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Abstract

Hyperbolic conservation laws (HCLs) are a class of partial dif-
ferential equations that model transport processes. Many important
phenomena in natural sciences are described by them. In this paper we
consider finite difference methods for the approximation of HCLs. As
HCLs describe an evolution in time, one may distinguish explicit and
implicit schemes by the corresponding time integration mechanism
employed by them. Explicit numerical schemes are well-analysed. In
the explicit setting, the monotonicity property of a method is the key
to approximate the physically relevant entropy solution of a HCL.
However, there does not exist a rigorous general approach to implicit
monotone methods in the literature up to now.

In the current work, this open issue is addressed. We propose
monotonicity conditions for fully implicit schemes, and we prove that
they are meaningful. The relation between an implicit monotone
scheme and a discrete entropy inequality is constructed in a simi-
lar fashion as in the classic explicit approach of Crandall and Majda.
The convergence of implicit monotone schemes is verified in a frame-
work that does not rely on a compactness property of the underlying
function space. All proofs are given for the case of a scalar HCL in
multiple space dimensions. They can easily be extended to HCLs with
source terms or specialised to the 1-D case.

We apply the developed notion of monotonicity by investigating
implicit variants of some well known explicit monotone schemes. As
a surprising result, a stability restriction on the time step size may
arise. This contradicts the usual intuition that implicit schemes give
unconditional stability. Such a restriction is established for the im-
plicit Lax-Friedrichs scheme, and it is illustrated by numerical tests.

1 Introduction

Many fundamental physical principles are based on the conservation of cer-
tain quantities, like e.g. conservation of mass, momentum or energy. Thus,
many important phenomena in natural sciences and engineering are de-
scribed by conservation laws. By hyperbolic conservation laws (HCLs) one
denotes a class of partial differential equations (PDEs). They model time-
dependent transport processes that obey in addition a conservation principle,
cf. [14, 15, 17] for diverse fields of applications where HCLs arise.
In this paper we consider finite difference methods for the approximation of
HCLs. As these describe an evolution in time, one may distinguish explicit
and implicit schemes by the time integration mechanism used within the
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methods. Explicit schemes can be used under the assumption of finite wave
velocities. In this case, the waves can be resolved when they travel from
cell to cell on a computational grid. Moreover, given an initial state that is
non-zero on a bounded domain, an evolution over a finite time will also stay
within a bounded domain. It is well known that the monotonicity property of
an explicit method is needed to approximate the physically relevant entropy
solution of a HCL, cf. [6].
While explicit schemes are well analysed – see e.g. the textbooks [13, 14] and
the references therein – there does not exist a mathematically rigorous general
approach to monotone implicit methods in the literature up to now. It is just
generally assumed that an implicit time discretisation gives unconditional
stability, i.e. especially no restriction on the time step size, and that the
structural properties of an implicit scheme are identical to the properties of
its explicit counterpart.
In the current work, we address this open issue. We present a general frame-
work for monotonicity of implicit schemes, and we give proofs of the essential
assertions that are the cornerstones of the implicit framework. By applying
the new implicit monotonicity conditions, we show that our proceeding gives
a meaningful extension of the well known explicit theory, with some surpris-
ing results.
Theoretical background. As indicated, we consider in this paper finite
difference methods for the approximation of scalar HCLs in multiple space
dimensions. In this setting, quite general theoretical results are available
concerned with existence and uniqueness of entropy solutions, cf. [1, 10, 11]
and the references therein. Also, an important structural property is valid,
namely a comparison principle of solutions: Given two initial states u0 and
v0 with u0 ≥ v0 a.e., it also holds u (·, t) ≥ v (·, t) when evolving u0 and v0 in
time by a HCL.
This comparison principle can be translated into a powerful, non-linear sta-
bility notion in the discrete setting of numerical schemes, namely the notion
of monotonicity. This works in general as follows. Let sets of discrete data
Un, V n, W n and W n+1 be given, where n denotes an iteration level. Fur-
thermore, let a numerical method be described by an operator H. Then the
method is monotone, if and only if one obtains for the numerical method

W n+1 = H
(
W n, W n+1

)
, (1)

the validity of

Un ≥ V n (componentwise)
H
⇒ Un+1 ≥ V n+1 (componentwise). (2)

The method given by H is explicit if (1) reduces to W n+1 = H (W n), and
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implicit if the definition (1) is fulfilled with a true dependence of H on both
data sets (W n, W n+1).
It is well known that monotone schemes must be used at non-linear discon-
tinuous solution features, so-called shocks, in order to capture the physically
relevant entropy solution. In the discrete setting, this requires the method to
obey a discrete entropy inequality. For explicit monotone schemes, a mean-
ingful construction of a discrete entropy inequality was given in [6]. In that
paper, the mathematical assumptions are that (i) the flux functions appear-
ing in HCLs are Lipschitz continuous, and (ii) over finite time, the domain
of the solution stays bounded.
Let us note that monotone schemes are inevitably of first-order accuracy
which somewhat limits their practical use, however, all high-resolution schemes
incorporate a monotone method for use at shocks, see e.g. [8, 13, 14] for
discussions. Thus, monotone methods are a fundamental building block of
numerical schemes in the field of hyperbolic PDEs.
Our contribution. The contributions documented in this paper are as
follows.
• We propose monotonicity conditions for general implicit schemes, and we
verify them rigorously by an unconventional proof in the field.
• In order to ensure that the entropy solution is well approximated, one
needs to establish a discrete entropy inequality. We realise this for implicit
monotone schemes and in a setting where even just continuous fluxes are
allowed in a similar way as in the classic approach of Crandall and Majda
[6]. That this can be done is not self-evident; it is based on the fact that even
in the original derivation of this relation no technique is used which relies on
the Lipschitz property of the flux.
• We prove the convergence of monotone implicit schemes in a framework
that does not rely on the compactness of the underlying function space. The
idea of this approach has been introduced in [2, 3] and applied with the
implicit upwind scheme. By making use of this idea, we do not rely on
finite wave speeds or solutions on bounded domains. This distinguishes our
procedure from the one of Crandall and Majda [6], from the TVD-approach
relying on Helly’s theorem – compare the useful discussion in [13] – as well
as from the Kuznetsov approach to convergence [12], and from the concept
of measure valued solutions [7].
• Intuitively, one may assume that by an implicit formulation one gains the
unconditional stability of the numerical schemes, since the characteristics of
the true solution are always included in the region of numerical dependence,
cf. [14]. This intuition relates to the idea of Courant, Friedrichs and Lewy
[5] on numerical stability that gave rise to the celebrated CFL-condition.
The implicit upwind scheme may indeed capture solutions even with quite
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extraordinary waves of infinite speed [3]. However, we show that the use
of implicit schemes does in general not imply the unconditional stability of
the methods. At hand of the example of the implicit Lax-Friedrichs scheme,
it becomes evident that a stability restriction on the time step size may
nevertheless arise. As this result is quite surprising, it is discussed here in
detail.
All our proofs are given for the case of a scalar HCL in multiple space dimen-
sions. They can easily be extended to HCLs with source terms or specialised
to the 1-D case. Thus, one may also understand our efforts as a construc-
tive proof of the existence of entropy solutions in multiple dimensions with
source terms. The corresponding, general settings are determined by (i)
smooth fluxes together with non-linear sources, or (ii) continuous fluxes plus
sources depending on space and time, cf. [1, 10, 11].
Related work. While implicit methods for HCLs are often applied in steady
state computations, there is no theoretical paper on this topic with the ex-
ception of some previous work of the author. By the current article, we
significantly extend the work described in [3]. In that paper, only the im-
plicit upwind method is considered in 1-D, and all the proofs given there
are also specifically constructed for that relatively simple numerical scheme.
The general implicit monotonicity conditions presented here require a new,
more unconventional proof. Some other techniques introduced in [2, 3] are
generalised within the current work: The approach to prove convergence is
extended from the 1-D case without source terms to the more general setting
discussed here, and the relationship of monotone implicit schemes to a dis-
crete entropy inequality is put into more general terms similar to the explicit
case addressed by Crandall and Majda [6].
Paper organisation. The paper is structured in accordance to the points
mentioned above. In Section 2, we briefly review the analytical setting of
entropy solutions of HCLs in multiple dimensions with source terms, and
we briefly recall there the major difficulty of non-compact solution domains.
We elaborate on the new monotonicity conditions for numerical schemes in
Section 3. We show how to construct a discrete entropy inequality in Section
4. The fifth section is devoted to the convergence proof. In Section 6, we
discuss the application of the developed monotonicity conditions to some
implicit variations of well known explicit monotone schemes. The paper is
finished by a summary with conclusion.
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2 Analytical results for scalar HCLs revisited

The purpose of this section is to briefly review two basic settings of scalar
HDEs in multiple dimensions with source terms that we address in this paper.
The crucial point for our work is, that uniqueness results for entropy solutions
as well as comparison principles are available in these settings, cf. [1, 9] and
the references therein. Also the existence of solutions is shown in that works,
however, as indicated the approach in this paper can also be understood
as a constructive existence proof. Furthermore, we briefly recall a principle
difficulty arising in one of the settings, cf. [3].

