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Abstract. In this paper we integrate colour, texture, and motion into a segmen-
tation process. The segmentation consists of two steps, which both combine the
given information: a pre-segmentation step based on nonlinear diffusion for im-
proving the quality of the features, and a variational framework for vector-valued
data using a level set approach and a statistical model to describe the interior
and the complement of a region. For the nonlinear diffusion we apply a novel
diffusivity closely related to the total variation diffusivity, but being strictly edge
enhancing. A multi-scale implementation is used in order to obtain more robust
results. In several experiments we demonstrate the usefulness of integrating many
kinds of information. Good results are obtained for both object segmentation and
tracking of multiple objects.

1 Introduction

Image segmentation is one of the principal problems in computer vision and has been
studied for decades. From recent approaches those using a variational framework are
very popular, because in such a framework it is possible to integrate many different
cues and models. One can integrate, for instance, boundary information, shape priors
as well as region information. Level set theory [12] provides an efficient possibility to
find a minimizer of such an energy.
In our paper an unsupervised approach will be proposed that does not depend on previ-
ously acquired information. The objective of such an unsupervised approach is to find
good segmentations in less difficult image scenes, in order to serve as a knowledge ac-
quisition method for a segmentation based on prior knowledge.
In order to succeed in this task it is necessary to use as much information of an image
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as possible. This importance to combine different cues in a segmentation algorithm has
also been stressed in the work of Malik et al. [10]. Consequently, we propose to use not
only the grey value of an image but also colour, texture, as well as motion information,
if they are available. The proposed framework based on the work in [19] allows to inte-
grate all this information.
However, the possibility to integrate different kinds of information is only one step.
Another question is how to acquire the information from the image. There is no such
problem when using only primary features like grey value or colour, but as soon as
secondary features like texture or motion are included, it is not obvious how to extract
them the best way. Recently a nonlinear version of the linear structure tensor from [6]
has been proposed [22]. Its suitability for texture discrimination is demonstrated in [18].
Considering motion, the optic flow is the principal method to integrate this information.
Due to the fact that structure tensor techniques are also useful for optic flow analysis
[2, 11], the nonlinear structure tensor can be applied here as well [4].
Since the features are often perturbed by noise or details that are useless for segmenta-
tion, a pre-processing step is very useful to obtain better results. Such a pre-processing
should meet the following requirements: It must remove the perturbations while not
loosing any important information. Moreover, like the segmentation, it should combine
all the given information. Finally, it should yield results that are already close to a seg-
mentation. Nonlinear diffusion is a well-suited technique to meet these requirements
[15]. In this context, we propose to use a new diffusivity that can especially meet the
last item.
As soon as motion information is used, it becomes obvious to perform not only seg-
mentation but also tracking. For our segmentation technique it is rather easy to track an
object once it has been detected. It becomes even possible to drop the assumption of
having only one object, and to perform simultaneous tracking of multiple objects.
The remainder of this paper is organized as follows. In the next section the acquisition
of the texture and motion features is briefly specified. Section 3 then describes how the
information is employed in the two parts of our technique. In Section 4 the method is
extended to tracking of multiple objects. In the succeeding section we show results of
our experiments. The paper is concluded by a summary as well as an outlook on future
work. A more detailed description and more experiments can be found in a research
report [3] available from the internet.

2 Information Extraction

Information extraction is only interesting for texture and motion, since the grey level
or colour information is already given by the image itself. For the acquisition of good
texture features the nonlinear structure tensor has been shown to be very powerful [18].
It will also be used here.
For optic flow estimation, we use a modification of the method from [4]. This technique
has two advantages: first, it induces only one smoothness parameter, and second it also
applies the nonlinear structure tensor, so it is in best accordance with the texture feature
acquisition. Thus, instead of the nonlinear structure tensor from [4], the slightly modi-
fied scheme described in [18] will be applied.



Provided all information is used, a feature vector with 8 components is considered, 3
colour channels (R, G, B), the optic flow componentsu andv computed with the above-
mentioned method, and 3 texture channels (

∑
i(Ii)2x,

∑
i(Ii)2y,

∑
i(Ii)x(Ii)y), wherei

denotes the colour channel and the other subscripts denote partial derivatives.

