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EFFICIENT NUMERICAL TECHNIQUES

FOR PERSPECTIVE SHAPE FROM SHADING

MICHAEL BREUSS, OLIVER VOGEL AND JOACHIM WEICKERT ∗

Abstract. The shape-from-shading (SfS) problem is a classic problem in computer vision. The
task in SfS is to compute on the basis of the shading variation in a given 2-D image the 3-D depth
of the depicted scene. The corresponding mathematical model eventually leads to a boundary value
problem for a Hamilton-Jacobi equation. In this paper we evaluate and compare suitable numerical
methods. We begin with a brief discussion of four state-of-the-art-approaches in this field. Then
we give an extensive numerical comparison, thus evaluating recent improvements in this area. In
the course of doing this, we introduce efficient variations of existing schemes. By this systematic
investigation, we complement and extend previous works on the numerical side. The paper is finished
by a conclusion.
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1. Introduction. By taking a photograph, for instance with a digital camera,
the 3-D world is mapped to a 2-D image. The shape-from-shading (SfS) problem
aims to answer the question if it is possible to recover from exactly one given grey
value image the 3-D depth of depicted objects by making use of the shading variation.
It is a classic problem in computer vision with many potential applications; see e.g.
[6, 7, 18] and the references therein for an overview.

Basic modelling issues. A key ingredient of mathematical models for such
computer vision problems is the camera model, i.e. the mathematical representation
of the projection performed when mapping the 3-D world to 2-D images by the camera;
see for instance [6] for a discussion of this topic. In early SfS models, the camera is
assumed to perform an orthographic projection of the scene of interest. Concerning
this type of models, let us especially mention the pioneering work of Horn [5] who
was also the first to model the SfS task using a partial differential equation (PDE).
However, orthographic models are notorious for their ill-posedness [18].

Only a few years ago, this model assumption has been substituted by employing
a perspective projection [11, 13]. Especially along with modelling the light originating
from a point light source and the consideration of a so-called light attenuation term,
the perspective approach eventually yields a well-posed problem [3, 9, 10]. Beside
these important developments, also the works [13, 14, 15] consider perspective SfS but
do not employ the light attenuation term, so that we do not consider the corresponding
methods in this paper.

Modelling the surface. A further important modelling issue is concerned with
the reflectance properties of objects depicted in the given image. In the works discussed
up to now, so-called Lambertian surfaces are considered. Such surfaces describe diffuse
light reflection: The light intensity of some point on an object surface perceived by
the observer depends on the angle between light source direction and surface normal
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in this point. The advantage of employing Lambertian surfaces is that the model is
theoretically relatively easy to access, simplifying especially the modelling process.
However, optical real-world phenomena like e.g. specular light reflections are not
taken into account by it. Recently, the perspective Lambertian SfS model has been
extended [17] to include surfaces which can be described by the Phong reflectance
model well-known in computer graphics [4, 8].

Algorithms. On the algorithmic side, the first important developments for
perspective Lambertian models with light attenuation term are based on a control-
theoretic formulation and employ the dynamic programming principle [9]. Then, in
[3], a semi-Lagrangian method was developped based on the same model discretising
the domain of the arising optimal control problem. The third numerical approach of
importance was introduced in [16], where it was suggested to use the Hamilton-Jacobi
equation corresponding to the optimal control problem. The question arises which of
the resulting numerical approaches is the best one, as this is an important criterion
for applications and the discretisation of model extensions.

Our contribution. Making use of numerical experiments, we give an in-depth
comparison of the approaches for perspective SfS incorporating light attenuation de-
tailed in [3, 9, 16]. Thereby, we introduce improved variations of the two algorithms
based on the optimal control approach [3, 9]. Moreover, we investigate the influence
of numerical parameter choices on the efficiency of the method based directly on the
Hamilton-Jacobi PDE. We complement this comparative study by considering the
Phong surface model in one experimental setting in order to gain an insight on the
numerical performance trade-off required for incorporating model improvements.

