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Can Variational Models for Correspondence Problems
Benefit from Upwind Discretisations?

Michael Breuß Henning Zimmer Joachim Weickert

Abstract

Optic flow and stereo reconstruction are important examples of

correspondence problems in computer vision. Correspondence prob-

lems have been studied for almost 30 years, and energy-based meth-

ods such as variational approaches have become popular for solving

this task. However, despite the long history of research in this field,

only little attention has been paid to the numerical approximation of

derivatives that naturally occur in variational approaches.

In this paper we show that strategies from hyperbolic numerics

can lead to a significant quality gain in computational results. Start-

ing from a basic formulation of correspondence problems, we take on

a novel perspective on the mathematical model. Switching the roles

of known and unknown with respect to image data and displacement

field, we use the arising hyperbolic colour equation as a basis for a

refined numerical approach. For its discretisation, we propose to use

one-sided differences in the correct direction identified via a smooth

predictor solution. The one-sided differences that are first-order ac-

curate are blended with higher-order central schemes. Thereby the

blending mechanism interpolates between the following two situations:

The one-sided method is employed at image edges which often coin-

cide with edges in the displacement field. In smooth image parts the

higher-order scheme is used. We apply our new scheme to several pro-

totypes of variational models for optic flow and stereo reconstruction,

where we achieve significant qualitative improvements compared to

standard discretisations.

1 Introduction

Numerous computer vision applications, such as optic flow [11] or stereo
reconstruction [14], require to solve a correspondence problem. This comes
down to computing a displacement field which is the mapping that matches
pixels of two given images. By use of the displacement field, non-trivial
information about the depicted scenes can be obtained. In image sequence
analysis the displacement field is called optic flow field and gives information
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about the apparent motion in a moving scene. In the stereo context, the
absolute value of vectors in this field is called disparity and is needed to
recover the depth information of a static scene. For an introduction to these
and other related computer vision topics, see e.g. [14, 27].

Variational Approaches. A successful class of techniques for solving cor-
respondence problems are variational approaches that find the displacement
field as the minimiser of an energy functional. Those methods have been
studied for almost three decades, starting from the optic flow approach of
Horn and Schunck [13]. During this period of time, many efforts have been
spent to improve the quality of models. Some influential publications can be
found in [3, 5, 6, 17, 19, 21, 24, 28, 29, 30, 33].
In order to apply such continuous-scale models to sampled digital images, one
has to discretise the occurring image derivatives. This task offers a certain
degree of freedom in the choice of the derivative approximation. Surprisingly,
this issue has hardly been studied for variational approaches to correspon-
dence problems. If the discretisation is discussed at all, most approaches
employ “standard” central finite difference approximations [3, 6, 33]. On
the other hand, for variational approaches to problems like image restora-
tion, more advanced approximation schemes have been considered for a long
time [18, 22].

Our Idea. In this paper we explore the use of sophisticated discretisations of
hyperbolic partial differential equations (HDEs), cf. [10, 15, 16, 26], that are
usually relevant for describing gas or fluid dynamics. We show that the ellip-
tic or parabolic PDEs arising in correspondence problems incorporate HDEs
by considering the physics behind a transport process: Given an initial den-
sity distribution (first image) and the velocity of transport (displacement),
one can compute the density distribution at a later time (second image).
One realises that the role of known and unknown is switched compared to
correspondence problems where the displacement is the unknown. This is a
novel perspective on variational approaches to correspondence problems.

Our Contribution in Detail. In this paper we make use of the mentioned
relation between HDEs and correspondence problems. Exchanging the roles
of known and unknown, we identify a hyperbolic colour equation as an im-
portant model component. This motivates us to consider one-sided upwind
discretisations of image derivatives, since these are known to be useful in the
context of HDEs. By a dedicated experiment in Section 3.2 we confirm that
they can help to improve the estimation of the displacement field.
In order to obtain a reasonable compromise between such a first-order up-
wind approach and a good quality approximation in smooth regions, we
borrow an idea from the numerics of HDEs: Like in so-called high-resolution
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schemes [15, 16, 26], we use low-order (upwind) difference approximations
of image derivatives at image discontinuities but rely on high-order (central)
differences in smooth regions. Note, that we only use the basic idea of the
high-resolution schemes to obtain an adaptive method. Our adaptation is
based on a smoothness measure that is specifically tailored to correspon-
dence problems. Also in the choice of the high-order scheme, our procedure
differs significantly from the usual high-resolution approach for HDEs.
Let us stress that our aim is not to contribute yet another state-of-the-art
model for solving correspondence problems, but to advocate more suitable
discretisations in order to obtain the best possible quality for a given model.
By studying several prototypes of variational frameworks for optic flow and
stereo reconstruction, we show that our approach can be beneficial for vari-
ational approaches to correspondence problems in general.

Related Work. Our paper is the first journal paper concerned with the
construction of a sophisticated numerical scheme for the hyperbolic colour
equation that appears in variational models for correspondence problems. In
this, we significantly extend our recent conference paper [32]. The most im-
portant extensions are: (i) We show a detailed experimental investigation of
the mechanism that leads to improved results. (ii) We give a thorough dis-
cussion of the low- and high-order discretisations of second-order and mixed
partial derivatives that appear in recent optic flow and stereo methods. (iii)
We give a much more detailed account of the hyperbolic colour equation
within variational models.