3 Integration of Cues

3.1 Integrating Cues for Joint Smoothing

For the joint smoothing of the extracted features we apply nonlinear vector-valued dif-
fusion. Nonlinear diffusion was introduced by Perona and Malik [15]. It was extended
to vector-valued data in [7] using

∂tui = div
(
g
( N∑

k=1

|∇uk|2
)
∇ui

)
i = 1, ..., N (1)

whereu is the evolving feature vector initialized by the previously extracted data, and
N is the number of feature channels. The decreasingdiffusivity functiong steers the
reduction of smoothing in the presence of discontinuities. Note thatg is the same for all
channels, so there is a joint smoothing taking the edge information of all channels into
account.
The choice of the diffusivity function is a critical point and mainly defines the behaviour
of the diffusion process. Since there are first derivatives in the feature vector, the fre-
quently used diffusivities with additional contrast parameters cause problems: Often
it is impossible to choose a good global contrast parameter, since the derivatives may
have responses of very different magnitude. A diffusivity without a contrast parameter
is used in the total variational (TV) flow [1], the diffusion filter corresponding to TV
regularization [20]. It leads to piecewise constant results removing oscillations and clos-
ing structures. However, TV flow is only one special representative of an entire family
of diffusivities having these properties:

g(|∇u|2) =
1

|∇u|p + ε
(2)

whereε is a small positive constant avoiding the diffusivity to become unbounded.
These diffusivities include TV flow forp = 1 and so-calledbalanced forward back-
ward diffusion[8] for p = 2. While TV flow is exactly the limit between forward and
backward diffusion, the diffusivities are strictly edge enhancing forp > 1. In the contin-
uous case, well-posedness questions for forward–backward diffusion are still unsolved,
but discretization has been shown to resolve this problem [21]. The results forp > 1
appear not only to be piecewise constant, they also have steep edges due to the edge en-
hancement. This is very useful for our application. The exact choice ofp is uncritical. It
specifies the ratio between edge enhancement and smoothing. As edge enhancement has
basically a positive effect for our application, it would be best to use largep. However,
this will considerably increase diffusion time necessary to obtain also an appropriate
smoothing effect. In our experimentsp = 1.6 turned out to be a good compromise.



3.2 Integrating Cues for Partitioning

Two-Region Partitioning. Assume the image to consist of only two regions: the object
region and the background region. Then a segmentation splits the image domainΩ into
two disjoint regionsΩ1 andΩ2, where the elements ofΩ1 andΩ2 respectively are not
necessarily connected. Letu : Ω → RN be the computed features of the image and
pij(x) the conditional probability density function of a valueuj(x) to be in regionΩi.
Assuming all partitions to be equally probable and the pixels within each region to be
independent, the segmentation problem can be formulated as an energy minimization
problem following the idea ofgeodesic active regions[14, 19]:

E(Ωi, pij) = −
N∑

j=1

(∫
Ω1

log p1j(uj(x))dx +
∫

Ω2

log p2j(uj(x))dx

)
i = 1, 2.

(3)
For minimizing this energy alevel set functionis introduced. LetΦ : Ω → R be the
level set function withΦ(x) > 0 if x ∈ Ω1, andΦ(x) < 0 if x ∈ Ω2. The zero-
level line of Φ is the searched boundary between the two regions. We also introduce
the regularized heaviside functionH(s) with lims→−∞H(s) = 0, lims→∞H(s) = 1,
andH(0) = 0.5. Furthermore, letχ1(s) = H(s) andχ2(s) = 1 − H(s). Moreover,
we add a regularization term on the length of the interface∂Ω between the two regions
Ω1 andΩ2. Such a regularization can be expressed using the level set representation;
see [23] for details. This allows to formulate a continuous form of the above-mentioned
energy functional:

E(Φ, pij) = −
2∑

i=1

N∑
j=1

(∫
Ω

log pij(uj)χi(Φ)dx

)
+ α

∫
Ω

|∇H(Φ)|dx (4)

The minimization of this energy can be performed using the following gradient descent:

∂tΦ = H ′(Φ)
( N∑

j=1

log
p1j(uj)
p2j(uj)

+ α div
∇Φ

|∇Φ|

)
(5)

whereH ′(s) is the derivative ofH(s) with respect to its argument.