2.1 HCLs with continuous fluxes and space-dependent

source terms

The first type of initial value problems (IVPs) under consideration is

∂

∂t
u (x, t) +

d∑

l=1

∂

∂xl
fl (u (x, t)) = q on IRd × (0, T ) , (3)

u (x, 0) = u0 (x) on IRd , (4)

where u(x, t) is the sought unknown, x := (x1, . . . , xd)
⊤ is to be interpreted

as a vector of space variables, t denotes time, and where T is a fixed pos-
itive number defining the interval of time integration. Concerning the flux
functions fl one assumes

fl(u) ∈ C (IR; IR) , l = 1, . . . , d . (5)

In order to apply the uniqueness theorem given in [1], the fluxes are addi-
tionally supposed to satisfy the growth conditions

|fl(u) − fl(û)| ≤ ωl(u − û) a.e. for u ≥ û and for l = 1, . . . , d , (6)

with the moduli of continuity ωl featuring

ω1(0) = . . . = ωd(0) = 0 and lim inf
r→0

[

r1−d
d∏

l=1

ωl(r)

]

< ∞ . (7)

These conditions on the fluxes are less restrictive than the usually assumed
Lipschitz continuity. The initial condition shall satisfy

u0 ∈ L∞
loc

(
IRd; IR

)
, (8)
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and for the source term we consider

q ≡ q (x, t) ∈ L1
loc

(
IRd × (0, T ); IR

)
, (9)

q(·, t) ∈ L∞
(
IRd; IR

)
for a.e. t ∈ (0, T ) and

∫ T

0

||q(·, t)||
∞

dt < ∞. (10)

Under the conditions (5)-(10), Bénilan and Kružkov [1] proved uniqueness of
the entropy solution of (3), (4).
Because the solution of the Cauchy problem generally developes discontinu-
ities even if u0 is smooth, it is often considered in its weak form. This means,
for all test functions φ ∈ C∞

0

(
IRd+1; IR

)
shall hold

∫ ∞

0

∫

IRd

[

u (x, t) φt (x, t) +
d∑

l=1

fl(u (x, t))
∂

∂xl
φ (x, t)

]

dxdt

= −

∫

IRd

u0 (x)φ0 (x) dx −

∫ ∞

0

∫

IRd

q (x, t)φ (x, t) dxdt . (11)

It is well known that weak solutions are in general not unique, see e.g. [13].
In order to ensure uniqueness, a so-called entropy condition has to be in-
troduced. The entropy condition due to Kružkov [1] which guarantees the
uniqueness of a solution of (3), (4) takes the form

∫ ∞

0

∫

IRd

[

|u (x, t) − ξ|φt (x, t)

+

d∑

l=1

sgn (u (x, t) − ξ) [fl(u (x, t)) − fl(k)]
∂

∂xl
φ (x, t)

]

dxdt

≥ −

∫

IRd

|u0 (x) − ξ|φ0 (x) dx

−

∫ ∞

0

∫

IRd

sgn [u (x, t) − ξ] q (x, t) φ (x, t) dxdt , (12)

for all φ ∈ C∞
0

(
IRd+1; IR

)
with φ ≥ 0 and for all ξ ∈ IR. Thereby, sgn(·)

denotes the signum function.

2.2 HCLs with differentiable fluxes and non-linear source

terms

We also deal with the IVP

∂

∂t
u (x, t) +

d∑

l=1

d

dxl
fl (x, t, u (x, t)) = q on IRd × (0, T ) , (13)

u (x, 0) = u0 (x) on IRd, (14)
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where T is again a fixed positive number. As the fluxes can now be dependent
on space and time, one needs to employ the total differential

d

dxl

fl ≡ (fl)xl
+ (fl)u uxl

. (15)

In comparison to the first scenario from Section 2.1, especially different as-
sumptions on the fluxes and the source terms are imposed. As in (8), there
is no particular condition on the initial data. The flux functions are now
assumed to satisfy

fl(x, t, u) ∈ C1
(
IRd × IR+ × IR; IR

)
, l = 1, . . . , d. (16)

As source terms, functions

q ≡ q (x, t, u(x, t)) ∈ C1
(
IRd × IR+ × IR; IR

)
(17)

are considered. Under the conditions (16) and (17), Kružkov [9] proved the
uniqueness of the entropy solution of (13), (14).
Comparing the weak formulation of this problem with the weak formulation
(11), one has to substitute

∫ ∞

0

∫

IRd

q (x, t, u(x, t))φ (x, t) dxdt for

∫ ∞

0

∫

IRd

q (x, t)φ (x, t) dxdt.

(18)
The Kružkov entropy condition corresponding to (13), (14) then reads as

∫ ∞

0

∫

IRd

[

|u (x, t) − ξ|φt (x, t)

+

d∑

l=1

sgn (u (x, t) − ξ) [fl(x, t, u (x, t)) − fl(x, t, k)]
∂

∂xl
φ (x, t)

]

dxdt

≥ −

∫

IRd

|u0 (x) − ξ|φ0 (x) dx

−

∫ ∞

0

∫

IRd

d∑

l=1

sgn [u (x, t) − ξ]
[
q (x, t, u(x, t)) − flxl

(x, t, k)
]
φ (x, t) dxdt

for all φ ∈ C∞
0

(
IRd+1; IR

)
with φ ≥ 0 and for all ξ ∈ IR.

2.3 A HCL with solution of non-compact support

In order to point out the difficulties encountered when approaching the in-
troduced general settings numerically, we briefly discuss a consequence of
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the basic assumptions from Section 2.1 by a special 1-D example. If the
flux function of a nonlinear conservation law is not Lipschitz continuous as
allowed in the setting of Section 2.2, it may happen that degenerate waves of
infinite speed appear. This is the case in an example given by Kružkov and
Panov in [11], which is concerned with the equation

∂

∂t
u(x, t) +

∂

∂x

(
|u(x, t)|α

α

)

= 0 , α ∈ (0, 1), t > 0, x ∈ IR. (19)

Given the initial condition

u0(x) =







0 : x < −1,
1 : −1 ≤ x ≤ 0,
0 : x > 0,

(20)

the exact solution defined over a time interval depending on the exact choice
of α reads

u(x, t) =







0 : t > α(x + 1),
1 : x < t ≤ α(x + 1),

(
t
x

)1/(1−α)
: t ≤ x.

(21)

This solution incorporates a rarefaction wave connecting the states u = 1
and u = 0; the latter is located at infinity after arbitrarily small time. The
reason for the appearance of such a wave is, that the flux features a pole at
u = 0. Let us stress, that the domain of the solution is infinite for the initial
condition u0(x) from (20) which has compact support.

3 Monotonicity of numerical schemes for HCLs

in multiple dimensions

This section is structured by two parts. In the first paragraph, we clarify the
notation and show some basic results important for the proceeding. In the
second paragraph, we discuss the main assertions of the paper.

3.1 The set-up

Since we want to deal with numerical methods in d spatial dimensions, we
will spend some efforts on a general notation. At first we introduce the grid
points. For this, we employ uniform grid spacings ∆xl corresponding to the
space dimensions l = 1, . . . , d, and ∆t corresponding to time. This results
in a countable number of grid points. We introduce a linear numbering J of
the spatial grid points

J = {0, 1, 2, . . .} . (22)
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We also define a bijective mapping

J̃ : J −→ IRd

i 7→ (i1∆x1, i2∆x2, . . . , id∆xd)
⊤ with (i1, i2, . . . , id)

⊤ ∈ Z
d.(23)

In order to describe the indices within the stencil of a numerical method, we
define the indices i±δl that denote the left and right neighbours of the point
i w.r.t. the l-th space coordinate via

i ± δl
J̃
−→ (i1∆x1, i2∆x2, . . . , (il ± 1)∆xl, . . . , id∆xd)

⊤ . (24)

Let Uk
j and qk

j denote the value of the numerical solution and the value of
the source term at the point with the index j ∈ J at the time level k∆t,
respectively. With these notations, we consider conservative (2d + 1)-point
implicit methods in the form

Un+1
j = Un

j −
d∑

l=1

∆t

∆xl

{
gl

(
Un+1

j , Un+1
j+δl

)
− gl

(
Un+1

j−δl, Un+1
j

)}
+∆tqn+1

j . (25)

We assume that the numerical flux functions gl introduced in (25) are con-
sistent, i.e.

gl(v, v) = fl(v) holds for all v ∈ IR and for all l = 1, . . . , d. (26)

In the case of the theoretical set-up described in Section 2.2, we simply need
to add arguments (xj , t

n+1) within the fluxes. We will not do this explicitly
in the following.
We now recall the definition of a monotone method, cf. (2). It will be useful
to specify the scheme mappings H and Hl using d = {1, . . . , d} via

Un+1
j = H

(
l ∈ d; Un+1

j−δl, Un+1
j , Un+1

j+δl, Un
j

)
(27)

= Un
j −

d∑

l=1

∆t

∆xl

{
gl

(
Un+1

j , Un+1
j+δl

)
− gl

(
Un+1

j−δl, Un+1
j

)}
+ ∆tqn+1

j

= Un
j +

d∑

l=1

Hl

(
Un+1

j−δl, Un+1
j , Un+1

j+δl

)
+ ∆tqn+1

j . (28)

In what follows, we always consider conservative and consistent methods of
the general structure described above.