Paper organisation. In Section 2, we review the considered approaches to the
SfS model in use, and we briefly discuss the arising numerical issues. In Section 3,
we are concerned with the comparative study of numerical methods. The paper is
finished by a conclusion in Section 4.

2. Perspective SfS with light attenuation. Let x ∈ R
2 be in the image

domain Ω, where Ω is an open set. Furthermore:

• u := u(x) denotes the sought depth map,

• I := I(x) = E(x)
σ

is the normalised brightness E(x) of the given grey-value image,
where σ depends on the albedo of the surface, i.e., it depends on the extent to which
it diffusely reflects light as well as on the brightness of the light source,

• f is the focal length denoting the distance between the optical center of the camera
and the 2-D plane to which the scene of interest is mapped.

Note, that u > 0 holds as the depicted scene is in front of the camera, and that the
distance is measured in terms of multiples of f.

We describe due to space limitations only the basics of the considered approaches.
For details, we refer the interested reader to the cited works.

2.1. The optimal control approach. In [9, 10] it was used that v = ln(u) is
the solution of the Hamilton-Jacobi-Bellman equation

−e−2v(x,y) + sup
a∈B[0,1]

{−b(x, y, a) · ∇v(x, y) − l(x, y, a)} = 0 , (2.1)

where (x, y) ∈ Ω and where B[0, 1] denotes the closed unit ball in R
2. The other

expressions are defined as follows. Let |.| denote the Euclidean vector norm, then

b(x, y, a) = −JRT DRa , l(x, y, a) = −I(x, y)f2
√

1 − |a|
2
, (2.2)
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with the matrices

R :=
1

√

x2 + y2

(

y −x

x y

)

, D :=

(

f 0

0
√

f2 + x2 + y2

)

(2.3)

and

J := J(x, y) = I(x, y)f
√

f2 + x2 + y2 . (2.4)

For the numerical solution of the optimal control problem given by (2.1)-(2.4), one
has (i) to discretise the occuring partial derivatives of v in (2.1), and (ii) to find an
optimal control a ∈ R2.

In the already cited works the first-order derivatives part of ∇v are discretised
by using appropriate upwind discretisations as described in [12], leading to a case
distinction w.r.t. the upwind directions. It turns out that in order to solve the
optimal control problem given by (2.1)-(2.4), we have to search for an optimal a in
the entire unit ball. This is done in [9, 10] by computing the analytical solution for a

over B[0, 1], which is a somewhat standard yet quite complicated procedure.
Having established the discrete formulation, the equation is solved pointwise in

an iterative way using an artificial time stepping technique, which is practically a
semi-implicit scheme where the implicitness stems from the treatment of the source
term. For the arising fixed point iteration, Newton’s method is used.

2.2. The semi-Lagrangian approach. Developped in [3], this is also an op-
timal control technique, where equation (2.1) is solved by means of a iterative fixed
point procedure. Introducing an artificial time-dependency into the process, indicated
by a lower index h, one may obtain the equation

− vh(x, y) − inf
a∈B[0,1]

{vh ((x, y) + τb(x, y, a)) + hl(x, y, a)} + τe−2vτ (x,y) = 0 .

(2.5)

This equation can be solved iteratively by employing a sequence v
(k)
τ , k = 0, 1, . . .,

using Newton’s method as in the previously described setting until a steady state
of vh is reached. Note that the upwinding strategy previously used is also encoded
within the formula (2.5), so that essentially the same upwind method is used here as
in Sec. 2.1.

An important technical aspect in optimal control approaches such as in (2.5) is
realised within the considered semi-Lagrangian technique. Again the optimal control
a has to be sought within the entire unit ball in R

2. This, however, can be done via
use of a sampling procedure. In [3], this is done by making use of 8 directions with 3
points in each direction additionally to the origin.

