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Abstract. In this paper we present a method for nonlinear diffusion of
matrix-valued data. We adapt this technique to the well-known linear
structure tensor in order to develop a new nonlinear structure tensor. It
is then used to improve the optic flow estimation methods of Lucas and
Kanade and its spatio-temporal variant of Bigün et al.. Our experiments
show that the nonlinear structure tensor leads to a better preservation
of discontinuities in the optic flow field.

1 Introduction

Nonlinear diffusion techniques have proved to be very useful for discontinuity-
preserving denoising of scalar and vector-valued data. Apart from very recent
work [10,12], however, not many attempts have been made to design diffusion
filters for matrix-valued data. One important representative of matrix-valued
data fields is the structure tensor (ST), a frequently used tool for corner detection
[3], texture [9] and image sequence analysis [2,5]. The conventional formulation
of the structure tensor uses Gaussian smoothing which is equivalent to linear
diffusion filtering. This is well-known to blur across data discontinuities.
The goal of the present paper is to formulate a nonlinear structure tensor

that respects discontinuities in the data. The nonlinear ST can be used in any
application working with the conventional linear ST. In our paper we focus on
its evaluation for estimating optic flow fields. The well-known optic flow method
of Lucas and Kanade [6] or its spatio-temporal counterpart by Bigün et al. [2]
use a linear ST that integrates across a neighborhood of a fixed size. The novel
nonlinear ST adapts this neighborhood to the data, preserving discontinuities in
the optic flow field.
Addressing these issues is the goal of the present paper. It is organized as

follows. In Section 2 we present our nonlinear diffusion method for the ST. In
Section 3 first the optic flow estimation method of Lucas and Kanade is briefly
reviewed. We then apply the nonlinear ST and present experimental results in
Section 4. The paper is concluded by a summary in Section 5.

Related Work. The approach of Tschumperlé and Deriche [10] uses space-
variant diffusion with a scalar-valued diffusivity. In contrast to our method with
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a diffusion tensor, it may be classified as isotropic. Furthermore it is not focusing
on the ST, but on diffusion tensor MRI. In the work of Weickert and Brox [12]
a general method for diffusing or regularizing matrix-valued data is proposed.
The present model differs from this work not only by the fact that the process is
specifically adapted to the ST, but also by its application to optic flow estima-
tion. In this sense our work is close in spirit to the interesting papers of Nagel
and Gehrke [8] and Middendorf and Nagel [7]. These authors use shape-adapted
Gaussians for designing structure tensors that average over regions with similar
grey values. While homogeneous Gaussian convolution and linear diffusion are
equivalent, it should be noted that this is no longer the case with space-variant
Gaussian smoothing and nonlinear diffusion. Since scalar-valued nonlinear dif-
fusion filters offer a sound mathematical underpinning, it appears promising to
investigate also a nonlinear diffusion formulation of the structure tensor.

2 Matrix-Valued Diffusion

Let us first illustrate the limitations of the conventional linear ST by an example.
Figure 1a shows a synthetic test image f which is distorted by Gaussian noise
with σ = 30. Figure 1b depicts the matrix product J0 = ∇f∇f� as a colored
orientation plot. The direction of the eigenvector to the largest eigenvalue of J0
is mapped to the hue value and the largest eigenvalue to the intensity value in
the HSI color model. The saturation value is set to its maximum.1

The linear ST Jρ can be seen in Figure 1c. It is derived from J0 by smoothing
each component by a Gaussian kernel with standard deviation ρ. This technique
closes structures of a certain scale very well. It also removes the noise appro-
priately. On the first glance surprising for a linear technique is the preservation
of orientation discontinuities. However, discontinuities in the magnitude are not
preserved causing object boundaries to dislocate.
This problem can be addressed by replacing the convolution with a Gaussian

kernel by a discontinuity preserving diffusion method. However, all capabilities of
the linear ST should remain. Therefore, we keep the diffusivity at its maximum
except at locations where discontinuities in the magnitude exist. This is done by
regarding J0 as initial matrix field that is evolved under the diffusion equation

∂tuij = div

(
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where the evolving matrix field uij(x, t) uses J0(x) as initial condition for t = 0.
The matrix D(A) = T (g(λi))T� is the diffusion tensor for A = T (λi)T� where
the last-mentioned expression denotes a principal axis transformation of A with
the eigenvalues λi as the elements of a diagonal matrix (λi) and the normalized
eigenvectors as the columns of the orthogonal matrix T .

