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Abstract. Modelling the morphological processes of dilation and ero-
sion with convex structuring elements with partial differential equations
(PDEs) allows for digital scalability and subpixel accuracy. However,
numerical schemes suffer from blur by dissipative artifacts. In our paper
we present a family of so-called flux-corrected transport (FCT) schemes
that addresses this problem for arbitrary convex structuring elements.
The main characteristics of the FCT-schemes are: (i) They keep edges
very sharp during the morphological evolution process, and (ii) they fea-
ture a high rotational invariance. Numerical experiments with diamonds
and ellipses as structuring elements show that FCT-schemes are superior
to standard schemes in the field of PDE-based morphology.

1 Introduction

Mathematical morphology is concerned with the analysis of shapes. Beginning
with the works of Serra and Matheron [1, 2], it has evolved to a highly suc-
cessful field in image processing. Many monographs and conference proceedings
document this development, see e.g. [4, 6, 8, 18] and [17, 21, 22, 25], respectively.

In mathematical morphology two fundamental operations are employed, di-
lation and erosion. Many other morphological processes such as openings, clos-
ings, top hats and morphological derivative operators can be derived from them.
While dilation/erosion are frequently realised using a set-theoretical framework,
an alternative formulation is available via partial differential equations (PDEs)
[10, 11, 13, 14, 15]. Compared to the set-theoretical approach, the latter offers
the conceptual advantages of digital scalability and subpixel accuracy. How-
ever, a usual drawback of PDE-based algorithms is that they introduce blur-
ring artefacts, especially at edges of dilated/eroded objects. In this paper we
are addressing this problem by dealing with the proper numerical realisation
of PDE-based dilation and erosion for general structuring elements. We show
how a flux-corrected transport (FCT) scheme that gives a sharp resolution of
dilated/eroded object edges combined with a high-rotational invariance can be
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used. It is not only easy to implement, but we also show in numerical experiments
that it outperforms other schemes for PDE-based morphology.

Mathematical Formulation of Dilation and Erosion. Let us consider a
grey-value image f : Ω ⊂ IR2 → IR and a so-called structuring element B ⊂
IR2. The building blocks of morphological filters, dilation and erosion, are then
defined by

dilation: (f ⊕ B) (x) := sup {f(x−z), z∈B}, (1)
erosion: (f � B) (x) := inf {f(x+z), z∈B}. (2)

Dilation/erosion are often realised in a set-theoretical framework. To this end,
the structuring elements are given by masks defined in accordance to the dis-
crete pixel grid in an image. For convex structuring elements, there exists an
alternative formulation of dilation/erosion in terms of PDEs that guarantee the
validity of the semigroup property of dilation/erosion operations [14, 15, 10, 11].
Here, a scaling parameter t > 0 is introduced within the structuring element
which is then given as tB, achieving digital scalability. Especially, in Paragraph
4.2 of [14] it was shown that dilation/erosion can be realised by solving the PDEs

dilation: ∂tu(x, t) = sup
z∈B

〈z,∇u(x, t)〉, (3)

erosion: ∂tu(x, t) = inf
z∈B

〈z,∇u(x, t)〉, (4)

respectively. In (3)-(4), ∇ = (∂x, ∂y)� is the spatial nabla operator, and 〈a,b〉
denotes the Euclidean product of the vectors a and b. Interpreting the scaling
parameter t as an artificial time, the given image f serves as the initial condition
for the temporal evolution described by the PDEs (3)-(4). As we deal with rect-
angular images of finite size, we also need to define boundary conditions. Thus,
we employ homogeneous Neumann boundary conditions at the image boundary
∂Ω, complementing the PDE-based problem description.

Set-Theoretical vs. PDE-Based Approach. As already mentioned, the
PDE-based approach offers the advantages of digital scalability and subpixel
accuracy compared to the set-theoretical formulation, while the PDE-based al-
gorithms usually introduce blurring of edges. Let us note in addition, that round
structuring elements such as circles or ellipses can not be represented conve-
niently in the set-theoretical approach, and they typically do not define a granu-
lometric family [18]. Thus, conceptually the PDE-based approach is favourable.

