
Anisotropic Continuous-scale Morphology

Abstract. We describe a new approach to incorporate adaptivity into
the partial differential equations (PDEs) of morphological dilation and
erosion. By multiplication of the image gradient with a space-variant
matrix, the speed of the evolution is locally adapted to the data. This is
used to create anisotropic morphological evolutions that enhance coher-
ent, flow-like image structures. We show that our adaptive method can
be implemented by means of a simple modification of the classical Rouy-
Tourin finite difference scheme. Numerical experiments confirm that the
proposed dilations and erosions are capable of real anisotropic behaviour
that can be used for closing interrupted lines.

1 Introduction

Mathematical morphology is concerned with image analysis of shapes. It is one
of the oldest and most successful areas of digital image processing; see e.g. the
textbooks [6, 9, 17–19] for an overview. Its fundamental operations are called
dilation and erosion. They form the basis of many other morphological processes
such as openings, closings, top hats and morphological derivative operators.

Dilation and erosion are frequently implemented by algebraic set operations,
see e.g. [19] for a detailed overview. However, for convex structuring elements tB

with a mask B and a scaling parameter t>0, there is also an alternative formu-
lation in terms of partial differential equations (PDEs) [1, 2, 5, 16, 20]: Consider
some initial greyscale image f(x, y), a disk

B :=
{
z ∈ IR2, |z| ≤ 1

}
, (1)

and the evolution equations

∂tu = ±|∇u| , (2)

where ∇ = (∂x, ∂y)> denotes the spatial nabla operator. Moreover, assume that
at “time” t = 0, the evolution is initialised with f(x, y):

u(x, y, 0) = f(x, y). (3)

Then the solution u(x, y, t) at time t > 0 gives the dilation (for the plus sign) or
erosion (for the minus sign) with a disk of radius t.

PDEs of this type using a continuous scaling parameter t for the structuring
element create a continuous-scale morphology. They offer advantages when non-
digitally scalable structuring elements such as disks or ellipses are desirable, or
subpixel accuracy is required.
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So far continuous-scale morphology is mainly used in a non-adaptive fashion
where all locations are treated equally. In other image analysis areas such as dif-
fusion filtering, however, interesting results have been obtained by replacing ho-
mogeneous processes by space-variant [13] or even direction-variant (anisotropic)
ones [21]. The latter ones can be used for processing anisotropic image features
such as coherent, flow-like structures. Some first attempts have been made to
extend such anisotropic ideas into morphological shock filters that switch lo-
cally between dilation or erosion processes [23]. However, even in this case the
underying morphological processes use a nonadaptive structuring element, and
adaptivity only results from the fact that the shock fronts limit dilation and
erosion. Similar shape restrictions are used for the recently introduced morpho-
logical amoebae [10] that are described in a set-theoretic framework.

The goal of the present paper is to introduce a space-variant anisotropic
behaviour directly into the PDEs of dilation and erosion. In this way one benefits
from the advantages of continous-scale morphology, and creates real anisotropic
behaviour without the need to impose explicit or implicit shape restrictions.

We study a generalisation of (2) enabling the implementation of dilation or
erosion processes adapted to the local structure of a given image. To this end, we
consider adaptive norms by multiplying ∇u with a suitable matrix D, yielding
the new PDEs

∂tu = ±|D∇u| . (4)

The purpose of (4) is to obtain a morphological approach to coherence-enhance-
ment. This is of importance in order to reconstruct interrupted anisotropic image
structures. We introduce a corresponding model of the matrix D using informa-
tion from local structure tensors [4, 8, 15].

Our paper is organised as follows. After a detailed discussion of the inter-
pretation of (4) and the modeling of D in Section 2, we present a numerical
approximation of (4) as well as some numerical experiments in Section 3 and 4,
respectively. The paper is finished by concluding remarks in Section 5.