Paper Organisation. In Section 2 we sketch the basics of variational ap-
proaches to correspondence problems in computer vision. After that, we
discuss in Section 3 the arising hyperbolic colour equation and the effects of
several discretisations of it. We also introduce the new adaptive numerical
method there. In Section 4, we extend our approach to several prototypes of
correspondence problems. The paper is finished by conclusions in Section 5.

2 The Variational Approach to Correspon-

dence Problems

We introduce the setting by describing a classic and readily extendable varia-
tional model for correspondence problems in computer vision. For simplicity,
we consider a 1D signal sequence f(x, t) where x ∈ Ω denotes the position
in the interval Ω ⊂ R and t ≥ 0 denotes time. For correspondence problems,
at least two frames f(x, t) and f(x, t + 1) of the signal evolution are given.
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In order to compute the unknown displacement function u(x) that maps f
from time t to t + 1, we consider the minimisation of the energy functional

E(u) =

∫

Ω

[

(fx u + ft)
2 + α u2

x

]

dx , (1)

where subscripts denote partial derivatives. This model is identical to a 1D
version of the classic optic flow model of Horn and Schunck [13].

The term (fx u+ft)
2 is called data term and models how well the displacement

u matches the signal sequence f . It is obtained as follows: We impose that
the signal values are invariant under their displacement, i.e.

f(x+u, t+1) = f(x, t) . (2)

Especially in the context of 2D images, this basic assumption is called bright-
ness constancy assumption [13]. The equation (2) is nonlinear in u which
makes solving for u a difficult task. This is the motivation to use a first-order
Taylor series expansion to simplify this problem, which gives the so-called
linearised brightness constancy assumption

fx u + ft = 0 , (3)

where we skipped the arguments of the functions. Using a quadratic penal-
isation of (3) then yields the data term from (1). The data term (3) allows
to compute the solution

u = − ft

fx

, (4)

if fx 6= 0. This is the so-called normal flow. However, in the presence of
noisy signals, and for obtaining a solution in flat signal regions, additional
assumptions are needed. These are especially crucial in the 2D case where
the data term alone does not allow to compute an unique solution at all
(aperture problem [4]).
One classical additional assumption for tackling the mentioned problems is
the use of a smoothness term in conjunction with the data term [13]. The
smoothness term models the assumption of a smoothly varying displacement
field by penalising large derivatives of u. In this way it also allows to smoothly
fill in the displacement field in regions where the data term is not sufficient.
In our energy functional (1), the term u2

x is the smoothness term, and its
contribution to the energy is steered by a smoothness weight α > 0.

In order to actually compute a minimiser u of the energy (1), the calculus
of variations [9] states that u necessarily has to fulfil the Euler-Lagrange
equation

fx (fx u + ft) − α uxx = 0 , (5)
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with homogeneous Neumann boundary conditions.

Important Aspects. As all effects of importance for us can be studied at
hand of (1), we stick to it for a large part of the discussion. However, this
model can easily be generalised to energy functionals

E(u) =

∫

Ω

[M(f, u) + α V (ux)] dx (6)

with more complex data terms M and smoothness terms V , and to higher
spatial dimensions. In the section devoted to numerical experiments we also
consider such more advanced models.
of
the

3 The Colour Equation and Its Discretisation

Interpreting (3) as a PDE for the temporal evolution of f leads to a transport
process in the form of a hyperbolic colour equation, c.f. [16]. This interpre-
tation relies on switching the role of known and unknown, i.e. of f and u.
Thus, the colour equation determines the evolution of f at hand of a given
displacement field u.
Typically, this PDE is given in the framework of an initial value problem or
an initial-boundary value problem. In our setting, the initial state f(x, t) is
evolved in time. The role of the other given state f(x, t + 1) will be (i) to
determine the displacement direction and (ii) to provide data for accurate
discretisations.

3.1 Discretisation Basics

For solving the Euler-Lagrange equation (5) numerically, we have to discre-
tise the signal f , the displacement u, and their derivatives fx, ft and uxx.
For this we sample them on a spatio-temporal discrete grid. This gives the
approximations fk

i ≈ f(xi, tk) and ui ≈ u(xi), where xi := (i − 1

2
) h and

tk := k τ with a spatial grid size h and a time step size τ . In this paper we
only consider two frames fk

i and fk+1
i , and a temporal sampling of step size

τ = 1.

Now we turn to the discretisation of the occurring derivatives and the numeri-
cal boundary conditions. To this end we use the concept of finite differences,
cf. [20]. As notation for the approximation of partial derivatives we use
fd(xi, tk) ≈ (fd)

k
i , where d ∈ {x, xx, t}, to denote the corresponding finite

difference discretisation.
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Temporal Discretisation. For the time derivative we use the forward
difference

(ft)
k
i :=

1

τ

(

fk+1
i − fk

i

)

, (7)

as this is the only reasonable choice, given the two frames fk
i and fk+1

i .

Discretisation of First-Order Spatial Derivatives. The approximation
of fx offers different possibilities to define (fx)

l
i, for l ∈ {k, k + 1}. Basic

choices are forward, backward and central differences:

D+
x f l

i :=
1

h

(

f l
i+1 − f l

i

)

,

D−

x f l
i :=

1

h

(

f l
i − f l

i−1

)

D0
xf

l
i :=

1

2h

(

f l
i+1 − f l

i−1

)

(8)

where the finite difference operators D+, D− and D0 denote forward, back-
ward and central differences, respectively.
Note that the approximation error of the one-sided differences is in O(h),
whereas their central counterparts only involve an error of O(h2). This, to-
gether with the unbiased stencil orientation, explains why they are a popular
“standard” choice in image processing.
In order to increase the accuracy in computations for correspondence prob-
lems one may use averaged differences. These take into account differences
from both time levels k and k + 1. More specifically, we use second-order
averaged central differences defined as

D0
xf

k+
1

2

i :=
1

2

(

D0
xf

k
i + D0

xf
k+1
i

)

. (9)

In the remainder of this paper such a central difference approximation will
be referred to as a “standard” derivative approximation.