Numerical Schemes. Let us first briefly comment on the nature of the evo-
lutionary PDEs (3)-(4). By the first-order spatial derivatives these PDEs are
hyperbolic, describing a wave propagation or transport behaviour, in analogy to
Huygens’ principle. Thereby, the shape of the evolving wavefront is determined
by the shape of the scalable structuring element.

Thus, given the hyperbolic character of the dilation/erosion PDEs (3)-(4),
it is natural that techniques from hyperbolic conservation laws are of impor-
tance for this work; see e.g. [23] for a general discussion of numerical methods
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for hyperbolic PDEs. In the context of dilation/erosion, popular schemes are the
Osher-Sethian (OS) schemes [24,9,20] and the Rouy-Tourin (RT) scheme [12,19].
In particular, let us note that one of the mentioned OS-schemes is a second-order
high-resolution method. The use of a comparable high-resolution ansatz, specifi-
cally an essentially non-oscillatory (ENO) approach, was reported in [16]. In [26],
Breuß and Weickert constructed a FCT-scheme for performing dilation/erosion
with a disc of radius t as structuring element.

Our Contribution. We extend the applicability of the FCT-scheme introduced
in [26] from discs to general structuring elements. As it turns out, this is feasible
but involves technical difficulties, especially for the case of general ellipses as
structuring elements we discuss here in detail. We validate experimentally that
the attractive features discussed in [26], namely a sharp resolution of edges and
high rotational invariance, do carry over to the general case. In order to com-
pare the performance of the FCT-scheme to set-theoretical algorithms, we use
a diamond-shaped structuring element. For a comparison relying completely on
digitally scalable structuring elements, we use an ellipse as structuring element.
We show experimentally that the FCT-scheme gives much more accurate results
than other PDE-based schemes.

Paper Organisation. In Section 2, we briefly introduce classic numerical
schemes important in this paper for the case of a diamond as structuring el-
ement. We also construct the FCT-scheme for the same structuring element
there. After that, we elaborate in Section 3 on the FCT-construction for ellipses
as structuring element. In Section 4, we present numerical results. The paper is
finished by a conclusion and outlook in Section 5.

2 PDE-Based Algorithms for Diamonds

For the sake of brevity, we discuss only dilation in detail, as the corresponding
scheme for erosion is easily obtained. Employing the structuring element

B :=
{
z ∈ IR2, ‖z‖1 ≤ 1

}
, (5)

the sought PDE (3) describing specifically dilation with a diamond is based on
the dual norm to the norm used in (5). It reads as

∂tu = ‖∇u‖∞ , (6)

where ‖∇u‖∞ = max (|∂xu| , |∂yu|). Now, we need to discretise the PDE (6). For
this, we define a spatio-temporal grid with uniform mesh widths hx, hy and τ ,
respectively. For the formulae of numerical schemes, let us then introduce the
notation Un

i,j via
Un

i,j ≈ u (ihx, jhy, nτ) . (7)

Also, for writing down our schemes let us define the following finite difference
operators:
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right-sided: Dx
+Un

i,j := Un
i+1,j − Un

i,j , (8)
left-sided: Dx

−Un
i,j := Un

i,j − Un
i−1,j , (9)

central: Dx
c Un

i,j := Un
i+1,j − Un

i−1,j . (10)

In an analogous fashion, we use corresponding finite difference operators Dy
+,

Dy
− and Dy

c for the y-direction.

2.1 The High-Resolution Osher-Sethian-Scheme

In what follows, we will refer to this method as the OS-scheme, as its simpler,
first-order variant will not be considered here. For its definition, we employ
the minmod-function (as it gives back the minimal modulus of its arguments)
given as

mm(a, b) :=

⎧
⎨

⎩

min (a, b) if a > 0 and b > 0 ,
max (a, b) if a < 0 and b < 0 ,

0 else .
(11)

To keep the presentation of the OS-scheme short, let us define the following
discrete derivative operators:

δOS−
x Un

i,j :=
1
hx

min
(

Dx
−Un

i,j +
1
2
mm

(
Dx

−Dx
+Un

i,j , Dx
−Dx

−Un
i,j

)
, 0

)
, (12)

