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ABSTRACT

Recently, non-Lambertian models for perspective shape from
shading (PSFS) have received attention in the literature. The
Phong-based PSFS model combining Lambertian and specu-
lar reflection has been shown to give good results for objects
in real-world images. In this paper, we present at hand of
this model the first analysis of a non-Lambertian PSFS model
in the literature. We show mathematically and experimen-
tally how crucial the specular part of the model is for the re-
construction. Moreover, we give a detailed analysis of the
Hamiltonian defining the model. While the non-Lambertian
reflectance is generally assumed to lead to numerical difficul-
ties, this investigation shows that an efficient fast marching
scheme can be applied successfully without losing depth in-
formation. Our work represents a first step towards the thor-
ough understanding of non-Lambertian PSFS models.

Index Terms— shape from shading, perspective projec-
tion, Phong reflectance, non-convex Hamiltonian, fast march-
ing method

1. INTRODUCTION

Shape from Shading (SFS) is a fundamental problem in com-
puter vision. Given information about the illumination and
the reflection properties in an imaged scene, the SFS task is
to compute the 3-D shape of depicted objects. Just a few years
ago, SFS was understood as a severely ill-posed problem [1].
Then perspective SFS (PSFS) models have been proposed by
several authors [2–4] which deliver substantially better results
and are even well-posed to some degree, cf. [5] for an expo-
sition. A number of successive works were concerned with
PSFS for objects with Lambertian light reflectance. How-
ever, as this is not a realistic reflectance model, the Lamber-
tian PSFS approach has been extended to non-Lambertian set-
tings, incorporating specular highlights in the scene [6, 7].

We deal in this work with the non-Lambertian model de-
scribed in [7]. It includes specular reflectance by making

Fig. 1. Perspective Phong-based SFS for a real-world input
image (figure adopted from [8]). Left. Original image. Right.
3-D reconstruction. What is the crucial mechanism in the
model that enables such good results for the chess figures?

use of the classic Phong model from computer graphics [9].
In [8,10] it has been shown that this model enables SFS for re-
alistic grey value input images. Even though it is a relatively
simple prototype for PSFS with non-Lambertian reflectance,
this model is up to now not well-understood.

Our contribution. In this paper, we give the first de-
tailed analysis of a non-Lambertian PSFS model in the litera-
ture. We show that the specular reflection terms of perspective
Phong-based SFS (P2SFS) have crucial influence at singular
points (see e.g. [11]) that largely determine the shape com-
putation. The analytic investigation is complemented by an
experiment which shows that even the shape of objects with
very strong specular reflection (visually close to a glossy plas-
tic surface) can be reconstructed correctly. In addition, an
in-depth analysis of the non-convexity of the model is pre-
sented. Our results indicate that the efficient fast marching
(FM) method can be used without losing depth information
at and around singular points. This not only shows that the
purely algorithmic FM approach proposed in [8] is correct,
it also implies that one may consider the FM method for use
with other non-Lambertian PSFS models.

In what follows, we summarise the P2SFS model. We pro-
ceed with the analysis of singular points and an exposition on
non-convexity, followed by a numerical test and a conclusion.



2. PSFS WITH PHONG-REFLECTANCE

We now briefly recall the P2SFS model developed in [7].
Let (x, y)> ∈ R2 be in the image domain Ω. Further-
more: (i) u := u(x, y) denotes the unknown 3-D depth; (ii)
I := I(x, y) is the normalised image brightness; (iii) f is the
focal length denoting the distance between the optical centre
of the camera and the 2-D image plane.

Clearly u > 0 holds, since the depicted scene is in front of
the camera, and the depth u is measured in terms of multiples
of f. In order to simplify the constituting equation, we will
use v := ln(u) as unknown variable.

With these definitions at hand and assuming that the light
source is positioned at the optical centre of the camera, the
constituting equation of the P2SFS model is given by the
Hamilton-Jacobi equation (HJE)

f2W

Q
(I − kaIa)− kdIde−2v −

WksIse
−2v

Q
Rα = 0 (1)

with W :=
√
f2|∇v|2 + (∇v · (x, y)>)2 +Q2 (2)

Q := f/
(√

x2 + y2 + f2
)

(3)

R := 2Q2/W 2 − 1 (4)

Thereby, ∇v = (vx, vy)
> is the gradient of v, and the lower

indices in vx and vy denote partial derivatives. The HJE (1) is
a partial differential equation (PDE) whose solution is to be
understood in a viscosity sense, cf. [5] for related discussions.
The PDE (1) needs to be complemented by boundary condi-
tions ensuring that no shape information propagates into the
image domain from outside.