Discretisation of Second-Order Spatial Derivatives. Finally we have
to approximate the second-order spatial derivative of the displacement func-
tion. As this choice is not crucial we propose a simple central approximation

(uxx)i := D−

x

(

D+
x ui

)

=
1

h2
(ui+1 − 2ui + ui−1) . (10)

Numerical Boundary Conditions. Especially in the context of deriva-
tive computations, we have to pay attention to the boundary conditions
employed in the numerics. As discrete boundary conditions we use homo-
geneous Neumann boundary conditions, in accordance with the procedure
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Figure 1: Top row: (a) Signal at time k (solid) and k + 1 (dotted). (b)
Ground truth displacement. Bottom row: (c) Displacement computed
using standard central differences averaged between level k nad k +1 (solid),
compared to the ground truth (dotted). (d) Same for one-sided forward
differences. (e) Same for one-sided backward differences. Arrangements are
from left to right.

when computing the Euler-Lagrange equation (5). From an implementation
point of view, these boundary conditions are realised by mirroring the signal
values at the boundaries of the signal domain. More precisely, for a signal of
length n, i.e., (f1, f2, . . . , fn−1, fn), we define the dummy values f0 := f1 and
fn+1 := fn at the boundaries.

3.2 Why the Colour Equation is Important

We now present an experiment which shows that an appropriate choice of
(fx)

k
i is crucial for computing reasonable displacements u. Consider the two

frames of a signal sequence in Figure 1 (a). There the signal is displaced
by exactly one position to the right in its middle part and stays unchanged
otherwise. This is illustrated in the ground truth displacement displayed in
Figure 1 (b).
Note that this example comprises smooth as well as discontinuous signal and
displacement regions. This makes it rather indicative. While the set-up of
the experiment is simple, it is already of practical importance: The signal
can be considered as one horizontal scanline from an orthoparallel 2D stereo
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problem which we will discuss in Section 4.

Let us note that the example also exhibits the so-called occlusion problem.
This arises if a foreground object is shifted and occludes parts of the back-
ground. Thus, one cannot find any correspondence for the regions that are
visible only in the first frame and are then occluded in the second frame.
In our example this happens at point 9. Therefore, any computed displace-
ments u will be corrupted at this occlusion. However, while we comment in
this way on the expected computational results, the occlusion problem is not
a topic in the focus of this paper. In practical computations, the occlusion
problem is dealt with separately; see e.g. [7] and the references therein.

In Figure 1 (c)–(e) we depict the computed displacements using different
discretisations for fx. The displacements were obtained as the solution of
a linear system of equations that arises from the discretised Euler-Lagrange
equation (5). We solved this tridiagonal system using the Thomas algorithm
[25]. The smoothness weight was set here to the small value of α = 10−4 in
order to show clearly the influence of the discretisation of the colour equation.
When comparing the displacements in Figure 1 (c)–(e), the effect of the
discretisation of the colour equation becomes obvious. Central differences
only perform well in the smooth signal regions, i.e. at the left and right
boundaries. At discontinuities they produce severe oscillations. One-sided
differences perform either favourably or fail totally. Obviously, the correct
orientation matters here.
When using the correct one-sided difference scheme, the displacement almost
coincides with the ground truth, except at one point. As indicated above,
this is not a fault of the method, but is caused by the occlusion at the jump
in the displacement. Note that as the displacement of an occluded point is
in general undefined, we assigned in the ground truth to occluded points the
displacement of their right neighbour.

The observed behaviour in our experiment is in accordance with the theory
of numerical methods for HDEs [15, 16]. There so called upwind schemes are
a widely used concept for the discretisation of transport equations. The term
’upwind’ refers to correctly oriented one-sided differences. The correct orien-
tation of an upwind stencil means in our case opposite to the displacement
direction; see our experiment.
In the hyperbolic theory, central difference approximations as in (9) are
known to lead to oscillations. They can even be unconditionally unstable.
However, since in correspondence problems only one time step is performed,
this instability is ’only’ observable in terms of oscillations near strong gradi-
ents.
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3.3 The New Scheme

As we have seen, the low-order upwind differences perform well at signal
discontinuities. However, in smooth regions the higher order of accuracy of
central differences will give a better resolution of the displacement function.
Hence, a natural idea is to combine the two types of schemes by using the
high-order central approximation in smooth signal parts and upwinding at
discontinuities.
This idea has been successfully used for the construction of so-called high-
resolution methods [16, 26] for HDEs. They use a nonlinear blending of
low- and high-order approximations, steered by a smoothness measure. The
adaptation of this methodology to our variational framework gives a adaptive
high-resolution-type (HRT) discretisation scheme for correspondence prob-
lems which is presented in the following.
Before proceeding with the scheme description, let us give some comments on
similarities and differences of our method to high-resolution schemes, as we
do not apply an off-the-shelf-approach in this paper. While it is very useful
to consider the hyperbolic colour equation as a distinct important part to be
re-interpreted and discretised, the final aim is to compute the displacement
u. Especially, while a non-oscillatory resolution of edges in u is obviously
important as seen by the experiment in Section 3.2, we do not have to spend
too much attention to structural properties of a discretisation. This would
only be important for a long-time integration of f , while in our case f is
already given and only two time levels in f need to be considered.