2.3. The direct Hamilton-Jacobi approach. Instead of computing the
Hamilton-Jacobi-Bellman equation of the optimal control problem, one may stick to
solving the corresponding Hamilton-Jacobi PDE

1

Q
I(x, y)f2W − exp (−2v(x, y)) = 0 , where (2.6)

W :=
√

f2|∇v|2 + (∇v · x)2 + Q2 , Q :=
f

√

x2 + y2 + f2
. (2.7)
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In [16], the first-order derivatives are approximated by upwind differences as in [12].
Also, an artificial time technique is proposed in the latter work yielding an iterative
method whose steady-state solution is identical to the numerical solution of (2.7), in
a very similar fashion as with the previous two algorithms.

Let us note that here, due to the source term e−2v, fixed point iterations, which
make use of Newton’s method are applied pointwise, too. However, due to the direct
Hamilton-Jacobi approach no optimal control needs to be determined.

2.4. Extension to Phong-type surfaces. The latter model was extended in
[17] to surfaces described by the Phong-model [8], which is used frequently in computer
graphics. This model extension results in the Hamilton-Jacobi equation

1

Q
(I(x, y) − kaIa) f

2W − kdIde
−2v −

WksIs

Q
e−2v

(

2Q2

W 2
− 1

)α

= 0 (2.8)

with W , Q as in (2.7). In this case, the underlying brightness relation reads as

I(x, y) = kaIa +
∑

light sources

1

r2

(

kdId(x, y) cos φ + ksIs(x, y)(cos θ)α
)

, (2.9)

where Ia, Id, and Is are the intensities of the ambient, diffuse, and specular compo-
nents of light, respectively. The constants ka, kd, and ks with ka +kd +ks ≤ 1 denote
the ratio of ambient, diffuse, and specular reflection.

Let us note that the ambient light term represents light present everywhere in a
given scene. The intensity of diffusely reflected light in each direction is proportional
to the cosine of the angle φ between surface normal and light source direction. The
amount of specular light reflected towards the viewer is proportional to (cos θ)α, where
θ is the angle between the ideal (mirror) reflection direction of the incoming light and
the viewer direction, α being a constant modelling the roughness of the material. Em-
ploying no ambient and no specular component, we retrieve the Lambertian reflection
as a special case in this model.

Concerning the numerical side, let us note that the new third term contributing
within (2.8) in comparison to (2.6) involves again sources and first-order derivatives
of v. In [17], the same upwind discretisation of ∇v is used in these new terms as well
as in the remaining terms already discussed below (2.6), while the new source term is
evaluated explicitly.

2.5. Advanced discretisation issues. As a building block for the discretisa-
tion of spatial derivatives, the stable upwind-type discretisation of Rouy and Tourin
[12] is used in the described works. Let hx and hy be the spatial mesh widths in x-
and y-direction, respectively. Denoting then by vi,j the value of v at the mesh point
(ihx, jhy)T , the upwind differencing formulae referred to read as

vx(ihx, jhy) ≈ min

(

0,
vi+1,j − vi,j

hx

,
vi−1,j − vi,j

hx

)

, (2.10)

vy(ihx, jhy) ≈ min

(

0,
vi,j+1 − vi,j

hy

,
vi,j−1 − vi,j

hy

)

. (2.11)

Note that the lower indices in vx and vy denote partial derivatives. Also, in (2.10)-
(2.11) neither iteration nor time levels of the values of v are specified yet, which in
the end will be needed in the methods described before.
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The reason for this lack of specification is that we use a combination of a sweeping
technique and a Gauß-Seidel-type iteration in order to accelerate convergence, leading
especially to a different choice of labels for each sweeping direction.

Let us stress that the use of the Gauß-Seidel-type approach was already imple-
mented in [9], however the sweeping technique can also be combined with all intro-
duced algorithmic approaches. We realise this improvement, as documented in the
experimental section in this work, leading to more efficient implementations of the
two algorithms based on the control theoretic formulation. Also, we use the Gauß-
Seidel-type iteration within the semi-Lagrangian approach.