δOS+
x Un

i,j :=
1
hx

max
(

Dx
+Un

i,j −
1
2
mm

(
Dx

+Dx
+Un

i,j, Dx
−Dx

+Un
i,j

)
, 0

)
, (13)

and we set analogously δOS−
y Un

i,j and δOS+
y Un

i,j . Let us note that the basic idea
behind the construction within (12)-(13) is to augment the first-order derivatives
Dx

−Un
i,j and Dx

+Un
i,j by a higher-order correction given in terms discrete second-

order derivatives. For a compact notation, let us then set

L (Un, i, j) := max
(∣∣δOS−

x Un
i,j

∣
∣ +

∣
∣δOS+

x Un
i,j

∣
∣ ,

∣
∣δOS−

y Un
i,j

∣
∣ +

∣
∣δOS+

y Un
i,j

∣
∣) , (14)

which realises the maximum norm on the discrete level. Let us briefly comment
on the ’double’ contributions of the discretised derivatives in (14), for instance in
x-direction:

∣
∣δOS−

x Un
i,j

∣
∣ +

∣
∣δOS+

x Un
i,j

∣
∣. For a strictly monotone grey-value profile

in the points incorporating the indices i − 1, i, i + 1, there will only be one non-
zero contribution from one of the summands; the other one will be zero. That
is determined by the sign of the slope in a strictly monotone profile. Only at a
local minimum Un

i,j , both summands could be non-zero.
The OS-scheme is a second-order high-resolution scheme. As such, we need to

employ a second-order time stepping scheme, for which we choose the well-known
method of Heun which is a two-stage Runge-Kutta method [7]:

Ūn+1
i,j = Un

i,j + τ L (Un, i, j)

Un+1
i,j =

1
2
Un

i,j +
1
2
Ūn+1

i,j +
τ

2
L

(
Ūn+1, i, j

)
. (15)
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2.2 The FCT-Scheme

Like the OS-scheme, the FCT-scheme is a predictor-corrector method. However,
while this format arises in the case of the OS-scheme by use of a Runge-Kutta
method for time integration, the FCT-construction works differently. As a pre-
dictor step, a first-order scheme is used for wave propagation. Thus, by the
first-order error the predictor features desirable theoretical properties but also
introduces much artificial dissipation. Then, by taking into account the so-called
viscosity form of the predictor scheme, the dissipation can be quantified on a dis-
crete level and is negated in a second step using stabilised inverse diffusion [27].
For details we refer to [26]. Let us note that the basic idea to negate dissipation
by a corrector step was invented by Boris and Book [3,5]. However, the corrector
step was realised technically quite differently in their original works. Following
their procedure would lead to a different (and less attractive) scheme than with
the approach followed here.

As a predictor step we use the dissipative scheme proposed by Rouy and
Tourin [12]. In order to write this down, we use the abbreviation

δRT
x Un

i,j := max
(

1
hx

max
(−Dx

−Un
i,j , 0

)
,

1
hx

max
(
Dx

+Un
i,j , 0

)
)

, (16)

and δRT
y Un

i,j is used accordingly. Then the RT-scheme is in our case defined as

Ūn+1
i,j = Un

i,j + τ max
( ∣
∣δRT

x Un
i,j

∣
∣ ,

∣
∣δRT

y Un
i,j

∣
∣ ) . (17)

The FCT scheme then consists of a subsequent application of (17) and a corrector
step negating the artificial dissipation of the RT scheme, reading in total as

Ūn+1
i,j = Un

i,j + τ max
( ∣
∣δRT

x Un
i,j

∣
∣ ,

∣
∣δRT

y Un
i,j

∣
∣ )

Un+1
i,j = Ūn+1

ij + Ch

(
Ūn+1

) − Cd

(
Ūn+1

)
. (18)

Let us consider the corrector step and especially the functions Ch (’h’ for high-
order part) and Cd (’d’ for dissipative part) in some detail.