Measuring Smoothness. First we discuss how to determine the smooth
and discontinuous regions of a signal. As indicated, this will be needed in
order to steer the blending of the two considered schemes. Therefore, we
introduce a smoothness measure

Θi :=
∣

∣D−

x fk
i −D+

x fk
i

∣

∣ +
∣

∣D−

x fk+1
i −D+

x fk+1
i

∣

∣ , (11)

that is close to 0 in smooth regions where backward and forward differences
of fk

i and fk+1
i are almost identical, and large at discontinuities of fi.

Note that here one of the differences to an usual set-up of a high-resolution
method for HDEs becomes obvious: In correspondence problems one already
has the final state of the evolving signal f at hand, and so we can base our
smoothness measure on both fk and fk+1.

Determining the Upwind Directions. Next we need to determine the
appropriate upwind directions for discretising the colour equation. This is
not straight forward, since the upwind direction depends on the direction of
the displacement field, and this is exactly the unknown we aim to compute.
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As a possible remedy, we propose to compute a predictor solution ũ whose
sign determines the upwind direction. The predictor is computed using the
high-order standard approximation fH

x of the derivative fx. It is given by
the averaged central difference approximation

(

fH
x

)

i
:= D0

xf
k+

1

2

i . (12)

In order to avoid oscillations as occurring in the experiment in Section 3.2,
we use a comparatively large smoothness weight for this computation, e.g.,
α̃ = 1.
With the help of the predictor solution ũ, the low-order upwind approxima-
tion fL

x of fx is defined as

(

fL
x

)

i
:=











D−

x fk
i , if ũi > 0 ,

D+
x fk

i , if ũi < 0 ,

(fH
x )i , if ũi = 0 .

(13)

Revisiting the experiment from Figure 1, one confirms that this definition
agrees with the results obtained there.

The Blending Function. Now we define the blending function Φ(Θi) which
realises the switch between high-order and low-order approximations in ac-
cordance to the value of Θi.
The idea is that it shall be close to 1 in smooth signal regions, which will
yield a high-order approximation there. At discontinuities it shall be close to
0 which will lead to a low-order upwind approximation that is better suited
there. For the actual choice of Φ(Θi) we propose

Φ(Θi) :=

{

1 − Θi , if 0 ≤ Θi < 1 ,

0 , else .
(14)

The blending is performed in a different way than in the usual set-up of
high-resolution schemes for HDEs. Other blending functions – especially
those standard in the field of HDEs – do not lead to better results. We
tested this but do not comment on it in more detail here.

The High-Resolution-Type (HRT) Discretisation Scheme. Now ev-
erything is prepared to define the adaptive HRT discretisation. It reads as

(fx)
k
i :=

(

fL
x

)

i
+ Φ (Θi)

[

(

fH
x

)

i
−

(

fL
x

)

i

]

, (15)

using the function Φ(Θi) to blend between the high-order derivative approx-
imation fH

x and its low-order counterpart fL
x .
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4 Evaluation of the HRT Scheme

Now we elaborate on the developed methodology by applying it within several
prototypes of correspondence problems in computer vision. The purpose of
our broad selection is to illustrate the workings and the benefits of our general
concept. We consider: (i) The classic optic flow model of Horn and Schunck
[13] which we have already discussed in a 1D version in Section 2, (ii) the
more recent optic flow method of Brox et al. [6], and (iii) the variational
stereo approach of Slesareva et al. [24]. We will briefly review the models,
sketch how to extend our HRT discretisation scheme for these cases, and
discuss computational results in detail.

4.1 Optic Flow: Basics

For optic flow computation we are given a 2D image sequence f(x, y, t) where
(x, y)⊤ ∈ Ω2 denotes the location within a rectangular image domain Ω2 ⊂
R

2 and t ≥ 0 denotes time. The sought flow field (u, v)⊤ that gives the
displacements from time t to t+1 is found as the minimiser of the 2D energy
functional

E(u, v) =

∫

Ω2

[M(f, u, v) + α V (∇u,∇v)] dxdy , (16)

where ∇ := (∂x, ∂y)
⊤ denotes the spatial gradient operator.

4.2 Optic Flow: The Classic Method of Horn and
Schunck

The brightness constancy assumption in the 2D optic flow case is given by

f(x+u, y+v, t+1) = f(x, y, t) . (17)

After a first order Taylor linearisation and a quadratic penalisation one ends
up with the data term of Horn and Schunck [13]:

M(f, u, v) = (fx u + fy v + ft)
2 . (18)

Horn and Schunck [13] proposed in addition the quadratic smoothness term

V (∇u,∇v) = |∇u|2 + |∇v|2 . (19)

The corresponding Euler-Lagrange equations are

fx (fxu + fyv + ft) − α (uxx + uyy) = 0 , (20)

fy (fxu + fyv + ft) − α (vxx + vyy) = 0 . (21)
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Discretisation in 2D. In order to discretise the occurring 2D images and
the flow field, we sample them on a 2D spatio-temporal discrete grid. For the
images, this yields the approximation fk

i,j ≈ f(xi, yj, tk). Here, xi := (i− 1

2
) hx

and yj := (j − 1

2
) hy for spatial grid sizes hx and hy in x- and y-direction,

respectively. The discretisation of the flow fields works accordingly.
The discretised Euler-Lagrange equations (20) and (21) now lead to a penta-
diagonal linear system of equations. Due to its sparsity, it can be solved
by well-known iterative solvers [31], like the successive overrelaxation (SOR)
method.