The first important property of numerical schemes is concerned with the
numerical flux functions. In what follows, we always consider numerical
fluxes gl(v, w) that satisfy the following two conditions:
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(g1). gl(v, w) is a monotonously growing function of the variable v,

(g2). gl(v, w) is a monotonously decreasing function of the variable w.

This set-up is fundamental for our approach. Note that the conditions (g1)
and (g2) are analogous to corresponding properties of numerical flux func-
tions for monotone schemes in the explicit case.

An essential technical assertion for our proceeding is the following.

Lemma 3.1 Let al, ∆al, cl, l = 1, . . . , d, b, b∗, e and ∆e be real numbers,
where ∆al ≥ 0, ∆e ≥ 0. Consider corresponding equalities defined as

b = H (l ∈ d; al, b, cl, e) , (29)

b∗ = H (l ∈ d; al + ∆al, b
∗, cl, e + ∆e) . (30)

Then by (g1) and (g2) holds

H (l ∈ d; al + ∆al, b, cl, e + ∆e) ≥ b∗ ≥ H (l ∈ d; al, b, cl, e) = b . (31)

Proof. We first show

H (l ∈ d; al + ∆al, b, cl, e + ∆e) ≥ H (l ∈ d; al, b, cl, e) . (32)

Straight forward computation of the latter expression gives

H (l ∈ d; al + ∆al, b, cl, e + ∆e) −H (l ∈ d; al, b, cl, e)

(28)
= ∆e −

d∑

l=1

∆t

∆xl
{[gl(b, cl) − gl(al + ∆al, b)] − [gl(b, cl) − gl(al, b)]}

= ∆e +
d∑

l=1

∆t

∆xl

[gl(al + ∆al, b) − gl(al, b)] . (33)

As ∆al ≥ 0 and ∆e ≥ 0 follows using (g1), (g2), that

H (l ∈ d; al + ∆al, b, cl, e + ∆e) −H (l ∈ d; al, b, cl, e) ≥ 0 , (34)

i.e. the inequality (32) is valid.
Now we consider H (l ∈ d; al + ∆al, b, cl, e + ∆e) − b∗. By the identity (30)
we compute:

H (l ∈ d; al + ∆al, b, cl, e + ∆e) −H (l ∈ d; al + ∆al, b
∗, cl, e + ∆e)

= −
d∑

l=1

∆t

∆xl

{[gl(b, cl) − gl(al + ∆al, b)] − [gl(b
∗, cl) − gl(al + ∆al, b

∗)]}

=

d∑

l=1

∆t

∆xl
[gl(b

∗, cl) − gl(b, cl)]
︸ ︷︷ ︸

terms (t1)

+

d∑

l=1

∆t

∆xl
[gl(al + ∆al, b) − gl(al + ∆al, b

∗)]
︸ ︷︷ ︸

terms (t2)

.

(35)
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Inspecting terms (t1) and (t2), it follows by the properties (g1) and (g2)
of the numerical flux function that one of the following two situations must
hold:

(s1) H (l ∈ d; al + ∆al, b, cl, e + ∆e) − b∗ ≥ 0 for b∗ ≥ b, or

(s2) H (l ∈ d; al + ∆al, b, cl, e + ∆e) − b∗ ≤ 0 for b∗ ≤ b.

With respect to the situation (s2), we have:

H (l ∈ d; al + ∆al, b, cl, e + ∆e) − b∗ ≤ 0

⇒ b∗ ≥ H (l ∈ d; al + ∆al, b, cl, e + ∆e)
(32)

≥ H (l ∈ d; al, b, cl, e)
(29)
= b ,

(36)

i.e. H (l ∈ d; al + ∆al, b, cl, e + ∆e) − b∗ ≤ 0 as in (s2) implies b∗ ≥ b. How-
ever, at the same time (s2) relies on b∗ ≤ b, so that (s2) only addresses the
case b∗ = b. The latter is included in the assertion of the lemma.
By (s1) and making use of (29) we directly obtain the whole inequality chain
(31). qed

We summarise the analogous assertion concerned with
H (l ∈ d; al, b, cl + ∆cl, e + ∆e) − b∗ via

Lemma 3.2 Let al, cl, ∆cl, l = 1, . . . , d, b, b∗, e and ∆e be real numbers,
where ∆cl ≥ 0, ∆e ≥ 0. Consider corresponding equalities defined as

b = H (l ∈ d; al, b, cl, e) , (37)

b∗ = H (l ∈ d; al, b
∗, cl + ∆cl, e + ∆e) . (38)

Then by (g1) and (g2) holds

H (l ∈ d; al, b, cl + ∆cl, e + ∆e) ≥ b∗ ≥ H (l ∈ d; al, b, cl, e) = b . (39)

The proof is completely analogous to the one of Lemma 3.1, so we do not
give it here.

Lemma 3.1 and Lemma 3.2 together allow to circumvent the computation of
solutions of the arising implicit scheme formulae for our estimates.

3.2 Monotonicity

We now come to the main issues of this section.
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Theorem 3.3 (Monotonicity conditions for implicit methods) Let a, b and
c be arbitrarily chosen but fixed real numbers. If for all spatial dimensions
l ∈ {1, . . . , d} the relations

Hl (a + ∆a, b, c) ≥ Hl (a, b, c) ∀ ∆a ≥ 0 , (40)

Hl (a, b, c + ∆c) ≥ Hl (a, b, c) ∀ ∆c ≥ 0 (41)

hold, then the method is monotone.

One may have expected an additional condition of the form

H
(
l ∈ d; Un+1

j−δl, Un+1
j , Un+1

j+δl, s + ∆s
)
≥ H

(
l ∈ d; Un+1

j−δl, Un+1
j , Un+1

j+δl, s
)

(42)
for all j ∈ J and all ∆s ≥ 0. However, this condition turns out to be
redundant. Note also that the monotonicity conditions do not depend on the
exact nature of the source terms, i.e. both scenarios addressed in Section 2.1
and 2.2 are included in the set-up above.
It will turn out to be useful to have the following alternative formulation of
the monotonicity conditions from Theorem 3.3. By these we clarify the role
of the properties (g1), (g2), cf. Section 3.1.

Theorem 3.4 The monotonicity conditions stated in Theorem 3.3 are equiv-
alent to the conditions (g1) and (g2) on the numerical flux functions, respec-
tively.

Proof. We begin by showing the equivalence of condition (40) to (g1):

Hl (a + ∆a, b, c) − Hl (a, b, c) ≥ 0
(28)
⇔ −

[
gl (b, c) − gl (a + ∆a, b)

]
+

[
gl (b, c) − gl (a, b)

]
≥ 0

⇔ gl (a + ∆a, b) − gl (a, b) ≥ 0 . (43)

The other part of the equivalence proof follows analogously. qed

We now turn to the proof of Theorem 3.3. In order to give it a convenient
structure, we first give the following Lemma.

Lemma 3.5 Let a method H be given which satisfies the conditions (40) and
(41). Furthermore, let two data sets V n =

{
V n

j

}

j∈J
and W n =

{
W n

j

}

j∈J
be

given. Then from

∃ i ∈ J : V n
i > W n

i and ∀ j ∈ J (j 6= i) : V n
j = W n

j (44)

follows by application of H the validity of V n+1 ≥ W n+1 in the sense of the
comparison of components.
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Proof. By assumption there exists an index i ∈ J so that V n
i > W n

i holds.
Without restriction of generality we choose i = 0. The proof of the lemma
follows by induction over indices of suitable subsets Jm of J . This is necessary
in order to make the proceeding well-defined, i.e. independent of special
choices of index sets. The subset Jm of J shall contain m elements that
denote adjacent grid points:

∀m0 ∈ Jm ∃m1 ∈ Jm :
[

{m0} ∩ {p ∈ Jm ; p = m1 ± δl, l = 1, . . . , d}
]

6= ∅

(45)
for m ≥ 2. The induction takes place over the number of indices in Jm.

Beginning of the induction: m = 1. We choose without restriction of gener-
ality J1 = {0}. The statement of the lemma is true because of the form of
the method (25):

H
(
l ∈ d; W n+1

−δl , W n+1
0 , W n+1

δl , s + ∆s
)
≥ H

(
l ∈ d; W n+1

−δl , W n+1
0 , W n+1

δl , s
)

(46)
∀∆s ≥ 0.

Assumption of the induction: The statement of the lemma is true for arbi-
trary but fixed m > 1.