As indicated, the first step of the FCT procedure is to split the dissipative
part of the scheme from the non-dissipative second-order part. The latter part
of the scheme can be described via central differences as in (10), since central
differences do not feature dissipation in the leading-order part of the truncation
error. Thus, the discretisation of the dilation PDE (6) using central differences
only,

Ūn+1
i,j = Un

ij + max
( ∣

∣
∣
∣

τ

2hx
Dx

c Un
i,j

∣
∣
∣
∣ ,

∣
∣
∣
∣

τ

2hy
Dy

c Un
i,j

∣
∣
∣
∣

)
, (19)

incorporates no numerical dissipation in the approximation of spatial derivatives.
Employing predicted data as arguments in the formulae of the corrector step,

we can identify the high-order part within the predictor formula (which was
absent before adding it) as

Ch

(
Ūn+1

)
:= + max

( ∣
∣
∣∣

τ

2hx
Dx

c Ūn+1
i,j

∣
∣
∣∣ ,

∣
∣
∣∣

τ

2hy
Dy

c Ūn+1
i,j

∣
∣
∣∣

)
(20)
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by adding zero via adding/subtracting

max
( ∣

∣
∣
∣

τ

2hx
Dx

c Ūn+1
i,j

∣
∣
∣
∣ ,

∣
∣
∣
∣

τ

2hy
Dy

c Ūn+1
i,j

∣
∣
∣
∣

)
. (21)

Let us now stress that the remaining terms of the predictor formula plus the
contribution due to (20)-(21), with data Ūn+1 as arguments, define the discrete
dissipation Cd. However, since we want to subtract Cd in (18), we aim for a
backward dissipation. Thus, we need to stabilise this contribution with help of a
straightforward extension of the minmod-function from (11) to three arguments:

Gi+1/2,j := mm
(

Dx
−Ūn+1

i,j ,
τ

2hx
Dx

+Ūn+1
i,j , Dx

+Ūn+1
i+1,j

)
, (22)

Gi,j+1/2 := mm
(

Dy
−Ūn+1

i,j ,
τ

2hy
Dy

+Ūn+1
i,j , Dy

+Ūn+1
i,j+1

)
. (23)

Let us note that the left and right arguments in (22)-(23) are supposed to prevent
overshoots, while the middle argument is determined in accordance to (16). For
details concerning this procedure and an analysis of stabilised inverse diffusion,
see [26,27], respectively. For the dissipative correction term Cd

(
Ūn+1

)
we employ

the stabilised fluxes from (22)-(23), yielding

δbd
x Ūn+1

i,j :=
τ

2hx

∣
∣Dx

c Ūn+1
i,j

∣
∣ + Gi+1/2,j − Gi−1/2,j , (24)

δbd
y Ūn+1

i,j :=
τ

2hy

∣
∣Dy

c Ūn+1
i,j

∣
∣ + Gi,j+1/2 − Gi,j−1/2 , (25)

and finally:
Cd

(
Ūn+1

)
= max

( ∣
∣δbd

x Ūn+1
i,j

∣
∣ ,

∣
∣δbd

y Ūn+1
i,j

∣
∣ )

. (26)

3 The FCT-Scheme for General Ellipses

The key for obtaining dilation with a general ellipse is to consider the normal
form of an ellipse in the x-y-plane which can be written for our purpose as

a2x2 + b2y2 = 1 . (27)

This equation describes the location of the front of the solution of the evolution-
ary PDE

∂tu =
√

a2 (∂xu)2 + b2 (∂yu)2 (28)

at time t = 1, starting from the center (x, y)T = (0, 0)T . For a = b = 1, one
obtains a circle, retrieving a disc as structuring element.

Note that we should be able to handle a PDE like (28) easily, while implement-
ing directly an algorithm for ellipses with a general orientation of the principal
axis poses difficulties.

The General Idea. Let us briefly outline the procedure. In order to finally solve
the PDE (28), we collect, for each pixel individually, grey values from positions
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corresponding to a rotated grid. As these will not be located exactly at pixel
centers, they will in general not coincide with the given grey values and need to
be interpolated. With these interpolated data we solve pointwise the PDE (28).