4.2.1 The HRT scheme for the Method of Horn and Schunck

Now we adapt the HRT discretisation scheme from Section 3.3 to the 2D
optic flow case and the model of Horn and Schunck.
First of all we need distinct smoothness measures Θx, Θy and for the x- and
the y-direction, respectively. For Θx we use the according expression (11)
from the 1D case, and Θy is obtained by using y- instead of x-differences.
The derivative approximations of fx are obtained from (8). We only need
to replace fi+l by fi+l,j, for l ∈ {−1, 0, 1}. The approximations of fy can be
easily obtained from the x-derivatives by switching the role of i and j. For
ft and uxx, uyy, vxx, vyy we use the corresponding 2D extension of (7) and
(10), respectively.

4.2.2 Numerical Experiments for the Method of Horn and
Schunck

In our first numerical experiment, we compute the flow field for a simple
synthetic sequence we have created, see Figure 2. The sequence depicts a
rectangle that is displaced by one pixel to the right and one pixel to the
bottom. This motion is encoded in the ground truth flow field in Figure
2 (c). To visualise flow fields, we use a colour code where colour encodes
the direction and brightness the magnitude of the flow, c.f. Figure 2 (d).
Figure 2 also compares the results obtained with two different derivative
approximations: (i) A standard scheme and (ii) our proposed adaptive HRT
scheme. To measure the quality of the flow fields, we use the average angular
error (AAE) measure [2] defined as

AAE (u, v, û, v̂) :=
1

nx ny

· (22)

nx
∑

i=1

ny
∑

j=1

arccos

(

ui,j ûi,j + vi,j v̂i,j + 1
(

u2
i,j+v2

i,j+1
) (

û2
i,j+v̂2

i,j+1
)

)

,
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Figure 2: Results for the method of Horn and Schunck on our Rectangle
sequence. We compare a standard derivative approximation to our adaptive
HRT scheme. First row: (a) First frame. (b) Second frame. (c) Ground
truth. (d) Colour code of the displacement vectors. Second row: (e) Flow
field with a standard derivative approximation. (f) Same with our adaptive
HRT scheme. (g) Error map for (e) (h) Error map for (f).

13



Table 1: Error measures (AAE) for several sequences using the method of
Horn and Schunck. We compare a standard derivative approximation to our
proposed adaptive HRT scheme.

Rectangle Marble Yosemite Street

Standard 31.93◦ 9.11◦ 10.72◦ 9.38◦

HRT 28.40◦ 8.50◦ 9.53◦ 9.00◦

where (û, v̂)⊤ denotes the ground truth flow field, and nx, ny denote the num-
ber of pixels in x- and y-direction, respectively. In Figure 2 we additionaly
show error maps that visualise the AAE (brighter pixels correspond to larger
errors). Inspecting them, the expected benefits of the HRT scheme become
obvious: Especially at the lower and right boundary of the rectangle, i.e. at
regions with a large image discontinuity, the HRT scheme reduces the error.
This observation is validated by the AAE measures that we show in Table 1.
This table also shows the AAE for more complex sequences, like the Mar-
ble 1, the Yosemite without clouds 2, and the Street sequence 3. For these
sequences, a comparison of error maps resulting from a standard derivative
approximation and our adaptive scheme is shown in Figure 3. It turns out
that the HRT scheme allows to decrease the errors in regions with strong
discontinuities. For Marble this is the case at the ground floor, for Yosemite
we see an improvement at the lower left boundary, and for Street the error
decreases at the leaves of the tree.

4.3 Optic Flow: The Method of Brox et al.

A more recent and also more accurate optic flow method is the one of Brox
et al. [6]. It extends the already presented approach of Horn and Schunck in
several ways as briefly sketched in the following.

Data Term and Smoothness Term. Brox et al. propose the data term
M(f, u, v) given by

ΨM

(

|f(x+u, y+v, t+1)−f(x, y, t)|2

+ γ |∇f(x+u, y+v, t+1)−∇f(x, y, t)|2
)

. (23)

1available at http://i21www.ira.uka.de/image sequences
2available at http://www.cs.brown.edu/˜black/images.html
3available at http://of-eval.sourceforge.net
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Figure 3: Results for the method of Horn and Schunck on several sequences.
We compare a standard derivative approximation to our proposed adaptive
HRT scheme. From top to bottom: Marble, Yosemite without clouds and
Street sequence. From left to right: First frame, error map with a standard
derivative approximation, same for our adaptive HRT scheme.
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Let us review its innovations compared to the data term of Horn and Schunck
(18). (i) To handle large displacements, the linearisation in the data term is
postponed to the numerical part. There, a coarse-to-fine multiscale warping
framework is used that computes small flow increments on each warping
level via a linearised approach. The sum of all these increments then gives
the final flow field. We use the multigrid framework proposed by Bruhn
et al. [8] to solve the problem efficiently on each warping level. (ii) In
addition to the brightness constancy assumption, also the gradient constancy
assumption is imposed. It models the assumption that image gradients are
invariant under their displacement, i.e., ∇f(x + u, y + v, t + 1) = ∇f(x, y, t),
which renders the approach robust under varying illumination conditions.
The contribution of the gradient constancy assumption to the data term is
steered by the parameter γ > 0. (iii) Finally, a robust penaliser function
Ψ(s2) is used. This functionis preferably positive, increasing, subquadratic
and strictly convex in s. Whereas the first properties ensure robustness w.r.t.
outliers caused by noise or occlusions, the latter guarantees that a unique
minimum of the underlying energy exists. Brox et al. propose ΨM(s2) :=√

s2 + ε2, with a small regularisation parameter ε = 0.001. This results in a
modified differentiable L1 penalisation.
The smoothness term uses the same penaliser as the data term:

V (∇u,∇v) = ΨV (|∇u|2 + |∇v|2) , (24)

where ΨV (s2) = ΨM(s2). This comes down to total variation (TV) penalisa-
tion [22], and yields a discontinuity-preserving behaviour.