For the P2SFS model the surface reflectance is described
by the Phong-model [9]. The brightness equation for one light
source and grey-value images that is the origin of (1) reads as

I = kaIa +
1

r2
(
kdId cosφ+ ksIs(cos θ)α

)
(5)

Here Ia, Id, and Is are the intensities of ambient, diffuse, and
specular components of light, respectively. The constants ka,
kd, and ks with ka + kd + ks ≤ 1 denote the ratio of am-
bient, diffuse, and specular reflection. The ambient light is
light present everywhere in a given scene. The intensity of
diffusely reflected light in each direction is proportional to
the cosine of the angle φ between surface normal and light
source direction. The amount of specular light reflected to-
wards the viewer is proportional to (cos θ)α, where θ is the
angle between the ideal mirror reflection direction of the in-
coming light and the viewer direction. Let us note that the
expression (cos θ)α is replaced by zero if the cosine evaluates
to a negative number. The parameter α models the roughness
of the material. The number r := r(x, y) is the distance be-
tween the light source and the object surface. In case where
the light source coincides with the optical centre, then r = fu;
1/r2 is the inverse square law of light attenuation.

The simplicity of this reflectance model, compared to
other approaches, is a reason why the P2SFS model can be
considered as a prototype for non-Lambertian PSFS models.

3. ANALYSIS OF SINGULAR POINTS

We will now investigate the HJE (1) with respect to the impor-
tance of contributing terms at singular points. As defined by
Oliensis [11], these are the points with the highest brightness
in the image.

Let us consider now the points of minimal distance be-
tween the unknown surface and the camera. Since the light
source is positioned at the optical centre of the camera, the
angles φ and θ in the brightness equation (5) will be zero
there, i.e. evaluating the cosine we obtain the maximal value
1. Moreover, because of the light attenuation term 1/r2,
points sharing this property but that are at a larger distance
from the camera do not feature the maximal brightness.

To summarise, in the P2SFS model the singular points
also define the points of minimal distance between object and
camera (excluding artificial settings like e.g. that the pho-
tographed scene is a ball of uniform radius around the cam-
era). Therefore, it also holds∇v = 0 since this is a necessary
condition for having a local depth extremum.

Let us also note that the light attenuation term combined
with setting the light source at the optical centre serves to
avoid the classic convex/concave ambiguity, cf. the discus-
sion in [5]. Thus, in the P2SFS model singular points de-
termine in most situations of practical interest uniquely the
shape of objects.

The HJE at singular points. Concerning the setting at
singular points, let us make use of ∇v = 0 to simplify the
P2SFS equation. Plugging this term into the equation gives

f2 (I − kaIa) = kdIde
−2v + ksIse

−2v (6)

Obviously, the specular term is in general as important as the
diffuse term. For ks > kd as it can be the case for strongly
reflecting materials, specular reflectance largely determines
the depth at singular points.

In addition to this point of view, the understanding of how
a model performs at singular points is crucial for the construc-
tion of numerical methods. This can be seen as follows. Any
discretisation ∇̂v of the partial derivatives in ∇v that results
in ∇̂v = (0, 0)> at local extrema should lead to the exact
computation of the depth as in (6). This holds for instance
for the discretisations investigated in [12] for the Lambertian
PSFS model. Considering iterative schemes, this means that
all the iterative solutions are fixed at singular points. An im-
portant alternative to iterative solvers is the FM method. Let
us stress that this method needs an estimate of the depth at
singular points as initialisation. The solution returned by the
FM scheme depends on these initial values.

The HJE away from singular points. In order to clarify
the role of specular terms, it is useful to distinguish the situa-



tion for singular points from the case when the HJE is evalu-
ated for∇v 6= (0, 0)>. While it is clear that the specular term
is strong at specular reflections, the question arises how much
it influences the PDE model away from specular highlights.
This investigation will also help to answer the question, when
exactly the model switches between non-convexity at high-
lights and convexity where the Lambertian part dominates.

To this end we investigate the size of the numbers appear-
ing within the HJE and its discretisations. On a discrete level,
let us generally set h := 1, where h represents the charac-
teristic grid size of the input image. With h = 1, the num-
bers appearing in the vector (x, y)> are directly related to the
numbers of pixels in the image. Assuming that an object of
interest for the reconstruction is in the centre of the input im-
age, the interesting range of

∣∣(x, y)>
∣∣ will be in the order of

up to a few hundred, even for large images.
Generally, there is also an underlying relation f ∼ h. In

the setting specified up to now (for h = 1), notably the num-
ber used for the focal length f will in general be in the range
102 to 104. As a consequence, it seems interesting to explore
the orders of magnitude with respect to f within the terms of
the HJE (1). With

W = f
√
|∇v|2 + (∇v · (x, y)>)2/f2 +Q2/f2 = O(f) (7)

and
Q = 1/

√
x2/f2 + y2/f2 + 1 = O(1) (8)

since any occuring term divided by f is small, we obtain in
leading order:

HJE main part:
f2W

Q
(I − kaIa) = O(f3) (9)

Diffuse source term: kdIde
−2v = O(1) (10)

Specular term:
WksIse

−2v

Q
Rα = O(f) (11)

To get the complete picture, let us stress that the term R is
equal to zero for

W >
√

2Q (12)

One can easily see that the values of Q can be expected in
the range of 0.7 to 1 in the centre region of an image where
the object of interest should be located. Simplifying for the
moment W to f |∇v|, we see that R will be only non-zero for
very flat gradients close to singular points.