Induction step: m 7→ m + 1. Let the statement be true for the subsets
{
V n+1

i

}

i∈Jm

and
{
W n+1

i

}

i∈Jm

of the sets V n+1 and W n+1. Then it holds in
particular:

V n+1
m̃ ≥ W n+1

m̃ for an index m̃ ∈ Jm

with
[

{i ∈ J : i = m̃ ± δl, l = 1, . . . , d} ∩ (J \ Jm)
]

6= ∅ . (47)

This means, we consider an index m̃ corresponding to a grid point with at
least one neighbour with index not in Jm. We choose lm corresponding to

m̃ ∈ Jm and m̃ + δlm /∈ Jm . (48)

Furthermore, one may distinguish between the situations

(i) m̃ ∈ Jm and {m̃ + δlm, m̃ + 2δlm} ⊂ J \ Jm , (49)

(ii) {m̃, m̃ + 2δlm} ⊂ Jm and m̃ + δlm /∈ Jm . (50)

Thereby, we implicitly defined the index m̃ + 2δlm as the index of the node
that is fixed via m̃, m̃ + δlm and the geometry of the computational stencil
of the method, cf. (27) and (28). We now proceed in accordance to (i) and
(ii). By V n+1

m̃ ≥ W n+1
m̃ and (40) follows

Hlm

(
V n+1

m̃ , W n+1
m̃+δlm

, W n+1
m̃+2δlm

)
≥ Hlm

(
W n+1

m̃ , W n+1
m̃+δlm

, W n+1
m̃+2δlm

)
. (51)

13



If the index m̃ + 2δlm is already in Jm, we estimate

Hlm

(
V n+1

m̃ , W n+1
m̃+δlm

, V n+1
m̃+2δlm

)
≥ Hlm

(
W n+1

m̃ , W n+1
m̃+δlm

, W n+1
m̃+2δlm

)
(52)

by using (41) in addition to (40).
We now make use of these estimates. For this, we also set

V n+1
k := W n+1

k + ∆k for any index k ∈ Jm , (53)

with ∆k ≥ 0. Of course, for k /∈ Jm we may retrieve W n+1
k from W n+1

k + ∆k

via ∆k = 0. Generalising then in a straight forward fashion the setting from
(49) and (50) to d space dimensions, we obtain (at the index m̃ + δlm) by
Lemma 3.1 and Lemma 3.2:

H
(

l ∈ d; W n+1
(m̃+δlm)−δl + ∆(m̃+δlm)−δl, W n+1

m̃+δlm
, W n+1

(m̃+δlm)+δl + ∆(m̃+δlm)+δl

)

≥ V n+1
m̃+δlm

≥ H
(

l ∈ d; W n+1
(m̃+δlm)−δl, W n+1

m̃+δlm
, W n+1

(m̃+δlm)+δl

)

= W n+1
m̃+δlm

. (54)

The case m̃ ∈ Jm and m̃ − δlm /∈ Jm can be dealt with analogously. By
defining in accordance

Jm+1 := Jm ∪ {m̃ + δlm} or Jm+1 := Jm ∪ {m̃ − δlm} , (55)

it follows V n+1
i ≥ W n+1

i for all i ∈ Jm+1. Since m̃ and lm were chosen
arbitrarily, the proceeding is well-defined and the proof is finished. qed

Having shown the validity of Lemma 3.5, we proceed with proving Theorem
3.3.

The idea of the proof. The idea of the proof of Theorem 3.3 can be
sketched as follows. Let two data sets W n and W n+1 be given with W n+1 =
H (W n, W n+1). Then the proof proceeds along the following steps.

1. A positive perturbation in W n
j results in a non-negative perturbation

in W n+1
j .

2. The non-negative perturbation in W n+1
j results in non-negative pertur-

bations in W n+1
j±δl for all l.

3. Consider an arbitrary index i and an arbitrary dimensional index l.
Then, any non-negative perturbation in the neighbouring values W n+1

i±δl

give a non-negative perturbation in W n+1
i .

14



For deciding if an induced perturbation is non-negative, we rely on Lemma
3.1 and Lemma 3.2 without stating this explicitly anymore.
As the spatial domain is covered by a grid of a countable number of nodes, the
complete set of grid nodes can be addressed by using the induction principle.
The induction over the spatial indices k shows, that by applying the method
H at two data sets V n and W n, where V n ≥ W n holds (componentwise), a
comparison principle V n+1

k ≥ W n+1
k (where the induction is performed) as in

(2) holds. Consequently, the method H is monotone by definition. While it
seems natural to proceed by an induction proof – given the countable number
of grid points and the possibility to order them by a suitable linear numbering
– this kind of proof structure is very unconventional in the field of numerical
methods for HCLs.

Proof. (Of Theorem 3.3.) To prove is the validity of (2) by using the
assumptions (40) and (41). Therefore, we define the set

Ĵn := {i ∈ J | V n
i > W n

i , V n
i ∈ V n, W n

i ∈ W n} . (56)

There are only a few possibilities for the composition of Ĵn: It may consist
of the empty set, or a finite or infinite subset of the index set J . We recall
that J contains the indices of all spatial grid points.

Since we have to take into account all these cases, we define

Ĵn
m := Ĵn with ♯Ĵn = m . (57)

The proof of the assertion follows by induction over m ≥ 1 (the case m = 0
is trivial).

Beginning of the induction: Ĵn = Ĵn
1 .

Let i be the index in the arbitrarily chosen but fixed index set Ĵn
1 . Then the

monotonicity follows by Lemma 3.5.

Assumption: The assertion holds for all subsets of Ĵn = Ĵn
m for an arbitrarily

chosen but fixed number m > 1.

Induction step: m 7→ m + 1

Now we consider Ĵn
m+1 with Ĵn

m ⊂ Ĵn
m+1. We define two particular indices

m1, m2 with

m1 ∈ Ĵn
m and m2 ∈

(

Ĵn
m+1 \ Ĵn

m

)

. (58)

Thereby, the index m1 is chosen arbitrarily but fixed. By the assumption of
the induction, it holds

V n ≥ W n (componentwise)
H
⇒ V n+1 ≥ W n+1 (componentwise) (59)
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when V n
i > W n

i for the indices of the index set Ĵn
m.

While it seems clear that the consideration of one more index as here m2 is
covered by the proof of Lemma 3.5, there is the open question at this point
how the processes corresponding to

V n
m1

> W n
m1

and V n
m2

> W n
m2

(60)

interact. By the assumption of the induction the perturbations due to Ĵn
m+1\

{m1, m2} are non-negative. We denote the latter values by V̄ n+1, i.e. it holds
V̄ n+1 ≥ W n+1.
Now, let ∆1

i denote a perturbation in V̄ n+1
i induced by V n

m1
−W n

m1
. Then ∆1

i

is also always non-negative by the assumption of the induction.
Analogously, let ∆2

i denote a perturbation in V̄ n+1
i induced by V n

m2
− W n

m2
.

Then ∆2
i is non-negative by applying Lemma 3.5.

There are only two situations of interest left corresponding the mutual effects
of such perturbations. For this, we consider an arbitrary but fixed index ĩ
and an accordingly arranged index li ∈ {1, . . . , d}. By (40), (41) follows:

Hli

(

V̄ n+1
ĩ−δli

+ ∆1
ĩ−δli

, V̄ n+1
ĩ

, V̄ n+1
ĩ+δli

+ ∆2
ĩ+δli

)

≥ Hli

(

V̄ n+1
ĩ−δli

, V̄ n+1
ĩ

, V̄ n+1
ĩ+δli

)

,

(61)

Hli

(

V̄ n+1
ĩ−δli

+ ∆2
ĩ−δli

, V̄ n+1
ĩ

, V̄ n+1
ĩ+δli

+ ∆1
ĩ+δli

)

≥ Hli

(

V̄ n+1
ĩ−δli

, V̄ n+1
ĩ

, V̄ n+1
ĩ+δli

)

.

(62)
By the same argumentation as in the proof of Lemma 3.5, we conclude for
any perturbation ∆k ≥ 0 that

V n+1
ĩ

= H
(

l ∈ d; V̄ n+1
ĩ−δli

+ ∆ĩ−δli
, V n+1

ĩ
, V̄ n+1

ĩ+δli
+ ∆ĩ+δli

)

≥ V̄ n+1
ĩ

. (63)

Note the arbitrary choice of m1 and m2 by a simultaneous change in the
data corresponding to Ĵn

m \ {m1, m2}. Since there are also no limitations
concerning the choices of Ĵn

m and li, the proceeding is well defined. qed

We now ask for an assertion that can be derived by assuming validity of the
monotonicity of H.

Theorem 3.6 Let a monotone method H be given. Then the numerical flux
functions gl(v, w) must satisfy (g1) and (g2).

Proof. Let two sets V n, W n be given with V n ≥ W n (componentwise).
These are mapped to sets V n+1 and W n+1 by the consistent and conserva-
tive method H. By the assumed monotonicity of H follows V n+1 ≥ W n+1
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(componentwise), so that:

b+∆b := H (l ∈ d; al + ∆al, b + ∆b, cl + ∆cl, e + ∆e) ≥ H (l ∈ d; al, b, cl, e) =: b
(64)

with the obvious definitions of participating values, compare the previous
proofs.
As the assertion of the theorem is an implication, we may specify values of
∆al, ∆cl, ∆e as required.