In addition to these relatively simple refinements, we employ a cascading multigrid
method, cf. [1], for dealing with the Hamilton-Jacobi PDE. Also in the latter case,
we consider two different discretisations of the source term commented on below. A
basic point we briefly address are the numerical boundary conditions; however, this
does not imply new algorithmic developments.

We proceed by briefly elaborating on all these discretisation issues.

The Gauß-Seidel strategy. Notice that at pixel (i, j) the data from the pixels
(i, j), (i ± 1, j) and (i, j ± 1) contribute in the upwind formulae. For instance, let
us assume that we iterate from left to right and, beginning with the top line, from
top to bottom over the mesh points. Thus, ascending in i and descending in j, we
incorporate the available computed values into the scheme, accelerating convergence.

Concentrating for the presentation on the time-level formulation, i.e., incorporat-
ing artificial time level n and n + 1 representing the iteration number together with
a time step size δt into the presentation, the described procedure yields the formulae

vx(ihx, jhy, nδt) ≈ min

(

0,
vn

i+1,j − vn
i,j

hx

,
vn+1

i−1,j − vn
i,j

hx

)

, (2.12)

vy(ihx, jhy, nδt) ≈ min

(

0,
vn+1

i,j+1 − vn
i,j

hy

,
vn

i,j−1 − vn
i,j

hy

)

. (2.13)

Let us emphasize that the data vn+1
i,j+1 and vn+1

i−1,j in (2.12)-(2.13) were already com-
puted via the described method, so that they can be used for the computation of
vn+1

i,j .
Sweeping. We now turn to the sweeping technique adopted from [19]. The

underlying practical problem addressed by this technique is that in the true solution of
a hyperbolic problem information is transported along characteristics. Thus, iterating
on the discrete level in only one manner – e.g., always ascending in i and descending
in j as described above – the true information flow is not realised efficiently. As a
remedy, it is obvious to proceed iterating in the following fashion, realising a cyclic
definition of discrete propagation directions:

1. Left → Right, and Top → Bottom

2. Top → Bottom, and Right → Left

3. Right → Left, and Bottom → Top

4. Bottom → Top, and Left → Right

Exactly this procedure is called sweeping. As is easily seen, depending on the actual
sweeping direction within the above cycle, different values vn+1

i±1,j±1 are to be taken
into account in (2.12)-(2.13).

Cascading multigrid. The cascading multigrid routine is a relatively easy-
to-use algorithm. Practically, it is a coarse-to-fine strategy, where we start from
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a coarse level and iterate up to the finest level identical with the original image
domain. Thereby, the refinement is always implemented by doubling the number of
grid points in each direction, involving linear interpolation from known values to the
newly inserted nodes. Of course, this implies that the original image must be given
in a size identical to a power of two.

Source term treatment. The method used in [16] as well as the algorithms
based on the Hamilton-Jacobi-Bellman equation employ an implicit treatment of the
source term, leading to the use of Newton’s method in order to solve the arising
nonlinear equation. However, recently it was shown by a multi-scale analysis that in
the direct Hamilton-Jacobi approach it is feasible to discretise the sources in a purely
explicit way [2].

Boundary treatment. An important issue always is the numerical realisation
of correct boundary conditions. In the context of the upwind differencing employed
within the considered schemes, the correct, so-called state constraints boundary con-
ditions – practically Dirichlet boundary conditions with value infinity – are satisfied
automatically because of the effect of the minimisation procedure within the upwind-
ing formulae. In practice, when making use of upwinding the state constraints are
identical to homogeneous Neumann boundary conditions, realising at the discrete
level ∇u · ~n = 0 where ~n is the outer unit normal vector at the corresponding image
boundary point.