2 Interpretation and Modelling

As can easily be shown, the introduction of a matrix D in (4) is equivalent with
the multiplication of |∇u| with a function κ ≥ 0, where κ is defined by the
deformation of the unit circle by D in direction of the normalised gradient:

|D∇u| =

∣
∣
∣
∣
D

∇u

|∇u|
|∇u|

∣
∣
∣
∣

=
|D∇u|

|∇u|
︸ ︷︷ ︸

=: κ

|∇u| . (5)

So, in effect, we have

∂tu (x, y, t) = ±κ (x, y, t) |D∇u (x, y, t)| (6)
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with a scaling function κ. However, the formulation using the matrix D is ap-
propriate for our purpose since we will incorporate directional information into
our model by the use of structure tensors.

Important modeling ingredients are the following. As the norm of a matrix
D is defined by considering the deformation of the unit circle, we obtain

0 ≤ κ =
|D∇u|

|∇u|
≤ max

v 6=0

|Dv|

|v|
= ‖D‖ . (7)

Now, instead of stretching the unit circle in a desired direction, we consider nor-
malised matrices D, so that we (i) keep a maximal signal speed by ‖D‖ = ‖I‖ =
1, and (ii) attenuate the flow given by |∇u| at non-coherent image structures.

This desired behaviour is modeled by use of the structure tensor S, see [4, 8,
15]. It is given by the 2 × 2-matrix

S := Kρ ∗
(
∇uσ∇uT

σ

)
, (8)

where ∇uσ is the gradient of the image u pre-smoothed by a Gaussian kernel
with variance σ, and where Kρ∗ describes an analogous, element-wise convolution
with a Gaussian. In this context, ρ is the so-called integration scale.

∇uσ

∇uσ

C
v1

v1

v2

v2

∇uσ

C

Fig. 1. (a) Left: Coherent structure C (thick line) together with image gradients (black
arrows) and integration scale (circle) around marked point. (b) Right: Zoom into
region around marked point, with representants of v1, v2 (dotted arrows) and image
gradient ahead of C (black arrow).

Choosing, without a loss of generality, λ1 ≥ λ2 for the two eigenvalues of
S, important information about the structure of the image u is then inferred
from the two eigenvectors v1, v2: v1 describes the orientation of highest contrast
variation within the window given by the integration scale ρ, and v2⊥v1.

Let us stress that the purpose of the structure tensor is robust estimation of
directional information in an image. The pre-smoothing of u is done to atten-
uate sensitivity to noise. The decisive step in the construction of the structure
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tensor is the subsequent averaging over a neighborhood conveniently achieved
by componentwise convolution with a Gaussian of width ρ, the integration scale
as displayed in (8). This especially has the effect that the eigenvector for the
larger eigenvalue of S is a reliable estimate of the direction of features in the
neighborhood, more robust than the direct average of the gradients itself.

What is the role of the integration scale? Let us stress explicitly, that
v1 and v2 are supposed to incorporate orientation information on a larger scale,
determined by ρ in (8), in comparison to the more local gradient information
given by ∇uσ . The parameter σ determining the pre-smoothing is usually chosen
relatively small (≤ 1), while typical integration scales we have employed for
numerical testing are ρ ≥ 3. The idea followed in this paper is to compare
pointwise an average orientation given by v1, v2 (where we make use, especially,
of v2), with local orientations given by ∇uσ, compare Figure 1.

Fig. 2. (a) Top left: Initial image, 385 × 300 pixels. (b) Top right: Eroded image
after 40 time steps. (c) Bottom left: After 100 time steps. (d) Bottom left: After
170 time steps.

Is the selection of the integration scale related to the size of gaps

in coherent structures? The answer is no. The integration scale is only of
importance in its role computing (8). This is confirmed by a simple illusory
contour type experiment in Figure 2: while the integration scale is given by
ρ = 4, i.e., practically, it is limited by 12 pixels after truncating the Gaussian
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convolution kernel, the gaps that are going to be closed have widths of about
100 − 200 pixels. The figure displays the temporal evolution of an anisotropic
erosion process.