To (g1). Specifying ∆cl := 0 and ∆e := 0 gives

H (l ∈ d; al + ∆al, b, cl, e) −H (l ∈ d; al, b, cl, e) ≥ 0

(28)
⇔

d∑

l=1

∆t

∆xl

[gl(al + ∆al, b) − gl(al, b)] ≥ 0 , (65)

cf. (33). Setting moreover all ∆al = 0 for all l but one l̃ shows that

gl̃(al̃ + ∆al̃, b) ≥ gl̃(al̃, b) (66)

for any arbitrarily chosen but fixed l̃, and this implies (g1).
The assertion concerned with (g2) follows analogously by considering in a
first step ∆al := 0 and ∆e := 0. qed

4 The discrete entropy inequality

We now want to construct on the discrete level the link between a monotone
discretisation and the entropy condition, cf. Section 2. As indicated, this is
done in a similar fashion as in [6]. Accordingly, we make use of the following
definition.

Definition 4.1 (Consistency with the Entropy Condition) An implicit nu-
merical scheme H is consistent with the entropy condition of Kružkov if there
exist for all l = 1, . . . , d numerical entropy fluxes Gl which satisfy for all
ξ ∈ R the following assertions:

1. Consistency with the entropy flux of Kružkov

Gl(v, v; ξ) = Fl(v; ξ) ∀v with Fl(v; ξ) = sgn(v − ξ) [fl(v) − fl(ξ)] .
(67)
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2. Validity of a discrete entropy inequality

U
(
Un+1

j ; ξ
)
− U

(
Un

j ; ξ
)

∆t

≤ −
d∑

l=1

Gl

(
Un+1

j , Un+1
j+δl; ξ

)
− Gl

(
Un+1

j−δl, U
n+1
j ; ξ

)

∆xl

+sgn
[
Un+1

j − ξ
]
qn+1
j (68)

where U(v; ξ) = |v − ξ| is chosen due to Kružkov.

In the following, let

a ∨ b := max(a, b) and a ∧ b := min(a, b) (69)

hold. The important connection between the numerical entropy fluxes Gl

and the numerical flux functions gl is now established.

Lemma 4.2 (Format of numerical entropy flux) Let a monotone implicit scheme
H be given. Then the numerical entropy fluxes defined by

Gl(v, w; ξ) := gl(v ∨ ξ, w ∨ ξ) − gl(v ∧ ξ, w ∧ ξ) (70)

are consistent with the entropy fluxes of Kružkov.

Proof. Because the numerical scheme is consistent and conservative, the
statement

Gl(v, v; ξ) = gl(v ∨ ξ, v ∨ ξ) − gl(v ∧ ξ, v ∧ ξ) = sgn(v − ξ)[fl(v) − fl(ξ)]

holds by use of (69) for all l = 1, . . . , d and all ξ ∈ R. qed

One can now prove the following result, partly by a variation of the procedure
given in [6]. We introduce the source term within the proof.

Theorem 4.3 (Consistency with the entropy condition) Let a monotone im-
plicit scheme H be given. Then the scheme is also consistent with the entropy
condition of Kružkov.
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Under the same assumptions, we prove later on convergence of the corre-
sponding numerical approximation to the entropy solution. Proof. (Of

Theorem 4.3.) Since the method H features consistent and conservative nu-
merical flux functions gl, l = 1, . . . , d, one can construct numerical entropy
fluxes Gl by applying Lemma 4.2. Thus, the consistency with the entropy
fluxes of Kružkov is given.

It is left to show the validity of a discrete entropy inequality. Therefore, let
ξ ∈ R be chosen arbitrarily but fixed. By using the definition of Gl, we derive

−
d∑

l=1

∆t

∆xl

{

Gl

(
Un+1

j , Un+1
j+δl; ξ

)
− Gl

(
Un+1

j−δl, Un+1
j ; ξ

)
}

= H
(
l ∈ d, Un+1

j−δl ∨ ξ, Un+1
j ∨ ξ, Un+1

j+δl ∨ ξ, Un
j ∨ ξ

)

−H
(
l ∈ d, Un+1

j−δl ∧ ξ, Un+1
j ∧ ξ, Un+1

j+δl ∧ ξ, Un
j ∧ ξ

)
−

∣
∣Un

j − ξ
∣
∣ .(71)

Now we estimate the terms involving H by using the properties (g1) and (g2)
of the numerical flux functions of a monotone method, cf. Theorem 3.4. It
is necessary to employ a diversion of the cases Un+1

j ≥ ξ and Un+1
j < ξ.

(a) Case Un+1
j ≥ ξ:

H
(
l ∈ d, Un+1

j−δl ∨ ξ, Un+1
j ∨ ξ, Un+1

j+δl ∨ ξ, Un
j ∨ ξ

)

(a)
= Un

j ∨ ξ −
d∑

l=1

∆t

∆xl

{
gl

(
Un+1

j , Un+1
j+δl ∨ ξ

)
− gl

(
Un+1

j−δl ∨ ξ, Un+1
j

)}
+ ∆tqn+1

j

≥ Un
j −

d∑

l=1

∆t

∆xl

{
gl

(
Un+1

j , Un+1
j+δl

)
− gl

(
Un+1

j−δl, Un+1
j

)}
+ ∆tqn+1

j

= Un+1
j

(a)
= Un+1

j ∨ ξ.

(b) Case Un+1
j < ξ:

H
(
l ∈ d, Un+1

j−δl ∨ ξ, Un+1
j ∨ ξ, Un+1

j+δl ∨ ξ, Un
j ∨ ξ

)

(b)
= Un

j ∨ ξ −
d∑

l=1

∆t

∆xl

{
gl

(
ξ, Un+1

j+δl ∨ ξ
)
− gl

(
Un+1

j−δl ∨ ξ, ξ
)}

+ ∆tqn+1
j

≥ ξ −
d∑

l=1

∆t

∆xl
{gl (ξ, ξ) − gl (ξ, ξ)} + ∆tqn+1

j

= ξ + ∆tqn+1
j

(b)
= Un+1

j ∨ ξ + ∆tqn+1
j .
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(c) Case Un+1
j ≥ ξ:

H
(
l ∈ d, Un+1

j−δl ∧ ξ, Un+1
j ∧ ξ, Un+1

j+δl ∧ ξ, Un
j ∧ ξ

)

(c)
= Un

j ∧ ξ −
d∑

l=1

∆t

∆xl

{
gl

(
ξ, Un+1

j+δl ∧ ξ
)
− gl

(
Un+1

j−δl ∧ ξ, ξ
)}

+ ∆tqn+1
j

≤ ξ −
d∑

l=1

∆t

∆xl
{gl (ξ, ξ) − gl (ξ, ξ)} + ∆tqn+1

j

= ξ + ∆tqn+1
j

(c)
= Un+1

j ∧ ξ + ∆tqn+1
j .

(d) Case Un+1
j < ξ:

H
(
l ∈ d, Un+1

j−δl ∧ ξ, Un+1
j ∧ ξ, Un+1

j+δl ∧ ξ, Un
j ∧ ξ

)

(d)
= Un

j ∧ ξ −
d∑

l=1

∆t

∆xl

{
gl

(
Un+1

j , Un+1
j+δl ∧ ξ

)
− gl

(
Un+1

j−δl ∧ ξ, Un+1
j

)}
+ ∆tqn+1

j

≤ Un
j −

d∑

l=1

∆t

∆xl

{
gl

(
Un+1

j , Un+1
j+δl

)
− gl

(
Un+1

j−δl, Un+1
j

)}
+ ∆tqn+1

j

= Un+1
j

(d)
= Un+1

j ∧ ξ.

By combining all these cases, we obtain from (71) the inequality

−
d∑

l=1

∆t

∆xl

{

Gl

(
Un+1

j , Un+1
j+δl; ξ

)
− Gl

(
Un+1

j−δl, Un+1
j ; ξ

)
}

+ sgn
[
Un+1

j − ξ
]
∆tqn+1

j

≥ Un+1
j ∨ ξ − Un+1

j ∧ ξ − sgn
[
Un+1

j − ξ
]
∆tqn+1

j

+sgn
[
Un+1

j − ξ
]
∆tqn+1

j −
∣
∣Un

j − ξ
∣
∣

=
∣
∣Un+1

j − ξ
∣
∣ −

∣
∣Un

j − ξ
∣
∣ .

By construction, the proceeding is well defined. Division by ∆t gives the
desired discrete entropy inequality. qed

Concerning the setting described in Section 2.2, the validity of the corre-
sponding discrete entropy inequality follows analogously.

5 Convergence

Within this section, we prove convergence for implicit monotone schemes H,
of course under the assumption that the conditions for monotonicity are ful-
filled. We do this in some detail for the implicit Upwind method since this
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is demonstrated in the easiest fashion, and we refer to the differences con-
cerning the proofs of convergence with respect to other methods afterwards.
We proceed analogously with respect to the two settings described in the
Sections 2.1 and 2.2. Let us note that some part of the convergence proof is
technically identical to the one-dimensional case without sources described
in [3], so that we refer to that work for more details in some instances.

The basic idea of the convergence proofs is the following. Corresponding to
sequences ∆xk

l ↓ 0 for k → ∞, l ∈ d, we construct a monotonously growing
sequence of discrete initial data. Then by the monotonicity of the method
we get a monotonously growing sequence of numerical solutions. Because
of the assumption U0 ∈ L∞ (in a discrete sense) and pointwise integrable
sources, we have L∞-stability. Thus, the function sequence obtained via the
monotone scheme is integrable and bounded from above. Then we use the
well known Theorem of Monotone Convergence of Beppo Levi to show con-
vergence (almost everywhere) to a limit function. Since the approximative
sequence satisfies a discrete entropy inequality, convergence to the entropy
inequality of Kružkov follows by the established strong convergence almost
everywhere of the sequence.