Euler-Lagrange equations. We first introduce in accordance to [6] the
abbreviations

f∗ := ∂∗f(x + u, y + v, t + 1) , (25)

fz := f(x + u, y + v, t + 1) − f(x, y, t) , (26)

f∗z := ∂∗f(x + u, y + v, t + 1) − ∂∗f(x, y, t) , (27)

where the variable z is used to emphasise the use of temporal differences
in contrast to temporal derivatives. Using these abbreviations, the Euler-
Lagrange equations for the method of Brox et al. are given by

Ψ′

M

(

f 2
z + γ (f 2

xz + f 2
yz)

)

· (fxfz + γ (fxxfxz + fxyfyz))

−α div
(

Ψ′

V

(

|∇u|2 + |∇v|2
)

∇u
)

= 0 , (28)

Ψ′

M

(

f 2
z + γ (f 2

xz + f 2
yz)

)

· (fyfz + γ (fyyfyz + fxyfxz))

−α div
(

Ψ′

V

(

|∇u|2 + |∇v|2
)

∇v
)

= 0 . (29)
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4.3.1 The HRT Scheme for the Method of Brox et al.

Inspecting the Euler-Lagrange equations (28) and (29), we realise that due
to the use of the gradient constancy assumption, also the second order and
mixed derivatives fxx, fyy, fxy, fxz and fyz occur.
First of all, this requires to define a smoothness measure for the mixed xy-
direction. Given the smoothness measures Θx and Θy, we define the mixed
expression as Θxy := Θx + Θy.

Second Order Derivative Approximations. More involved are the high-
order and the (one-sided) low-order approximations of the second order deriva-
tives. These are now briefly presented, relying on the finite difference oper-
ators defined in (8).

High-Order. The high-order approximations of fxx and fyy are defined in
accordance to (10).
The mixed derivative fxy = ∂yfx is approximated in the finite difference case
as

(fxy)
k
i,j := D0

y

(

D0
xf

k
i,j

)

= D0
y

(

fk
i+1,j − fk

i−1,j

2hx

)

=
fk

i+1,j+1 − fk
i−1,j+1 −

(

fk
i+1,j−1 − fk

i−1,j−1

)

4hxhy

. (30)

An averaged version taking into account both time levels is then obtained
via

(fxy)
k+

1

2

i,j :=
1

2

(

D0
y

(

D0
xf

k
i,j

)

+ D0
y

(

D0
xf

k+1
i,j

))

. (31)

Similarly, we define fxz as

(fxz)
k
i,j := D+

z

(

D0
xf

k
i,j

)

=
1

2hx

(

fk+1
i+1,j−fk+1

i−1,j−(fk
i+1,j−fk

i−1,j)
)

, (32)

where D+
z fk

i,j := fk+1
i,j − fk

i,j denotes the temporal difference. Analogously we
proceed for fyz.

Low-order. In the low-order upwind case, the sign of the predictor shall
decide which one-sided difference should be used: We consider ũ for x-
derivatives and ṽ for y-derivatives, respectively.

For approximating fxx we make use of the corresponding upwind difference
for fx:

ũ > 0 : (fxx)
k
i,j := D−

x

(

D−

x fk
i,j

)

, (33)

ũ < 0 : (fxx)
k
i,j := D+

x

(

D+
x fk

i,j

)

. (34)
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Table 2: Upwind-type (one-sided) discretisations of the mixed derivative fxy.
Case Discretisation of (fxy)

k
i,j, with η := 1/(hxhy)

ũ = 0 , ṽ > 0
η

2

(

fk
i+1,j − fk

i−1,j − (fk
i+1,j−1 − fk

i−1,j−1)
)

ũ = 0 , ṽ < 0
η

2

(

fk
i+1,j+1 − fk

i−1,j+1 − (fk
i+1,j − fk

i−1,j)
)

ũ > 0 , ṽ = 0
η

2

(

fk
i,j+1 − fk

i−1,j+1 − (fk
i,j−1 − fk

i−1,j−1)
)

ũ < 0 , ṽ = 0
η

2

(

fk
i+1,j+1 − fk

i,j+1 − (fk
i+1,j−1 − fk

i,j−1)
)

ũ > 0 , ṽ > 0 η
(

fk
i,j − fk

i−1,j − (fk
i,j−1 − fk

i−1,j−1)
)

ũ > 0 , ṽ < 0 η
(

fk
i,j+1 − fk

i−1,j+1 − (fk
i,j − fk

i−1,j)
)

ũ < 0 , ṽ > 0 η
(

fk
i+1,j − fk

i,j − (fk
i+1,j−1 − fk

i,j−1)
)

ũ < 0 , ṽ < 0 η
(

fk
i+1,j+1 − fk

i,j+1 − (fk
i+1,j − fk

i,j)
)

For ũ = 0, we use the corresponding high-order approximation. For fyy, we
proceed accordingly, taking into account the predictor ṽ.