3. Experimental study of numerical schemes. In this section, we perform
the announced comparative study. For this, we fix the two optimal-control-based
algorithms to the quite optimal set-up described in [3, 9]. Concerning the algorithm
based on the Hamilton-Jacobi PDE, we study the effects of various choices which can
be made, and evaluate the performance.

For the quantitative evaluation, we use synthetic images, as here all parameters
of camera and illumination as well as the solution are known. The synthetic images
are newly rendered versions of a ’classic’ test image in SfS, namely the vase image,
cf. [18].

The Lambertian vase test image shown in Fig. 3.1 is of size 128 × 128 pixels. It
was rendered using the parameters f = 492, σ = 100000. Also in Fig. 3.1, we depict
the vase rendered with a Phong-type surface, where we used f = 492, Is = Id = Is =
100000, ka = 0, kd = 0.7, ks = 0.3, α = 5. As observable, the difference is largely due
to the highlights which can safely be incorporated via the Phong model.

For initialising the iterative process for all algorithms, we solve the optimal control
problem analytically for the specific control a = (0, 0)T in the Lambertian case.

Concerning the algorithms, we use the following notations:

• CFS denotes the semi-Lagrangian algorithm,

• PF denotes the optimal control approach,

• VBW/L denotes the Hamilton-Jacobi-based algorithm for Lambertian surfaces,

• VBW/P denotes the Hamilton-Jacobi-based algorithm for Phong-type surfaces.

At first, we evaluate the use of the sweeping strategy for the CFS and the PF algo-
rithm, as the sweeping scheme was not previously applied in that context. In doing
this,

– The stopping criterion (in the following indicated via ’Stop’) is realised if the dif-
ference of two successive iterates is less than 10−5 in the maximum-norm.

– The source term is discretised implicitly.



NUMERICAL TECHNIQUES FOR SHAPE FROM SHADING 17

Fig. 3.1. Synthetic vase input images. Left: Lambertian surface. Right: Phong-type surface.

– Up to 100 Newton iterations are performed until convergence; in the following this
number is indicated via ’Newton’. Note that this number has the role of an upper
bound, in practice it is not reached.

We summarise the results by help of Table 3.1. As in all later experiments, the com-
putational times (’Time’) were obtained using an implementation in C on a standard
PC (Linux, Pentium IV, 3.2 GHz, 2 GB RAM). We measure the error of the meth-
ods in terms of the relative depth error, i.e., in percentages of the true depth, as
this makes sense in the context of the SfS task. A further interesting number is the
number of iterations needed (’Iterations’). Note that one iteration consists practi-
cally of four sweeps, as indicated in the table. Also note that we always employ the
Gauß-Seidel-type iteration in the algorithms without pointing this out explicitly.

Of course, the input image is the vase image with Lambertian surface. Initialising
making use of the described procedure, the initial state features a relative L1 depth
error of 16.0792%.

Table 3.1

The Sweeping method: Relative L1 depth errors, computational times and number of iterations.

Algorithm Sweeping (y/n) Error [%] Time [s] Iterations
PF n 0.398724 56.5 228
CFS n 0.396839 47.0 144
PF y 0.398724 36.6 4 · 38
CFS y 0.396839 29.2 4 · 23

Evidently, making use of the sweeping strategy also renders the methods based on
the Hamilton-Jacobi-Bellman equation more efficient. We take note of the reduced
number of iterations in order to achieve convergence. In the following, we will always
employ sweeping, and note only the number of iterations in terms of four sweeps.

Now we compare the optimal-control-based algorithms PF and CFS with varia-
tions of the VBW/L algorithm. The results are summarised in Table 3.2. In addition
to the numbers we already introduced above, we also consider:

– Explicit or implicit (’e/i’) discretisations of the source term.