PDF Approximations. The variational framework still lacks the definition of the prob-
ability density function (PDF). A reasonable choice is a Gaussian function. Assumed
there is no useful correlation between the feature channels, this yields two parameters
for the PDF of each regioni and channelj: the meanµij and the standard deviation
σij . Although reasonable, choosing a Gaussian function as PDF is not the only possible
solution. Kim et al. [9] proposed nonparametric Parzen density estimates instead. Using
discrete histograms this approach comes down to smoothing the histograms computed
for each regioni and channelj by a Gaussian kernel.
Given the probability densities, the energy can be minimized with respect toΦ using
the gradient descent in Eq. 5. Thus the segmentation process works according to the
expectation-maximationprinciple [5] with some initial partitioning(Ω1, Ω2). The non-
parametric PDF estimate is much more powerful in describing the statistics within the



regions than the Gaussian approximation. Although this yields best usage of the given
information, it results in more local minima in the objective function and makes it more
dependent on the initialization. This problem can be addressed by applying the basic
idea of deterministic annealing [16, 17] using a Gaussian function in the first run to get
close to the global minimum of the objective function. Then a second run of the mini-
mization process will finally result in this global minimum or a local minimum that is
very close to this global minimum. Although there exist counter-examples where this
approach will fail, the heuristic works very well in most cases.
In order to further increase the robustness of our approach, we used a multi-scale im-
plementation: the data from a finer scale is downsampled and serves as input for a
segmentation at a coarser scale. This segmentation is then used to initialize the segmen-
tation of the finer scale. This eases the problem of local minima. Two levels were used
for our experiments.
In the variational formulation, we did not mention which information each channel con-
tained. This general framework permits to combine any kind of information as we will
see in the experiments.

4 Extension to Tracking

One of several applications for the segmentation approach described in the preceding
sections is the tracking of moving objects. Since it becomes possible to employ not only
the optic flow to follow the objects but also other information, the tracking is expected
to be more reliable than with techniques based only on optic flow. In [13] and [19] it
has already been demonstrated that it is possible to apply segmentation to tracking. In
this section that approach will be combined with the classic idea of tracking using optic
flow. Both vector components of the optic flow are used as features.
To allow the tracking of multiple objects, the variational formulation must be slightly
modified. First, we suppose the positions of each of the moving objects to be known
in the first frame. To each of these moving objects a level set functionΦk is assigned,
with k = 1, ...,M andM being the total number of detected objects. We denote byB
the static part of the image (which corresponds to the background of the scene) and by
pB the corresponding probability density function. This region is defined as the region
where all the level set functions are negative. The global energy is defined as follows:

E =
∫

Ω

M∑
k=1

(
−

N∑
j=1

log pkj︸ ︷︷ ︸
ek

H(Φk) + α|∇H(Φk)|

)
−

N∑
j=1

log pBj︸ ︷︷ ︸
eB

χB (6)

Note that theχ function for the backgroundχB =
∏M

l=1(1 − H(Φl)) also affects
the estimation of the PDFs. The minimization of the new energy leads to the revised
gradient descent

∂tΦk = −H ′(Φk)
(
ek − eB

∏
l 6=k

(1−H(Φl))− α div
∇Φk

|∇Φk|

)
. (7)



5 Results

The performance of our approach was tested with a number of real-world images. For
more examples we refer to [3].
First we used static images without motion information to combine texture and colour.
Two results are shown in Fig. 1. In Fig. 1a the level set initialization used for all our
experiments is depicted. Fig. 2 demonstrates the importance to use all available infor-
mation for some images. The correct result can only be obtained by using both texture
and colour information.
Colour information and optic flow magnitude were integrated on a sequence where a
hand is moving in front of a complicated background (Fig. 3). Despite camera noise we
obtain a good detection of the hand. Only a small region corresponding to the shadow
is merged with the moving object in some frames.
To illustrate the capacities of the tracking method in Section 4, we applied it on the
tracking of three players in a soccer sequence with moving camera (Fig. 4). Note that
the players are relatively small and close to each other. The tracking initialization is
done by clicking on the players we want to track. The results look very promising.

6 Conclusions

We have presented an unsupervised segmentation framework that can incorporate many
different kinds of information. It has been possible to integrate colour, texture, and mo-
tion. The way to compute the features, the coupled nonlinear diffusion with a novel
diffusivity, as well as the statistical region model and a multiscale implementation are
responsible for the good results. Our approach uses jointly different cues in both parts
of the method. Like humans do when analysing a scene, we tried to extract many kinds
of information and integrated them in a general framework.
In several experiments it has been shown that our method works very well with all
images that are in accordance with our model assumptions. In natural images such as-
sumptions can sometimes be violated. In order to be able to deal also with such images,
the assumption of having only two regions has to be dropped. A good solution for
this problem will be a very challenging topic for future research. We also think that it
could be advantageous to combine our unsupervised technique with learning techniques
known from supervised approaches.
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