For the mixed derivative fxy we have to use the two predictors ũ and ṽ. If
a predictor is equal to zero, we use the corresponding high-order approx-
imation, and if it is non-zero, its sign determines which one-sided upwind
approximation to use. This leads to the case distinction summarised in Ta-
ble 2. If ũ = 0 and ṽ = 0 holds, we again use the high-order approximation
of fxy.

For fxz we use the same approach as presented above in the high-order case
but just use one-sided upwind differences for approximating fx. This gives

ũ > 0 : (fxz)
k
i,j := D+

z

(

D−

x fk
i,j

)

,

ũ < 0 : (fxz)
k
i,j := D+

z

(

D+
x fk

i,j

)

.

(35)

Accordingly we proceed for fyz.

4.3.2 Numerical Experiments for the Method of Brox et al.

We now show experiments for our adaptive HRT scheme used within the
method of Brox et al [6]. Due to the postponed linearisation, the robust
data term and the discontinuity-preserving smoothness term, this method
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Figure 4: Results for the method of Brox et al. on the Urban3 sequence. We
compare a standard derivative approximation to our proposed adaptive HRT
scheme. First row: (a) Reference frame (frame 10). (b) Ground truth flow
field. (c) Flow field with a standard derivative approximation. Second row:
(d) Same with our adaptive HRT scheme. (e) Error map with a standard
derivative approximation. (f) Same with our adaptive HRT scheme. Boxes
indicate regions of significant better results with the HRT scheme.

achieves reasonable results for more difficult sequences, like the ones from
the popular Middlebury database [1] 4.
In Figure 4, we show results for the Urban3 sequence. We see that also for
the method of Brox et al., the HRT scheme allows to improve the results at
locations with strong discontinuities (marked in the images). In this context,
we also refer to Figure 5 where we show a plot of the gradient magnitude
to support the latter observation. The qualitative improvement is confirmed
by the corresponding AAE measures in Table 3. This table also lists other
Middlebury sequences and gives errors for an upwind scheme only using one-
sided low-order approximations. Analysing the results in Table 3 shows: (i)
The HRT scheme gives notably better results than the standard scheme.
(ii) For complex sequences, the blending between high-order and low-order
approximations of the HRT scheme gives better results than a pure upwind
scheme.

4available at http://vision.middlebury.edu/flow/data/
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Figure 5: Plot of the gradient magnitude for the Urban3 sequence. Left (a):
Reference frame. Right (b): Corresponding gradient magnitude, scaled to
the range from 0 to 255. The boxes indicate regions where the HRT scheme
performs significantly better than the standard approach, cf. Figure 4. We
observe that these are regions featuring strong gradients.

Table 3: Error measures (AAE) for several Middlebury sequences and the
method of Brox et al. We compare a standard derivative approximation
scheme to a pure upwind scheme, and our proposed adaptive HRT scheme.

Urban 3 Rubberwhale Dimetrodon

Standard 5.71◦ 4.72◦ 1.94◦

Upwind 4.58◦ 4.73◦ 3.06◦

HRT 4.11◦ 4.34◦ 1.88◦
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4.4 Stereo Vision: Basics

The task of stereo reconstruction is also a correspondence problem, similar
to optic flow.
In the stereo context, we are given an image pair fl(x, y), fr(x, y), denoting
the left and right view of a static scene, respectively. The absolute value of
the displacement field (u, v)⊤ between fl and fr is called disparity d. As the
disparity is directly related to the depth of the corresponding scene point, it
is a fundamental part of 3D reconstruction methods, cf. [12].
In contrast to optic flow, the displacements in the stereo context cannot be
arbitrary. In fact, the corresponding point of a pixel in the first image has
to lie on a specific line, the epipolar line [12], in the second image. For
simplicity, we restrict ourselves to a basic, but often considered scenario: If
the two cameras are orthoparallel to each other, or if the image pair has been
rectified beforehand, the displacements are purely horizontal. This allows to
reformulate the stereo problem as an optic flow problem with zero vertical
displacement (v = 0).

4.5 Stereo Vision: The Method of Slesareva et al.

The variational stereo method of Slesareva et al. [24] is based on the optic
flow approach of Brox et al., but enforces corresponding pixels to lie on the
epipolar lines. In our orthoparallel scenario, the method of Slesareva et al.
can thus obtained from to the optic flow method of Brox et al. (see Section
4.3) by setting v = 0.
In order to use the notation from the optic flow case, we consider the left
and right images as two snapshots of an image sequence taken at time t and
t+1, respectively. Formally, fl(x, y) ≡ f(x, y, t) and fr(x, y) ≡ f(x, y, t+1).
This yields the energy functional

E(u) =

∫

Ω2

[M(f, u) + α V (∇u)] dxdy , (36)

whose minimiser u gives the sought disparity by d = |u|. The data term
M(f, u) reads as

ΨM

(

|f(x+u, y, t+1)−f(x, y, t)|2

+ γ |∇f(x+u, y, t+1)−∇f(x, y, t)|2
)

, (37)

and the smoothness term is given by

V (∇u) = ΨV (|∇u|2) . (38)
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To minimise the energy (36), one solves the single Euler-Lagrange equation

Ψ′

M

(

f 2
z + γ (f 2

xz + f 2
yz)

)

· (fxfz + γ (fxxfxz + fxyfyz))

−α div
(

Ψ′

V

(

|∇u|2
)

∇u
)

= 0 , (39)

using the abbreviations

f∗ := ∂∗f(x + u, y, t + 1) , (40)

fz := f(x + u, y, t + 1) − f(x, y, t) , (41)

f∗z := ∂∗f(x + u, y, t + 1) − ∂∗f(x, y, t) , (42)

The adaption of the HRT scheme works in accordance to the optic flow case
described in Section 4.3.1.