As a consequence, we observe that the Lambertian part
of the model determines the reconstruction of the shape away
from singular points. We also observe another mechanism in
the part dominated by the Lambertian model: Variations of
the depth in the source term – as arising e.g. during an update
step within an iterative solver, cf. [5] – will lead to very small
changes in ∇̂v since these are multiplied essentially by f3.
This makes the model computationally robust.

Applying the same logic at singular points, see (6), we
observe the contrary. Given data I are multiplied by f2, so

that there is a delicate balance between the diffuse and the
specular source term on the right hand side of the equation.
As a consequence, the model is quite sensitive to the specular
part at singular points.

4. (NON-)CONVEXITY OF THE HAMILTONIAN

We complement the investigation of singular points with an
analysis of the non-convexity of the Hamiltonian. The im-
portant issue we address by this analysis is that efficient nu-
merical solvers like the iterative upwind technique [12] or the
non-iterative FM method [8] are well-established just for the
convex case. Therefore, applying the FM method as in [8], the
question arises if one makes a serious error in the depth com-
putation by neglecting the non-convex structure of the prob-
lem.

For simplicity, let us restrict ourselves to the 1-D case.
The Hamiltonian H of the P2SFS model is defined by writing
the 1-D version of the HJE (1) in the format

H (x, v, vx) = 0 (13)

Substituting the variable p for vx, our aim is to investigate the
(non-)convexity ofH with respect to p, i.e. we will investigate
the sign of ∂2

∂p2H(x, v, p).
As it will turn out, the Hamiltonian will be convex in all

parts with the possible exception of the contribution by the
specular term. Since the positive factor ksIse−2v within the
specular term will simply be kept when differentiating w.r.t.
p, we neglect it in the following. Thus, it suffices to consider
the remaining part of the specular term

hs (x, p) :=
w(x)

q(x)

(
2q(x)2

w(x)2
− 1

)α
(14)

with w(x) :=
√

f2p2 + p2x2 + q(x)2 (15)

and q(x) := f/
(√

x2 + f2
)

(16)

Let us note that in H the term hs is multiplied by −1, i.e. for
convexity of H we need concavity of hs. For simplicity, we
consider now the abbreviations

A :=
1

q

(
2q(x)2

w(x)2
− 1

)α−1
(17)

B := p
f2 + x2

w
(18)

C :=
2q(x)2(1− 2α)

w(x)2
− 1 (19)

Then one obtains after some computation

∂2

∂p2
hs =

∂A

∂p
BC +A

∂B

∂p
C +AB

∂C

∂p
(20)

The search for a value p for which ∂2

∂p2hs = 0 gives a nec-
essary condition for switching from convexity to concavity.



One can show, that ∂2

∂p2hs = 0 holds for p = ±f/
(
x2 + f2

)
which is a range of values where the pure (convex) Lamber-
tian model dominates, as we know from the previous section.

Investigating singular points where vx = 0, one obtains

∂2

∂p2
hs

∣∣∣∣
p=0

=

(
x2 + f2

)2
f2

(1− 4α) (21)

i.e. convexity is guaranteed as long as α > 1/4. Let us stress,
that in practice one would usually set the value of α to 4 or
higher.

In summary, the Hamiltonian of the P2SFS model will be
convex within the range of parameters interesting for practical
computations. Therefore, efficient solvers like FM are well-
defined for this model and work without a numerical problem.

5. NUMERICAL TEST

We demonstrate the importance of the specular term with a
new synthetic experiment not contained in [7, 8], see Figure
2. Our test shows that the shape of the vase can be computed
successfully even if eighty percent of the information arises
by specular reflection at the singular points.

Fig. 2. P2SFS for highly specular reflection, ka = 0, kd =
0.2, ks = 0.8, α = 5. Left. Original image. Right. 3-D
reconstruction using the FM method. The average depth error
of the reconstruction is around 2% of the true depth.

6. CONCLUSION

In this paper, we investigated an important prototype for non-
Lambertian PSFS models. Our detailed analysis stresses the
importance of the non-Lambertian part of the model and it
has also revealed many mechanisms of P2SFS. In addition,
we have shown that the FM method works properly for the
considered model. This may not be self-evident for other non-
Lambertian model extensions.
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H. Süße, Eds., vol. 5748 of Lecture Notes in Computer
Science, pp. 191–200. Springer, Berlin, 2009.

[11] John Oliensis, “Uniqueness in shape from shading,” In-
ternational Journal of Computer Vision, vol. 6, no. 2,
pp. 75–104, 1991.

[12] M. Breuß, Emiliano Cristiani, Jean-Denis Durou, Mau-
rizio Falcone, and O. Vogel, “Numerical algorithms for
perspective shape from shading,” Kybernetika, vol. 46,
no. 2, pp. 207–225, 2010.