Having thus described the general proceeding, we begin its realisation for gen-
eral ellipses as structuring elements by implementing a rotation of the coordinate
system. For a more detailed explanation of this, we need to fix some geometric
properties of the ellipse defining the structuring element. In order to simplify
the presentation, we set hx := hy := 1.

First, let us calibrate the length of the principal axis to 1, i.e. the final ellipse
is a subset of the unit disc. In order to use a PDE of the form of (28), we have
to rotate the grid. Let us note that for hx = hy = 1, all points within the stencil
of the Rouy-Tourin scheme (16)-(17) are on the unit sphere if we center this at
(ihx, jhy)T .

Then we rotate the local Euclidean coordinate system centered at (ihx, jhy)T

by an angle α with 0 ≤ α ≤ π/2. Making use of elementary trigonometry, the
values rotated now onto the knots of our finite difference stencil are grey values
from the points given by (cosαk, sin αk)T , αk := α + k · π

2 , k = 0, 1, 2, 3. Let us
note that in using this procedure, we effectively consider an ellipse where the
angle between x-axis and principal axis is −α.

Let us stress, that we can obtain via 0 ≤ α ≤ π/2 all possible ellipses, as we
can switch at any time the roles of a and b in (28) that define the principal axis.
It is just practical to impose 0 ≤ α ≤ π/2 since this helps to give a suitable
interpolation formula, which is the next step.

Obviously, we need at each pixel the grey values after rotation for defining
our finite difference scheme. We wish to achieve second-order accuracy because
the second-order high-resolution OS-scheme will serve as the comparison scheme
for the procedure. Thus, we use standard bilinear interpolation for this purpose
as the error of this approach is formally of the same order.

In order to show how the computation wroks, we now clarify the details for
the values in the first quadrant. As 0 ≤ α ≤ π/2, the grey value we need at the
knot ((i+1)hx, jhy)T is located at (cos α0, sin α0)T = (cos α, sin α)T . Because of
hx = hy = 1, we can use the general formula for bilinear interpolation of some
function g over the rectangle [0, 1] × [0, 1] reading as

g(x, y) ≈ g(0, 0)(1 − x)(1 − y) + g(1, 0)x(1 − y)
+g(0, 1)(1 − x)y + g(1, 1)xy , x, y ∈ [0, 1]. (29)

Plugging in our values within the first quadrant, we obtain the rotated grey
value Ũn

i+1,j as

Ũn
i+1,j := Un

i,j(1 − cosα)(1 − sin α) + Un
i+1,j cosα(1 − sin α)

+Un
i,j+1(1 − cosα) sin α + Un

i+1,j+1 cosα sin α . (30)

Analogously, we can compute the other members of our stencil after rotation of
our local coordinate system.
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The resulting formulae are:

Ũn
i,j := Un

i,j , (31)

Ũn
i,j+1 := Un

i,j(1 − cosα)(1 − sin α) + Un
i,j+1 cosα(1 − sin α)

+Un
i−1,j(1 − cosα) sin α + Un

i−1,j+1 cosα sin α , (32)

Ũn
i−1,j := Un

i,j(1 − cosα)(1 − sin α) + Un
i−1,j cosα(1 − sin α)

+Un
i,j−1(1 − cosα) sin α + Un

i−1,j−1 cosα sinα , (33)

Ũn
i,j−1 := Un

i,j(1 − cosα)(1 − sin α) + Un
i,j−1 cosα(1 − sin α)

+Un
i+1,j(1 − cosα) sin α + Un

i+1,j−1 cosα sin α . (34)

In terms of these values we now give the main formulae for the FCT-scheme.
Comparing especially with (18), (20) and (26) from Paragraph 2.2 shows what
needs to be done:

Ūn+1
i,j = Ũn

i,j + τ

√

a2
(
δRT
x Ũn

i,j

)2

+ b2
(
δRT
y Ũn

i,j

)2

Un+1
i,j = Ūn+1

ij + Ch

(
Ūn+1

) − Cd

(
Ūn+1

)
, (35)

with

Ch

(
Ūn+1

)
= +

τ

2hx

√
a2

(
Dx

c Ūn+1
i,j

)2
+ b2

(
Dy

c Ūn+1
i,j

)2
, (36)

Cd

(
Ūn+1

)
=

√
a2

(
δbd
x Ūn+1

i,j

)2
+ b2

(
δbd
y Ūn+1

i,j

)2
. (37)

Note that for the arguments of the minmod-function used within Cd

(
Ūn+1

)
, we

also need to compute rotated grey values Ũn+1
i±2,j±2 from the data set Ūn+1. This

can be done in the same fashion as in (30)-(34). Also note that because of the
callibration of ellipses, we always have in our experiments a = 1 and b ∈ [0, 1].

