Computed flow field between frame 5 and 6 of theEttlinger Tortraffic sequence.
(b) Right:Computed magnitude of the optical flow field.

its use before (see e.g. [22, 26]), we have shown that their combination outperforms
all methods from the literature so far. One of the main reasons for this performance is
the use of an energy functional withnon-lineariseddata term and our strategy to con-
sequently postpone all linearisations to thenumericalscheme:While linearisations in
the model immediately compromise the overall performance of the system, linearisa-
tions in the numerical scheme can help to improve convergence to the global minimum.
Another important result in our paper is the proof thatthe widely-used warping can
be theoretically justified as a numerical approximation strategy that does not influence
the continuous model. We hope that this strategy of transparent continuous modelling
in conjunction with consistent numerical approximations shows that excellent perfor-
mance and deeper theoretical understanding are not contradictive: They are nothing else
but two sides of the same medal.
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