4.5.1 Numerical Experiments for the Method of Slesareva et al.

Our final experiments show that our adaptive HRT scheme is also beneficial
for variational stereo. As test data, we used stereo pairs from the Middlebury
stereo page [23] 5. To measure the quality of the disparity estimates, we use
the bad pixel error (BPE) [23]. It gives the percentage of pixels that deviate
more than a threshold δd from the ground truth û, yielding the definition

BPE (u, û, ) :=
100

nx ny

nx
∑

i=1

ny
∑

j=1

T (|ui − ûi| > δd) , (43)

where T (b) = 1 if b = true, and 0 else. As proposed in [23], we set δd = 1.
In Figure 6, we show results for the Plastic pair. Again, the HRT scheme im-
proves the results at locations with large discontinuities, which are marked in
the bad pixel maps in Figure 6 (e) and (f). The corresponding BPE measures
are summarised in Table 4 that, as before, lists also other Middlebury pairs
and errors for an upwind scheme. As for the optic flow case, the HRT scheme
gives the best results, compared to a standard and an upwind scheme.

5 Summary and Conclusion

Our paper is the first approach that exploits the structural relationship be-
tween data terms in variational approaches for correspondence problems and
hyperbolic differential equations. This has led to novel sophisticated nu-
merical schemes for the approximation of spatial image derivatives in corre-
spondence problems. It relies on the idea to switch the role of known and

5available at http://vision.middlebury.edu/stereo/data/
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Figure 6: Results for the method of Slesareva et al. on the Plastic pair. We
compare a standard derivative approximation to our proposed adaptive HRT
scheme. First row: (a) Left image. (b) Ground truth. (c) Disparity with
a standard derivative approximation scheme. Second row: (d) Same with
our adaptive HRT scheme. (e) Bad pixel map with a standard derivative
approximation scheme (bad pixels are black). (f) Same with our adaptive
HRT scheme.

Table 4: Error measures (BPE) for several Middlebury pairs and the method
of Slesareva et al. We compare a standard derivative approximation scheme
to a pure upwind scheme, and our proposed adaptive HRT scheme.

Plastic Teddy Venus

Standard 25.85 % 17.45 % 3.06 %
Upwind 21.35 % 16.94 % 2.78 %
HRT 18.85 % 16.75 % 2.77 %
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unknown data in the data term, which leads to a hyperbolic colour equation.
This equation is discretised with specific upwind schemes that are appropri-
ate for the application to correspondence problems.
Note that our goal was not to introduce novel, more accurate models, which
has been done in numerous publications in the last three decades. Our goal
was to introduce a new class of better discretisations. They can be useful for
all approaches that formulate correspondence problems in terms of differen-
tial expressions. In order to illustrate this general benefit, we have applied
it to three prototypical methods: The optic flow approaches of Horn and
Schunck [13] and of Brox et al. [6], and the stereo method of Slesareva et
al. [24]. Our experiments demonstrate that the novel discretisations allow
to improve the quality of results in a similar order as is usually obtained by
model improvements.
Although we have focused on variational models, we are convinced that these
numerical ideas are more general and can also be useful for other differential
methods for correspondence problems in computer vision. This may also
serve as starting point for better discretisations for local methods such as
the Lucas-Kanade method, the structure tensor approach of Bigün et al.
and their numerous variants. This is part of our ongoing research.

Acknowledgements

Henning Zimmer gratefully acknowledges funding by the International Max-
Planck Research School (IMPRS).

References

[1] Baker, S., Roth, S., Scharstein, D., Black, M.J., Lewis, J.P., Szeliski, R.:
A database and evaluation methodology for optical flow. In Proc. 2007
IEEE International Conference on Computer Vision, Rio de Janeiro,
Brazil, IEEE Computer Society Press (2007)

[2] Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow
techniques. International Journal of Computer Vision 12(1) (1994) 43–
77

[3] Ben-Ari, R., Sochen, N.: Variational stereo vision with sharp disconti-
nuities and occlusion handling. In Proc. 2007 IEEE International Con-
ference on Computer Vision, Rio de Janeiro, Brazil, IEEE Computer
Society Press (2007)

24



[4] Bertero, M., Poggio, T.A., Torre, V.: Ill-posed problems in early vision.
Proceedings of the IEEE 76(8) (1988) 869–889

[5] Black M.J., Anandan, P.: The robust estimation of multiple motions:
parametric and piecewise smooth flow fields. Computer Vision and Im-
age Understanding 63(1) (1996) 75–104

[6] Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical
flow estimation based on a theory for warping. In Pajdla, T., Matas,
J., eds.: Computer Vision – ECCV 2004, Part IV. Vol. 3024 of Lecture
Notes in Computer Science. Springer, Berlin (2004) 25–36

[7] Brown, M., Burschka, D., Hager, G.: Advances in computational stereo.
IEEE Transactions on Pattern Analysis and Machine Intelligence 25(8)
(2003) 993–1008

[8] Bruhn, A., Weickert, J., Kohlberger, T., Schnörr, C.: A multigrid
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