4 Numerical Experiments

The main disadvantage in using PDE-based algorithms is the occurence of dissi-
pative discretisation artefacts. The resulting blurring is especially observable at
edges of dilated/eroded objects.

The Diamond Experiment. In this experiment, we solve the dilation PDE (6),
comparing the FCT-scheme with the set-theoretical approach. For convenience,
we always employ hx = hy = 1.

For the fully discrete, set-theoretical approach, we employ the usual 5-point-
structuring element defined centered in (0, 0)T with vertices

(1, 0)T , (0, 1)T , (−1, 0)T , (0,−1)T . (38)

In Figure 1, we observe the outcome of this experiment, where we have inverted
the grey values. As input image, we use an image of size 129 × 129, where we
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Fig. 1. Comparison of dilation with a diamond using inverted grey values. Top. Left:
Initial image (a). Right: The set-based result (b). Bottom. Left: The FCT-result (c).
Right: Scaled difference (d). The average difference visualised in (d) is of the grey value
1.502.

have exactly one pixel in the center of the image which is dilated. We perform
100 time steps with τ = 0.5 for dilation with FCT, and 50 iterations with the
set-based algorithm, respectively.

We observe that the FCT-result (c) is visually nice, with sharp diamond edges.
Compared with the set-based result (b), we observe that there is some difference
at the edges, which can be seen in the scaled difference map (d). Note that the
average (unscaled) difference amounts to a grey value of 1.502. However, let us
also note that the solution of the PDE is digitally scalable, so that the set-based
solution is not intended to be the true solution of the dilation PDE.

The Ellipse Experiment. We now show computational results for ellipses as
structuring elements. In order to first give an impression of what quality one may
expect, we first consider an ellipse where the principal axis is aligned with the
grid. For this experiment, we define the structuring element via a = 1, b = 0.25,
compare (27). For the numerical experiment, we use τ = 0.5, and we perform
100 time steps. The results of the OS-scheme together with the result of the
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Fig. 2. Dilation comparison with inverted grey values. Left: OS-result (a). Right: FCT-
result (b).

Fig. 3. Dilation comparison with inverted grey values. Rotated ellipses with (top) α =
0.6 and (bottom) α = 0.9. Bilinear interpolation was used to rotate the grid in each
time step. Left column: OS-results. Right column: FCT-results.
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FCT-scheme are displayed in Figure 2. While the result of the OS-scheme is
quite blurry, we observe a mixed behaviour of the FCT-scheme. While the left
and right front travelling with the largest signal velocity in this example are
well-resolved, there is some blurring on the slow-moving upper and lower part
of the edge of the ellipse.

Let us now consider the rotated case employing bilinear interpolation. In a
setting analogous to the non-rotated case, but with a = 1, b = 0.25 and (a)
α = 0.6, (b) α = 0.9. We obtain the results displayed in Figure 3. We observe
that due to the interpolation there is some more blurring in using both schemes,
however, the general qualitative relationship between results of these schemes is
the same as in the non-rotated case.

5 Conclusion and Outlook

The main message of this paper is twofold:

– The FCT-methodology is readily applicable in the context of general struc-
turing elements. With the exception of suitable interpolation formulae, there
is no more technical effort than in the case of a disc-shaped structuring ele-
ment.

– The quality of FCT-results is better than the quality of results using other
schemes with respect to edge resolution.

The current paper represents one of the most advanced numerical approaches to
continuous-scale morphology. For our future work, we aim to improve the quality
of numerical schemes in this field even further.
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