Consequently, we begin this section with showing L∞-stability.

Lemma 5.1 (L∞-Stability) Let an implicit monotone method H be given.
Then the numerical solution is L∞-stable over any finite time interval [0, T ].

Proof. Let a data set U0 ∈ L∞ be given. We then identify the finite values

A := inf
j∈J

U0
j and B := sup

j∈J
U0

j . (72)

Since the source terms are pointwise bounded over the time intervall (0, T ),
cf. (10) and (17), they are bounded by a finite number M with

∫ T

0

||q||
∞

dt < M .

Consequently, by the monotonicity of H follows that the numerical solution
obtained via given data U0 is bounded for all n with n∆t < T by An ≤ Un ≤
Bn with

An
j := A − M (> −∞) ∀j ∈ J and Bn

j := B + M (< ∞) ∀j ∈ J .

qed
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The main assertion of this section is then:

Theorem 5.2 (Convergence of implicit monotone schemes) Let u0(x)
be in Lloc

∞

(
R

d; R
)
. Consider a sequence of nested grids indexed by k =

1, 2, . . ., with mesh parameters ∆tk ↓ 0 and ∆xk
l ↓ 0, l = 1, . . . , d, as k → ∞,

and let uk(x, t) denote the step function obtained via the numerical approxi-
mation by a consistent, conservative and monotone scheme in the form of the
discussed methods. Then uk(x, t) converges to the unique entropy solution of
the given conservation law as k → ∞.

Proof. At first, the convergence to a weak solution of the conservation
law is established, followed by the verification that this weak solution is the
entropy solution. For brevity of the notation, we omit the arguments (x, t)
when appropriate.
We employ sequences ∆tk ↓ 0 and ∆xk

l ↓ 0, assuming that the resulting grids
are nested in order to compare data sets of values, i.e. refined grids always
inherit cell borders.
The most important technical detail is the special discretization of the ini-
tial condition u0 ∈ Lloc

∞

(
R

d; R
)
. After a suitable modification on a set of

Lebesgue measure zero, the initial condition is discretized on cell j ∈ J , i.e.
for

x ∈
(
(j1 − 1)∆x0

1, j1∆x0
1

]
× . . . ×

(
(jd − 1)∆x0

d, jd∆x0
d

]
,

by
U0

j := inf
x in cell j

u0(x). (73)

Corresponding to the initial data we also define a piecewise continuous func-
tion

uk(x, 0) := U0
j , x in cell j. (74)

It is a matter of classic analysis to verify that the discretisation (73) together
with (74) gives on any compact spatial domain a monotonously growing
function sequence with

lim
k→∞

uk(x, 0) = u0(x) almost everywhere (75)

by application of the Theorem of Monotone Convergence.
In the classic fashion using point values, we extract discrete test elements φ0

j

out of a given test function φ ∈ C∞
0

(
R

d+1; R
)
. Also, we define for n ≥ 1 the

step function
uk(x, t) := Un

j , x in cell j, tn−1 < t ≤ tn.
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In the following, let the test function φ be chosen arbitrarily but fixed.
We proceed by investigating in detail the implicit upwind scheme, and then
by making use of this we refer to other schemes. It is given as

Un+1
j = Un

j −
d∑

l=1

∆t

∆xl

{
fl

(
Un+1

j

)
− fl

(
Un+1

j−δl

)}
+ ∆tqn+1

j . (76)

Multiplication of (76) with ∆tk
∏d

l=1 ∆xk
l as well as with the discrete test

element φn+1
j , summation over the spatial indices j ∈ J and the temporal

indices n ≥ 0, and finally summation by parts yields

∆tk
d∏

l=1

∆xk
l

{
∑

j∈J

∑

n≥0

[

Un
j

φn+1
j − φn

j

∆tk
+

d∑

l=1

fl(U
n+1
j )

φn+1
j+δl − φn+1

j

∆xk
l

]}

= −
d∏

l=1

∆xk
l

∑

j∈J

U0
j φ0

j + ∆tk
d∏

l=1

∆xk
l

∑

j∈J

qn+1
j φn+1

j . (77)

By the definition of the introduced step functions, (77) is equivalent to

∫

R+

∫

Rd

[

uk(x, t)
φk(x, t + ∆tk) − φk(x, t)

∆tk

+

d∑

l=1

fl(uk(x, t + ∆tk))
φk(x + ∆xk

l , t + ∆tk) − φk(x, t + ∆tk)

∆xk
l

]

dxdt

= −

∫

Rd

uk(x, 0)φk(x, 0) dx +

∫

R+

∫

Rd

qk(x, t + ∆tk)φk(x, t + ∆tk) dxdt

. (78)

We now prove convergence of (78) to the form which implies that u is a weak
solution of the original problem. We first investigate the right hand side of
(78). Set ∆̃ := maxl∈d ∆x0

l and let

K :=
{

(x, t) | ∃(y, t) ∈ support(φ) : t = 0 and yl − ∆̃ ≤ xl ≤ yl + ∆̃ for all l ∈ d
}

.

By construction, K is compact and gives the largest possible spatial domain
where non-zero discrete initial data may occur. Adding zeroes, we now cast
the problem into a more suitable form, namely

∫

Rd

uk(x, 0)φk(x, 0) dx =

∫

K

u0(x)φ(x, 0) dx

+

∫

K

uk(x, 0) [φk(x, 0) − φ(x, 0)] dx +

∫

K

[uk(x, 0) − u0(x)] φ(x, 0) dx . (79)
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Because of u0 ∈ L∞(Rd; R) and by our construction, we can estimate the
absolute of the second right hand side term in (79) by the help of a constant
Mu < ∞:
∣
∣
∣
∣

∫

K

uk(x, 0) [φk(x, 0) − φ(x, 0)] dx

∣
∣
∣
∣
≤ Mu|K| sup

x∈K
|φk(x, 0) − φ(x, 0)| . (80)

Since φ is a smooth testfunction, it is a simple but technical exercise to show

||φk(x, 0) − φ(x, 0)||
∞

→ 0 for k → ∞ . (81)

By (80) and (81), the investigated term tends to zero with k → ∞. Since φ is
continuous and since uk(x, 0) approaches u0(x) from below by construction,
we can estimate the absolute of the third right hand side term in (79) with
the help of a constant Mφ < ∞ by

∣
∣
∣
∣

∫

K

[uk(x, 0) − u0(x)]φ(x, 0) dx

∣
∣
∣
∣
≤ Mφ

∫

K

u0(x) − uk(x, 0) dx .

The Theorem of Monotone Convergence implies that

∫

K

u0(x) − uk(x, 0) dx

vanishes in the limit for k → ∞, i.e. the corresponding term in (79) goes to
zero for k → ∞. To condense these results, we obtain

lim
k→∞

∫

Rd

uk(x, 0)φk(x, 0) dx =

∫

Rd

u0(x)φ(x, 0) dx .

It remains to show
∫

R+

∫

Rd

qk(x, t + ∆tk)φk(x, t + ∆tk) dxdt
k→∞
−→

∫

R+

∫

Rd

q(x, t)φ(x, t) dxdt .

This result can easily be achieved by analogously introducing a compact
domain S ⊂ R

d including the support of φ in space and time, setting for
n ≥ 1 (n = 0 is not relevant since q(·, 0) ≡ 0)

qn
j := inf

Θ
q(x, t) ,

where Θ is the part of the (x, t)-domain with x is in cell j and t is in
(tn − ∆t0, tn], using then a similar manipulation as for the terms involving
u0.
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Concerning the left hand side of (78), adding zeroes and using the attributes
of test functions together with the L∞-stability of uk yields that we finally
have to show

∫

S

∣
∣u(x, t) − uk(x, t)

∣
∣ |φt(x, t)| dxdt

k→∞
−→ 0 , (82)

and also for all l ∈ d

∫

S

∣
∣fl(u(x, t)) − fl(uk(x, t + ∆tk))

∣
∣

∣
∣
∣
∣

∂

∂xl
φ(x, t)

∣
∣
∣
∣

dxdt
k→∞
−→ 0 (83)

in order to prove convergence to a weak solution.
Since φt is continuous on S, we can estimate |φt| in (82) by a constant
Mt < ∞. Since uk(x, t) grows monotonously with k → ∞ in the sense
of pointwise comparison, and since it is positive and bounded from above
because of u0 ∈ L∞(S) and the monotonicity of the method, the function
sequence (uk(x, t))k∈N

converges almost everywhere to an integrable limit
function on S by the Theorem of Monotone Convergence.
We set

u(x, t) := lim
k→∞

uk(x, t) .

Introducing exactly this limit function as the function u(x, t) used up to now,
the corresponding term in (82) becomes zero in the limit:

lim
k→∞

∫

S

∣
∣u(x, t)−uk(x, t)

∣
∣ |φt(x, t)| dxdt ≤ Mt

∫

S

u(x, t)− lim
k→∞

uk(x, t) dxdt = 0 .