– The use of the coarse-to-fine proceeding (’CTF’). Here, the number of iterations
only represents the iterations on the finest grid.
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As observable, the results are almost identical w.r.t. the measured error, given that
the stopping criterion is selected properly. This is no true surprise, as we are essen-
tially dealing with the same model, put into different formulations. Also, the results
are very accurate, which is nothing but a quality statement, indicating that the model
has reached maturity. Employing the coarse-to-fine procedure gives only slightly worse
results. Note also that, at the same prescribed stopping criterion, the explicit formu-
lation of the VBW/L algorithm is advantageous w.r.t. computational times compared
to its semi-implicit variant. By the experiments employing an ’early stopping crite-
rion’ (10−3) we observe that the direct approach needs more iterations than the other
approaches until it reaches a high accuracy, while it is very efficient during the first
few iterations. Overall, the PDE-based direct approach is more efficient.

Table 3.2

Comparison of schemes for the Lambertian vase experiment.

Algorithm Stop CTF e/i Newton Error [%] Time [s] Iterations
PF 10−5 − i 100 0.398724 36.6 38
PF 10−3 − i 100 0.320825 18.3 18
CFS 10−5 − i 100 0.396839 29.2 23
CFS 10−3 − i 100 0.307 22.3 17

VBW/L 10−5 + e 0 0.411916 6.7 107
VBW/L 10−3 + e 0 0.394577 0.274 2
VBW/L 10−5 − e 0 0.395914 8.0 153
VBW/L 10−5 + i 100 0.412128 13.5 107
VBW/L 10−5 − i 100 0.395997 14.3 154
VBW/L 10−5 + i 1 0.412128 8.7 107
VBW/L 10−8 − i 100 0.398601 23.6 289
VBW/L 10−7 − i 100 0.3986 21.5 262
VBW/L 10−6 − i 100 0.398567 18.7 222
VBW/L 10−4 − i 100 0.393843 5.4 54
VBW/L 10−3 − i 100 0.396341 2.3 20
VBW/L 10−2 − i 100 1.98555 0.8 5
VBW/L 10−1 − i 100 3.27122 0.5 2

We now consider Phong-type surfaces. To evaluate the increase in computational
time and the difference gained by the model improvement, we use the explicit versions
of the VBW/L (L for Lambertian) and VBW/P (P for Phong) algorithms. The
stopping criterion is applied if the difference between two successive iterations is less
than 10−5 in the maximum-norm. Table 3.3 summarises the result. We observe only
a moderate increase in computational effort, while the quality of the Phong-based
reconstruction is clearly better compared to the result of the Lambertian model.
This is due to the fact that the Lambertian model estimates the surface too close
to the light source, misinterpreting the highlights. We also observe that relaxing the
stopping criterion too much may lead to large errors; by this experiment one may
conjecture that it is more demanding to reach the steady-state solution of the Phong
model in comparison to the Lambertian case. See Fig. 3.2 for a visible account of the
experiments.
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Table 3.3

Comparison of schemes for the vase experiment with Phong-surface.

Algorithm input Stop Error [%] Time [s] Iterations
VBW/L L 10−5 0.411916 6.7 107
VBW/L Ph 10−5 10.702 13.6 200
VBW/P Ph 10−5 1.05791 19.9 281
VBW/P Ph 10−3 5.39 1.4s 21

Fig. 3.2. The Lambertian vase experiment, colour-coded depth maps. Left: Exact solution.
Right: Lambertian reconstruction (looks the same for any of the algorithms in use).

4. Conclusion. Our investigations show that the considered algorithms deliver
equivalent results of convincing quality. Having investigated some possible algorith-
mic improvements, we have found that the direct approach based on the Hamilton-
Jacobi PDE is most efficient compared to the schemes relying on the Hamilton-Jacobi-
Bellman equation. The detailed discussion of the influence of numerical parameters
particularly reveals the influence of the stopping criterion on the numerical realisation
of the Lambertian and the Phong surface model. There is also no accuracy trade-
off when discretising sources here explicitly. Also, improving the SfS model to more
general surface models does not result in very high additional computational effort.
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