How do we implement orientation information in our model? As
illustrated by Figure 1 (b), directly at the end of a coherent structure the vectors
v2 and ∇uσ have approximately the same orientation, but they do not necessarily
point in the same direction. In this situation, the function η,

η (v2,∇uσ) := |cos∠ (v2,∇uσ)| =

∣
∣
∣
∣

〈v2,∇uσ〉

|v2| · |∇uσ |

∣
∣
∣
∣
, (9)

where 〈·, ·〉 denotes the inner product of vectors, is close to 1. Note, that we sup-
pressed for the sake of brevity the dependence of η on space and time variables.
If ∇uσ is evaluated at points not too close to the end of C, then 0 ≤ η � 1
will hold. In order to enforce a strong damping of the function η in this case,
we exponentiate η by a nonnegative integer µ. The influence of µ on the qual-
ity of numerical results is shown in Figure 3: if µ is chosen too small, then the
propagated coherent structures will be diffused.

Fig. 3. From left to right: (i) Initial image, 106× 238 pixels, (ii) eroded image after
50 time steps with ∆t = 0.5, µ = 1, (iii) analogously, but with µ = 2, (iv) analogously,
with µ = 4.

We then define

κ ≡ κ (x, y, t) := η (v2,∇uσ)
µ

, (10)

compare the discussion of (5)-(7). Because of |cos (·)| ≤ 1 it is guaranteed that
‖D‖ ≤ 1. Note, that ‖D‖ = 1 holds if and only if v2 and ∇uσ have identical
orientations (which is not likely in a numerical computation).
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3 The numerical method

The PDEs (2) are of hyperbolic type [7]. This means, in analogy to the Huygens
principle of wave propagation, object boundaries are moved with or against
the direction of their normal vector, depending on the given grey values. Thus,
numerically, the task is to accurately approximate moving fronts given by the
dilated/eroded object boundaries. A standard method for this purpose which we
use here in a slight variation is the Rouy-Tourin (RT) scheme, see [14]. With
the usual abbreviation Un

ij ≈ u(i, j, n∆t), the method reads:

Un+1

i,j = Un
i,j + κn

i,j∆t
([

max
(
0, Un

i+1,j − Un
i,j , Un

i−1,j − Un
i,j

)]2

+
[
max

(
0, Un

i,j+1 − Un
i,j , Un

i,j−1 − Un
i,j

)]2
)1/2

. (11)

Specifying κn
i,j = 1 for all i, j, n, we retreive the original RT method. For more

information on numerical methods for hyperbolic equations and more details
concerning (11), we refer the interested reader to [3, 11, 12, 14].

4 Numerical experiments

We show two more experiments illuminating the capability of our method to
enhance coherent image structures, supplementing the previous simple tests.

For the computation of κ, we use the procedure described in Paragraph 2,
see especially (10). The parameters we use within the numerical experiments are
set as σ = 0.5, ρ = 4, µ = 4 and ∆t = 0.5. For the computation of gradients, we
use central differences for computing S and the Sobel operator for all other local
gradients, respectively. These choices yield an accurate and efficient method.

We consider first an synthetic image featuring linear and round structures of
several, randomly chosen orientation, and its anisotropic dilation, see Figure 3
(top row). We especially observe that interrupted lines are closed.

This desired outcome is also observable in real-world images, see Figure 3
(bottom row). The displayed image of a fingerprint is used as the initial condi-
tion for an anisotropic erosion process. Note, that our morphological anisotropic
process does not introduce additional smoothing into the processed image.

5 Concluding remarks

We have shown that our method yields morphology-based anisotropic enhance-
ment of images. In our ongoing research, we study extensions of the method for
image areas where structures cross, which is a hard problem for algorithms for
coherence enhancement. Furthermore, we investigate possibilities to make the
scheme more accurate with respect to the estimation of local flow directions, so
that even very large gaps in thin image structures (i.e., width of, effectively, one
pixel) oblique to the grid orientation can be closed without directional deviation.
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Fig. 4. (a) Top left: Synthetic image, 393 × 278 pixels. (b) Top right: Anisotropic
dilation after 50 time steps. (c) Bottom left: Original image of a fingerprint with
interrupted coherent structures, 300 × 300 pixels. (d) Bottom right: Anisotropic
erosion of fingerprint after 20 time steps.
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