Note that the pointwise convergence uk → u almost everywhere is now es-
tablished and can be used in the following.
For proving (83), we need some further simple manipulations. We use again
the continuity of the derivatives of φ to introduce constants M l

x < ∞ to
obtain by the triangle inequality

∫

S

∣
∣fl(u(x, t)) − fl(uk(x, t + ∆tk))

∣
∣

∣
∣
∣
∣

∂

∂xl

φ(x, t)

∣
∣
∣
∣

dxdt ≤

M l
x

∫

S

|fl(uk(x, t)) − fl(u(x, t))| dxdt

+M l
x

∫

S

∣
∣fl(uk(x, t + ∆tk)) − fl(uk(x, t))

∣
∣ dxdt (84)

for all l ∈ d. We now discuss the first right hand side term in (84). Since by
construction uk and u are in L∞(S), we can estimate every |fl(uk(x, t)) − fl(u(x, t))|
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over S from above by a constant M l
f < ∞ because of the continuity of the

fl on the compact set of possible values. Then the functions

M l
f (x, t) :=

{
M l

f : (x, t) ∈ S
0 : else

,

are in L1(R
d × R+; R) and dominate |fl(uk(x, t)) − fl(u(x, t))| for all l ∈ d

and all k. Because of the established pointwise convergence uk → u a.e., we
can apply the Theorem of Dominated Convergence by Lebesgue to obtain
for all l

lim
k→∞

M l
x

∫

S

|fl(uk(x, t)) − fl(u(x, t))| dxdt = 0 . (85)

Now we discuss the second right hand side term in (84). Since by construction
uk is a step function with finite values on the compact domain S, uk is in
L1(S). Since the fl are continuous, also fl◦uk are in L1(S). By the continuity
in the mean of L1-functions, there exist δl(ǫ) for all ǫ > 0 with

∫

S

∣
∣fl(uk(x, t + ∆tk)) − fl(uk(x, t))

∣
∣ dxdt < ǫ

if ∆tk < δl(ǫ). Since ∆tk ↓ 0 for k → ∞, ǫ can be chosen arbitrarily small,
i.e.

M l
x

∫

S

∣
∣fl(uk(x, t + ∆tk)) − fl(uk(x, t))

∣
∣ dxdt → 0 for k → ∞ (86)

holds for all l ∈ d. By (85) and (86) the assertion in (83) is proven. Since
the test element φ was chosen arbitrarily, convergence to a weak solution is
established.
We have now to show that exactly this weak solution is the unique entropy
solution in the sense of Kružkov. Therefore, we derive in a similar fashion
as in the derivation of (77) the weak form of the discrete entropy condition
(68). For the implicit upwind scheme, it reads as

−∆tk
d∏

l=1

∆xk
l

∑

j∈J

|u0
j − ξ|φ0

j − ∆tk
d∏

l=1

∆xk
l

∑

j∈J

∑

n≥0

sgn
(
Un+1

j − ξ
)
qn+1
j φn+1

j

≤ ∆tk
d∏

l=1

∆xk
l

∑

j∈J

∑

n≥0

[

|Un
j − ξ|

φn+1
j − φn

j

∆tk

+sgn
(
Un+1

j − ξ
)

d∑

l=1

{

[
fl(U

n+1
j ) − fl(ξ)

] φn+1
j+1 − φn+1

j

∆xk
l

}]

. (87)
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Using the established convergence uk → u a.e. of the function sequence gene-
rated by the numerical method for ∆tk ↓ 0 and ∆xk

l ↓ 0 for all l ∈ d, we now
prove convergence of (87) towards the form of the entropy condition due to
Kružkov, cf. Sections 2.1 and 2.2. Therefore, we have to consider arbitrarily
chosen but fixed test elements composed of a test function φ with φ ≥ 0,
φ ∈ C∞

0 (Rd+1; R), and a test number ξ ∈ R.
Using the same notation and applying a similar procedure as in the case of
the convergence proof to a weak solution, we first want to prove

lim
k→∞

Mφ

∫

K

∣
∣|uk(x, 0) − ξ| − |u0(x) − ξ|

∣
∣ dx = 0. (88)

Since ξ is fixed and uk(x, 0) and u0 bounded, one can find a constant function
over the compact intervall K which dominates the integrand for all ξ. Then
(88) follows by use of the already established convergence uk(x, 0) → u0(x)
a.e. and the Theorem of Dominated Convergence. We also have to compute

lim
k→∞

∫

R+

∫

Rd

sgn
(
uk(x, t + ∆tk) − ξ

)
qk(x, t + ∆tk)φ(x, t + ∆tk) dxdt .

Therefore, we expand the factor φ(x, t + ∆tk) by adding zeroes in the form

φ(x, t + ∆tk) = φ(x, t + ∆tk) − φ(x, t) + φ(x, t) .

Convergence of the integrals involving the factor φ(x, t + ∆tk) − φ(x, t)
to zero follows by estimating sgn, uk and qk from above and using the
usual properties of test functions. In a similar fashion, we expand the fac-
tor sgn

(
uk(x, t + ∆tk) − ξ

)
, adding zero in the form −sgn (uk(x, t) − ξ) +

sgn (uk(x, t) − ξ). The proof that the integrals involving sgn
(
uk(x, t + ∆tk) − ξ

)
−

sgn (uk(x, t) − ξ) vanish follows from the continuity in the mean of L1-functions.
Again similarly, we expand in the form qk(x, t + ∆tk) = qk(x, t + ∆tk) −
q(x, t + ∆tk) + q(x, t + ∆tk) and use the concept of monotone convergence
due to Beppo Levi to obtain convergence to zero of the integrals involving
qk(x, t+∆tk)−q(x, t+∆tk). Lastly, the proof of convergence of q(x, t+∆tk)
to q(x, t) under the integral follows from the continuity in the mean of L1-
functions. The technical details only require to take all expansions obtained
via adding suitable zeroes into account and eliminating all integrals which
involve discrete notions.
The other terms left to investigate are

∫

S

|uk(x, t) − ξ|φt(x, t) dxdt and

∫

S

d∑

l=1

sgn
[
uk(x, t + ∆tk) − ξ

] [
fl(uk(x, t + ∆tk)) − fl(ξ)

] ∂

∂xl

φ(x, t) dxdt .
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The procedure is the same in both cases. Since the occuring derivatives of φ
are continuous, we can estimate these over the compact domain S by finite
constants. Since ξ is a fixed value (and so is fl(ξ) for all l ∈ d), as uk(x, t)
is bounded and because the fl are continuous over the bounded interval of
possible values of uk (due to the established L∞-stability), we can also give
constants which estimate all the expressions from above that involve uk.
Using the product of these finite constants as dominating function over S as
well as uk → u a.e., we employ the Theorem of Dominated Convergence to
receive the desired result for the implicit upwind scheme.

For instance, in the case of the implicit Lax-Friedrichs (ILF) method,

Un+1
j = Un

j +

d∑

l=1

{
1

2

[
Un+1

j−δl − 2Un+1
j + Un+1

j+δl

]
−

∆t

2∆xl

[
fl(U

n+1
j+δl) − fl(U

n+1
j−δl)

]
}

,

(89)
the differences in the corresponding weak forms are made up from

−
∆tk
2

∫

S

uk(x, t+∆tk)φ̂l dxdt and −
∆tk
2

∫

S

∣
∣uk(x, t + ∆tk) − ξ

∣
∣ φ̂l dxdt ,

respectively. Thereby, φ̂ converges in the L∞-Norm to ∂2
x2

l

φ(x, t) which is

continuous since φ ∈ C∞
0 (Rd+1; R). Thus, the corresponding term can be

estimated from above by a constant over the compact domain S. Since ξ is
fixed and uk(x, t) is bounded as usual, both expressions vanish with ∆tk ↓ 0.

Also for any other consistent scheme, the proof can be done exactly in an
analogous fashion as above for the ILF scheme, namely to write down the
differences in the weak forms to the case of the implicit upwind method. By
consistency, these will vanish.

As another example, let us investigate the implicit Godunov-type (IGT)
method defined via

gG
l (v, w) =

{

minv≤u≤w fl(u) for v ≤ w,

maxw≤u≤v fl(u) for v > w.
(90)

Here we have as differences to the implicit upwind case
{[

gG
l (Un+1

j ∨ ξ, un+1
j+δl ∨ ξ) − gG

l (Un+1
j ∧ ξ, un+1

j+δl ∧ ξ)
]

−sgn
(
Un+1

j − ξ
) [

fl(U
n+1
j ) − fl(ξ)

]}φn+1
j+δl − φn+1

j

∆xk
l

(91)

and
[
gG

l (Un+1
j , Un+1

j+1 ) − fl(U
n+1
j )

]φn+1
j+δl − φn+1

j

∆xk
l

. (92)
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Since gG is continuous in the components and uk(x, t) ∈ L1(S), the gG
l ◦ uk

are also in L1(S). After introducing step functions as usual, the expressions
incorporating gG

l from (91) give values fl(ηl) with

ηl ∈
[
uk(x, t + ∆tk), uk(x + ∆xk

l , t + ∆tk)
]

or ηl ∈
[
uk(x + ∆xk

l , t + ∆tk), uk(x, t + ∆tk)
]

,

respectively. The integrals over the terms corresponding to (91) then go to
zero with k → ∞ because of the continuity in the mean of gG

l ◦ uk. The idea
for proving convergence to zero concerning the integral of the expressions
corresponding to (92) is the same.