1 A color version of this paper will be provided in the internet.
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Fig. 1. (a) Top left: Synthetic image with Gaussian noise. (b) Top right: J0 =
∇f∇f�. (c) Bottom left: Linear structure tensor Jρ with ρ = 3. (d) Bottom right:
Nonlinear structure tensor Jt with t = 12.5.

The diffusivity g(s2) is a decreasing function such as g(s2) = 1− e− 3.31488λ8

s8

with a contrast parameter λ. By ∇σ we denote the nabla operator where Gaus-
sian derivatives with standard deviation σ are used. For more detailed informa-
tion about diffusion equations in general we refer to [11].
On the first glance the fourth root in Eq. 1 seems to be quite arbitrary, but

there is a good motivation for it: For diffusion time t = 0 the structure tensor is

J0 =

(
f2

x fxfy

fxfy f2
y

)
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where subscripts denote partial derivatives. In this case we have
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This leads to the interpretation that the image gradient ∇f drives the diffusion.
Precisely speaking, this is only exactly the case for t = 0: The diffusivity is
adapted to the new structure tensor after each time step, therefore resulting in
a nonlinear diffusion process.
The nonlinear ST obtained by Equation 1 is depicted in Figure 1d. The result

is exactly what we expect from a nonlinear ST: While object boundaries are no
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longer dislocated, all positive properties of the linear ST remain valid. Noise is
removed, structures of a certain scale are closed and orientation discontinuities
are preserved. Although there are some additional parameters for the nonlinear
ST, they are not really a problem. The diffusion time t simply replaces the
scale parameter ρ of the linear ST. The other parameters, namely the diffusivity
function g(s2), its constrast parameter λ as well as the presmoothing parameter
σ, are very robust against variations and can be fixed, still yielding good results
for a whole set of input data.

3 Optic Flow Estimation

Before we test the performance of the new nonlinear structure tensor by applying
it to optic flow estimation, the classic estimation method of Lucas and Kanade
[6] using the linear ST is briefly reviewed.
Assuming that image structures do not alter their grey values during their

movement can be expressed by the optic flow constraint

fxu+ fyv + fz = 0. (4)

where subscripts denote partial derivatives. As this is only one equation for two
flow components the optic flow is not uniquely determined by this constraint
(aperture problem). A second assumption has to be made. Lucas and Kanade
proposed to assume the optic flow vector to be constant within some neighbor-
hood Bρ of size ρ. The optic flow in some point (x0, y0) can then be estimated
by the minimizer of the local energy function

E(u, v) =
1
2

∫
Bρ(x0,y0)

(fxu+ fyv + fz)2dxdy. (5)

A minimum (u, v) of E satisfies ∂uE = 0 and ∂vE = 0, leading to the linear
system ( ∫
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Instead of the sharp window Bρ often a convolution with a Gaussian kernel Kρ

is used yielding(
Kρ ∗ f2

x Kρ ∗ fxfy

Kρ ∗ fxfy Kρ ∗ f2
y

)(
u
v

)
=

(
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)
(7)

where the entries of the linear system are five of the components of the linear ST
Jρ. The linear system can be solved provided the system matrix is not singular.
Such singular matrices appear in regions where the image gradient vanishes.
They also appear in regions where the aperture problem remains present, leading
to the smaller eigenvalue of the system matrix being close to 0. In this case one



450 T. Brox and J. Weickert

may only compute the so-called normal flow (the optic flow component parallel
to the image gradient). Using sufficiently broad Gaussian filters, however, will
greatly reduce such singular situations. In these cases, one may obtain results
with densities close to 100 %. In order to improve the quality of the estimated
optic flow field, the density can be reduced by using the smaller eigenvalue of
the system matrix as confidence measure [1],
By replacing all spatial integrations in Equations 5–7 by spatio-temporal

integrations, one ends up with a method that is equivalent to the structure
tensor approach of Bigün et al. [2]. The spatio-temporal approach in general
yields better results than the spatial one.
The Gaussian convolution in the structure tensor methods of Lucas–Kanade

and Bigün is well known to be equivalent to linear diffusion filtering. With our
knowledge from Section 2 we may now introduce corresponding nonlinear ver-
sions of both techniques by replacing the linear ST in equation 7 by the non-
linear one. As mentioned above only the diffusion time is a critical parameter.
All results presented in the next section have been achieved with the diffusivity

function g(s2) = 1− e− 3.31488λ8

s8 , a contrast parameter λ = 0.1 and a regulariza-
tion parameter σ = 1.5. Only for the noise experiments in Table 2, we adapted
σ to the noise.