Concerning the setting from Section 2.2, the described strategy is fully trans-
ferable. qed

6 Application of the monotonicity conditions

This section contains the theoretical investigation of a few selected implicit
methods. These are: An implicit Upwind (IU) scheme, the ILF scheme from
(89), and the IGT method defined via (90).

6.1 An implicit upwind method

We now investigate (76) with respect to monotonicity.

To condition (40):

Hl (a + ∆a, b, c) − Hl (a, b, c)

=

[

−
∆t

∆xl

[fl(b) − fl(a + ∆a)]

]

−

[

−
∆t

∆xl

[fl(b) − fl(a)]

]

=
∆t

∆xl
[fl(a + ∆a) − fl(a)] .

The condition (40) is fulfilled if fl grows monotonously for all l = 1, . . . , d.

To condition (41):

Hl (a, b, c + ∆c) − Hl (a, b, c)

=

[

−
∆t

∆xl

[fl(b) − fl(a)]

]

−

[

−
∆t

∆xl

[fl(b) − fl(a)]

]

= 0 (≥ 0) .

Thus, the condition (41) is always fulfilled and the IU scheme is monotone
if all the fluxes fl grow monotonously. This is a reasonable property of
the considered IU scheme as the monotonicity respects the direction of the
flow. Note that the fl do not need to be Lipschitz continuous to ensure the
monotonicity of the scheme, cf. [3].
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6.2 The implicit Lax-Friedrichs method

We investigate the ILF scheme from (89).

To condition (40):

Hl(a + ∆a, b, c) − Hl(a, b, c) =
1

2
∆a +

∆t

2∆xl
[fl(a + ∆a) − fl(a)] . (93)

This expression is not positive or equal to zero without additional require-
ments.

To condition (41):

Hl(a, b, c + ∆c) − Hl(a, b, c) =
1

2
∆c −

∆t

2∆xl
[fl(c + ∆c) − fl(c)] . (94)

Again this expression is not automatically positive or equal to zero. The
requirements (93) and (94) can be combined to

|fl(x + ∆x) − fl(x)|

∆xl

≤
∆xl

∆t
∀ l = 1, . . . , d and ∀∆x ≥ 0.

Therefore, the ILF scheme is monotone only for Lipschitz-continuous flux
functions with Lipschitz constants Ll ≤ (∆xl/∆t). This can also be under-
stood as a condition on the time step size which does not depend on the
dimension since each single one of the 2l conditions (40) and (41) has to be
satisfied and no coupling is involved.

This is quite surprising since (i) it is usually suggested that the numerical
characteristics include the whole domain in the case of implicit methods, and
as (ii) no dimensional influence on the monotonicity property is obtained.

In order to discuss these points, we investigate the cases of 1-D and 2-D
linear advection, respectively.
In the case of a linear flux f(u) = vu in 1-D, with λ := ∆t/∆x, the linear
system defined by the ILF is given as

[

−
1

2
− v

λ

2

]

Un+1
j−1 + 2Un+1

j +

[

−
1

2
+ v

λ

2

]

Un+1
j+1 = Un

j . (95)

We investigate the structure of the tridiagonal matrix A = (aij) defined
by (95). Therefore, let v be positive with v > (1/λ) so that the formal
monotonicity property of the scheme is lost. Then the entries in the lower
diagonal ai+1,i always take on negative values while the entries in the upper
diagonal ai,i+1 are always positive.
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We at first eliminate the entries in the lower diagonal ai+1,i. The diagonal
entries of the matrix have to be modified accordingly, i.e. the diagonal entry
in the i-th row is modified via

anew
ii = aold

ii −
ai,i−1

ai−1,i−1
ai−1,i.

Thereby, note that we always have the situation

ai,i−1 < 0, ai−1,i−1 > 0 and ai−1,i > 0,

so that anew
ii > aold

ii is always satisfied. Since the right hand side (bi) of the
investigated system incorporating the given data is modified via

bi = Un
i −

ai,i−1

ai−1,i−1

bi−1,

data sets with Un
k ≥ 0 ∀k imply only positive possible changes in the values

bi. In particular, the values in the upper diagonal ai,i+1 remain unchanged
and positive.
We now investigate what happens at a jump in given data un

k from values
0 to 1 when backward elimination is applied in order to solve the system.
Therefore, we fix Un

j := 0 ∀j < i and Un
j := 1 ∀j ≥ i. By the described

procedure, it is clear that the corresponding entries on the right hand side
also show a jump from 0 to 1 after the modification due to elimination of the
lower diagonal since bi−1 = Un

i−1 = 0, so that no positive update in bi takes
place. Backward elimination results in

Un+1
i−1 =

1

anew
i−1,i−1

︸ ︷︷ ︸

>0

(
Un

i−1
︸︷︷︸

=0

− ai−1,i
︸ ︷︷ ︸

>0

Un
i

︸︷︷︸

=1

)
< 0 ,

so that the monotonicity is violated as expected, cf. Figure 1. The violation
of the monotonicity property can also be observed at jumps from high to
lower values within given data.
Concerning the 2-D situation, we consider the linear advection equation

∂

∂t
u(x, y, t) +

∂

∂x
(vu(x, y, t)) +

∂

∂y
(vu(x, y, t)) = 0

with grid parameters ∆x = ∆y = 0.1 and the initial condition

u(x, y, 0) =

{
1 for (x, y) ∈ [0, 1] × [0, 1] ,
0 else.

The monotonicity condition infers that the chosen time step size ∆t = 0.1
is the largest one allowed for v = 1.0 in order to preserve the monotonicity
of the scheme, the same as would be in the 1-D case. See Figure 2 for
a visualisation of the monotone and monotonicity-violating property of the
method.
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The implicit Lax−Friedrichs−method

monotone solution
non−monotone solution

Figure 1: Numerical solutions after one time step of the 1-D linear advec-
tion problem. The solution is computed once with v = 1 satisfying the
monotonicity condition and once with v = 1.5, resulting in a monotonicity
violation.

6.3 An implicit Godunov-type method

In the scalar case, a closed form of the exact solution of a Riemann problem
was described by Osher [16]. Using this, a numerical scheme can be defined
via the d numerical flux functions from (90). Since the relative values of the
test variables have to be compared within the scheme, diversions by cases
have to be employed for the monotonicity investigation.

To condition (40):
Generally, for l = 1, . . . , d,

Hl(a + ∆a, b, c) − Hl(a, b, c) =
∆t

∆xl

[
gG

l (a + ∆a, b) − gG
l (a, b)

]

holds. Since only the values b, a and a+∆a are of importance, it is necessary
to investigate three cases for each l ∈ d.

1. Case: b ≤ a ≤ a + ∆a

∆t

∆xl

[
gG

l (a+∆a, b)−gG
l (a, b)

]
=

∆t

∆xl

[

max
b≤u≤a+∆a

fl(u) − max
b≤u≤a

fl(u)

]

≥ 0.

2. Case: a ≤ b ≤ a + ∆a

∆t

∆xl

[
gG

l (a+∆a, b)−gG
l (a, b)

]
=

∆t

∆xl

[

max
b≤u≤a+∆a

fl(u) − min
a≤u≤b

fl(u)

]

≥ 0.
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3. Case: a ≤ a + ∆a ≤ b

∆t

∆xl

[
gG

l (a+∆a, b)−gG
l (a, b)

]
=

∆t

∆xl

[

min
a+∆a≤u≤b

fl(u) − min
a≤u≤b

fl(u)

]

≥ 0.

Thus, the validity of the condition (40) is guaranteed without any additional
condition on the flux function. This can be verified analogously for condition
(41), so that the investigated IGT scheme is monotone for general continuous
flux functions.

7 Summary and conclusion

We have shown how the monotonicity notion needs to be understood in the
implicit case. For this, we have employed some new tools in order to deal
with the implicit scheme definition.
Our results show, that the usual intuition that implicitness gives uncon-
ditional stability does not necessarily hold when dealing with numerical
schemes for HCLs. By the details of our proceeding, we conjecture that
only upwind-type schemes can really achieve this desirable property.
The question we aim to address in future research is, if there is a good way
to investigate other non-linear stability notions like e.g. the TVD notion
rigorously for implicit schemes.
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[10] Kružkov, S.N., Hildebrand, F.: The Cauchy problem for quasilinear first
order equations in the case the domain of dependence on initial data is
infinite. Moscow Univ. Math. Bull., 29, No. 5, pp. 75–81, (1974)
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Figure 2: Numerical solutions after one time step of the 2-D linear advec-
tion problem. Top. The solution is computed with v = 1 satisfying the
monotonicity condition. Bottom. The solution is computed with v = 1.5
resulting in monotonicity loss, as in 1-D.

35