4 Results

A good image sequence to demonstrate the discontinuity preserving property of
the new technique is the Hamburg taxi sequence. In this scene there are four
moving objects: a taxi turning around the corner, a car moving to the right,
a van moving to the left and a pedestrian in the upper left2. Figure 2 shows
that using the linear structure tensor in the Lucas–Kanade method causes the
flow fields of moving objects to dislocate, whereas the nonlinear structure tensor
ensures that object boundaries are preserved in a better way. Like in Barron et
al. [1] the sequence was presmoothed along the time axis by a Gaussian kernel
with σ = 1.
In another experiment we used a synthetic street sequence3. For this sequence

created by Galvin et al. [4] the ground truth flow field is available. This enables
the computation of the average angular error between the estimated flow and the
ground truth flow field as a quantitative measure [1]. Table 1 shows the angular
errors of some algorithms from the literature as well as the linear and nonlinear
ST methods. A direct comparison between the angular errors of the method using
the linear ST and nonlinear ST respectively, quantifies the improvement achieved
with our new technique. It should be noted that the discontinuity locations
constitute only a small subset of the entire image. This explains an effect that
can be observed for all discontinuity preserving optic flow methods: Visually
significant improvements at edges can only lead to moderate improvements for
a global measure such as the average angular error.
2 The sequence is available from ftp:://csd.uwo.ca under the directory pub/vision
3 The sequence can be obtained from www.cs.otago.ac.nz/research/vision
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Fig. 2. Top left: Hamburg Taxi Sequence (Frame 9). Top right: Optic flow field
with the nonlinear ST. Bottom left: Flow magnitude with the linear ST. Bottom
right: Flow magnitude with the nonlinear ST.

Table 1. Street sequence. Comparison between the best results from the literature
and our results. AAE = average angular error.

Technique AAE Density
Camus [4] 13.69◦ 100%
Proesman et al. [4] 7.41◦ 100%
Weickert-Schnörr 2D [13] 6.62◦ 100%
Lucas-Kanade (2D) Linear 6.29◦ 100%
Lucas-Kanade (2D) Nonlinear 5.88◦ 100%
Bigün (3D) Linear 5.28◦ 100%
Bigün (3D) Nonlinear 5.14◦ 100%
Weickert-Schnörr 3D [13] 4.85◦ 100%
Uras et al. [4] 6.93◦ 54%
Horn-Schunck [4] 6.62◦ 46%
Singh [4] 6.18◦ 78%
Lucas-Kanade (2D) Linear 4.82◦ 52%
Lucas-Kanade (2D) Nonlinear 4.51◦ 53%
Bigün (3D) Linear 3.49◦ 58%
Bigün (3D) Nonlinear 3.30◦ 57%
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Fig. 3. Left: Detail from Street sequence (Frame 10, 150 × 150 pixels). Center:
Ground truth flow field. Right: Flow field with the nonlinear ST (3D).

Table 2. Street Sequence. Average angular errors for different noise levels (2D version,
100% density). σn denotes the standard deviation of the Gaussian noise.

σn linear ST nonlinear ST

0 6.29◦ 5.88◦

5 7.63◦ 7.33◦

10 10.93◦ 10.36◦

20 15.87◦ 14.79◦

Since the classic Lucas and Kanade technique using the linear ST is known
to be very robust against noise, we degraded the Street sequence by Gaussian
noise to test whether the nonlinear ST yields any drawbacks in this respect.
Table 2 demonstrates that our technique is superior to the original one even in
the presence of severe noise.

5 Conclusions

In this paper it was shown how new diffusion methods for matrix-valued data
can be used to construct a nonlinear structure tensor. We presented a special
diffusion method which keeps all the benefits of the conventional linear ST, but
tackles its problem of object delocalizations. Afterwards it was shown that the
nonlinear ST could serve to improve the classic optic flow estimation techniques
of Lucas and Kanade and of Bigün et al.. Our experiments revealed the su-
periority of the nonlinear ST to the conventional linear one. Moreover, also in
comparison to other estimation techniques our method performed competitive.
This supports the expectation that the nonlinear ST can also improve the results
of other methods where a linear ST is used.
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